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Abstract

Pointcut fragility is a well-documented problem in Aspect-Oriented Program-
ming; changes to the base-code can lead to join points incorrectly falling in or out
of the scope of pointcuts. Deciding which pointcuts have broken due to base-code
changes is a daunting venture, especially in large and complex systems. We present
an automated approach that recommends pointcuts that are likely to require mod-
ification due to a particular base-code change, as well as ones that do not. Our
hypothesis is that join points selected by a pointcut exhibit common structural char-
acteristics. Patterns describing such commonality are used to recommend pointcuts
that have potentially broken with a degree of confidence as the developer is typing.
The approach is implemented as an extension to the popular Mylyn Eclipse IDE
plug-in, which maintains focused contexts of entities relevant to the task at hand
using a Degree of Interest (DOI) model. We show that it is accurate in revealing
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broken pointcuts by applying it to multiple versions of several open source projects
and evaluating the quality of the recommendations produced against actual modifi-
cations. We found that our tool made broken pointcuts 2.14 times more interesting
in the DOI model than unbroken ones, with a p-value under 0.1, indicating a signif-
icant difference in final DOI value between the two kinds of pointcuts (i.e., broken
and unbroken).

Keywords: Software development environments, Software maintenance, Software
tools

Highlights

• An automated approach that recommends pointcuts that likely have or have
not broken due to a particular base-code change is proposed.

• The approach relies on join points selected by a pointcut exhibiting common
structural characteristics.

• Commonality patterns are used to recommend possibly broken pointcuts with
a degree of confidence as the developer is typing.

• The approach was implemented as an extension to the Mylyn Eclipse IDE
plug-in, dynamically manipulating its Degree of Interest (DOI) model.

• Broken pointcuts were 2.14 times more “interesting” than unbroken ones, with
a p-value under 0.1.

1. Introduction

Although using Aspect-Oriented Programming (AOP) [1] can be beneficial to
developers in many ways [2, 3, 4, 5], such systems have the potential for new problems
unique to the paradigm. A key construct that allows code to be situated in a single
location but affect many system modules is a query-like mechanism called a pointcut
expression (PCE). PCEs specify well-defined locations (join points) in the execution
of the program (base-code) where code (advice) is to be executed. In AspectJ [6], an
AOP extension of Java, join points may include calls to certain methods, accesses to
particular fields, and modifications to the run time stack. In this way, AOP allows
for localized implementations of so-called crosscutting concerns (or aspects), e.g.,
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logging, persistence, security. Without AOP, aspect code would be scattered and
tangled with other code implementing the core functionality of the modules.

As the base-code changes with possibly new functionality being added, PCEs
may become invalidated. That is, they may fail to select or inadvertently select new
places in the program’s execution, a problem known as pointcut fragility [7]. As an
example, consider the PCE execution(∗ send∗(String)) for a security aspect that selects
the execution of all methods whose name begins with send, taking a single String

parameter, and returning any type of value, with the intent of encrypting outbound
messages. Suppose that in a particular version of the base-code all methods that
send messages have names that match this pattern. In other words, in this version,
this PCE selects and only selects the correct set of join points to which this aspect
applies. Now suppose that in a subsequent version a new method is introduced that
also sends messages but whose name begins with transmit. In this case, the PCE
is fragile as it fails to select the execution of this new method, which also requires
encryption.

Deciding which PCEs have broken is a daunting venture, especially in large and
complex systems. In software with many PCEs, seemingly innocuous base-code
changes can have wide effects. To catch these errors early, developers must manually
check all PCEs upon base-code changes, which is tedious (potentially distracting
developers), time-consuming (there can be many PCEs), error-prone (broken PCEs
may not be fixed properly), and omission-prone (PCEs may be missed).

1.1. Languages and Other Mechanisms for Coping with Pointcut Fragility

Several approaches combat this problem by proposing new PCE languages with
more expressiveness [8, 9, 10, 11, 12, 13, 14], limiting where advice may apply [15, 16],
or enforcing constraints on advice application [17, 18, 19, 20]. Others make advice
applicability more explicit [21] or do not use PCEs [22, 23, 24]. However, each of
these tends to require some level of anticipation and, consequently, when using PCEs,
there may nevertheless exist situations where PCEs must be manually updated.
Furthermore, when using more expressive PCE languages, the rules that the base-
code must respect may be complex. Hence, although these languages may reduce
fragility, they may render detection of broken PCEs more difficult [25].

Programmer-defined source code annotations [26] can also be used to “mark”
relevant locations where a crosscutting concern (CCC) applies. PCEs then use these
annotations to accurately select the appropriate join points. If used properly, i.e., if
all locations where the CCC applies are correctly annotated and if the corresponding
PCE correctly selects these elements, this scheme can produce PCEs that are robust
to changes such as refactorings since names and organization of program elements
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may change but the associated annotations remain intact. However, refactoring is
not the only reason a PCE breaks. For example, adding a new element but neglecting
to annotate it properly with all CCCs that apply to it will break an annotation-based
pointcut.

1.2. Tool-support for Detecting Broken Pointcuts

Other approaches offer tool-support for detecting broken PCEs. The AspectJ
Development Tools (AJDT) [27], which displays current join point and PCE match-
ing information, does not indicate which PCEs do not select a given join point nor
which are likely broken due to a new join point. [7] discovers PCEs that exhibit
differences in advice application, however, PCEs that contain no join point changes
between base-code versions, e.g., when new system functionality is added, may also
be broken. [28] augments the AJDT with almost matching join point information by
relaxing PCEs using developer-minded heuristics but do not detect situations where
join points are unintentionally selected by PCEs. [29] automatically fixes PCEs bro-
ken by refactorings, however, manual base-code edits may also break PCEs. [30]
determines which PCEs are syntactically affected by new join points but does not
necessarily identify semantic breakages. [31] suggests join points that may require in-
clusion by a revised version of a PCE. Yet, developers must manually detect broken
PCEs, as well as determine how frequently to check.

1.3. Broken Pointcut Detection Approach

In this article, we present an automated approach that recommends PCEs that
are likely to require modification due to a particular base-code change. Our approach
has been implemented as an AspectJ source-level inferencing tool called Fraglight,
which is a plug-in for the popular Eclipse (http://eclipse.org) IDE. Fraglight
identifies, as the developer is making changes to the base-code, PCEs that have
likely broken within a degree of change confidence. Based on how “confident” we
are in the PCE being broken, Fraglight presents the results to the developer by
manipulating the Degree of Interest (DOI) model in an existing tool, i.e., Mylyn [32].

To the best of our knowledge, our approach is the first of its kind to integrate with
Mylyn and manipulate its DOI model based on change prediction/impact analysis.
Mylyn [33] is a standard Eclipse plug-in that facilitates software evolution by focusing
graphical components of the IDE in order that only (“interesting”) artifacts related
to the currently active task are revealed to the developer [34]. Mylyn works by
maintaining and manipulating a DOI model as the developer works on the project.
The more interaction a developer has with a particular artifact (e.g., a file), the
more prominent it appears in the IDE, and the less prominent other less recently
used artifacts appear.
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Our approach enables developers to discover problematic PCEs early in develop-
ment so that they may be fixed before causing bugs that may compound over time.
Fraglight alleviates much of the burden associated with identifying broken PCEs,
making these systems easier to maintain. We also show how a recommendation sys-
tem can be seamlessly integrated into Mylyn, paving a way for future researchers to
consider such integration. The potential of this approach, independent of AOP, is
that the results of recommendation systems for software engineering can be brought
to the forefront of developers in order that they can make practical use of them as
soon as they write the code. This can be particularly useful for other change impact
approaches.

Our key contributions can be summarized as follows:

Algorithm design. We present an automated approach that programmatically ma-
nipulates the Mylyn DOI model to bring broken PCEs to the base-code devel-
oper’s attention early. The developer is informed, with a subtlety that varies
on likelihood, when their code is likely to break PCEs as it is being written.

Mylyn integration. Fraglight implicitly makes PCEs that are more likely bro-
ken more interesting, i.e., by increasing its DOI value, while implicitly making
PCEs that are less likely broken less interesting, i.e., by decreasing its DOI
value. In this way, possibly broken PCEs are presented to the developer in
a variably invasive way. In other words, PCEs that likely need developer at-
tention are presented more prominently in the IDE than ones that are less
likely. Developers can then make alteration decisions based on Fraglight’s
recommendations, possibly adjusting the PCE or the base-code to rectify the
problem. Moreover, we pave an avenue for future research to also utilize Mylyn
integration.

Implementation and experimental evaluation. To ensure real-world applica-
bility, we implemented our approach as a seamless, publicly available extension
to Mylyn. A study on 14 version changes consisting of 5,711 base-code edits
of AspectJ programs indicates that the technique is effective and practical in
detecting broken PCEs as the base-code developer types. Upon completion of
the experiments, the average DOI value of PCEs that actually broke were, on
average, 2.14 times greater than that of PCEs that did not break throughout
versions, with a p-value under 0.1 indicating a significant difference in final
DOI value between the two kinds of pointcuts (i.e., broken and unbroken).
This demonstrates that using our approach results in broken PCEs being 2.14
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times more prominently displayed in the IDE than unbroken PCEs,4 bringing
broken PCEs to the forefront while keeping unbroken PCEs in the background.
These results advance the state of the art in automated tool-support for AOP
evolution.

Fraglight’s recommendations are based on harnessing unique and arbitrarily
deep structural commonality between program elements corresponding to join points
selected by a PCE in a particular software version. To illustrate, again consider the
example PCE given earlier and suppose that, in a certain base-code version, the
PCE selects the execution of three different message transmitting methods. Further,
suppose that facets pertaining to these methods exhibit structural commonality. For
instance, each of the methods’ bodies may (textually) include a call to a common
method connect() or an assignment to a common field queue. Likewise, each method
may be declared in class Message. The majority of program elements corresponding
to join points selected by a PCE in one base-code version share such characteris-
tics between them, and these relationships persist in subsequent versions [31]. In
this article, we use this premise to detect broken PCEs on-the-fly. Note that this
structure-based approach is relevant to even annotation-based PCEs as new join
points may need to be annotated.

Though we have tackled some issues of pointcut fragility in our previous work [31],
this work tackles a different problem (i.e., broken pointcut detection) and differs in
the following ways:

Solves a different problem. Our previous approach, geared towards aspect de-
velopers,5 periodically suggests join points that may require inclusion into a
revised version of a PCE. Aspect developers may revise PCEs, possibly after
coarse-grained base-code changes, depending on the provided join point sug-
gestions. Our new approach, geared towards base-code developers, however,
suggests PCEs that may have broken due to a single revision to the base-code.
Here, we provide base-code developers with feedback following a series of re-
lated, fine-grained base-code changes that may have broke PCEs using a new,
incremental algorithm. Base-code developers may then revise the base-code de-
pending on the suggestion provided by this new approach or inform the aspect
developer of the problem.

4Elements with a significantly low DOI value may be hidden from view in the IDE. The DOI
value of 0 is used in the comparison of such elements.

5The distinction between aspect and base-code developers has been well-documented. This is
particularly relevant in regards to reusable aspects [35].
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Listing 1: A point on a Cartesian plane.

1 pub l i c c l a s s Po in t implements F i gu r e {
2 pr i va te double x ; pr i va te double y ;
3 pub l i c void setX ( double x ) { t h i s . x=x ;}
4 pub l i c void setTwiceX ( double x )
5 { t h i s . x=2∗x ;}
6 pub l i c double getY ( ) { return y ;}}

Presents a new, incremental algorithm. While our previous approach works with
only a single PCE at a time, in this article, our incremental approach avoids
rebuilding and analyzing the base-code for each PCE. A new, incremental
algorithm is developed to enable on-the-fly, broken PCE detection. A new
confidence equation for PCEs is presented that corresponds to the probability
that the PCE has broken due to a base-code change.

Integrates with Mylyn. Our new approach is integrally tied to the Mylyn DOI,
a proven, successful, and familiar model.

A brief introduction of this work originally appeared in [36], and a demonstration
of our preliminary tool, along with details of the implementation, appeared in [37].
In this article, we fully describe our approach and add an evaluation. The evalu-
ation presents our experimental results to comprehensively and thoroughly assess
the overall quality of the recommendations produced by our approach against actual
modifications.

Organization

This article is organized as follows. In Section 2, we present a simple motivating
example and discuss the associated challenges along with the limitations of related
approaches. In Section 3, we discuss our approach to the problem and how it is inte-
grated into Mylyn. We evaluate our approach on several real-world AspectJ projects
and detail the results in Section 4. Section 5 contains more detailed information on
related work. We conclude in Section 6, as well as set forth future work.

2. Motivating Example

We motivate our approach using a simple yet classic graphics application inspired
by [6]. Though the example is small, we use its simplicity to detail our approach.
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Listing 2: An aspect managing how Figures are displayed.

1 pub l i c aspect Di s p l a yMan i pu l a t i o n {
2 a f t e r ( ) :
3 execution (∗ F i gu r e +. s e t ∗ ( . . ) )
4 {D i s p l a y . update ( ) ;}
5 double around ( ) :
6 execution ( double F i gu r e +. ge t ∗ ( . . ) )
7 { r e t u r n proceed ( ) ∗0 . 5 ;}}

Listing 1 portrays a code snippet of a simple Point class (line 1) that implements
a Figure (interface not shown) on a Cartesian plane. Two instance fields, x and y, are
declared on line 2. There are two mutator instance methods for field x (mutators for
y omitted for presentation), namely, setX(double), declared on line 3, which assigns
field x to be the argument, and setTwiceX(double), declared on line 4, which assigns
field x to be double the argument. Furthermore, there is an accessor instance method
for field y (accessor for x omitted for presentation), declared on line 6, that returns
the field value.

As Figures may be maneuvered in many different editor modules, the DisplayMa-
nipulation aspect snippet (Listing 2) localizes the code for manipulating how Figures
are displayed. The after advice (line 2) refreshes the Display (line 4, code not shown)
whenever the state of a Figure is altered. This advice is implicitly executed after

control leaves any join point selected by its bound PCE (line 3). These join points
correspond to the execution of any method implementing a method of the Figure

interface (Figure+) whose name begins with set, takes any number and type of
parameters, and returns any type of value. In Listing 1, this corresponds to the
execution of the setX(double) and setTwiceX(double).

Likewise, the around advice (line 5) scales Figures by 50%. The advice body
(line 7) is implicitly executed around join points matching its bound PCE (line 6).
Such join points correspond to the execution of methods implementing a method in
the Figure interface whose name begins with get, taking any number and types of
parameters, and returning any value. In Listing 1, this corresponds to the execution
of the getY() method. When executed, the advice body first proceeds to execute the
selected join point, multiplies the return value by the scaling factor, and returns the
resulting value in its place.

Suppose that in this version, both PCEs are correct, i.e., they select all and only
the intended join points. Now suppose that in a subsequent version, a new method
move(double,double), which moves figures according to the specified coordinates, is

8



added to the Figure interface. A corresponding implementation is then added to the
Point class:

Listing 3: A new method is added to move Figures using coordinates.

1 pub l i c void move ( double x , double y )
2 { t h i s . x=x ; t h i s . y=y ;}

Clearly, this new method alters the state of Figures, however, the PCE bound to the
after advice, which refreshes the Display following state changes to Figures, on line 3
of Listing 2 fails to select this new join point. As a result, this PCE breaks.6 Notice,
however, that the PCE bound to the around advice, which scales figures, does not
break and thus continues to select all and only the desired join points.

In general, each incremental change to the base-code can potentially break PCEs
and thus cause bugs. If developers wait until many such changes occur, problems
may be compounded and more difficult to find. To alleviate this, developers could
perform a global analysis of all aspects and verify that each PCE is correct after
every incremental change. However, not only would such an activity be distracting
to base-code developers, it could also be non-trivial. Although this simple example
contains only two PCEs, larger, more realistic systems may contain much more PCEs
whose correctness would need to be verified. It would thus be helpful for developers
if broken PCEs could be brought to their attention early, even before continuous
regression testing may catch them.7 It would also be helpful if unbroken PCEs were
kept in the “background” as no action would be required. That way, the base-code
developers may continue coding when an error is less likely and pause work otherwise.
Rectifying such a problem would involve either changing the base-code8 so that it is
correctly selected (or not selected) by the problematic PCE, or by altering the PCE
itself in the case that its source is available.

The problem described here is not easily addressed by existing techniques men-
tioned in Section 1. For example, the language support techniques discussed in Sec-

6This PCE could have instead selected field set join points, e.g., set(* Figure+.*), which would
have seemingly solved the problem. However, interfaces (like Figure) do not contain variable instance
fields, thus, such a PCE would not select the intended join points. Moreover, in the case of the
Point class, the Display would have been refreshed twice, which could be inefficient. This would
also be the case had the move() method implementation indirectly changed the coordinates via the
setX() and setY() methods.

7Writing system tests that test the effects of advice is not always easy given that aspects normally
affect large portions of the system that tend to crosscut module boundaries and represent non-
functional concerns. Moreover, the affects of advice may be under specified [38].

8It may not always be possible to fix the problem using a base-code change as doing so may
break other PCEs.
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tion 1.1 may help prevent the problem from occurring by allowing for more expressive
PCEs. If developers can correctly capture situations of where the crosscutting con-
cern applies using more expressive PCEs, the problem may be circumvented. But,
more expressive PCE languages do not offer assistance when the problem does occur.
Moreover, developers may not be able to utilize a diverse set of different languages
due to project constraints. The tool support techniques presented in Section 1.2
would not detect that the after advice has broken and that the around advice has
not broken because the new move method does not match (or nearly match in terms
of [28]) any existing PCEs, cause any differences in advice application, or result from
a refactoring. In the following sections, we will demonstrate how Fraglight can
automatically alleviate such problems.

3. Approach

3.1. Overview

A join point shadow (JPS) is the static counterparts of a join point, i.e., a point
in the program text where the compiler may insert advice code [39]. Fraglight
predicts how likely each PCE is to change given a change in the base-code. We
model base-code changes as a series of JPS additions and removals, with each added
JPS in the series being used as input.9 Changing a JPS, e.g., renaming a method, is
modeled as the addition of a new JPS, e.g., the new method’s execution.

Example 1. Adding the move() method in Listing 3 would result in three new JPSs,
namely, execution(void Point.move(double,double)), set(Point.x), and set(Point.y), with
the latter two being on line 2 in Listing 3.

Figure 1 depicts Venn diagrams of four canonical situations and how Fraglight
makes predictions in each. The numbers at the bottom right-hand corner of the di-
agrams correspond to the situation numbers below. We consider a single PCE,
structural pattern, and input JPS to simplify the presentation. The universe is all of
the program’s JPSs. The region labeled PCE represents the set of all JPSs selected
by the PCE. The region labeled π̂ represents all JPSs corresponding to program
elements matched by a particular structural pattern. Structural patterns depict or-
ganizational relationships between program elements, e.g., all methods declared by
a class (a single depth pattern), all methods whose bodies textually contain a call to
methods whose bodies include a statement that writes to a particular field (a multi-
depth pattern). Again for simplification, Figure 1 shows a single structural pattern,
whereas many structural patterns may exist in a given program.

9Note that removing a JPS can never break a PCE.
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Figure 1: Predicting whether a PCE breaks due to a join point being added to the base-code. PCE
represents all join points selected by a particular PCE. π̂ is all join points matching a structural
pattern derived from the PCE. α and β, which are related to type I and type II statistical errors,
respectively, are metrics that help assess how close a structural pattern resembles a PCE in terms
of selected join points.
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The α and β metrics, which are related to the statistical metrics type I and type
II errors, respectively, are used for measuring the similarity between a particular
PCE and structural pattern (discussed in Section 3.2.1). α measures how closely a
pattern resembles a PCE, while β measures its completeness.

Program elements corresponding to JPSs selected by a PCE share a high degree
of structural commonality iff there exist structural patterns that have small α and
β errors w.r.t. the PCE (threshold selection is discussed in Section 4.2). Conversely,
elements corresponding to JPSs selected by a PCE do not share a high degree of
commonality iff there exist patterns that have large α and β errors w.r.t. the PCE.

We treat a program as a set of JPSs that may or may not be under the influence
of advice, which helps simplify the presentation. Also for simplification, we treat
base-code as separate from the aspect, i.e., that advice cannot apply to aspect code.
Doing so minimizes the types of relations that need to be considered when presenting
our approach, as well as frees us from resolving proceed calls, which may be present
in around advice. Future work for adding advice bodies to the analysis is discussed
in [31, Section 6].

We define a PCE to be a subset of JPSs, thus eliminating the need to consider
complex expression constructs. We also assume that the PCE is free of dynamic
conditions, which allows us to exploit solely static information in our analysis. Our
implementation conservatively relaxes this assumption (discussed in Section 4.1) so
that PCEs utilizing dynamic conditions may nevertheless be used as input to our
tool. The impact of this limitation is minimal [31]. Moreover, there is evidence that
suggests that most PCEs do not take advantage of dynamic conditions [40].

1. (HIGH COMMONALITY∧¬SELECTED) If a new join point is added
to the base-code that shares a high degree of structural commonality (as deter-
mined by static analysis, details of which are in Section 3.2.1) with join points
selected by an existing PCE and is not selected by the PCE, we consider the
PCE to be more “interesting,” as it may need to be altered to include the new
join point.

2. (LOW COMMONALITY∧¬SELECTED) If a new JPS is added to the
base-code that does not share a high degree of structural commonality with
JPSs selected by the PCE and is not selected by the PCE, we consider the
PCE to be less “interesting,” as it is unlikely that the PCE needs to include
the new join point.

3. (HIGH COMMONALITY∧SELECTED) If a new JPS is added to the
base-code that shares a high degree of structural commonality with JPSs se-
lected by the PCE and is selected by the PCE, we consider the PCE to be
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Figure 2: Flowchart of the analysis phase that starts when a task is activated.

less “interesting,” as it is unlikely that the PCE needs to exclude the new join
point.

4. (LOW COMMONALITY∧SELECTED) If a new JPS is added to the
base-code that does not share a high degree of structural commonality with
JPSs selected by the PCE and is selected by the PCE, we consider the PCE
to be more “interesting,” as it may need to be altered to exclude the new join
point.

3.2. Workflow Details

Once a Mylyn task is activated, Fraglight detects broken PCEs using two
phases, namely, analysis and detection.

3.2.1. Phase I: Analysis

Pointcut Analysis Scope. The analysis phase (Figure 2) is triggered when a Mylyn
task is activated (step 1). At this time, a set of advice-bound PCE10 representations is
collected from the current pointcut analysis scope (PAS; step 2). The PAS is based
on the degrees-of-separation concept used by [34]. It is used there (and here) to

10In AspectJ, it is possible to declare a (named-) PCE for which no advice is currently bound.
We are considering analyzing such PCEs for future work.
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limit the amount of data to be analyzed in their experimental Active Search feature,
which provided an additional view of “interesting” elements computed by (indirect)
interactions. PCEs bound to advice in this set are those that Fraglight will later
consider during the detection phase (described in Section 3.2.2) when predicting
broken PCEs due to added JPSs. Thus, it is these and only these PCEs that can
possibly be included in our change predictions. This helps control tractability by
allowing only a subset of PCEs to be analyzed. In our implementation (described
in Section 4.1), and later used during our experiments (described in Sections 4.3
and 4.4), the workspace scope, which considers all PCEs available in all projects in
a developer’s workspace, is the default.

Example 2. If the aspect in Listing 2 was the only aspect in all of the projects in the
workspace, the PAS would include the PCEs bound to the after() advice declared
on line 2 and the around() advice declared on line 5.

Concern Graphs. In step 3, an extended concern graph is built from projects that
include the aspects whose advice-bound PCEs are in the PAS. A concern graph
is a directed multigraph depicting structural relations (e.g., calling, declarations,
package containment) between program elements (e.g., types, methods, fields) [41].
We extend the graph with relations and entity types found in modern Java languages.

Example 3. Vertices for Point, Point.y, and Point.getY() would be in a graph built

from Listing 1. Arcs would include Point
df−→ Point.y and Point

dm−→ Point.getY()
gf−→

Point.y, where df , dm, and gf refer to field declaration, method declaration, and field
retrieval (“gets field”) relations, respectively.

Maximum Analysis Depth. A maximum analysis depth (k) is also a parameter to
control tractability. It controls the depth of the structural relations considered. In
Section 4.2, we discuss our choice for the analysis depth for our experiments.

Pattern Extraction. Next, each PCE in the PAS is associated with the graph (step
4). This involves identifying portions of the graph (vertices or arcs) that are related
to the JPSs selected by a PCE.

Example 4. Recall that the PCE declared on line 3 of Listing 2 selects executions of
methods (and overriding methods via the + designator in Figure+) implementing the
Figure interface and whose name begins with “set,” etc. This PCE would be associ-
ated with the vertices representing the methods Point.setX() and Point.setTwiceX().
Graph elements (e.g., vertices) that represent such methods are “enabled” w.r.t. a
PCE [31].
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Algorithmically, pattern extraction works by first enumerating acyclic, finite
paths of maximum length k in the graph.

Example 5. A path of length one is Point.setX()
sf−→ Point.x, where sf represents a

field manipulation (“sets field”) relation.

Next, paths that contain enabled vertices or arcs are used to construct patterns.

Example 6. The vertex Point.setX() in the path shown in Example 5 is enabled
w.r.t. the PCE declared on line 3 in Listing 2.

Wild cards are then substituted for various graph elements (either vertices or
arcs), with the enabled graph elements being substituted with “enabled wild cards”
(step 5).

Example 7. We derive the pattern ?∗
sf−→ Point.x from the PCE declared on line 3 in

Listing 2 using the path depicted in Example 5, where ?∗ is an enabled wild card.11

Note that the enablement is w.r.t. the PCE.

Pattern Matching. Pattern matching identifies paths with common sources and sinks
as those containing enabled graph elements. Graph elements matching enabled wild
cards are those whose represented JPS exhibit similar structural commonality with
the JPSs selected by the PCE.

Example 8. The pattern in Example 7 would match (and only match) the paths Point

.setX()
sf−→ Point.x and Point.setTwiceX()

sf−→ Point.x in Listing 1 (and only them).
Notice that the enabled wild card ?∗ matches Point.setX() and Point.setTwiceX(),
which corresponds to all and only the selected JPSs. This indicates that this pattern
describes similar structural characteristics as the PCE from which it was derived.
Note, though, that while the enabled wild card of the pattern Point

df−→ ?∗ also
matches both Point.setX() and Point.setTwiceX(), it also matches Point.getY(), whose
corresponding JPS is not selected by the PCE. This indicates that, while this pattern
expresses similar structural characteristics as the PCE, it is too broad.

We next detail how patterns and PCEs are compared. Recall that patterns
describe arbitrarily deep structural commonality between program elements corre-
sponding to join points selected by a PCE.

Pattern Analysis.

11Patterns of greater lengths may contain wild cards that are not enabled.
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errα(π̂,PCE ) =


0 if match(π̂, paths(CG)) = ∅

1− |PCE ∩match(π̂, paths(CG))|
|match(π̂, paths(CG))|

o.w.
(1)

errβ(π̂,PCE ) =


1 if PCE = ∅

1− |PCE ∩match(π̂, paths(CG))|
|PCE |

o.w.
(2)

abs(π̂) =


1 if |π̂|= 0

|W(π̂)|
|π̂|

o.w.
(3)

sim(π̂,PCE ) =1− [errα(π̂,PCE )(1− abs(π̂)) + errβ(π̂,PCE )abs(π̂)] (4)

sel(jps ,PCE ) =

{
1 if jps ∈ PCE

0 o.w.
(5)

µ(jps) =
{
π̂
∣∣∣ jps ∈ match(π̂, paths(CG ′))

}
(6)

δ(PCE ) =
{
π̂
∣∣∣ π̂ was derived from PCE

}
(7)

chconf (jps ,PCE ) =


sel(jps ,PCE ) if µ(jps) ∩ δ(PCE ) = ∅

1

|µ(jps) ∩ δ(PCE )|
∑

π̂∈µ(jps)∩δ(PCE)

|sel(jps ,PCE )− sim(π̂,PCE )| o.w.

(8)

Figure 3: PCE change confidence equation. The first four are derived from [31]. CG is the concern graph built from the original
base-code when the Mylyn task is activated. CG ′ is the revised graph, which includes information pertaining to the new join
point shadow jps. errα is the type I error ratio. errβ is the type II error ratio. |W(π̂)| is the number of wild cards in the pattern
π̂. abs is the pattern abstractness, i.e., the ratio of wild card to concrete elements. sim(π̂,PCE ) represents how well the pattern
π̂ resembles the PCE PCE . The characteristic function sel(jps,PCE ) is 1 if the JPS jps is selected by the PCE PCE . µ(jps) is
the set of all patterns that, when applied to the new version of the base code CG ′, produce jps as a result. δ(PCE ) is the set
of all patterns derived from PCE . chconf (jps,PCE ) (the “change confidence”) is the confidence we have that PCE will need
to be changed (i.e., it “breaks”) given that the JPS jps was added to the base-code. The closer chconf is to 1, the more likely
PCE will need to be updated because of adding jps. Conversely, the closer chconf is to 0, the less likely PCE will need to be
updated because of adding jps.
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Step 6 is responsible for comparing the derived patterns with the PCE (as demon-
strated above) and producing a pattern similarity metric, which quantifies how
closely the pattern resembles a PCE in terms of structural properties related to
selected JPSs. The closer a pattern’s similarity is to 1 (its range is in [0, 1]), the
more closely the pattern matches similar structural commonality as that of the PCE.
The equation to calculate the pattern-PCE similarity12 is depicted in equation (4)
of Figure 3.

Details of the pattern similarity metric are as follows. CG refers to the extended
concern graph built from the original base-code when the Mylyn task is activated in
step 3. In our motivating example, this graph would represent the code in Listing 1.
Next, we define a function match(π̂,Π), where π̂ ranges over the set of patterns
and Π the power set of paths in CG . This function, given a pattern and a set of
paths, matches the pattern against the paths, resulting in a set of JPSs. These are
the JPSs whose corresponding program elements exhibit the structural commonality
represented by the pattern.

Equations (1), (2), and (3) are combined in the similarity calculation to measure
patterns on three dimensions. Equation (1) is the errα error rate attribute (cf. α
discussed in Section 3.1), which is akin to the ratio of the number of JPSs selected
by both the PCE and the pattern when matched against finite, acyclic paths in the
graph paths(CG) to the number of JPSs solely selected by the pattern (|PCE | refers
to the number of JPSs selected by PCE ). It is subtracted from 1 to create an error
ratio in the statistical sense. It quantifies the pattern’s ability in matching solely
the JPSs within the PCE; the closer the errα rate is to 0 the more likely the JPSs
matched by the pattern are also ones within the PCE. If π̂ does not match any JPSs,
the errα is 0 as it is vacuously precise.

Example 9. The pattern depicted in Example 7 would have a small (in fact, 0) errα
w.r.t. the PCE declared on line 3 of Listing 2, as both express exactly the same
methods, namely, Point.setX() and Point.setTwiceX(). On the other hand, the pattern

Point
dm−→ ?∗ would have a larger errα w.r.t. the PCE declared on line 6 as the

executions of Point.setX() and Point.setTwiceX() would be matched by the pattern
but not selected by the PCE. Particularly, errα here would be 2

3
because, of the

three method executions matched by the pattern, only one of them is also selected
by the PCE (1− 1

3
).

12The similarity metric is equivalent to the confidence equation in [31]. Similarity is used here
as confidence is reserved for the PCE change confidence metric discussed later. Moreover, the
maximum analysis depth (path length) parameter k is made implicit for presentation purposes.
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Equation (2) is the errβ error rate attribute, which is akin to the ratio of the
number of JPSs selected by both the PCE and the pattern when applied to paths in
the graph to the number of JPSs selected solely by the PCE. Similar to errα, the
quantity is subtracted from 1 and its range is in [0, 1]. It quantifies the pattern’s
ability in matching all of the JPSs selected by the PCE; the closer the errβ rate
is to 0 the more likely the pattern is to match all the JPSs selected by the PCE.
If there are no JPSs selected by the PCE, the errβ is vacuously 1 (∀π̂∀CG [∅ ⊆
match(π̂, paths(CG))]).

Example 10. The pattern shown in Example 7 would have a small (in fact, 0) errβ
w.r.t. the PCE declared on line 3 of Listing 2, as the pattern matches all of the
methods selected by the PCE (i.e., the pattern “covers” the PCE). However, the
same pattern would have a large (in fact, 1) errβ w.r.t. the PCE declared on line 6
of Listing 2, as none of the method executions matched by the pattern are selected
by the PCE (i.e., it does not cover the PCE).

Finally, equation (3) is the pattern abstractness (abbreviated abs), i.e., the ratio
of wild card to concrete elements. W(π̂) projects the wild cards from a pattern π̂,
with |W(π̂)| being the number of wild cards in the pattern π̂ and |π̂| being the total
number of graph elements. An empty pattern has no concrete elements, thus, it has
an abs of 1. For instance, the pattern in Example 7 has an abs of 1

3
.

We use abs because patterns containing many wild cards are more likely to match
a greater number of concrete graph elements and vice versa. Thus, we combine the
errα and errβ rates by use of a weighted mean weighted by abs in equation (4). The
reason is that a pattern that is very abstract is less likely to match JPSs that are
only selected by a PCE. On the other hand, a pattern that is less abstract is less
likely to match all JPSs selected by a PCE [31].

Example 11. Let π̂ be the pattern from Example 7, PCE be the PCE declared on
line 3 of Listing 2, and CG be the graph representing the base-code in Listing 1.

Then, sim(π̂,PCE ) = 1− [(0)(2
3
) + (0)(1

3
)] = 1. Let π̂ be Point

dm−→ ?∗ and PCE be
the PCE declared on line 6. Then, sim(π̂,PCE ) = 1− [(2

3
)(2

3
) + (0)(1

3
)] = 5

9
.

Once the pattern similarity has been calculated, triples corresponding to an ana-
lyzed advice, a pattern derived using its bound PCE, and the pattern’s similarity to
the PCE are stored in memory (step 7) for later use in the (next) detection phase.
When all PCEs have been processed, Fraglight is registered as a Java Editor
Change Listener [42] (step 8). In this way, it becomes an “observer” of the editing
pane where the base-code developer writes code. This allows Fraglight to observe
keystrokes entered by the developer and detect when a new JPS is added; we explain
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Figure 4: Flowchart depicting the detection phase that commences when a new join point is added.

this in more detail in the following section. Once a Mylyn task is deactivated, the
tool is de-registered as a java editor change listener.

3.2.2. Phase II: Detection

In the detection phase (Figure 4), Fraglight determines new JPSs when keystrokes
are entered by the developer in the IDE (step 1). For method execution JPSs, it
finds new method declarations using Eclipse [43], which are the lowest level granu-
larity whose addition information is available by this framework. Fraglight then
includes its own code for JPSs residing within method bodies, e.g., method calls,
adapting an AST differencing algorithm [44]. The new JPSs that Fraglight would
detect are shown in Example 1.

Triples related to analyzed advice (PCEs), patterns, and similarity (calculated in
the analysis phase) are retrieved in step 2. Then, the graph (CG) is augmented with
information pertaining to the new base-code version using projects associated with
the retrieved advice (resulting in CG ′, step 3).

Example 12. Adding the move() method in Listing 3 would result in new paths, e.g.,

Point
dm−→ move(), move()

sf−→ Point.x, move()
sf−→ Point.y, being added to CG , producing

CG ′.

Next, for each retrieved advice, its bound PCE change confidence (defined in
equation (8)) value is calculated (step 4). First, we define a characteristic function

19



sel in equation (5) s.t. sel(jps ,PCE ) = 1 if jps is selected by PCE and 0 otherwise.
Recall that we treat a program as consisting of a set of JPSs that may or may not
be currently selected by a PCE and treat a PCE as selecting a subset of these JPSs.
As such, a jps is selected by PCE iff jps ∈ PCE .

Example 13. Let jps = execution(void Point.move(double,double)) and PCE be the
PCE declared on line 3 of Listing 2. Then, we have that sel(jps ,PCE ) = 0 because,
although move is a method of a class implementing Figure, its name does not begin
with “set”. Let jps = execution(void Point.setX(double)). Then, sel(jps ,PCE ) = 1.

In equation (6), µ(jps) is the set of all patterns that match jps when applied to
the new base-code version CG ′.

Example 14. Let jps = execution(void Point.move(double,double)), k = 1, and CG ′ be
the graph representing the combined base-code of Listings 1 and 3. Then, µ(jps) =

{?∗ sf−→ Point.x, ?∗
sf−→ Point.y,Point

dm−→?∗ }.
In equation (7), δ(PCE ) is all patterns derived from PCE (obtained from step 2

of Figure 4).

Example 15. Let PCE be the PCE declared on line 3 of Listing 2. Then, δ(PCE ) =

{?∗ sf−→ Point.x,Point
dm−→?∗ }. Let PCE be the PCE declared on line 6. Then,

δ(PCE ) = {?∗ gf−→ Point.y,Point
dm−→?∗ }.

Finally, Equation (8) depicts the PCE change confidence equation, which pro-
duces a real number in [0, 1] that corresponds to the confidence we have that PCE
will need to be changed (i.e., it breaks) due to adding jps to the base-code. The
closer the value is to 1, the more likely the PCE breaks because of the new JPS and
vice-versa.

We now discuss the individual cases within equation (8). The case in which
µ(jps) ∩ δ(PCE ) is non-empty implies that there is at least one pattern s.t. it is
derived from PCE and it matches jps , which is part of the new base-code. We
consider the similarity of all such patterns to PCE . If a pattern is very similar to
the PCE in terms of matching and selected JPSs, respectively, and jps is not selected
by the PCE, i.e., sel(jps ,PCE ) = 0, then we are very confident that PCE has broken
as a result of adding jps . In this case, we have that |sel(jps ,PCE ) − sim(π̂,PCE )|
will be close to 1. This situation corresponds to the top left (1) Venn diagram in
Figure 1. Each of the other Venn diagrams corresponds to situations where the limits
of sel and sim go to 0 and 1, respectively. The equation is then the average of the
values for all patterns meeting the earlier stated criteria. If no patterns meet this
criterion, i.e., µ(jps) ∩ δ(PCE ) = ∅, then the change confidence is simply whether
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or not the JPS is selected by the PCE, i.e., sel(jps ,PCE ). This is because there are
no patterns derived from the PCE that also match jps .

The reasoning behind equation (8) in Figure 3 is as follows. When µ(jps) ∩
δ(PCE ) = ∅, none of the patterns derived from PCE , i.e., δ(PCE ), matches jps as a
result of applying them to CG ′. In other words, jps shares no structural commonality
with JPSs selected by PCE . Being that our hypothesis is that JPSs selected by
a PCE typically share significant structural commonality, and this JPS shares no
structural commonality with such JPSs, we suggest that jps not be selected by
PCE . Then, the confidence we have in PCE breaking as a result of adding jps is
just sel(jps ,PCE ), i.e., 1 if jps is selected by PCE and 0 otherwise. In contrast,
when µ(jps) ∩ δ(PCE ) 6= ∅, there exists a pattern derived from PCE that matches
jps as a result of applying it to the new base-code. Here, we average the chconf for
all such patterns.

Example 16. Let jps = execution(void Point.move(double,double)), PCE be the PCE
declared on line 3 of Listing 2, k = 1, and CG ′ be the graph representing the
combined base-code of Listings 1 and 3. Per Examples 14 and 15, we have that

|µ(jps) ∩ δ(PCE )|= |{?∗ sf−→ Point.x,Point
dm−→?∗ }|= 2

As such, we have that chconf (jps ,PCE )

=
1

2

(
|sel(jps ,PCE )− sim(?∗

sf−→ Point.x,PCE )|

+ |sel(jps ,PCE )− sim(Point
dm−→?∗ ,PCE )|

)
=

1

2

(
|0− 1|+ |0− 7

9
|
)

=
8

9
(per Examples 11 and 13)

Let PCE be the PCE declared on line 6. Then,

|µ(jps) ∩ δ(PCE )|= |{Point dm−→?∗ }|= 1

As such, we have that chconf (jps ,PCE )

= |sel(jps ,PCE )− sim(Point
dm−→?∗ ,PCE )|

= |0− 5

9
| = 5

9
(per Examples 11 and 13)

Notice that the chconf of the broken PCE (line 3) is greater than the chconf of the
unbroken PCE (line 6).

21



3.2.3. PCE Change Prediction

A PCE change prediction is created for PCEs with change confidences either
below a low or above a high threshold (step 5). As a convenience, we add additional
information regarding the prediction depending on whether the newly added JPS is
currently selected by the corresponding PCE. It is meant to guide the developer in
determining not only that a particular PCE is broken but also in how a broken PCE
should be fixed, i.e., whether the new JPS should be removed from (i.e., a negative
change prediction) or added to (i.e., a positive change prediction) the PCE.

3.2.4. Mylyn DOI Model Manipulation

The Mylyn Eclipse IDE plug-in maintains focused contexts of entities relevant to a
particular task using a Degree of Interest (DOI) model. A context is comprised of the
relevant elements (e.g., classes, methods, fields), along with information pertaining to
how interesting the elements are to the related task. The more a developer interacts
with an element (e.g., navigates to a file, edits a file) when working on a task, the
more interesting the element is deemed to be, and vice-versa. Mylyn then alters the
behavior of the Eclipse workbench such that only interesting elements are displayed
throughout the various workbench views.

In Mylyn, elements may also become interesting implicitly, e.g., a package may
become interesting if a class within the package is edited. Fraglight implicitly ma-
nipulates the Mylyn DOI model (step 6) using the low and high confidence thresholds.
If the PCE change confidence falls in the low confidence interval, the PCE is made
less “interesting” in the DOI model, moving the developer’s attention away from the
PCE so that they may focus on the base-code. Conversely, if the change confidence
falls in the high interval, the PCE is made more “interesting,” bringing the devel-
oper’s attention towards the PCE, so that they may focus on PCEs that may have
broken as a result of their newly added base-code.

Example 17. Due to the small size of our example, let the low chconf threshold be
0.6 and the high be 0.8. The scenario described in Example 16 results in a positive
change prediction for the PCE declared on line 3 of Listing 2 as its chconf is above
the high threshold, thereby increasing the PCE’s DOI value. Conversely, the PCE
declared on line 6 has a chconf below the low threshold, which results in a negative
change prediction and a decrease in its DOI value. As such, the broken PCE receives
a higher DOI value than the unbroken one.

Figure 5(a) shows the Eclipse package explorer, whose contents are filtered by
Mylyn, prior to adding the move() method to the Point class. Notice that no PCEs
initially appear in this view. Figure 5(b) portrays the same package explorer but af-
ter adding the move() method, which breaks the PCE declared on line 3 of Listing 2
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(a) Before adding move(). (b) After adding move().

Figure 5: Screenshot of the Eclipse “Package Explorer” before and after adding the move() method.
Note that the developer does not interact with the DisplayManipulation aspect in any way. The sole
reason for its appearance is due to Fraglight’s programmatic DOI manipulation.

but not the PCE declared on line 6. Fraglight programmatically manipulates the
DOI model, causing the broken associated advice to appear but not the unbroken ad-
vice. Other views, i.e., the structure explorer, displaying the advice will be similarly
affected.

4. Experimental Evaluation

In this section, we detail an evaluation of our approach that assesses its accuracy
in detecting broken PCEs.

4.1. Implementation

Fraglight is implemented as a relation provider extension to the standard My-
lyn Eclipse plug-in. The extended concern graph was constructed using the JayFX
fact extractor [41], which we extended for use with modern Java languages and As-
pectJ (with the latter being as part of our previous work [31]). JayFX generates
“facts,” using class hierarchical analysis (CHA) [45], pertaining to structural prop-
erties and relationships between program elements, e.g., field accesses, method calls,
in a particular project. Its lightweight representation of program elements makes for
an efficient analysis. Source code and transitively referenced libraries (possibly in
binary format) are analyzed during graph building.

The AJDT (http://www.eclipse.org/ajdt) compiler was leveraged to con-
servatively (explained next) associate the graph with a PCE. For a given PCE,
the AJDT compiler produces the Java program elements, e.g., method declara-
tions, method calls, field sets, correlated with selected JPSs. Both pattern ex-
traction and pattern-path matching were implemented via the Drools Rules Engine
(http://www.drools.org), which uses a modified RETE algorithm [46]. Drools
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provides a natural query language and an efficient solution to the many-to-many
matching problem. A prototype implementation of Fraglight is publicly available
(http://github.com/khatchad/fraglight).

4.2. Study Configuration

To assess the accuracy of our approach in detecting broken (and unbroken) PCEs,
we examined the final DOI values of PCEs (as manipulated by only Fraglight)
after replaying a series of base-code changes from software version histories. Although
this approach may seem course-grained, particularly since our tool works on fine-
grained changes, we use major release points from software version histories so that
we may assume that PCEs in those versions are written correctly. This allows us to
build an oracle for which to compare the results of our tool. Possible drawbacks are
discussed in Section 4.5.

Elements with a higher DOI value will be more prominent in the IDE and will thus
be more noticeable by developers and vice-versa. An assessment using traditional
precision and recall metrics are not directly applicable in this situation due to the
DOI model [32, 34]. That is, the DOI model is a scale; adding weight to one element
removes it from another. It is very much a sorting mechanism that strives to display
the most relevant IDE UI elements to the developer for a specific task. In this way,
comparing the ratio of DOI values between broken and unbroken PCEs suffices as
an effective assessment.

With the initial DOI value of each PCE at 0, we say that a successful DOI ma-
nipulation is one where broken PCEs had a higher DOI value than those that did not
break. In this case, broken PCEs are brought to the developer’s attention, whereas
PCEs that did not break remain in the background. Note that it is important, during
the experiments, not to manually manipulate the DOI, e.g., by manually clicking on
any of the IDE elements so that we can be sure that Fraglightś predictions are
solely responsible for these values. We consider possible drawbacks of this approach
in Section 4.5.

For this experiment, we set k = 1 (see Section 3.2.1), which keeps the tool run
time short so that predictions can be made as quickly as possible since the analysis
runs while the developer is typing. Moreover, we set the low and high confidence
thresholds parameters to 0.15 and 0.55, respectively, meaning that PCEs assigned
a chconf ≤ 0.15 resulted in a decreased DOI, while ones of ≥ 0.55 resulted in
an increase. We empirically found that these thresholds worked the best with our
corpus. In the future, we plan to more thoroughly assess trade-offs between analysis
depth and prediction time, as well as optimal threshold values.
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subject vers. LOC aPCE at (s) JPS pt (s) bPCE uPCE bDOI σbDOI uDOI σuDOI p-value

HealthWatcher 8 47537 217 47.20 2648 1.1e4 6 29 1.17 0.98 0.21 0.77 0.031473091
MobilePhoto 6 8331 196 11.18 3063 3.5e3 29 59 2.21 2.54 1.32 2.26 0.058945232
Totals: 14 55868 413 58.39 5711 1.5e4 35 88 2.03a 2.37a 0.95a 1.97a 0.01059113

aArithmetic mean

Table 1: Experimental results. vers. is the number of versions analyzed, LOC is the total number of non-blank, non-commented
lines of code, aPCE is the total number of PCEs analyzed throughout the versions, at (s) is the total analysis time in secs,
JPS is the total number of JPSs added between versions, pt (s) is the total prediction time in secs, bPCE and uPCE are the
total number of broken and unbroken PCEs between versions, respectively, bDOI and uDOI are the average final DOI value of
broken and unbroken PCEs, respectively, with the σ columns containing the corresponding standard deviations. Column p-value
represents the p-value from a Welch’s t-test on our dataset, indicating a significant difference in final DOI value between the
two kinds of PCEs (i.e., broken and unbroken).
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Table 1 includes our subjects along with associated number of discrete releases
(column vers.) analyzed (the initial version is not included in this column), to-
tal non-blank, non-commented lines of code (counted using SLOCCount; http://
www.dwheeler.com/sloccount), which excludes code contained within aspect files,
between all versions (column LOC ), ranging from an average of ≈ 1.4K per ver-
sion for MobileMedia and ≈ 6K for HealthWatcher, and total number of analyzed
(advice-bound) PCEs throughout versions (column aPCE ).

To ensure that a certain level of quality was maintained, we purposefully selected
subjects that have been used previously in the literature [47, 48]. This ensures that
the subjects have achieved a particular level of acceptance within the community.
Although only two subject projects were used, fourteen total versions were analyzed,
yielding a reasonably sized corpus.

HealthWatcher is a web-based application that provides various medical-related
support to patients. MobileMedia is a software product line consisting of applica-
tions that manipulate photo, music, and video on mobile devices. Subject source
code, descriptions, and references can be found on our website (http://openlab.
citytech.cuny.edu/pcp). The authors were not involved in the development of any
of the subject applications.

Column at (s) depicts the total PCE analysis time in secs for all versions. Analysis
occurs when the developer activates a Mylyn task (normally at the start of working
on a particular bug or feature). Then, all PCEs in the PAS are analyzed. For each
version, the analysis was repeated three times, with the results of each averaged,
using a 2.83 GHz Intel machine. The JVM heap size was 5 GB. The average was
≈ 1.05 secs per KLOC and ≈ 0.14 secs per PCE, which indicates that the analysis
time is practical for even large applications.

Column JPS is the total number of JPSs added between subject versions. These
are the JPSs used as input, some of which broke PCEs and others that did not. Since
we collected PCE statistics after inputting all JPSs added between versions to our
tool, it was not important to identify precisely which JPSs caused particular PCEs
to break. Instead, classifying which PCEs broke and which did not was sufficient.

As noted in Section 3, the output of our tool is a PCE change prediction, which,
in turn, manipulates the Mylyn DOI. All of this is done in the background as the
developer is working. We should note also that the predictions occur in a separate
thread, which fortunately does not interrupt the developer’s workflow. However,
having short prediction times (i.e., the amount of time needed for Fraglight to
generate a PCE change prediction) is advantageous so that broken PCEs are brought
to the developer’s attention as early as possible. Column pt (s) portrays the total
prediction time in secs during our experiment, which averaged ≈ 2.61 per added JPS.
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This indicates that the developer would see programmatic changes in the DOI made
by Fraglight on average ≈ 2.61 secs after adding a new JPS to the base-code,
which is practical. The developer is not blocked as the update happens concurrently.
The remaining columns will be discussed shortly.

The order in which JPSs were used as input to our tool is insignificant. This
may be unintuitive as applying patterns to different base-codes is likely to match
different JPSs. However, the only base-code of concern for matching the patterns
is the JPS being added. As such, the order in which JPSs are added to the old
base-code version to obtain the new base-code version is irrelevant as each JPS is
considered in isolation.

Columns bPCE and uPCE are the total number of broken and unbroken PCEs
between versions, respectively. For this, we use the conditions for a PCE to be
considered broken between subsequent base-code versions from [31]. We say that a
PCE in version vi broke in version vj where i < j iff both of the following conditions
hold:

1. the textual representation of the PCE in vi differs from its textual representa-
tion in vj,

2. the JPSs selected by the PCE in vj differs from the JPSs selected by the textual
representation of the PCE in vi in vj.

Criterion 1 asserts that the PCE was rewritten between versions, i.e., they tex-
tually differ. Criterion 2 excludes situations where the PCE selects the same JPSs
between versions.

PCEs that meet these criteria are those that required textual modification to
allow the PCE to continue to capture intended join points. We discuss possible
drawbacks for using these criteria to identify broken PCEs in version history in
Section 4.5.

4.3. Quantitative Analysis

After simulating the addition of JPSs between versions of our subjects, we then
collected the resulting PCE DOI values. The hope is that broken PCEs resulted in
a higher DOI value than that of unbroken PCEs. In this case, broken PCEs would
appear more prominently in the IDE than unbroken PCEs, so that developers can
direct their attention to the problem early. Columns bDOI and uDOI depict the
average final DOI value of broken and unbroken PCEs, respectively, while σbDOI

and σuDOI portray the corresponding standard deviations. These columns show the
average final PCE DOI values after adding all the new JPSs between versions vi and
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vi+1 to vi for all i = 1 . . . k − 1 where k is the number of subject versions. As we
can see from column p-value, the averages of DOI values of broken and unbroken
pointcuts are significantly different, i.e., they are under the 0.1 significance level.

From Table 1, the average DOI value of PCEs that actually broke was, on average,
2.14 times greater than the average DOI value of PCEs that did not break. Also
note that the average corresponding standard deviations across subjects of broken
and unbroken PCEs are 2.37 and 1.97, respectively. In Section 4.4, we discuss several
outliers in these results and possible reasons for the distributions.

Recall that the resulting DOI values are completely and only due to Fraglight’s
manipulation. These results indicate that Fraglight is promising in bringing bro-
ken PCEs to the developers’ attention while hiding unbroken PCEs, all while they are
typing. Particularly, using our approach results in broken PCEs being times more
prominently displayed in the IDE than unbroken PCEs. Moreover, Fraglight
presents its results to the developer in a familiar way using existing, well-integrated
IDE mechanisms (i.e., Mylyn). Because of Mylyn, Fraglight’s results are propa-
gated throughout all UI elements where PCEs are visible, making the results consis-
tent among views.

Also recall that Fraglight provides base-code developers with feedback follow-
ing a series of related, fine-grained base-code changes that may have broken PCEs.
The evaluation presented here, however, considers DOI changes after a series of input
JPSs. More specifically, we portray the average final DOI value of each PCE between
versions. The basis for this is as follows. Fraglight may manipulate, depending on
the threshold settings, a PCE’s DOI after each individual JPS addition. The exact
amount by which the interestingness level is changed is solely dictated by the Mylyn
framework. In practice, we found this amount to be quite small. Thus, the more
JPSs that are added that break a PCE, the more interesting the PCE will become
in the Mylyn context, and vice-versa. To more accurately evaluate our approach, we
used fine-grained base-code changes, as those are used as input to our tool, but prop-
agated the results amongst a series of changes to assess whether broken PCEs would
eventually surface and unbroken PCEs recess in the IDE. In the future, we plan
to investigate varying the PCE interestingness level amount during manipulation,
perhaps making it proportional to the degree of change confidence.

4.4. Qualitative Analysis

We now analyze several situations where our tool performed as expected and vice-
versa. For succinctness, we draw examples from only the HealthWatcher subject.

We begin with a scenario where our tool assigned a high DOI to a PCE that
broke between versions. The aspect synchronizes methods in “record” types using
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a concurrency manager. The changed PCE in version 9 broke between versions 8
and 9 due to adding new record types (representing diseases and symptoms), which
resulted in the PCE selecting two additional join points. Considering these new
join points relative to the PCE in version 8, adding these new join points caused
Fraglight to produce 2 predictions, averaging a chconf = 0.67. One structural
pattern that was used was one matching accesses to a field. The JPSs added in the
subsequent version were methods that also accessed this field, and being that they
were not selected by the original PCE, Fraglight increased the PCE’s DOI value
to 2. This scenario corresponds to situation 1 in Figure 1. The DOI value was not
higher because there is another method in an unrelated class that also accesses this
field but is not selected by the PCE.

We now examine how other approaches would have worked in the above situation
where Fraglight was successful. The AJDT would not display the broken PCE
as matching (via Eclipse markers) in the base-code since it only displays currently
matching information. As the approach of [28] augments the AJDT with almost
matching join point information, it is conceivable that this approach may insert
markers to the broken PCE at the appropriate places in the base-code, i.e., where
the new join points were added. However, [28] does not use substring matching as
part of their PCE relaxers. Although the new record type names contain a common
segment (i.e., “Record”), this approach would also not be able to discover the broken
PCE. The approach of [7] would likewise not be able to detect the broken PCE as
the PCE of version 8 does not exhibit any difference in advice application between
the two versions (i.e., it selects the same join points in both versions).

We now discuss an instance where our tool assigned a low DOI to a PCE that
broke between versions. Changes made in versions 1 to 2 involved introducing the
Command design pattern [49] to replace the individual servlets that implemented
each of the operations provided by HealthWatcher. Consequently, a PCE in an
aspect responsible for computation distribution broke. To rectify the problem, the
PCE was rewritten to no longer select join points contained in classes derived from
a particular servlet but instead to select join points contained in classes derived
from a servlet following the Command design pattern. No base-code changes were
made other than the renaming of these classes to reflect that they are related to the
Command design pattern. The change was modeled as 19 JPS removals and 19 JPS
additions between the two version. Unfortunately, the final DOI value for this PCE
was 0 as Fraglight produced no predictions for this PCE. The reason was that
all structural patterns that were derived from the PCE in version 1 were invalidated
by version 2. That is, the program elements referred to in the structural patterns
derived from the PCE in the first version were no longer present in the second. As
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such, applying the structural patterns from version 1 produced no matches in version
2. Thus, no predictions were made, which suggests that our approach may not be
effective in situations involving widespread, atomic refactorings.

The approach of [7] would detect the broken PCE in this situation as there is a
difference in advice application between the two versions. Still, however, the devel-
oper would be required to manually verify that the difference in advice application
is not desirable (there are situations, in fact, where it is desirable, e.g., when a PCE
is robust to base-code changes and new join points are correctly selected).

It is also conceivable that the approach of [29] would be able to uncover this
broken PCE as their approach is heavily tied to automated refactorings. However,
not all refactoring (especially to design patterns) can be fully automated in an atomic
fashion. We predict that our tool would perform well in situations where the changes
involve several intermediate steps, which would provide Fraglight the opportunity
to match more existing structural patterns against old base-code.

Next, we turn to an instance where our tool assigned a low DOI to a PCE
that did not break between analyzed versions, namely, a PCE in a synchronization
aspect. Its final DOI value following the experiment was 0.13 As previously discussed,
HealthWatcher was refactored to use the Command design pattern between versions
1 and 2. However, this PCE selected join points not related to this refactoring and
thus did not break. Four predictions were made between these versions, resulting in
an average chconf = 0.11. The derived structural patterns did not exhibit strong
commonality with that of the PCE as they expressed calls to such common methods
as String . equals (). Moreover, the structural patterns did not match the new JPSs.
This resulted in a low PCE DOI value and corresponds to situation 2 in Figure 1.

Since the refactorings did not involve this particular PCE, the AJDT would not
place editor markers linked to it near the base-code where the refactoring occurred.
However, this unbroken PCE would still be present in other views, perhaps deterring
the developer from focusing on the broken PCE described earlier. Fraglight, on
the other hand, would programmatically manipulate the Mylyn DOI to reduce the
focus on the unbroken PCE.

Finally, we detail a scenario where our tool assigned a high DOI value to a
PCE that did not break. One such instance occurred with a PCE in an aspect
responsible for catching exceptions raised inside Observer design pattern [49] imple-
mentations and displaying exception details in a web page. Fraglight produced
17 change predictions between all versions for the PCE, resulting in an average

13Mylyn does not currently allow for negative DOI values. As such, 0 is the lowest allowable DOI
value of any element.
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chconf = 0.48. The final DOI value for this PCE was 3. The PCE was execution(void
Update∗Data.executeCommand(..)), meaning that executeCommand() methods declared

in classes whose name starts with Update and ends with Data are selected (part of
the Command design pattern mentioned earlier). One of the extracted structural
patterns matched method executions of methods that textually included calls to
CommandRequest.isAuthorized(). An added JPS in version 8, namely, the execution of
the method UpdateSymptomSearch.executeCommand() (also part of the Command de-
sign pattern), includes a call to CommandRequest.isAuthorized(), as such, it matches the
structural pattern. However, the PCE correctly selects base-code pertaining to the
Observer design pattern (i.e., the Data is “observed”) and not that of Searches. Since
the CommandRequest.isAuthorized() is called from within many of the Data classes, and
the new JPS matched the structural pattern (corresponding to situation 1 in Fig-
ure 1), this misled our tool to suggest that the PCE had broken.

Comparing to other approaches, the AJDT would not have created an editor
marker consisting of a link to the unbroken PCE near the above mentioned newly
added JPS in version 8 since the PCE does not match the new join point. Likewise,
the approach of [7] would not have detected advice application differences for the
unbroken PCE. The approach of [28], however, via their DeclaringTypeRelaxer and
NameRelaxer, would exhibit a similar problem to that of Fraglight in this instance.
This is due to the textual similarity between the selected method names (i.e., they
are both named executeCommand).

4.5. Threats to Validity

Several threats may diminish our evaluation results. We discuss here how their
effects have been minimized. Our evaluation aimed to simulate Fraglight’s perfor-
mance in a real-world setting. We drew data from multiple versions of two projects,
which may not be representative of AO projects at large. However, these subjects
have been extensively studied previously in the literature. Moreover, they comprise
publicly available open source projects, which are contributed to by a number of
developers. Although only two projects were used, they have a rich release history,
constituting fourteen versions with large deltas (a total of 5,711 added JPSs).

Although a user study would be useful, we chose a software evolution simulation
using version histories for several reasons. Firstly, user studies have a number of
barriers [50]. Secondly, we desired to isolate the DOI manipulation that was due to
our tool and not by other UI interactions performed by the developer. In this way,
we can ensure that we accurately assess Fraglight’s change predictions. Thirdly,
Mylyn has been proven to be effective via previous user studies [34, 32], and our ap-
proach simply enhances Mylyn’s prediction capabilities. The aforementioned studies
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indicate that Mylyn is a successful vehicle for conveying predictions to developers.
Lastly, using version histories provides a noninvasive, unbiased way to assess our
approach. Nevertheless, we are considering a user study for future work to enhance
the results presented here.

We assumed that all PCEs are correctly written between version deltas, which
correspond to major subject release points. Our assumption is that, prior to a major
release, all PCEs select and only select intended join points. This is essential in
determining which PCEs broke and in which versions. Moreover, we assumed that
broken PCEs were fixed by rewriting the PCE. Yet, there are other ways to “fix”
a broken PCE, namely, by changing the base-code to conform to the PCE. For
example, to fix the broken PCE portrayed in Section 2, we could change the name
of the move method to setBothXandY.

It would be difficult to use base-code conformance as a reliable means to determine
broken PCEs as there are many reasons that base-code can change, including fixing a
broken PCE. However, it is reasonable to assume that the only reason PCEs change
is because they are broken.

When assessing the changes of DOI in our experiments, we began with the DOI
flat, i.e., 0, and then fed a series of added JPSs to the tool to obtain the subsequent
version. No other factors affected the DOI other than the programmatic manipu-
lation performed by Fraglight, which allowed us to focus on the quality of its
predictions. However, in a real-world setting, the DOI may be affected by other
events that occur within the IDE, such as developer clicks and navigation. As such,
more investigation may be necessary to assess the effectiveness of Fraglight’s pro-
grammatic DOI manipulation in combination with other events while the developer
is typing, which we plan for future work. Furthermore, there is a possibility that the
visualization Mylyn offers is too subtle for base-code developers to take action when
breaking PCEs. However, the evaluation presented by [34] successfully shows that
Mylyn’s visualizations help developers to be more productive, which suggests that
developers indeed pay attention to the views focused by Mylyn. Even so, thoroughly
investigating this subtlety, especially w.r.t. AOP development, perhaps through a
user study, would be an interesting avenue of future work.

5. Related Work

PCDiff [7] is an approach and corresponding tool that calculates differences in
advice application following base-code changes. Specifically, given a set of base-code
changes, it computes all advice that additionally and no longer apply. Subsequently,
developers may use this information to determine any PCE breakages due to the
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base-code changes in question. However, base-code changes that do not cause any
advice application differences may also result in broken PCEs in the case that a
PCE was supposed to match an added JPS. Our approach can detect broken PCEs
in such situations. Also, our approach suggests broken PCEs based on the breakage
likelihood, whereas PCDiff will display all PCEs containing JPS differences.

[14] automatically creates analysis-based PCEs [8] from traditional named-based
ones, such as those in AspectJ, which may avoid fragility issues. However, there is
no round trip support to convert these PCEs back in cases where they do need to
change.

[51] is geared towards aspect mining, i.e., converting non-AO programs to AO
ones, which also works on maintaining existing AO systems. However, their approach
is focused on incorporating missed JPSs into PCEs, whereas our approach is for
detecting broken PCEs, either by inclusion or exclusion of JPSs, as the developer is
typing. Moreover, the results of our tool are incorporated into an existing system
(Mylyn) for focusing developer attention on particular software elements.

[30] is a change impact analysis for AOP. They detail an “Advice Invocation
Change” (AIC) that indicates which PCEs are affected by new JPSs, but such an
effect may not be a PCE breakage. Conversely, a new JPS that does not produce an
AIC could also result in a broken PCE.

The AspectJ Development Tools (AJDT) is an Eclipse plug-in that contains sev-
eral general, as well as IDE-specific, features to support AO development in Eclipse.
These features include a built-in AspectJ compiler and a cross-references view. The
AJDT also provides graphical (advice) markers that appear on the side of code ed-
itors. These markers depict information pertaining to advice that applies to the
corresponding base code. Base code developers can click and/or hover over these
markers to discover advice that may modify the behavior of the base at that point.

Although the AJDT is extremely effective in facilitating AspectJ software devel-
opment by displaying current join point and PCE matching information, it does not
display which PCEs do not match a given join point, which PCEs are likely to match
in future versions of a given join point, and which PCEs are likely broken due to a
particular join point.

PointcutDoctor [28] is an Eclipse plug-in that augments the AJDT to generalize
(or relax ) PCEs using several developer-minded heuristics. It exposes join points that
were unintentionally not selected by PCEs, however, it does not inform the developer
of situations where join points are unintentionally selected. These are join points that
are selected by PCEs because the PCE was originally too general. Moreover, the
standard heuristics it employs are not derived from the specific system at hand but,
rather, general knowledge, including standard coding conventions, which may be
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subjective, as well as subject to change. It does not analyze how PCEs evolve over
versions and the join points that are selected by them in each version.

6. Conclusion and Future Work

We have detailed an approach that detects likely broken PCEs due to base-code
changes in evolving Aspect-Oriented software using structural commonality. The au-
tomated approach programmatically manipulates the Mylyn DOI model in Eclipse
while a developer edits an AspectJ project. It brings to the base-code developer’s at-
tention possibly broken PCEs, while likely unbroken PCEs move to the background,
all in a standardized, consistent, and variably invasive way as the developer is typing.
A developer can then take action to either alter the PCE or conform the base-code to
the conventions set forth by the PCE. We have also shown how a recommendation
system can be integrated into Mylyn, paving a way for future researchers to consider
such integration and software developers to reap the benefits of that research.

Our empirical evaluation demonstrated that our approach is effective in bringing
broken PCEs to light while suppressing unbroken PCEs, with such PCEs having
DOI values that are greater than the average DOI value of unbroken ones, indicating
a significant difference in final DOI value between the two kinds of pointcuts (i.e.,
broken and unbroken). The corresponding tool is publicly available for download as
an extension to the popular Mylyn Eclipse plug-in.

In the future, we plan to persist patterns along with the Mylyn context and
reuse them as to avoid rebuilding them if there are no changes in the base-code
between task activations. This may have a performance impact in certain situations.
Furthermore, the analysis phase commences only when a Mylyn task is activated,
which occurs when a developer starts to work on a particular bug or feature. We
plan to further investigate the optimal time to reanalyze the base-code. In addition,
we will explore analyzing non-advice-bound PCEs for situations where PCEs are
provided as “hooks” into modules per [15]. Such PCEs are not currently analyzed
by the AJDT.

It would also be interesting to apply the Mylyn DOI model to AJDT markers,
which appear on the side of the editor. Currently, markers are either fully present
(solid) or not present at all. A Mylyn controlled marker would have different shades
depending on the likelihood of the PCEs being broken, which would be dictated
by Fraglight. This may help base-code developers pay attention to problematic
PCEs earlier. Moreover, we plan to investigate the best way to present base-code
developer guidance in how to fix broken PCEs (positive and negative PCE change
predictions).
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As detailed in Section 3, Fraglight contains a number of user-defined configu-
ration parameters. These include maximum analysis depth (Section 3.2.1) and high
and low confidence thresholds (Section 3.2.4). It would be optimal to assist develop-
ers with properly setting values for these parameters. As such, in the future, we plan
to more thoroughly assess trade-offs between analysis depth and prediction time. A
heuristic may be used to automatically adjust the analysis depth depending on the
project size, e.g., smaller projects can be analyzed more thoroughly and vice-versa.
An inductive machine learning algorithm may be employed in a feedback system to
find the best confidence threshold values on a per-project or per-Mylyn context basis.

When Fraglight programmatically manipulates the Mylyn DOI, the amount
by which the interestingness level is changed is solely dictated by the Mylyn frame-
work. In the future, we plan to investigate varying the PCE interestingness level
amount during manipulation, perhaps making it proportional to the degree of change
confidence. This may entail invoking the appropriate Mylyn API several times per
prediction depending on the change confidence value.

We also plan to evaluate Fraglight’s DOI manipulation effectiveness in combi-
nation with other events that may affect the DOI, e.g., file navigation. Depending on
the findings, we may derive best practices for editing base-code while Fraglight is
activated, or adjust our algorithm to compensate for other events affecting the DOI
model. A user study may be employed to assess how developers are likely to interact
with Fraglight’s suggestions, as well as the effectiveness of Mylyn’s visualization
in an AOP development setting.
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