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ABSTRACT  

Nowadays, millions of pictures are shared through the internet without applying any 

authentication system. This may cause serious problems, particularly in situations where 

the digital image is an important component of the decision making process for example, 

child pornography and movie piracy. Motivated by this, the present research investigates 

the performance of estimating Photo Response Non-Uniformity (PRNU) and developing 

new estimation approaches to improve the performance of digital source camera 

identification. The PRNU noise is a sensor pattern noise characterizing the imaging 

device. Nonetheless, the PRNU estimation procedure is faced with the presence of 

image-dependent information as well as other non-unique noise components. This thesis 

primarily focuses on efficiently estimating the physical PRNU components during 

different stages. First, an image sharpening technique is proposed as a pre-processing 

approach for source camera identification. The sharpening method aims to amplify the 

PRNU components for better estimation. In the estimation stage, a new weighted 

averaging (WA) technique is presented. Most existing PRNU techniques estimate PRNU 

using the constant averaging of residue signals extracted from a set of images. However, 

treating all residue signals equally through constant averaging is optimal only if they 

carry undesirable noise of the same variance. Moreover, an improved version of the 

locally adaptive discrete cosine transform (LADCT) filter is proposed in the filtering 

stage to reduce the effect of scene details on noise residues. Finally, the post-estimation 

stage consists of combining the PRNU estimated from each colour plane aims to reduce 

the effect of colour interpolation and increasing the amount of physical PRNU 

components. The aforementioned techniques have been assessed on two image datasets 

acquired by several camera devices. Experimental results have shown a significant 

improvement obtained with the proposed enhancements over related state-of-the-art 

systems. Nevertheless, in this thesis the experiments are not including images taken with 

various acquisition different resolutions to evaluate the effect of these settings on PRNU 

performance. Moreover, images captured by scanners, cell phones can be included for a 

more comprehensive work. Another limitation is that investigating how the improvement 

may change with JPEG compression or gamma correction. Additionally, the proposed 

methods have not been considered in cases of geometrical processing, for instance 

cropping or resizing. 
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 INTRODUCTION  

1.1 Motivation 

Many businesses, organisations and individuals currently use digital image devices in 

everyday life due to their undeniable advantages. Digital image devices have been 

used in many applications, for example consumer photography, medical diagnosis and 

in the military sector. Prime examples of digital devices are smart phones and digital 

cameras, which provide simple and effective ways of capturing and saving digital 

images of daily activities. However, these digital images can easily be changed based 

on low-cost image editing software, which requires little work or knowledge. The 

accessibility of such tools and their simplicity of use increase the risk of images being 

used in our daily lives and they may also be inadmissible as evidence in a court of law. 

This may cause serious issues, particularly in situations where the photo is an 

important part of the decision-making process in crimes, involving child pornography 

and movie piracy situations. Consequently, in order to increase the trustworthiness of 

digital images, copyright protection and image authentication should be identified. 

Motivated by this, the present research will investigate the performance of existing 

techniques which are based on estimating photo response non-uniformity (PRNU), in 

order to contribute to the development of new estimation approaches to improve the 

performance of digital camera identification.  
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1.2 Background 

1.2.1 Digital imaging applications  

Any operation that tries to enhance or analyse a visual image is known as image 

processing. Currently, several common areas are included in the field of digital image 

processing. For example, bioresearch and biomedical laboratories utilize digital 

applications to visualize systems in biological samples, digital image systems such as 

the matching of DNA material and Classification. Moreover, the digital image can be 

operated on-board exploratory spacecraft and in earthbound telescopes. These 

instruments can use digital image processing methods in order to enhance, restore and 

analyse extra-terrestrial imagery. Also, for resource management purposes, satellite 

images from every square mile of the Earth’s surface can be examined. Data from 

these images can be used to analyse crop yields and damage owing to frost, disease, 

and other factors (Baxes, 1994). Moreover, digital imaging is used for medical 

diagnostic purposes, for instance in physiology, ophthalmology, anatomy, and 

dentistry.  Finally, digital imaging systems can be used for military purposes. For 

instance, automated interpretations of earth satellite imagery can be used in order to 

identify military threats or sensitive targets and to track targets in real time for smart-

bomb and missile-guidance systems (Gonzalez and Woods, 2008). 

1.2.2 Digital image authentication 

Image authentication plays an important role in security and communication to make 

digital images a reliable means for testifying to incident and providing legally 

acceptable evidence in the courtroom. However, pictures can be edited, transmitted 
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and distributed easily with recent technologies such as Bluetooth and Internet without 

applying an authentication system. Also when editing software is used it is often 

effectively impossible to differentiate between an original image and one that has been 

modified. Consequently, to improve the trustworthiness of digital images, image 

authentication techniques must be applied. Digital image authentication involves 

methodologies utilized to analyse and determine whether an image has been amended 

after it was taken. Rey and Dugelay (2002) pointed out that certain criteria should be 

considered in obtaining a powerful image authentication system. These criteria could 

be summarized as follows  

1. Localisation of modified regions: the system must have the ability to identify any 

malicious modification of a part of a digital image and confirm other regions as 

authentic.  

2. Restoration of altered regions: the system must have the capability to reconstruct, 

partially destroyed or changed regions to allow the user to realise what the original 

content of the modified regions was. 

3. Sensitivity: the authentication system has to be sensitive to different types of 

manipulation such as changing or cropping the digital picture in specific regions. 

4. Tolerance: the system should tolerate a loss of information which can be due to 

applying compression algorithms and other non-malicious manipulations. 

Digital image authentication techniques can be divided into two groups based on either 

data-hiding techniques or non-data-hiding techniques. The former, include hashing and 

watermarking schemes based on adding an element of authentication data into an 

image in order to guarantee its authenticity (Li, 2009) .Nonetheless, it has been 

reported that one of the drawbacks of hashing and watermarking techniques is that it 
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has to be operated inside the digital image device, and as a consequence this may cause 

a reduction in the use of this technique within the image authentication field. In non-

data-hiding-based digital image authentication, some unique patterns which could exist 

due to the image acquisition process and any post-processing procedure are applied. 

One of the major techniques in this technique is PRNU. This approach was created to 

serve as a camera fingerprint either to identify the source of an image, or for detecting 

image forgeries (Farid, 2009). Additionally, camera fingerprinting could be used for 

forensic tasks in a number of ways. Firstly, it could be used to verify the presence of a 

specific PRNU fingerprint in the image and it also has the ability to identify forged 

areas by determining the non-appearance of the PRNU fingerprint in specific regions 

of the image. Additionally, in order to identify the PRNU fingerprint, it may be likely 

to reconstruct some aspects of the processing history; for instance, the PRNU can be 

applied as a template in order to estimate some geometrical processing, such as 

rotation or scaling. As a final point, the PRNU is beneficial for determining the 

individual brand of digital camera or distinguishing among a scan image and a digital 

camera (Fridrich, 2009a). Numerous methodologies can be used in image 

authentication, as indicated above however; the principal focus of this research is the 

links between digital image content and the original source based on the PRNU. 

1.2.3 Image acquisition sensors  

Currently, the most popular type of imaging sensors utilized in scanners, digital 

cameras, and camcorders are the charged coupled device (CCD) and complementary 

metal oxide semiconductor (CMOS). Each contains a large number of photo detectors, 

named pixels, which are generated from silicon and are responsible for converting 
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photons into electrons using the photoelectric effect (Fridrich, 2009a). Li and Nathan 

(2005) reported that the CCD image sensor is a silicon based on integrated circuit (IC), 

containing a dense matrix of photogates or photodiodes that could be operated by 

translating light energy in the form of photons into electronic charges. The key 

function of the CCD is collecting the photogenerated electrons in its potential wells 

through the CCD’s exposure to energy; and the hole is then forced away from the 

potential well. After that, it will eventually move into the silicon substrate. Therefore, 

the higher the amount of electrons which collect on that pixel, the lighter that is 

incident on a particular pixel will be. When the CCD gate voltages are changed, the 

depth of the potential wells is also altered. This action can allow the transfer of the 

photogenerated electrons among the registers to the “read-out” circuit. The output 

signal could be at that time moved to the computer for image processing. Meanwhile 

the use of CMOS has the benefit compared to the CCD in that it is produced in the 

same manner as memory chips, which can make a possible decrease in cost and power. 

Also, it may be possible to add other circuitry in order to combine voltage 

measurement, and amplifiers on the same chip resulting in even more cost savings. 

Nevertheless, currently, the CMOS sensors cannot be utilized in high-level 

specification cameras since they generate more additional noise than the CCD (Li and 

Nathan, 2005).  
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1.2.4 Digital image acquisition model 

The majority of information about the camera pipeline may remain copyrighted 

information belonging to the manufacturer; nevertheless, the universal sequence of 

image acquisition and the structure of the digital camera can be similar among 

common types of digital cameras.  

 

Figure 1-1  Digital image acquisition procedure for digital camera (Source: Li, 2009) 

Figure 1-1 illustrates the basic components of a digital camera which are the lens, 

filters, image sensor, colour filter array (CFA) and digital image processor (DIP). Tran 

Van et al. (2007) pointed out that; every component adjusts the input by using a 

particular technique with a particular set of parameters. When an image is captured, the 

light is passed across the lens and this may cause certain distortion, for instance, 

chromatic aberration and spherical aberration. Consequently various filters, for 

example an anti-aliasing filter is exploited. Such a filter is applied in order to decrease 

aliasing, which may occur due to the spacing among pixels. Subsequently, with the 

aim of generating a colour image, the light goes through an additional filter named a 

colour filter array (CFA). Every pixel on the lens sensor could be allocated one of 

three or four colours. A demosaicing process is then utilized in order to assign every 

pixel the intensities of the other two colours by interpolating the colour information 

within a neighbourhood.  As demonstrated in figure 1-2, the colour filter array patterns 

can be RGB (red-green-blue) or YMCG (yellow-magenta-cyan-green) colour spaces, 

for a 4 × 4 block of pixels (Li, 2009). 
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(a)   (b) 

Figure 1-2  CFA patterns: (a) RGB,   (b) YMCG  (Source: Mikkilineni et al., 2006). 

 

The light next passed on to the imaging sensor which is the key part of every digital 

camera. Such sensor contains a vector of photo detectors each cell is matched to one 

pixel of the final image and each pixel becomes an equivalent signal linked to the 

light’s intensity, which is converted into a digital signal. These imaging sensors do not 

respond to colour, they merely capture the brightness of light; thus, the sensor is used 

after the colour filter array. Lastly, several image processing operations such as gamma 

correction, enhancing, colour correction, white balancing, and image formatting may 

be applied before the image is saved, and the nature of these operations could differ 

from one manufacture to another (Khanna et al., 2006). Based on a simplified 

description of an imaging pipeline for each colour band, let 𝐈[i] be the digital signal 

representation before applying the demosaicing and the light intensity at pixel 𝑖  is 

denoted as 𝐘[𝑖], where 𝑖 = 1,2, … 𝑛. In this thesis, all matrices shown in boldface font 

are in vector form and all the processes could be element-wise. A basic model of the 

sensor output could be expressed as: 

 𝐈 = 𝑔𝛾. [(𝟏 + 𝐊)𝐘 + 𝚲]𝛾 + 𝚯𝑞 1.1 

where 𝑔 represents the colour channel gain, 𝛾 is the gamma correction factor which is 

approximately equal to 0.45, 𝐊 denotes the zero-mean multiplicative factor responsible 

for the unique component of the sensor.  
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Also, in some research papers this component is known as the sensor camera 

fingerprint. Furthermore, the combination of all extra additive noise sources such as 

shot noise; read-out noise and dark current noise are denoted as  𝚲 . The gain factor 𝑔 

modifies the pixel intensity level based on the sensitivity of the pixel in each colour 

band in order to achieve the correct white balance. Finally, 𝚯 represents quantization 

noise. In order to factor out the most dominant component 𝐘 from equation 1.1, the 

Taylor expansion (1 + 𝑥)𝛾 = 1 + 𝛾𝑥 + 𝑂(𝑥2)  is applied, which gives:  

 𝐈 = (𝑔𝐘)𝛾. [𝟏 + 𝐊 + Λ 𝐘⁄ ]𝛾 + 𝚯𝑞 = (𝑔𝐘)
𝛾. [𝟏 + γ𝐊 + γΛ 𝐘⁄ ]𝛾 + 𝚯𝑞 1.2 

In order to avoid introducing several different notations, the symbols can be absorbed 

as follows:  𝐈(0) = (𝑔𝑌)𝛾 , = γK . This could leads to a sensor output model which 

could be written as: 

 𝐈 = 𝐈(0) + 𝐈(0)𝐊 + 𝚯 1.3 

where 𝐈(0) is the sensor output in the absence of noise,  I(0)K  is the sensor camera 

fingerprint (PRNU), and  Θ = γ(0) Λ 𝐘⁄ + 𝚯𝑞  is the compound independent random 

noise component. This research mainly focuses on the efficient extraction of PRNU in 

order to improve the performance of identification in terms of small images. 

1.3 Scope of research  

Multimedia data including text, image, video and audio can be obtained from a variety 

of devices for instance cameras, computers, mobile phones, printers, and scanners. 

These devices may produce data with different patterns as a result of different physical 

device with diverse parameters being used inside such digital devices; this may 

therefore lead to diverse patterns in output. The present research concerns the 
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identification of the source of digital images which have been taken by specific digital 

cameras. Although several techniques can be used to identify the source of images, 

such as analogous to bullet scratches and some statistical features, this research is 

based on the analysis of digital camera components such as imaging sensors in order to 

identify the original source. Moreover, the research compares the performance and 

efficiency of the proposed techniques with existing state-of-the-art algorithms.  

1.4 Objectives 

Several objectives are considered in order to achieve the aim of this PhD research. 

These objectives can be summarized as follows  

 To explore how a digital image is obtained from digital camera.  

This objective is covered in Chapter 1. 

 To explore some types of image representation in the transform domain, such 

as DFT, DWT and DCT. 

This objective is covered in Chapter 2 

 To explore and evaluate the performance of existing state-of-the-art image 

authentication techniques, especially, photo response non-uniformity 

techniques.  

This objective is covered in Chapter 3. 

 To design and develop a new pre-processing algorithm to improve PRNU 

estimation. 

This objective is covered in Chapter 4 

 To design and develop a new approach for efficient PRNU estimation. 

This objective is covered in Chapter 5. 



  

10 

 

 To design and develop a new filtering schema based on PRNU estimation. 

This objective is covered in Chapter 6. 

 To evaluate the effect of colour PRNU. 

This objective is covered in Chapter 7. 

1.5 Thesis contributions 

In this dissertation, several techniques have been proposed for efficient PRNU 

estimation in order to improve image source identification. The main contributions of 

this dissertation can be summarized as follows. 

 Image sharpening as a pre-processing technique for a source camera 

identification system  

As a first stage towards the development of a new system for source camera 

identification (SCI), image sharpening is performed for efficient PRNU estimation. 

Such estimation depends on the difference among a set of digital images and their 

smoothed versions in order to capture the characteristics of the sensor. Hence, this 

procedure can use a part of the sensor noise content which is concentrated in the high 

frequency range and present in edges, textured and contours regions of the digital 

images. The proposed image sharpening technique aims to amplify these PRNU 

components for better estimation, therefore improving the performance of source 

camera identification. Considerable improvements are gained by the proposed 

technique, as validated in comparison with two recent source camera identification 

techniques. 
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 In the estimation stage, a new weighted averaging (WA) technique is presented. 

Most existing techniques estimate the PRNU through the constant averaging of residue 

signals extracted from a specific number of digital images. This is based on the 

hypothesis that every residue signal is a noisy observation of the sensor pattern noise. 

This theory is well justified in practice since the digital images are taken under diverse 

conditions, making the corresponding residue signals different from each other. For 

example saturated pixels can produce more undesirable noise in residue signals. Also, 

bright digital images deliver better PRNU estimation than darker ones. Motivated by 

this observation, a weighted averaging technique is presented for effective PRNU 

estimation. The presented technique is validated by comparison with two PRNU 

estimation techniques from the literature and experimental results show considerable 

improvements. 

 An improved version of the locally adaptive discrete cosine transform (LADCT) 

filter is proposed in the filtering stage. 

A new source camera identification system relying on an improved version of the 

locally adaptive discrete cosine transform (LADCT) filter is proposed for accurate 

PRNU estimation. This proposed filter aims to reduce the effect of scene details on 

noise residues. The LADCT can exceed other filters that operate on full images and it 

performs well on images affected by image-dependent noise including the 

multiplicative noise. This provides a logical reason for adopting this filter because the 

PRNU is also multiplicative.To the best of the present author’s knowledge, this filter 

has not been used before in the field of digital image forensics.  
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 In the post-estimation stage, a new PRNU estimation technique based on colour 

combination is presented. 

The camera sensors can exhibit a physical noise pattern in one colour component only 

at every pixel position, while the other components can be estimated through 

interpolation involving the neighbouring pixels. Some PRNU estimation techniques 

depend on the green or gray scale version of images in order to extract the PRNU, 

while other researchers estimated the PRNU from each channel individually and then 

combined them linearly to derive a colour-to-luminance PRNU. However, a linear 

combination with fixed weights may include some interpolation noise if a particular 

color location does not correspond to the physical light information. Also, if only the 

green channel is used, the physical PRNU information which could exist in other 

colour components (red and blue) is not taken into account. The post-estimation stage 

consists of concatenating the PRNU estimated from each colour plane in order to 

exploit the presence of physical PRNU components in different channels. 

Experimental results have shown a significant gain obtained with the proposed colour 

combination technique and the superiority of the overall system when compared with 

state of the art source camera identification systems. 
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1.6 Thesis outline 

The thesis is organized as follows. A mathematical description of the DWT, DCT and 

DFT is presented in chapter 2. Chapter 3 is devoted to surveys of the latest state-of-

the-art image authentication techniques. With the aim to amplify the PRNU 

components for better estimation, an efficient pre-processing approach is examined 

with some existing methodologies in chapter 4. Chapter 5 focuses on a weighted 

averaging (WA) technique for superior PRNU estimation. This is followed by a 

presentation of experimental results for WA and various source camera identification 

techniques. Chapter 6 describes a new filtering scheme based on an improved version 

of the locally adaptive discrete cosine transform (LADCT) filter. The experimental 

results on images of different sizes are also provided in this chapter. Chapter 7 

introduces a digital camera identification using colour PRNU combination. Chapter 8 

provides the conclusion of the thesis and recommendations for future work. 
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 IMAGE REPRESENTATION IN THE 

TRANSFORM DOMAIN 

2.1 Motivations 

The conventional approach for estimating the PRNU is based on image filtering and 

the most powerful filters operate in the transform domain. Motivated by this, this 

chapter investigates the most widely used decorrelating transforms. An image 

transform provides a meaningful and practical method to change the statistical 

properties of the original image. The transform domain offers a number of attractive 

features such as energy compaction and decorrelation. Regarding the former, most of 

the signal data may be concentrated in a small number of low-frequency components 

of the transform. Decorrelating transforms can eliminate linear dependencies from the 

data, consequently making a set of components such that, when individually quantized 

and entropy coded, the resulting symbol stream can be considerably reduced when 

compared with utilizing quantization directly on the image data (Bracewell, 1999). 

2.2 Spatial domain representation 

A radiograph could be seen as a spatial representation of an object in a two-

dimensional area of varying exposure intensity. A neutral radiographic image is a 2-D 

light intensity function, 𝑓(𝑥, 𝑦), where x and  y are spatial coordinates, and the value of 

 𝑓 at (𝑥, 𝑦) is commensurate with the illumination or intensity of the picture at that 

location.  
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A digital image could be defined as a two-dimensional matrix or a sequence of two-

dimensional matrices (one for each colour band). A digital image can consist of a 

determinate number of components, each of which needs a particular value and 

position,  and these components are named pixels (Graham, 1998). Digitised 

illumination values are named the grey level, and a digital image is represented as 

follows:  

 
𝑓(𝑥, 𝑦) = [

𝑓(1,1) 𝑓(1,2)

𝑓(2,1) 𝑓(2,2)
      ⋯ 𝑓(1, 𝑁)
    ⋯ 𝑓(2, 𝑁)

   ⋮           ⋮
𝑓(𝑁, 1) 𝑓(𝑁, 2)

      
 ⋮
  𝑓(𝑁,𝑁)

    ] 

 

2.1 

The quality of a digital image could rely on the total number of lines and pixels, 

together with the range of brightness values in the image. These characteristic are 

named as image resolutions (Petrou and Petrou, 2010). Figure 2-1 illustrates the effect 

of digitization, where the 2-D continuous image has been divided into 16 rows and 16 

columns.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 2-1   Digitization of a continuous image. (Source: Ravirajaet al., 2015) 
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2.3 Discrete Fourier transform  

 

The Fourier transform (FT) is well known for providing an approach to solving 

problems in linear systems. In image processing, the FT has been an essential tool 

which can be applied to decompose a signal into its cosine and sine components 

(Bracewell, 1999). In a one-dimensional signal, the FT of a complex valued function 

𝑋(𝑓) could be defined as:  

 𝑋(𝑓) = ∫ 𝑥(𝑡)𝑒−𝑖2𝜋𝑓𝑡
+∞

−∞

𝑑𝑡 , 𝑓 ∈ ℜ. 2.2 

where the independent variable 𝑡  represents time, while 𝑓  represents the ordinary 

frequency. The signal in Fourier domain can be reconstructed to the signal 𝑥(𝑡) by 

applying the inverse transform as:  

 𝑥(𝑡) =  ∫ 𝑋(𝑓)𝑒𝑖2𝜋𝑓𝑡
+∞

−∞

𝑑𝑓 , 𝑡 ∈ ℜ. 2.3 

The interpretation of the Fourier signal is aided by expressing it in a polar coordinate 

formula as 

 𝑋(𝑓) = |𝑋(𝑓)|𝑒𝑖𝜙(𝑓) 2.4 

where |X(f)| refers to the amplitude and Φ(f) refers to the phase of X(f). 

If  X(f) ⇔ x(t) this indicates that 𝑋(𝑓) and  𝑥(𝑡) are a Fourier transform pair. Jain 

(1989) reported that the FT offers a number of properties as follows: 

 Linearity 

 𝑎𝑥1(𝑡) + 𝑏𝑥2(𝑡)  ⟺ 𝑎𝑋1(𝑓) + 𝑏𝑋2(𝑓) 2.5 

 Convolution 

 𝑥1(𝑡) ∗ 𝑥2(𝑡) ⟺ 𝑋1(𝑓)𝑋2(𝑓) 2.6 

 



  

17 

 

 Scaling 

 𝑥(𝑎𝑡) ⟺ 
1

|𝑎|
 𝑋 (

𝑓

𝑎
 ) 2.7 

 Time shift 

 𝑥(𝑡 − 𝑡0) ⟺ 𝑒−𝑖2𝜋𝑓𝑡0  𝑋(𝑓) 2.8 

 

 Modulation 

 𝑥(𝑡)𝑒−𝑖2𝜋𝑓0𝑡  ⟺ 𝑋(𝑓 − 𝑓0) 2.9 

 Parseval's theorem 

 ∫ |𝑥(𝑡)|2

ℜ

= ∫|𝑋(𝑓)|2

ℜ

  2.10 

Sonka et al. (1999) mentioned that the two-dimensional Fourier transform and its 

inverse could be defined as 

 𝐹(𝑢, 𝑣) = ∫ ∫  𝑓(𝑥, 𝑦)𝑒−2𝜋𝑖(𝑥𝑢+𝑦𝑣)
+∞

−∞

+∞

−∞

𝑑𝑥 𝑑𝑦 2.11 

 𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝑣) 𝑒2𝜋𝑖(𝑥𝑢+𝑦𝑣)
+∞

−∞

+∞

−∞

𝑑𝑢 𝑑𝑣 2.12 

 

The discrete Fourier transform (DFT) has been widely applied in image filtering, 

image description and image data compression. The DFT is the sampled FT and 

consequently does not include all frequencies forming an image, but just a 

collection of samples which is sufficient to perfectly describe the spatial domain image. 

The number of frequencies corresponds to the total of pixels in the spatial domain 

image. The two dimensional DFT of a square image N × N is defined by: 

 𝐹(𝑘, 𝑙) =  ∑∑ 𝑓(𝑖, 𝑗)𝑒−𝑖2𝜋(
𝑘𝑖+𝑙𝑗
𝑁

)

𝑁−1

𝑗=0

𝑁−1

𝑖=0

  2.13 
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where 𝑓(𝑖, 𝑗) represent an image in the pixel domain and the exponential part is the 

base function, which corresponds to every point 𝑓(𝑘, 𝑙) in the Fourier domain. As 

shown in equation 2.13, the 𝑓(𝑘, 𝑙) can be gained by multiplying the pixel image by 

the corresponding base function and then summing the results. It is worth noting that 

the base functions are cosine and sine waves with increasing frequencies, 𝑓(0,0) 

denotes the DC-component of the image that matches the average brightness, while 

𝑓(𝑁 − 1,𝑁 − 1) denotes the maximum frequency. The DFT could be re-converted to 

the pixel domain by applying the inverse Fourier transform, which could be defined as:  

 𝑓(𝑖, 𝑗) =
1

𝑁2
 ∑ ∑𝐹(𝑘, 𝑙) 𝑒𝑖2𝜋(

𝑘𝑖+𝑙𝑗
𝑁

)

𝑁−1

𝑙=0

𝑁−1

𝑘=0

  2.14 

2.4 Discrete cosine transform 

The discrete cosine transform (DCT) is an additional sinusoidal transform which could 

be linked to the DFT. The DCT has been generally applied in applications for image 

feature extraction, filtering, and compression (Sonka et al., 1999). There are four 

definitions of the DCT and often denoted as DCT-I, DCT-II, DCT-III and DCT_IV, 

and the most commonly used DCT, in image processing and compression is DCT-II. 

This could be defined for a square (N × N) image as: 

 𝐶(𝑘, 𝑙) =  𝛼(𝑘, 𝑙)∑∑𝑓(

𝑁−1

𝑗=0

𝑁−1

𝑖=0

𝑖, 𝑗) cos (
(2𝑖 + 1)𝑘𝜋

2𝑁
) cos (

(2𝑗 + 1)𝑙𝜋

2𝑁
) 2.15 

Where 

              𝛼(𝑘, 𝑙) =  {

1

𝑁
                        𝑓𝑜𝑟  𝑘, 𝑙 = 0

2

𝑁2
  𝑓𝑜𝑟 𝑘, 𝑙 = 1,2, … ,𝑁 − 1
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One of the key advantages of the DCT is that it produces a real valued output image, 

and this could make the DCT faster than the DFT transform. The cosine transform 

computation could be based on the Fourier transform, and all N coefficients of the 

DCT can be calculated using a 2N-point fast Fourier transform. Moreover, the DCT 

has outstanding energy compression for highly correlated data. Indeed, the DCT has 

the ability to discard coefficients representing high frequency components without 

seriously changing the way an image looks to the human eye. Lukin et al. (2010) 

claimed that DCT-based filters have demonstrated good efficiency for eliminating 

different types of noise such as Poisson and film-grain noise that contaminate which 

signal through an additive or a multiplicative rule. 

2.5 Discrete Wavelet Transform 

Wavelets represent another method for decomposing a complex signal into sums of 

basis functions. Such a mathematical tool allows the analysis of signals and signal-

generating procedures characterized by non-stationary behaviour (Abry, 1997). The 

wavelet is basically a function that, unlike the Fourier transform, has not only a 

frequency linked to it, but also a scale (Parker, 1997). Moreover, Burrus et al. (1998) 

pointed out that the signal 𝑥(𝑡) could often be described, analysed or processed better 

if expressed as a linear decomposition by:  

 𝑥(𝑡) =  ∑𝑎𝑗,𝑘 2
𝑗
2⁄  𝜓(2𝑗𝑡 − 𝑘)

𝑗,𝑘

 
2.16 

where 𝑎𝑗,𝑘 represents a set of two-dimensional coefficients which are normally named 

the discrete wavelet transform (DWT) of 𝑥(𝑡), while the  𝜓𝑗,𝑘 = 2
𝑗
2⁄  𝜓(2𝑗𝑡 − 𝑘) is 

basis functions. This function is created from a single function (named the mother 
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wavelet or generating wavelet) by changing the two parameters 𝑗  and 𝑘 , when the 

index 𝑘 changes, the location of the wavelet can be moved in time or space. This can 

allow the expansion to clearly represent the location of events in space or time. 

Meanwhile when the parameter 𝑗 is changed, the shape of the wavelet can change in 

scale. This permits a representation of detail or resolution. 

2.5.1 Multiresolution analysis  

Multiresolution analysis (MRA) integrates and unifies methods from a range of 

disciplines, including quadrature mirror filtering from digital speech recognition, 

pyramidal representation from image processing and sub-band coding from signal 

processing. As its suggests name, the multiresolution principle is concerned with the 

representation and analysis of digital images or signals at more than one resolution 

where features that might be undetected at one resolution may be more easier to detect 

at another. In MRA, a scaling function is used to build a sequence of approximations 

of an image or function where each differs by a factor of 2 in resolution from its 

nearest neighbouring approximations. After that, wavelets functions are used to encode 

the difference in information between adjacent approximations (Gonzalez and Woods, 

2008). The scaling functions could be expressed in terms of integer translations of the 

basic scaling function by:  

 𝜑𝑘(𝑡) = 𝜑(𝑡 − 𝑘)         𝑘 ∈  𝛧   , 𝜑 ∈ 𝐿2 2.17 

where the subspace of L2(ℜ) spanned by these functions can be expressed as:  

 𝑉0 = 𝑆𝑝𝑎𝑛(𝜑𝑘(𝑡))𝑘 2.18 

A two-dimensional family of functions can be produced from the basic scaling 

function by scaling and translation by: 
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 𝜑𝑗,𝑘(𝑡) = 2
𝑗
2⁄ 𝜑(2𝑗𝑡 − 𝑘) 2.19 

The subspace spanned over 𝑘 for any j, is defined as:  

 𝑉𝑗 = 𝑆𝑝𝑎𝑛(𝜑𝑖,𝑗(𝑡))𝑘 2.20 

This means that if 𝑥(𝑡) ∈ 𝑉𝑗, and then it can be expressed as 

 𝑥(𝑡) =∑𝑎𝑘
𝑘

𝜑(2𝑖𝑡 − 𝑘) 2.21 

The basic requirement of multiresolution analysis is: 

 𝑉0  ⊂ 𝑉1 ⊂ 𝑉2 ⊂. . . ⊂ 𝐿
2 2.22 

Therefore, the spaces Vj  satisfy an intuitive scaling condition.  

 𝑥(𝑖) ∈  𝑉𝑗  ⇔ 𝑥(2𝑡) ∈  𝑉𝑗+1 2.23 

The important features of a signal could better be described by also utilizing a number 

of wavelet functions 𝜓𝑗,𝑘(𝑡) that span the differences between any two neighbouring 

scaling subspaces, 𝑉𝑗 and 𝑉𝑗+1 (Burrus et al., 1998). The orthogonal complement of 𝑉𝑗 

in 𝑉𝑗+1 is 𝑊𝑗. This can be expressed as:  

 𝑉1 = 𝑉0 +𝑊0 2.24 

which can be extended to: 

 𝑉𝑛 = 𝑉0 +𝑊0 +𝑊1 +⋯+𝑊𝑛−1 2.25 

Hence, a signal 𝑥(𝑡) ∈  𝑉𝑛 could be defined as: 

 𝑥(𝑡) =∑𝑎𝑘
𝑘

𝜑(𝑡 − 𝑘) +∑∑𝑑(𝑗, 𝑘)𝜓𝑗,𝑘
𝑘

𝑛−1

𝑗=0

(𝑡) 2.26 

The decomposition of 𝑥(𝑡) with 𝑛 resolutions (or scales) could be represented as:  

 𝑥(𝑡) =∑𝑎𝑗−1,𝑘
𝑘

2
(𝑗−1)

2⁄ 𝜑(2𝑗−1𝑡 − 𝑘) +∑𝑑𝑗−1,𝑘
𝑘

2
(𝑗−1)

2⁄ 𝜓(2𝑗−1𝑡 − 𝑘) 2.27 
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where  

 𝑎𝑗−1,𝑘 = ∑ℎ(𝑚 − 2𝑘)𝑎𝑗,𝑘 
𝑚

 2.28 

and 

 𝑑𝑗−1,𝑘 = ∑𝑔(𝑚 − 2𝑘)𝑎𝑗,𝑘 
𝑚

 2.29 

The first summation in equation 2.27 can give a function that is a low resolution or 

coarse approximation of   𝑥(𝑡). In the second summation, when the index j is increased, 

a finer resolution function can be added, which adds increasing detail. Equations 2.28 

and 2.29 denote a digital filtering procedure which could be followed by a down-

sampling (sometimes named a sampler or a decimator) by a factor of 2. The down-

sampler can take a signal 𝑥(𝑛) as an input and generates an output of  𝑦(𝑛) = 𝑥(2𝑛). 

These equations illustrate that the wavelet and scaling coefficients at several ranks of 

scale could be achieved by convolving the expansion coefficients at scale j by the 

time-reversed recursion coefficients h(−n)  and  g(−n) and then down-sampling to 

give the extension coefficients at the next level of j-1. In other words, the scale j 

coefficients can be filtered by two finite impulse response (FIR) digital filters with 

coefficients h(−n)  and  g(−n), after which the down-sampler gives the next coarser 

scaling and wavelet coefficients. The implementation of equations 2.28 and 2.29  with 

two stages of wavelet decomposition is shown in figure 2-2. Similarly, a reconstruction 

of the original fine-scale coefficients would be created from a combination of the 

scaling function and wavelet coefficients at a coarse resolution. 
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Figure 2-2   Two-stage wavelet decomposition 

 

2.5.2 Two-dimensional wavelet transform 

For two-dimensional data for example images, the most generally utilized procedure 

for wavelet decomposition uses separable one-dimensional wavelets and scaling 

functions. Such a type of two-dimensional DWT can produce a decomposition of 

approximation coefficients at level j in four components: the approximation at level j - 

1 (𝑎𝑗 − 1), and other details in three locations, which are diagonal 𝑑𝑗−1
(𝑑)

 , horizontal 

𝑑𝑗−1
(ℎ)

 , and  vertical 𝑑𝑗−1
(𝑣)

  (Mallat, 1999). Figure 2-3 shows a sample of a one-stage 

decomposing image 'Lena'. In a similar manner, the reverse procedure could be applied 

in order get the original two-dimensional signal. 

 

 

 

 

  

 

Figure 2-3  One-step 2-D wavelet decomposition: (a) original image, (b) Decomposed image. 
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2.6 Spatial and Transform Domain Filtering Methods  

Filters play a significant role in the image de-noising process. It is a technique for 

modifying or enhancing an image. There are two basic approaches to image de-noising, 

spatial filtering methods and transform domain-filtering methods. A conventional 

technique to remove noise from image data is to employ spatial filters, which could be 

further considered into linear and non-linear filters. Spatial filters can employ a low 

pass filtering on sets of pixels with the hypothesis that the noise occupies the higher 

region of frequency spectrum. Generally, spatial filters remove noise to a reasonable 

extent however may lead to blurring images, which in turn makes the edges in images 

invisible. The transform domain filtering approaches could be sub-divided according 

to the choice of the basis functions. Figure 2-4 illustrate the basic for filtering in the 

frequency domain. Spatial-frequency filtering denotes usage of low pass filters based 

on Fast Fourier Transform (FFT). In frequency smoothing methods, the removal of the 

noise can be achieved by designing a frequency domain filter and adapting a cut-off 

frequency when the noise is decorrelated from the useful signal in the frequency 

domain. However, such methods may be seen as time consuming and rely on the cut-

off frequency and the filter function behaviour. Additionally, they could create 

artificial frequencies in the processed image (Motwani et al., 2004) .  
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Figure 2-4: Basic steps of filtering in frequency domain. 

Also, wavelets can offer a better performance in image de-noising because of 

properties for example multiresolution structure and sparsity. in the last two decades 

several algorithms for de-noising in wavelet domain was introduced. The first efforts 

involved very simple ideas such as thresholding of the orthogonal wavelet coefficients 

of the noisy data, after that reconstruction. Later efforts found that considerable 

improvements in perceptual quality may be gained by translation invariant approaches 

based on thresholding of an undecimated wavelet transform. Furthermore, several 

researchers have experimented with variants on the basic schemes— adjustments of 

thresholding functions, block thresholding, adaptive choice of threshold, level-

dependent thresholding, and so on (Starck et al., 2002). Furthermore, the Discrete 

Cosine Transform (DCT) can be applied for image de-noising application. The DCT 

based filters could have better performance among currently existing groups of filters, 

in case of pictures corrupted by speckle noise and, Gaussian additive. Also different 

from wavelet filters, DCT based filters works as sliding blocks. This could offer more 

information about spatial correlation properties of noise in an easier method 

(Ponomarenko et al., 2008). Lukin et al. (2010) claimed that DCT filter could be 
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simply adapted to a priori known or pre-estimated noise statistics. Finally, DCT-based 

filters have demonstrated good efficiency for eliminating different types of noise such 

as Poisson and film-grain that contaminate the signal through an additive or a 

multiplicative rule. 

 

2.7 Conclusion 

In this chapter, the most generally exploited discrete transforms are described for 

additional use in image forensics in the next chapters. Such transforms can offer a 

better energy distribution of the signal and considerably decrease the redundancy 

exhibited in the spatial domain. The DCT could be seen as a variant of the DFT in 

which the transform coefficients are real values. In addition, the DWT can provide 

extra flexibility in the range of the wavelet basis adaptively with signal content and 

depending on the application concerned. 
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 IMAGE FORENSICS AND SECURITY: 

REVIEW 

3.1 Introduction 

 The demand for digital imaging devices has recently dramatically increased due to 

their unquestionable advantages. Although such digital devices can offer an easy way 

to save digital images of daily activities, these images can easily be amended without 

cost using free editing software. This in turn could lead to serious problems, especially 

when a video or digital image is treated as evidence of a crime or images are used for 

purposes of extortion. Digital image forensics could be defined as the science that 

attempts to analyse a specific digital asset in order to provide an assessment of such an 

image’s content and estimate information that may be valuable to support an 

investigation by linking a digital document to a specific digital device. The 

fundamental idea behind multimedia forensics depends on the features that may exist 

due to the image acquisition process and any post-processing procedures. Such 

features may leave a distinctive mark on the data, as a kind of digital fingerprint. This 

fingerprint could be used to define the origin of the image and to determine the 

authenticity of the digital content. Image forensics technologies can introduce novel 

approaches for analysis and offer support in decision making in criminal investigation. 

Multimedia forensics researchers aim to assist human investigators by providing 

mechanisms for the authentication and analysis of multimedia documents. For example, 

we can imagine a situation in which the very action of creating a photograph involves 

an illegal action linked to the content represented in the data, such as child 
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pornography. In such a scenario, tracking the digital device that captured that digital 

asset could provide evidence of this issue and may lead the court to blame the owner of 

the digital device for that crime. Multimedia forensics methods could help in 

identifying the source of a digital image, making the digital content a silent witness in 

the courtroom. Other methodologies could be utilized in different circumstances in 

which a forensics analysis would assist the investigator in discovering whether the 

multimedia content is authentic or has been tampered with and stored using photo-

editing software (Amerini, 2010). In multimedia forensics, many approaches could be 

used to verify the integrity and/or authenticity of multimedia documents. Based on the 

concepts involved, these methodologies can be categorised into two main approaches: 

extrinsic or proactive techniques and passive techniques using device characteristics. 

This chapter discusses the fundamentals and the motivations of digital forensics, and 

illustrates the major approaches proposed so far in order to answer two basic questions: 

a) what is the source of a multimedia document? and b) is such a multimedia document 

genuine or not?  This chapter is organized as it follows. Section one discusses various 

application scenarios for digital image forensics technologies. Several kinds of digital 

fingerprint which could be used in image forensics are introduced in the second section. 

Proactive techniques such as watermarking and hashing schemes are then discussed in 

the third section. The fourth section discusses passive technologies and methodologies 

based on PRNU estimation are evaluated in section five. After that, a number of de-

noising approaches which could be used during the PRNU estimation process are 

discussed. Finally, approaches which focus on similarity/dissimilarity among the 

PRNU signals are introduced in section seven.  
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3.2 Application scenarios 

This section considers a number of application scenarios for digital forensics 

technologies and which problems they could provide solutions for. Although digital 

forensics tools have been used in many fields, the two major usage categories are the 

detection of forgeries and the identification of sources, and the relevant approaches are 

discussed in more detail in the following sections.  In first case, it could be necessary 

to establish if an individual picture is authentic or has been tampered with. The target 

of such tampering could vary widely, ranging from commercial aims such as 

perpetrating an incorrect journalistic scoop or realizing a quasi-realistic advertisement, 

or for more important purposes such as, changing the judgement in a courtroom where 

digital photographs could be accepted as evidence. For the identification of the source, 

forensics processes are designed to determine the origin of the image, which can be 

split into two categories. The first aims to identify the type of digital device that 

created the multimedia document, if it was produced by a digital camera, scanner or 

computer. Several methods exist to achieve this objective, and the basic idea is that a 

search is conducted of the multimedia document for traces of a particular acquisition 

process and for the absence or presence of unique characteristics inside the digital data. 

The second category is concerning with individuation, among a particular set of digital 

devices. For instance, for images captured by a certain scanner or digital camera, the 

aim is to determine which model and brand has taken that image. The achievement of 

this aim could require the previous extraction of certain information from every digital 

device in order to create a sort of identifying fingerprint during the analysis of a set of 

multimedia documents called a training set captured by each device (Amerini, 2010). 
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In the next section, a number of digital fingerprints for image forensics are discussed 

in more detail. 

3.3 Intrinsic digital fingerprints 

Digital image forensics rely on digital fingerprints, which are  characteristic traces left 

behind in a multimedia document during the generation stage and any other successive 

procedure (Swaminathan et al., 2008). This kind of digital fingerprint relies on 

analysing the characteristic traces, with no embedding of additional data and without 

any knowledge about the linked original multimedia document (passive approach). 

Forensic experts could expose these traces by analysing some data on digital imaging 

mechanisms. The tasks for digital forensics fingerprint can be classified into:  

1. Digital device identification: determining that a given digital video or image 

was captured by an identified individual device. 

2. Source classification: classifying digital images according to their origin, such 

as scanned versus digital camera images, or based on camera model for 

instance Canon versus Samsung. 

3. Processing history recovery: to recover the chain of processing that was applied 

to the multimedia document; for example, filtering, contrast/brightness 

adjustment and lossy compression. 

4. Integrity verification: a procedure to determine malicious attacks, for instance, 

removing or inserting objects.  (Chen et al., 2008). 

A number of types of digital fingerprints can be taken into consideration for forensics 

analysis purposes. These fingerprints can be categorised in three classes: unique traces 
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which may be left by in-camera processing, traces left through out-camera processing, 

and digital fingerprints linked to the features of the framed scene.  

3.3.1 In-camera digital fingerprints 

Every component of a digital device can modify the input and leave intrinsic digital 

fingerprints in the final multimedia document caused by the particular optical system, 

colour filter array, sensors and some camera software. Additionally, natural pictures 

can have common characteristics unrelatedly to the content; for instance, inherent 

noise or a luminance behaviour that could be used as an inherent fingerprint (Amerini, 

2010). 

3.3.2  Out-camera digital fingerprints 

Every process applied to a multimedia document (e.g. geometrical or statistical, or 

other) could lead to adjust their properties leaving particular indications accordingly to 

the processing itself.  

It is worth noting that the first two types of fingerprints are independent of the content 

of the analysed data. This means that a trace left by a given camera device would be 

the same even if different contents are captured (Amerini, 2010). 

3.3.3 Scene digital fingerprints 

This kind of digital fingerprint can involve features related to the content of the picture 

itself. Some features relying on the content include lighting properties, which could be 

used to distinguish the reproduced scene. 

The common procedure after selecting a particular fingerprint is to choose some 

feature of the fingerprint considered and then to find optimal parameters before 
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making a decision based on either estimation or classification procedures. For instance, 

in case of source device identification, usually certain traces can be obtained which are 

next compared with a number of available fingerprints, in order to identify a model, 

kind or brand of acquisition device (Amerini, 2010). The following sections discuss 

approaches of acquisition device identification and integrity verification based on the 

above kinds of digital fingerprints 

3.4 Extrinsic methods 

In extrinsic forensics approaches, additional visible information can be added to the 

output of multimedia documents for many reasons; for instance, source identification, 

copy detection, document tracking and tampering detection. Digital watermarking and 

hashing schemes are examples of extrinsic forensics approaches (Dirik, 2010).  

3.4.1 Digital image watermarking  

A digital watermark is described as a part of data that is hidden in a multimedia 

document. The principal advantage of this technique is that the hidden data cannot be 

separated from the multimedia content. Watermarks could be either added into digital 

content during its creation or inserted later using specific software. In forensically 

secure digital cameras, the watermark is applied inside the digital camera. 

Watermarking could be applied in several applications of watermarking, for owner 

identification, broadcast monitoring, transactional watermarks, and authentication 

(Langelaar et al., 2000). In recent years, digital watermarking has been applied to 

identify and authenticate tampered regions in digital images. Methods of watermarking 

which are frequently used for image authentication are so-called “fragile” and “semi-
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fragile” digital watermarking. The former could be exploited to detect any minor 

manipulations of a digital image and consequently any attacks that change the pixel 

values of the image will be determined. However, the main disadvantage of this 

technique is that it could be hard to discriminate between non-malicious and malicious 

attacks, and so for instance most of fragile techniques would judge a lossy compressed 

digital image to be a forged image. Semi-fragile watermarking techniques are applied 

to identify authentic image content, because these techniques are more robust against 

attack. The basic idea of this technique, as demonstrated in  

 

 

 

figure 3-1, requires that features are first obtained from the digital image, and these are 

hidden within a robust and invisible watermark. Next, to test whether or not a digital 

image has been modified, it is essential to match its features with those of the original 

image which are retrieved from the watermark. The digital image has not been 

tampered with, if the features are matching; otherwise the dissimilarity will point to 

amended regions (Rey and Dugelay, 2002). 
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Figure 3-1  watermarking semi-fragile technique: (a) image security, (b) authenticity 

verification, (Source: Rey and Dugelay, 2002). 

 

3.4.2 Digital image hashing 

Frequently, the issues of data integrity can be solved using cryptographic hashes or 

message authentication functions, which are sensitive and key-dependent to every bit 

of the input message. As a result, the integrity of the message could be confirmed if 

every bit of the message is unchanged. Nonetheless, multimedia data can permit for 

lossy representations with small modification. Information carried by media data is 

commonly retained even after suffering geometric distortion, level of filtering, or noise 

corruption. Consequently, bit-by-bit verification is not a suitable technique to 

authenticate multimedia data (Swaminathan et al., 2006). One scheme that might be 

useful for digital multimedia authentication is the multimedia hash. This approach is a 

content-based digital signature for the media data. In order to generate a multimedia 

hash, a private key is utilized to obtain specific features from the data. The hash can be 

transferred with the media either by embedding within it or by adding it to the main 

media data. In the testing phase as shown in  

figure 3-2 , the authorised customer must have the same key to create the hash values, 

which will be compared to the ones transferred along with the data to validate its 

authenticity. The hash function could be applied in numerous applications, for instance 

identification/searching for images in large databases, content authentication, 

watermarking, and anti-piracy searches (Yang and Rhee, 2010). The fundamental 
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techniques for creating image hashing could be categorised into approaches based on 

statistics information, low-level image feature extraction, relations and preservation of 

coarse image representation (Monga and Evans, 2006). A robust hash function could 

be a method for identifying multimedia content.  This technique may have same 

purpose as some watermarking technology, however Monga and Mihçak (2007) 

reported that, the key difference among a watermark and a digital signature is that the 

embedding procedure of the watermarking technology requires the content of the 

media to change. Nevertheless, for content authentication, both the watermark and the 

multimedia hash methods could be sensitive to any malicious modification of the 

media while being able to allow incidental modifications, for example image 

enhancement or JPEG compression. In other words, the hash is necessary to be robust 

to perceptually insignificant modifications to the image. The hash function could also 

be applied to improve the security of watermarking schemes in the case of a copy 

attack. This type of attack targets at estimating a watermark in marked content and 

transplanting the estimated mark in unmarked content (Celiktutan et al., 2007).   
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Figure 3-2: Hash functions for Image Authentication. Adopted from (Swaminathan et al., 

2006). 

 

 

 

3.5 Device characteristics methods 

Many people can share their digital content through the Internet for example using an 

image published on a newspaper web-site, or a video posted on YouTube without 

adding any secure information. In this situation, active technologies such as 

watermarking and hashing cannot be applied to prove the content’s authenticity or 

source tracking.  In order to overcome the previous issues, recently, novel techniques 

for authenticating the contents of digital images called passive technologies are 

developed quickly, that does not require any prior information about the image. These 

passive methods can rely on the observation at each stage of the image history, from 

the acquisition process, to its storing in a compressed format, to any post processing 

process, which may leave a distinctive trace on the data, as a kind of digital fingerprint. 

For more simplicity, the original digital video or image could have distinguishable 

patterns because the devices used may have different characteristics due to the specific 

physical apparatus with different parameters being applied inside these devices which 

might then make possible diverse patterns in the output. These patterns would remain 

in all other digital content, which are captured by the same digital devices, or they 

could be modified after tampering. The passive methods can be used in applications of 
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image authentication by detecting modifications of the digital image and also as proof 

of ownership by identifying of the image’s source (Zimba and Xingming, 2011). 

 

 

 

 

3.5.1 Techniques for identifying the origin of the image 

Generally, most approaches of device identification are concentrated on evaluating the 

origin of digital media (videos or images). 

  

 

 

 

 

 

Figure 3-3   The source identification problem. 

 

As shown in figure 3-3 , such an identification can be performed in two main stages. 

The purpose of the first stage is to determine which type of digital device has produced 

those digital media (e.g. a digital camera, a cell-phone, a scanner and so on) and the 

second stage then determines the model and brand of a scanner or camera that was 

used to acquire the image. Several techniques for source camera identification are 

discussed in the following sections. 

 

3.5.1.1 Exchangeable image file 
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Digital images could be saved in several formats, for example JPEG, GIF, PNG, TIFF, 

and RAW, which may include useful information. For instance, JPEG files may 

include a specific feature that contains metadata such as quantization tables for lossy 

compressed data and image compression (Cohen, 2007). One of the simplest solutions 

to identify the source of a digital image is by checking the Exchangeable Image File 

(EXIF) header. This is a standard that classifies the formats of video images and 

includes information in the header of the image such as the model of digital camera, 

the manufacturer, the size of the image and exposure time. If the settings of an enquiry 

image do not match those of a given camera, it can be determined that the image did 

not come from that camera or that did not produce the original image. However, it is 

not possible to discriminate among images from instances of the same model of 

camera, since these images contain the same header information. Furthermore, the 

header information could be simply changed by JPEG recompression or any other 

image editing software (Luo et al., 2007). This may limit the use of this approach in 

image source identification and forgery detection. Furthermore, such an editable 

information cannot be accepted in the courtroom as evidence.  

3.5.1.2 Colour filter array and demosaicing artifacts 

Generally, the sensor is the key element in a digital camera, and, due to cost 

considerations, many manufacturers set up a single sensor rather than using multiple 

sensors. In order to capture a colour scene, the CFA is permanently utilized in front of 

the sensor. As each sensor pixel obtains only a colour value, the other two pixels need 

to be estimated from other pixels. This estimation procedure is known as interpolation 

or demosaicing. Based on CFA demosaicing, numerous image forensics approaches 
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are applied for both source identification and forgery detection problems. Such colour 

interpolation could present correlations among the samples of a colour image, while 

the non-interpolated would be unlikely to be correlated in a similar manner as the 

interpolated samples. In other words, the main idea is that the CFA filter design and 

the interpolation algorithm for every manufacturer may be slightly dissimilar; this may 

lead to unique correlation structures in captured images (Bayram et al., 2005). Another 

approach which relies on the observation that the demosaicing algorithm and the size 

of interpolation kernel can differ from one digital camera model to another has been 

suggested by (Bayram et al., 2005) and (2006). Identification the source of a digital 

image is based on the estimation of the colour interpolation parameters applied by the 

camera. Such an approach could be limited to pictures that are not highly compressed 

because the compression artifacts can remove and suppress correlation among the 

pixels which are generated by the CFA interpolation. As no a priori knowledge could 

be available about the size of the interpolation kernel, probability maps could be used 

to obtain different sizes of kernels. Once observed in the frequency domain, these 

probability maps can show peaks at different frequencies with differing magnitudes 

representing the structure of correlation among the spatial samples. A support vector 

machine (SVM) classifier was then applied to test the efficiency of the proposed 

approach. The SVM classifier relied on two sets of features: the peak locations and 

magnitudes in the frequency spectrum, and the set of weighting coefficients used for 

interpolation (Khanna, 2009). A related method based on a linear model for the 

periodic correlations presented by CFA interpolation was proposed by Popescu and 

Farid (2005). They hypothesised that every interpolated pixel can be correlated with a 

weighted sum of pixels by using a small neighbourhood concentrated around itself. 
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While perhaps exceedingly simplistic when compared to the highly nonlinear nature of 

CFA interpolation procedures, this simple model can be easy to parameterize and 

could reasonably estimate the CFA interpolation algorithms. It is worth noting that the 

majority of CFA algorithms estimate a missing colour sample from neighbouring 

samples from all colour channels (Swaminathan et al., 2007). However, Khanna (2009) 

reported that this method disregards these inter-channel correlations and considers 

each colour channel separately. In practice, neither the particular form of the 

correlations (that is, the parameters of the linear model) nor which samples are 

correlated to their neighbours is known. In order to approximate both of these 

concurrently, the Expectation Maximization (EM) algorithm is utilized as proposed by 

Dempster et al. (1977) . 

3.5.1.3 Lens Aberration 

As a result of the design and manufacturing process, lenses could produce diverse 

kinds of aberrations in pictures; therefore, the output picture could be distorted to a 

certain degree. In other words, the characteristics of optical distortions in digital output 

from most digital cameras may not change by usage and time. Two of these 

aberrations have been used in source camera identification: chromatic aberration and 

lens radial distortion. Examples of such distortions are shown in figure 3-4. With the 

aim to decrease manufacturing cost, the majority of digital cameras are provided with 

lenses may have nearly spherical surfaces which create radial distortions. 
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              (a)                                              (b) 

(a) barrel distortion; (b) after removing the barrel 

distortion 

(c) 

 

 

 

 

 

 

 

 

 

(d) 

 
(c) chromatic aberration; (d) after removing the    

chromatic aberration 

Figure 3-4   Lens distortion 

 

Radial distortion can cause straight lines in the object space to be rendered as curved 

lines on the sensor. This happens after changes in transverse magnification with rising 

distance from the optical axis; this type of distortion is also known as barrel distortion 

(San Choi et al., 2006). The amount and order of compensation of the radial distortion 

can be different from one manufacturer to another. Consequently, lenses from different 

camera model may leave unique traces on the captured pictures. The key idea of this 

forensics methodology is based on obtaining the distortion parameters of a specific 

camera, and then evaluating the error among the distorted line segments and the 

corresponding straight lines. The estimated parameters can be applied to train a 

classifier to distinguish between digital images captured by different cameras (San 

Choi et al., 2006). Another kind of optical distortion, that of chromatic aberration, has 

been used to detect image tampering and in camera identification applications 

(Johnson and Farid, 2006); (Dirik et al., 2007); (Van et al., 2007). This distortion can 

be produced by various refractive indications of a lens to different colours 

(wavelengths of the incident light). As a result of such differences, every colour in the 

incident light could focus on a dissimilar point on the camera’s lens axis, producing 
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colour edges and minor shifts among colour channels. Because diverse kinds of lenses 

could cause dissimilar distortions in images, source camera identification could be 

achieved by estimating the distorted parameters from images with lens aberrations 

(Johnson and Farid, 2006). Nevertheless, this approach might be failed for computing 

radial distortion, in case of a non-appearance of straight lines in the image; also as 

shown in figure 3-4, it is likely to correct any radial distortion on pictures using some 

editing software. Moreover, this approach has not been assessed using two cameras of 

same camera model (Dirik, 2010). 

3.5.1.4  Image features 

Several image features can be applied to classifying a camera according to a model, 

such as: wavelet domain statistics, colour features, and image quality metrics. The 

image feature approach has been utilized for N images from two different cameras 

models, where a number of images were used for training and testing the classifier. 

The accuracy for such algorithm reaches 98.73% for uncompressed images and 

dropped to 93.42% for compressed images. When five digital cameras were used, the 

identification rate has been reduced to 88% (Kharrazi et al., 2004) . Nonetheless, this 

approach could fail with cameras sharing the same CCDs and is not very useful for 

identifying images captured from cameras of the similar models. Furthermore, the use 

of this approach requires that all images should be captured at the same resolution with 

same content, which will usually not be possible in practice (Tran Van et al., 2007). 

Moreover, the large sample of pictures required in order to train a classifier for every 

digital camera is unlikely to available (Khanna, 2009) . 
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3.5.1.5 Sensor imperfections  

Additional approaches for source camera identification are based on characterising the 

imaging sensor. Geradts et al. (2001) considered that some pixels in the CCD sensor 

could be defective especially in low-cost digital cameras. These defects could include 

point defects, hot point defects, dead pixels, pixel traps, and cluster defects. These 

defect pixels might be in different places of the CCD sensor relying on the diverse 

sensors; consequently, such pixel defects can be considered to be unique evidence to 

identify the digital cameras. Nevertheless, according to Tran Van et al. (2007) the 

pixel defects may be visible only in darker regions of images and might also depend on 

temperature. Moreover, a number of post-processing processes such as gamma 

correction, JPEG compression and enhancement might remove or suppress these 

defective pixels. Besides, there may not be any visible defective pixels in digital 

cameras with high CCDs; thus, this technique cannot be applied with all digital 

cameras. Lukas et al. (2006) developed a source camera identification system based on 

a unique sensor pattern noise. This PRNU is unique for both CCD and CMOS imaging 

sensors.  There are several sources of noise and imperfections that occur at different 

stages of the image acquisition procedure. Even if the image sensor takes an image of a 

completely evenly lit scene, the digital image may include slight alterations in intensity 

between pixels. This is partly caused by random factors, such as, readout noise or shot 

noise, and partly as a result of pattern noise. Imaging sensor noise could normally be 

considered as random noise and pattern noise. The former can be named by statistical 

models, as it changes from frame to another and is temporally random in nature. In 

contrast, pattern noise can generate a pattern in the spatial domain and does not alter 
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from one frame to another to any great extent. Therefore, pattern noise may not be 

suppressed by frame averaging, whereas the random noise would be. As illustrated in 

figure 3-5, sensor pattern noise can consist of two parts, which are fixed pattern noise 

(FPN) and photo-response non-uniformity noise (PRNU). The FPN is a result of dark 

currents and normally occurs with sensors where specific pixels are exposed to give 

brighter intensities rather than the common noise. The FPN could rely on exposure and 

hotness and denotes to pixels-to-pixels differences. PRNU, on the other hand, is the 

key component of the pattern noise of standard images, and is based primarily on pixel 

non-uniformity (PNU), which can be defined as the dissimilar sensitivity of pixels to 

light. PNU is the result of imperfections caused by the manufacturing process due to 

the lack of homogeneity of the silicon area in the imaging sensor (Janesick, 2001). The 

origins and characteristics of PNU noise make it unlikely that even sensors from 

similar wafers would exhibit similar PNU patterns. PNU is more likely to be stable 

over time and may not depend on temperature. The PNU is a main characteristic 

(fingerprint) for both CMOS and CCD sensors and it is the basis of powerful methods 

to check the integrity of images and for camera identification. Furthermore, several 

low-frequency components such as light refraction and zoom settings, as well as 

optical surfaces may contribute to PRNU noise. These components are not 

characteristic of the sensor (Lukas et al., 2006). Fridrich (2009b) reported that PNU 

could include significant properties which are necessary in order to treat a PRNU as a 

unique sensor fingerprint. Firstly, dimensionality which means that the fingerprint 

include a massive amount of information content making it dissimilar to all sensors. 
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Figure 3-5   Pattern noise in CCD sensor. 

 

 Additionally, PRNU could exist in most pictures regardless of the digital camera 

settings, camera lens, or scene content. Furthermore, PRNU is stable over time under a 

variety of environmental conditions and finally, it is not affected by gamma correction, 

lossy compression or other post-processing procedures. Fridrich (2009b) suggested 

that PRNU may be utilized in image forensics tasks in numerous ways. Firstly, it could 

be applied in order to verify the presence of an individual digital camera’s fingerprint 

in the image. Furthermore, there is possibility of identifying forged objects by 

determining the non-appearance of the PRNU in specific regions of the digital image. 

Additionally, certain aspects of the processing history of an image might be 

reconstructed; for instance, the digital camera fingerprint can be applied as a template 

in order to estimate geometrical processing such as scaling or rotation. Finally, PRNU 

is beneficial for determining the particular make of camera or differentiating among a 

scanned and digital camera images (Fridrich, 2009a). The issue of image origin based 

on PRNU has been addressed in the literature using different techniques, for instance 

in the works of (Lukas et al., 2006), (Chen et al., 2007), (Sutcu et al., 2007), (Li, 2010), 

(Kang et al., 2011), and (Hu et al., 2015). Moreover, Dirik et al. (2008) suggested 

another type of sensor imperfection which could be used to identify the source digital 

Pattern noise 
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camera. This approach relies on traces of sensor dust in digital single lens reflex 

(DSLR) which permit customers to exchange camera lenses. In such kind of cameras, 

lens interchangeability may lead to a major issue that the environmental dust or dirt 

might attract in front of the sensor and generate a unique pattern which degrades the 

image quality. Such a natural sensor dust pattern could be used for unique source 

device identification. Dust specks can be detected by measuring intensity variations 

and shape features to form the dust pattern of the DSLR camera. Their experimental 

results illustrated that the dust pattern could be applied to identify the source camera 

model with low false positive rates. However, this approach strongly depends on the 

lens settings and image content, which means that these device characteristics are less 

suitable for general purpose forensics analysis. Moreover, this method could anyway 

have limited use in image forensics since this dust could be removed by cleaning the 

sensor surface. In addition, this approach would only be suitable for images captured 

from DSLR cameras and it has not yet been assessed using two of the same camera 

model. In addition, PRNU has been also applied in scanner identifications in (Gloe et 

al., 2007) and (Khanna et al., 2007b). 

3.5.2 Techniques for assessing image integrity  

Even though digital cameras can offer a simple and efficient way of taking and saving 

digital image of daily activities as digital images, such images may be simply amended 

by using some image editing software such as Photoshop, GIMP, and Paint Shop. 

Tampering with digital images without leaving any clear trace might no longer be 

difficult job. In general, picture modification may not display evidence of malicious 

tampering as in cases of contrast or colour correction to enhance the image and file 



  

47 

 

format adaptation in order to save storage space. Such manipulations would generally 

not amend the content of the image, while a malicious attack can change the meaning 

of the image, for instance by modifying, removing or inserting an object (Redi et al., 

2011). Numerous techniques can be exploited for image forgery detection. For 

instance, Hany (2006) applied JPEG quantization tables for forgery detection. Digital 

cameras normally usage JPEG compression in order to encode images; such types of 

lossy compression can use a quantization table to control the degree of compression. 

Many companies construct their digital devices with different compression parameters 

and levels, and such modifications can be applied in order to authenticate images by 

obtaining the JPGE quantization table from an image and comparing it with a database 

of identified digital camera models. This procedure can lead to identify the source of 

the image; similarly; a comparison could be conducted with a database of photo-

editing software to recognize the integrity of the image. Therefore, by identifying the 

presence of JPEG quantization tables unique for particular photo-editing software, one 

could determine whether the image is authentic or has been modified and saved using 

particular photo-editing software (Farid, 2008). Another technique which can be used 

for integrity verification based on illuminating light was offered by Johnson and Farid 

(2005). This method discovers inconsistencies in the direction of the illuminating light 

source for each object in an image using a two dimensional model. The method can 

test three different states which are local, infinite and multiple light sources to identify 

the error in the estimated direction linked to the actual direction. This approach would 

be effective for determining contradictory evidence in light directions. Nevertheless, 

analysis using this method could be very complex in case of indoor images with 

several light sources, due to multiple occluding boundaries. Moreover, it may be 



  

48 

 

expected that such an algorithm would be more successful for outdoor images since 

the sun is normally the only light source. Further technique proposed by Fridrich et al. 

(2003) relies on the detection of a copy-move attack which is a specific type of forgery 

where an object in an image can be duplicated in another area in the same image. This 

idea was used for uncompressed images, matching between blocks of size 𝐵 × 𝐵 in 

order to detect precise replicas. A robust matching method using quantized DCT is 

applied to enhance the method for the JPEG format, instead of direct matching of the 

pixel representation for every B × B  block. While experiments are more likely to 

perform well with the copied and pasted areas, the algorithm could fail to identify 

some areas which are flat, uniform areas, such as the sky (Swaminathan et al., 2009). 

Other techniques can be applied for forgery detection by reviewing the inconsistency 

of lateral chromatic aberrations throughout a digital image. The lateral chromatic 

aberration is considered as the contraction of a colour channel in relation to each other, 

which results in a colour channel’s misalignment. The technique’s parameters are 

designed to readjust the colour channels dependent on shared data which is applied for 

quantifying the alignment. Johnson and Farid (2006) reported that, one of the 

disadvantages of this technique is that it could be difficult to estimate chromatic 

aberration from a block which has a little or no spatial frequency content. This 

suggests that the method may be doubtful to discover areas of the image that have little 

spatial frequency. One further possible technique for identifying image forgery is 

based on the camera response function (CRF) and geometry invariants. The idea 

behind the technique of Hsu and Chang (2006) is to detect image splicing by 

examining for irregularities in the CRFs. This system was examined only for BMP or 

RAW image formats. The accuracy of such a technique is probable to be highest for 
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just the uncompressed images. Furthermore, spliced images generated from the same 

digital camera may not be recognized as forgeries (Van Lanh et al., 2007) . Moreover, 

the PRNU has been used as a camera fingerprint in order to detect forged areas with an 

image. The idea is that the tampered areas could destroy or change position of the 

PRNU(Chen et al., 2008). There are several Image forgery detection techniques in the 

literature which rely on PRNU such as the works of (Lukáš et al., 2006), (Chen et al., 

2008), (Chierchia et al., 2010), (Chierchia et al., 2013) and (Chierchia et al., 2014), 

each one has its theory, based on type of manipulation.  More recently, the PRNU has 

been applied to detect forgeries produced by Hue modification (Hou and Lee, 2016). 

3.6 Methodologies based on PRNU estimation  

Many researchers have verified the reliability of PRNU as a unique component for 

digital image forensics analysis, In particular, Goljan et al. (2009) conducted an 

extensive experiment examining over one million digital images covering 6896 

cameras and 150 camera models. Due to the promising outcomes with PRNU 

fingerprints, many research groups have paid attention in the past decade for 

improving PRNU estimation. Nevertheless, the effectiveness of PRNU in forensics 

applications relies heavily on the quality of the estimation of such weak signal. In this 

section, all the techniques proposed in the literature based on PRNU estimation 

procedure are reviewed. Lukas et al. (2006) was the first to develop a common 

technique to estimate a camera’s reference PRNU in order to resolve the problem of 

source camera identification. In order to obtain a trustworthy estimation of PRNU (𝐾), 

the digital camera itself or a number of images taken by the camera sensor is required. 

Let us assume that 𝑁 denotes the number of available images. As demonstrated in 
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figure 3-6 , the first step is to separate each original image from its noise, by obtaining 

a de-noised version of the original image (𝐈). According to Lukáš et al. (2005), the 

best performance is achieved when a wavelet de-noising filter, as proposed in the work 

of Mihcak et al. (1999), is used to obtain a filtered version of  (𝐈). After that, the 

residue noise is calculated by subtracting the original image from denoised version of 

the image𝐹(𝐈) : 

 �̂� = 𝐈 − F(𝐈) 3.1 

It is worth noting that, the residue noise as shown in equation 3.1 could include 

random noise from other sources and image content contamination, which cannot be 

exploited in source camera identification. Therefore, with the purpose of improving the 

purity of the estimated PRNU, the estimated residue signals ( R̂ ) of a number of 

images taken by the same camera sensor are averaged as shown in equation 3.2. This 

technique is referred to as “basic-PRNU” in the rest of this thesis. 

 𝐊 =
∑ �̂�𝑁
𝑖=1

𝑁
 3.2 

In the detection stage, in order to determine if the camera fingerprint (K)  is present in 

tested image (I), the residue signal is estimated as shown in equation 3.1  for each 

image. Then, a similarity measurement such as normal correction can be applied, for 

instance to assess the similarity between the sensor fingerprint for camera C and the 

residue signal of the tested image. 
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Figure 3-6   PRNU estimation process. 
 

The final step is to compare the value of similarity (𝑝) with a threshold (t) for this 

camera. If 𝑝 > t,  the system will identify that the query image was taken by camera C. 

Chen et al. (2007) introduced the maximum likelihood estimator (MLE) to estimate 

the camera’s reference PRNU. The authors demonstrated the residue noise as   r̂ =

I0K − Θ, where Θ is a combination of image contamination and random noise. Such 

noise could be non-stationary in textured regions; and hence digital images with 

smooth areas (blue sky images) can help to achieve better PRNU. This method is 

based on the assuming that θi(m, n),  𝑖 = 1,… , 𝐿, is white Gaussian noise with a fixed 

variance. The maximum likelihood estimator of the PRNU can be written as: 

 �̂� =  
∑ 𝐑𝑖. 𝐈𝑖
𝑵
𝑖=1

∑ (𝐈𝑖)2
𝑁
𝑖=1

  3.3 

Even if the PRNU is unique to the sensor, there are some components that could be 

shared between cameras with the same sensor design or those of a similar brand. 

Therefore this similarity might lead to an increase in false identification rates and some 
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detection errors in integrity verification. Therefore, enhancement operations is 

proposed in the work of Chen et al. (2008) to remove particular systematic patterns, in 

order to improve the quality of PRNU estimation. The steps in removing shared 

components (RSC) can be summarized as follows. Firstly, a zero-mean operation is 

applied, which could be done by subtracting the column average from each pixel in the 

column and after that the row average is subtracted from every pixel in the row. These 

two steps aim to reduce the effect of colour interpolation, row-wise and column-wise 

operations of processing circuits and sensors. The final step is to transform the signal 

into the Fourier domain, filter it with the Wiener filter, and retain only noise 

component. This approach is referred to as MLE-PRNU in rest of this thesis. However, 

according to evaluation of Liu et al. (2015), there is no great difference among using 

by MLE-PRNU and constant basic PRNU is case of using flat field images (images of 

almost constant intensity). Moreover, another enhancement technique was proposed by 

Kang et al. (2012), who assumed that the camera’s reference PRNU is a white noise 

signal to remove non-unique components in PRNU. The noise residue is extracted 

from an image as illustrated in equation 3.1. In order to clear the noise residue from the 

image contents and colour interpolation, and sensor design, as shown in equation 3.4 

and 3.5, the noise residue  Rj is whitened first in the frequency domain and it has 

constant Fourier magnitude coefficients, except that its direct current Fourier 

coefficient equals zero. Next, they obtained the phase-only component: 

 𝐑𝑗  = DFT(𝐑𝑗) 3.4 

    𝐑φj = 𝐑𝑗  |𝐑𝑗 |⁄  3.5 

In this technique, the camera reference PRNU is computed by:   
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 K̂ = real (IDFT (
∑ Rφj
N
j=1

N
))  3.6 

In the rest of this thesis the approach of Kang et al. (2012) will be called phase-PRNU. 

Li (2010) pointed out that the PRNU gained from a picture may be contaminated by 

the image content; for example, with a periodic structure and texture. This idea is 

based on the fact that less trustworthy components are the stronger components of the 

signal in a PRNU, and therefore these components should be attenuated. Combined 

with a wavelet filter, this proposal offers an improved PRNU by allocating lower 

weighting factors to the strong components of 𝑅  in the wavelet domain, with the 

intention of suppressing contamination by scene details. Nonetheless, attenuating 

strong components from a signal can lead to an attenuation of the beneficial PRNU 

components as well (Kang et al., 2012). Moreover, Hu et al. (2009) proposed another 

improved technique based on the assumption that the large components of a camera’s 

PRNU is more trustworthy and consequently should be utilized in correlation detection, 

whereas other elements should be discarded. The authors sorted the PRNU pixels in a 

descending order, and then only the first largest components are used while ignoring 

the rest of the reference PRNU. At the same time, the positions of those large 

components are saved in order to be used with the estimated noise residue of the tested 

image. Another technique relying on the pairwise magnitude relations of cluster pairs 

was proposed by Tomioka et al. (2013). This approach aims to suppress the random 

noise contamination in the PRNU, and is achieved by calculating the PRNU as shown 

in equation 3.2. After that, the PRNU pixels are sorted a descending/ascending order. 

Next, every set of pixels is simply averaged. With the clustered PRNU, a record of the 

positions of the clustered pixels is saved and used in the noise residue of the tested 



  

54 

 

image. Theoretically, such a procedure might generate a higher quality reduced-size 

PRNU, which may lead to a more trustworthy PRNU than the original full-size 

counterpart (Tomioka and Kitazawa, 2011). Furthermore, the principal component 

analysis (PCA) technique was employed by Li et al. (2014) in order to  decrease the 

dimensionality of the PRNU noise and reduce the effect of scene details during the 

filtering process. The idea underlying this technique is that the energy of the noise 

residues characterizing the reference PRNU could be concentrated in a small subspace 

of the entire eigenspace, while the remaining energy represents undesirable (image-

dependent) noise components. Hence, by maintaining only the most significant 

subspace, characterized by the eigenvectors which are linked to the most significant 

eigenvalues, and then conducting the inverse PCA transform, the image-dependent 

noise could be significantly decreased. With the aim to reduce the burden some aspects 

of storage and computation of the PRNU signal, particularly with a large size of 

images, Valsesia et al. (2015) indicated that the usage of random projections could 

considerably decrease the dimensionality of PRNU without any effect on camera 

identification performance. The PRNU signal may not be compressed with regular 

approaches, for example JPEG, due to the signal’s lack of redundancy. Valsesia et al. 

(2015) applied a compressive sensing technique to represent the sensor fingerprint 

space using a dictionary. This technique starts by representing the PRNU in a binary-

quantization form, which may lead to a considerable reduction of the matching process. 

An additional universal study in fingerprint compression linked to random projection 

can be found in the work of (Donoho, 2006). Moreover, Chang-Tsun and Yue (2012) 

suggested a colour decoupling process before the filtering stage in order to decrease 

colour interpolation noise which was presented by the CFA.  This process is based on 
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the fact that the artificial colours gained during the demosaicing process could not be 

physically captured from the scene by the sensor. Consequently, Chang-Tsun and Yue 

(2012) claimed that the PRNU obtained from the physical components would be more 

trustworthy. This can be achieved by decomposing every image into sub-images and 

after that extracting the PRNU from each sub-image. Finally, the PRNU of the sub-

images can be combined in order to gain the final PRNU. This technique is called CD 

PRNU in the rest of this thesis. Another novel pre-processing technique, namely 

spectrum equalization algorithm, was suggested by Lin and Li (2016) in order to 

reduce the false identification rate. The authors equalize the magnitude spectrum of the 

PRNU by detecting and suppressing notable peaks according to the local 

characteristics, since peaks in the spectrum could be created by periodic artifacts which 

are unlikely to be linked to the true PRNU. Then, the similarity measure with the 

tested noise residue is applied. Moreover, three colour combination schemes were 

proposed by Hu et al. (2010) in order to obtain the final PRNU using the red, green 

and blue channels. The key idea is based on extracting the PRNU from each colour 

channel separately and then selecting the pixel with the largest magnitude. 

3.7 PRNU de-noising techniques 

A number of de-noising techniques have been reported in the literature in the PRNU 

estimation stage. This section examines the strengths and weaknesses of some of these 

denoising methods in estimating the PRNU. Lukas et al. (2006) firstly utilized a 

wavelet-based filter for identifying the source of digital images based on PRNU, and 

this filter had initially been suggested by Mihcak et al. (1999). Lukas et al. (2006) 

assessed a number of de-noising filters and their experimental results have shown that 
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wavelet-based filter can outperform other filters, such as Wiener filters and median 

filters. For image restoration and enhancement applications, it is common to use 

criteria such as the mean squared error or peak signal-to-noise ratio, in order to 

examine a filter’s noise reduction performance. Wavelet-based denoising performs 

well by using the above criteria and it has been recommended by researchers for better 

PRNU extraction (Cooper, 2013). This filter can be divided into two phases. Firstly, 

the variance in local image is estimated; and secondly, a local wiener filter is applied 

in order to obtain an estimation of the denoised images in wavelet domain. The 

wavelet de-noising filter operates as follows. First of all, the fourth-level wavelet 

decomposition of the noisy image is analysed by a breakdown of the noisy images into 

8-tap Daubechies mirror filters. The diagonal, horizontal, and vertical subbands are 

dented as   d(i, j), h(i, j), v(i, j)  where (i, j) ∈ J,   and  J  is the set of the wavelets 

coefficient, which could depend on the level of decomposition. The de-noised wavelet 

coefficients could be obtained using the Wiener filter as follows 

 ℎ𝑑𝑒𝑛(𝑖, 𝑗) ≔ ℎ(𝑖, 𝑗)
�̂�2(𝑖, 𝑗)

�̂�2(𝑖, 𝑗) + 𝜎0
2  

3.7 

where σ̂2(i, j) respresents the estimated local variance for the wavelet coefficient of the 

original image 𝐈(0) ( the sensor output in the absence of the PRNU noise ), which could 

be estimated by using the maximum a posteriori probability (MAP) method for each 

subband: 

 �̂�2𝑊(𝑖, 𝑗) = max(0,
1

𝑤2
∑ ℎ2(𝑖, 𝑗) − 𝜎0

2

(𝑖,𝑗)∈𝑁

)    3.8 
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where 𝑤 × 𝑤 is the size of the window, and it is suggested that  𝑤 should be a set of (3, 

5, 7, and 9). After that, the minimum of the four variances can be applied in equation 

3.7. Lukas et al. (2006) pointed out that the value of σ0 may have a slight effect on the 

performance of the filter in PRNU estimation, and the authors found that the best filter 

performance was achieved when σ0 is equal to 5. Another filter based on a four 

neighbour context adaptive interpolation (CAI4) algorithm was proposed by 

Guangdong et al. (2012). The same authors (2014) extended their algorithm so as to be 

based on an eight-neighbours (CAI8) to better suppress the interference of the image 

edge and for less prediction error. This approach targets the identification of edges and 

to generate a pure sensor pattern noise. In this technique, the local regions have been 

classified into six classes: smooth, vertically edged, horizontally edged, right-diagonal 

edge, left-diagonal edge, and others. A mean filter can be applied to estimate the centre 

value pixel of the eight neighbouring pixels in the smooth regions.  

 

wn n En 

w P E 

ws s Es 

Figure 3-7   Neighbourhood of the centre pixel to be predicted. 

In edge regions the centre pixel is predicted along the edge. In other regions, median 

filtering could be used. Assuming that P is the centre-pixel value and as shown in 

figure 3-7, T = [n, s, e, w, en, es, wn,ws]′  to be a vector of the eight-neighbouring 

pixels. The centre pixel value is given by:  
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 �̂� =  

{
  
 

  
 

𝑚𝑒𝑎𝑛(𝑇)́ (max (𝑇)́ − 𝑚𝑖𝑛(𝑇)́ ≤ 20

(𝑛 + 𝑠)/2 (|𝑒 − 𝑤| − |𝑛 − 𝑠| > 20)
(𝑒 + 𝑤)/2
(𝑒𝑠 + 𝑤𝑛)/2
(𝑒𝑛 + 𝑤𝑠)/2

𝑚𝑒𝑑𝑖𝑎𝑛(𝑇)́

(|𝑛 − 𝑠| − |𝑒 − 𝑤| > 20)

(|𝑒𝑛 − 𝑤𝑠| − |𝑒𝑠 − 𝑤𝑛| > 20)

(|𝑒𝑠 − 𝑤𝑛| − |𝑒𝑛 − 𝑤𝑠| > 20)
(𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒). }

  
 

  
 

 3.9 

After that  the Weiner filtering operation at the pixel domain is used in order to remove 

the influence of the image scene. However, this technique could be unsuccessful for 

PRNU estimation with small natural images, and Guangdong et al. (2012) recommend 

the use of more than 150 blue sky images for efficient PRNU extraction. Consequently, 

the usage of such a technique in image forensics may be limited. An additional novel 

filtering strategy based on a combination of adaptive and median filtering applied in 

the spatial domain was suggested by  Cooper (2013). The author divided the approach 

to two stages. In the first stage, adaptive Weiner filtering  as proposed by Jong-Sen 

(1980) is applied in the spatial domain:  

 
F(Iij) = u +

σ2

σ2 + v2
 (Iij) − u   

3.10 

where v2, u , σ2 denotes the noise variance ,mean , and the variance around  the local 

neighbourhood of each pixel respectively. 

 u =
1

𝑁𝑀
  ∑ 𝐼𝑖𝑗
𝑖𝑗∈𝐵

 3.11 

 𝜎2 =
1

𝑁𝑀
  ∑ 𝐼𝑖𝑗

2

𝑖𝑗∈𝐵

− 𝑢2  3.12 

where 𝑁 ×𝑀 is the pixel-size of the window 𝐵,  which is recommended to be  a 

window of 9 × 9 pixels. After that, the output of the Wiener filter is subtracted from 

the image. In the second stage, the PRNU noise residue is further filtered by two 2 × 2 
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median filters in cascade. The median filtering could lead to an increase the correlation 

magnitude with matching data and decrease the correlation bias for non-matching data 

(Cooper, 2013). This suggested filtering technique is followed by an enhancement 

strategy where only pixels with high probabilities of significant PRNU noise residue 

bias are retained. Nonetheless, smaller digital images frequently have less PRNU data, 

and therefore identification performance for small digital images needs to be improved 

further. In this technique no experimentation is applied with small images, and also its 

effectiveness is based on small a sample of data with just three reference cameras. 

Dabov et al. (2007) suggested an image denoising approach relies on an improved 

sparse representation in the transform domain, and this filter has been applied in 

PRNU estimation by Chierchia et al. (2010) , (2011). The improvement in sparsity can 

be realised by grouping alike 2D image blocks into 3D data arrays. This filter contains 

of three successive stages: the 3D transformation of the group, shrinkage of the 

transform spectrum, and inverse 3D transformation. The outcome is a 3D estimate that 

contains of the jointly filtered grouped image blocks. By attenuating the noise, the 

collaborative filtering can detect even the finest details shared by grouped blocks and it 

also preserves the important features of every block. After that, the filtered blocks can 

be returned to their original locations. Since these blocks are overlapping, many 

different estimates can be gained, for each pixel and these should be combined. 

Combination is a specific averaging process which is used in order to take benefit of 

this redundancy. van Houten and Geradts (2012) proposed another novel filter to be 

adopted in PRNU estimation. This filter was originally suggested by Perona and Malik 

(1990) and it based on the anisotropic diffusion equation. In their discrete form of 

equation 3.13, I(m, n, t) can be a de-noised version of the original image at iteration 
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step 𝑡 while  I(m, n, 0) is the original image, and the diffusion coefficient which is 

chosen to preserve edges and textures could be defined as  

 ∂𝐈(m, n, t)

∂t
  = I(m, n, t + 1) − I(m, n, t). c(|∇𝐈(m, n, t)|)   

3.13 

Modern digital cameras can have high sensor pixel density, and it could be expected 

that two neighbouring pixels may have very close values in images. Al-Ani et al. 

(2015) propose a 2-pixel technique filtering. This technique takes advantage of this 

observation in spatial domain filtering. It involves as little as one neighbouring pixel 

during the estimation of the PRNU at a pixel location in order to suppress the 

unwanted pixel-wise correlation in the estimation stage. An additional filter, called 

total variation minimization, has been used for PRNU estimation by Gisolf et al. 

(2013). Such a filter can preserve edges while smoothing away noise in flat areas, even 

at low signal-to-noise ratios (Rudin et al., 1992). The work of Gisolf et al. (2013) 

relied on a simplified version of the total variation filter. The authors applied the 

unconstrained total variation technique as proposed by  Rudin and Osher (1994) and 

used the gradient-decedent optimization. Moreover ,Qu et al. (2013) offered a novel 

PRNU noise extraction system based on homomorphic filtering. The PRNU is 

extracted by simply averaging a huge number of pictures, without any de-noising step. 

This methodology contains three stages: Firstly all natural images are averaged 

together to obtain one average image. Next, the logarithmic value is taken of each 

pixel of the average image, and finally the Wiener filter is used to estimate the 

reference PRNU. The advantage of this process is that it only one image needs to be 

denoised, while the other approaches require the application of denoising for every 

image (N times). However, when the sample of images is small, such as N being less 
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than or equal to 20, the estimation of the reference PRNU could be deteriorated which 

may lead to reduced source identification performance compared with the existing 

state-of the- art systems. 

3.8 PRNU similarity measures 

Most PRNU-based forensics applications commonly depend on measuring the 

similarity or dissimilarity among PRNU signals for decision-making. In this section, 

several similarity measures applied in PRNU-based forensics are outlined due to its 

close relationship to the techniques studied here. One of the basic measures is the 

normalized cross-correlation, which is normally conducted between the reference 

PRNU (K)  and the noise residue of the query image (R). The normal correlation is 

defined as:  

 𝑝(𝐊,𝐑) =  
∑ ∑ (𝐊𝑚𝑛 − �̅�𝑛𝑚  ). (𝐑𝑚𝑛 − �̅� )

√(∑ ∑ (𝐊𝑚𝑛 − �̅�)2𝒏m ) (∑ ∑ (𝐑𝑚𝑛 − �̅�)2𝑛𝑚 ) 
  3.14 

where K̅ ,  R̅ refer to the means of K, R respectively. Then, with the target of decreasing 

the effect of periodic noise contamination and hence enhancing the false positive rate 

in SCI, the peak-to-correlation energy (PCE) was suggested by Goljan (2008). The key 

idea behind the PCE is to consider the correlations between the PRNU and shifted 

versions of the noise residue in order to decrease the similarity which could exist 

between the PRNU of a particular camera and the noise residue of an image taken by a 

different camera (Goljan, 2008) and (Goljan et al., 2009). As shown in equation 3.15, 

the PCE ratio is defined as the squared correlation divided by the sample variance of 

the circular cross-correlations:  
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 𝑃𝐶𝐸(𝑥, 𝑦) =
𝑐𝑥𝑦
2 (0,0)

1
𝜔 × 𝜈 − |𝐴|

∑ 𝑐𝑥𝑦2 (𝑚1,𝑚2)𝑚1,𝑚2∉𝐴

  3.15 

where A is a small neighbour area typically of size 11 × 11 around the central point at 

(0,0), |𝐴|is the number of pixels in A, and 𝑐𝑥𝑦 (𝑚1, 𝑚2) represents the circular cross-

correlation expressed as 

 𝑐𝑥𝑦 (𝑚1,𝑚2) =
∑ ∑ 𝑥(𝑖, 𝑗)𝑦(𝑖⨁𝑚1, 𝑗⨁𝑚2)

𝜈−1
𝑗=0

𝜔−1
𝑖=0

𝜔 × 𝜈
 3.16 

where ⊕ is the modulo addition.If 𝑥 and 𝑦 are contaminated by similar periodic noise 

which might not be unique for a specific digital camera (Goljan, 2008), the circular 

cross-correlation 𝑐(𝑚)  can peak at numerous 𝑚  values, and hence increase the 

denominator of PCE and PCE drops, this and may avoid generating a false positive 

identification. Kang et al. (2012) pointed out that, despite the fact that PCE has the 

benefit to suppress periodic noise; it also may increase the false positive rate due to the 

squaring operation for 𝑐𝑥𝑦
2 (𝑚1, 𝑚2) . Such a squaring operation could convert a 

negative correlation into a positive PCE value. In order to improve the performance of 

PCE, Kang et al. (2012) suggested the use of correlation over the circular cross-

correlation norm (CCN), which can achieve lower false positive rates by as much as a 

half compared to PCE. The CCN could be expressed as:   

 𝐶𝐶𝑁(𝑥, 𝑦) =
𝑐𝑥𝑦 (0,0)

√
1

𝜔 × 𝜈 − |𝐴|
∑ 𝑐𝑥𝑦2 (𝑚1,𝑚2)𝑚1,𝑚2∉𝐴

  3.17 

An additional flexible, pixel-wise weighting technique relying on similar features was 

offered by Chan et al. (2013). The calculation of the correlation to identify the source 

camera could be affected by the image content left behind in the noise residue. To 
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solve this issue, Chan et al. (2013) proposed the application of a nonlinear regression 

model in order to determine the effect of image content. The impact of image content 

was considered in block-based manner. Next a confidence map is generated which 

could be utilized to measure the reliability of every pixel in the PRNU estimation. The 

aim of using a confidence map in correlation calculations is to decrease the effect of 

image content since a lower weighting would be given to saturated regions or highly 

textured regions, while a larger weighting is given to reliable regions. A different 

similarity measure was proposed by Chen et al. (2008) for both camera identification 

and forgery detection. The authors started by presenting a pixel-wise multiplicative 

shaping factor T ∈ ℝM×N and updated their model for R̂  of the tested image to:  

   �̂�𝑞 = 𝐓𝐈𝐊 + 𝛉,   3.18 

where θ  is coloured Gaussian noise (a sequence of independent Gaussian variables 

with unequal variances). In this work the authors divided the noise residue signal into 

M non-overlapping blocks. The pixels (m, n)  for every block, b = 1,… ,𝑀  were 

assigned a fixed (m, n) , and their noise θ(m, n)  was assumed to have a fixed 

variance  σc
2.  A further novel, pixel-wise weighting method based on related features 

was proposed by Liu et al. (2010). The idea of this method based on using only the 

significant regions of the tested noise residue.  The significance of a block can then be 

measured based on its signal-to-noise ratio (SNR). Other researchers such as 

Çeliktutan et al. (2007),Khanna et al. (2007a),Celiktutan et al. (2008) and Costa et al. 

(2014) have applied SVM classification systems, instead of using correlation methods 

in order to identify the source of a digital image. 
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3.9 Conclusion 

The essentials and motivations of digital forensics techniques have been considered in 

this chapter. The differences between the proactive and passive methodologies are 

considered, and it is concluded that a passive methodology could be a more efficient 

approach even if the images are shared through the internet without applying any 

authentication system. PRNU could be seen as a unique component of images 

produced by both CCD and CMOS imaging sensors. The key use of PRNU is the 

detection of forgeries and identification of the source device of an image.  
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 IMAGE SHARPENING for PRNU 

ESTIMATION 

4.1 Introduction 

Image enhancement is one of the key areas in the digital image processing field, and 

involves methods to provide alterations of the pixel intensity of an input image, so that 

the output picture could subjectively appear to be better (Ibrahim and Kong, 2009). 

Jain (1989) pointed out that the primary purpose of image enhancement is to improve 

the visual appearance of digital images by the sharpening of features for instance 

boundaries and edges. Image sharpening could be useful in many different areas, for 

example in military, electronic printing and medical imaging system. Enhancement 

approaches could be applied in the pixel domain by controlling the pixel data or in the 

frequency domain by adjusting the spectral components. Types of enhancement 

approaches include: point operations, where every pixel may be amended according to 

a specific equation which is not dependent on other pixel values; mask operations, 

where each pixel can be changed based on the values of its neighbours (convolution 

masks); or global processes where all the pixel values in the image (or sub-image) 

could be taken into consideration. Image enhancement may involve grey level and 

contrast manipulation, noise reduction, edge sharpening, filtering, interpolation and 

magnification, and other operations (Schalkoff, 1989). This chapter examines the 

performance of Unsharp Masking (UM) technique in order to enhance the source 

camera identification rate. Edge detectors are discussed in section two, and one of the 

common methods of image enhancement (UM) is introduced in section three. The 
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fourth section presents the pre-processing technique proposed in this study, and the 

relevant data collection and experimental work will be in section five and six 

respectively. The conclusion is made in section seven. 

4.2 Derivative operators 

Edge detectors could be seen as a collection of very significant local image pre-

processing approaches used to detect changes in the intensity function (Sonka et al., 

1999). Several types of operators can be applied for edge detection. Chen et al. (1987) 

reported that based on how the picture has been filtered by image filtering techniques, 

edge detectors can be categorised in two broad classes, which are first order derivative 

(gradient) operators and second order derivative operators. Trichili et al. (2002) 

pointed out that derivative operators are the most effective approaches for detecting 

local intensity variations, where edges could be gained either by extracting the local 

maximas of the first derivative, or by extracting the zero cross of the Laplacian or the 

directional second derivative (Trichili et al., 2002). However, such operators may 

require more computational time, which limits their use in real-time applications 

(Bhardwaj and Mittal, 2012). 

4.2.1 First order derivative 

For a first order derivative, an image could be convolved by an adapted mask to 

produce a gradient image. Most popular operators such as Robert, Sobel, and Prewitt 

are gradient operators. These operators consider the maximum and minimum intensity 

values in order to identify edges. As a result of images being two-dimensional, it is 

essential to take into account the changes in the levels of the x and y directions; 
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consequently, partial derivatives of the image should be used. Estimating the edge 

direction can be calculated using the derivatives in x and y, and computing the vector 

sum. If an image is a function of two variables A(x, y) then the gradient is defined as:  

 ∇𝐴(𝑥, 𝑦) =  (
𝜕𝐴

𝜕𝑥
,
𝜕𝐴

𝜕𝑦
)  4.1 

The gradient is a vector which has a magnitude |𝑔𝑟𝑎𝑑  𝐴(𝑥, 𝑦)|  indicating edge 

strength and gradient direction𝜑 . The gradient magnitude and direction can be 

calculated respectively as follows: 

 |𝑔𝑟𝑎𝑑  𝐴(𝑥, 𝑦)|  = √(
𝜕𝐴

𝜕𝑥
)
2

+ (
𝜕𝐴

𝜕𝑦
)
2
 4.2 

 𝜑 = tan−1(

𝜕𝐴
𝜕𝑦

𝜕𝐴
𝜕𝑥

⁄ ) 4.3 

As a result of a digital image’s discrete function, equations 4.2 and 4.3 are 

approximated according to differences instead of using derivatives. The first 

differences of image A in the horizontal and vertical directions are shown in equations 

4.4 and 4.5  

 𝛻𝑥𝐴(𝑥, 𝑦) =  𝐴(𝑥, 𝑦) −  𝐴(𝑥 − 𝑛, 𝑦) 4.4 

 

 𝛻𝑦𝐴(𝑥, 𝑦) =  𝐴(𝑥, 𝑦) −  𝐴(𝑥, 𝑦 − 𝑛) 4.5 

where n is a small integer, normally equal to 1 (Sonka et al., 1999).   

4.2.2 Second order derivative (Laplacian operator) 

In the second order derivative, a pixel is indicated as an edge at the location where the 

second derivative becomes zero. The commonly used operator for the second order 

derivative is the Laplacian operator  𝛻2, which gives the magnitude of gradient only 

(Kumar and Saxena, 2013). The Laplacian operator is defined in a 2D image A(x, y) as:  
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 ∇2A(x, y)  =  
∂2𝐴(𝑥, 𝑦) 

∂x2
+

∂2𝐴(𝑥, 𝑦) 

∂y2
 4.6 

where the second differences of   
∂2

∂x2
  and  

∂2

∂y2
   are defined respectively as: 

 𝜕2

𝜕𝑥2
 =  𝐴(𝑥, 𝑦 + 1) − 2𝐴(𝑥, 𝑦) + 𝐴(𝑥, 𝑦 − 1)  4.7 

 

 𝜕2

𝜕𝑦2
 =  𝐴(𝑥 + 1, 𝑦) − 2𝐴(𝑥, 𝑦) + 𝐴(𝑥 − 1, 𝑦)  4.8 

According to equation 4.7 and 4.8 , the discrete approximation of Laplacian can be 

represented as follows: 

 𝛻2𝐴(𝑥, 𝑦) = −4𝐴(𝑥, 𝑦) + 𝐴(𝑥, 𝑦 + 1) + 𝐴(𝑥, 𝑦 − 1) + 𝐴(𝑥 + 1, 𝑦) + 𝐴(𝑥 − 1, 𝑦) 4.9 

 

Trichili et al. (2002) claimed that the Laplacian approach is more accurate than the 

gradient approach and it offers additional detail in providing edges. Moreover, it does 

not depend on direction, and as a result edges will be identified independently of their 

orientation. Additionally, although the Laplacian technique may respond even more to 

some edges in the image, it delivers much better performance than gradient 

operators.(Baxes, 1994)  

4.3 Unsharp masking (UM) method. 

Popular approaches for image enhancement can generally be cast in two groups: pixel 

domain and frequency domain techniques. In the former, the gray value of every pixel 

is modified based on statistical information of the digital image.  In the second group, 

the high frequency components of the image are separated from the low frequency 

content in two different signals. Each signal is then processed independently, and 

finally combined to reconstruct the sharpened signal. Unsharp masking (UM) belongs 

to the second class (Badamchizadeh and Aghagolzadeh, 2004). An unsharp mask is a 
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technique used to sharpen an image, in contrast to what its name might imply. Unsharp 

masking could be one of most common types of sharpening and it has been used in the 

printing industry for making edges more crisp (Jain, 1989). The basic idea behind the 

unsharp mask is to add a fraction of the high-pass filtered version of the input signal to 

the original signal itself as shown in figure 4-1. Unsharp masking can powerfully 

enhance the darker regions of images more than the lighter regions. Nonetheless, it is 

sensitive to noise since it generally amplifies the high frequency components of the 

input image which contain a proportion of noise in noisy images (Guillon et al., 1998). 

Figure 4-2 illustrates the main processes in unsharp masking. Based on this process 

unsharp masking can be defined as  

 

 y(m, n) = x(m, n) + λ  z(m, n) 4.10 

where λ >0 and z(m, n)  denote the high pass function. The Laplacian filter is a 

normally used high pass filter in unsharp masking (Jain, 1989). 

 

 

Figure 4-1    Unsharp masking (UM) method (Source: Li, Jain, 1989). 
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Figure 4-2    Unsharp masking process for image ‘Lena’. 
 

Figure 4-3 shows another example to examine the effect of unsharp masking, on a 

blurry image (a; b) along with how the unsharp masking can increase noise on noisy 

images in (c;d). 

 

 

 

 

 

 

 

 

 

Figure 4-3 Effects of unsharp masking:  (a) blurry image; (b) sharpened version of (a); (c) 

noisy image; (d) sharpened version of (c). 
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4.4 Proposed pre-processing technique  

PRNU estimation depends on the differences among a set of digital images and their 

smoothened versions in order to capture the characteristics of the sensor. 

Consequently, such a procedure can use a part of the content of the sensor noise, which 

is concentrated in the high frequency range, and present in contours, edges and 

textured regions of the digital images. In this thesis, the unsharp masking method is 

applied in order to amplify the high frequency content of the PRNU; hence, 

strengthening its presence in the sample images in order to facilitate efficient source 

camera identification (Lawgaly et al., 2013). It is worth mentioning that the UM may 

also amplify a portion of the undesirable noise (i.e. the noise that is different from 

PRNU) and this may increase the false identification rate. However, note that the 

undesirable noise changes from an image to another for the same camera because it 

does not represent the imaging sensor. Under the assumption that the undesirable noise 

is centred (i.e. with zero mean), the averaging process, described by Equation (3.2), 

tends to suppress it and keep only the PRNU components.  

 

 

 

  

 

 

 

Figure 4-4Error! Reference source not found. demonstrates a diagram of the p

roposed scheme. Initially, the image sharpening is exploited with the aim to increase 

the high frequency content of PRNU noise in digital images. This procedure could 
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Figure 4-4   High-level of the proposed algorithm. 
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ensure a strong presence of PRNU before estimation. At the matching stage, the same 

sharpening procedure is carried out for accurate source camera identification. 

4.5 Data collection 

In order to examine the performance of the proposed technique in this thesis, the 

evaluation has been conducted using two different datasets: our dataset and the 

Dresden database (Gloe and Böhme, 2010). Our dataset includes digital images 

captured from thirteen digital cameras. It should be noted that some digital cameras of 

the same brand such as Canon IXUS115HS and Fujifilm S2950, numbered 1 and 2 are 

used to differentiate between them. The technical specifications of these digital 

cameras are given in Table 4.1. Samples of natural indoor and outdoor scenes in our 

dataset are shown in figure 4-5. Table 4.2 shows the technical properties of digital 

cameras used for the Dresden database. From this, the ten digital cameras which have 

the largest numbers of images are chosen to provide a greater number of images in the 

testing stage. In this chapter and the following chapters, the available images for both 

image datasets are grouped into two sub-sets. The first set is used to estimate the 

camera reference PRNU, and the second is used to test the performance of source 

camera identification. All proposed techniques are assessed with differently sized 

blocks from 64×64 to 512×512. Image blocks are directly cropped from the centre of 

the full size images without affecting their content. It is worth noting that, the Dresden 

dataset is divided into two subsets, i.e. uncompressed and compressed images. In this 

thesis, only uncompressed images are used. 
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Camera brand Symbol 
Native 

resolution 

Sensor 

[inch or mm] 

Number 

of images 

Canon  IXUS115HS-1 C1 4000 x 3000 1/2.3", CMOS 250 

Canon  IXUS115HS-2 C2   250 

Canon G10 C3 4416 x 3312 1/1.7", CCD 250 

Fujifilm S2950 - 1 C4 4288 x 3216 1/2.3", CCD 250 

Fujifilm S2950 - 2 C5   250 

Nikon Coolpix L330-1 C6 5152 x 3864 1/2.3" , CCD 250 

Nikon Coolpix L330-2 C7   250 

Panasonic DMC TZ20-1 C8 4320 x 3240 1/2.33" CMOS 250 

Panasonic DMC TZ20-2 C9   250 

Samsung pl120 - 1 C10 4320x3240 1/2.33" , CCD 250 

Samsung pl120 - 2 C11   250 

Samsung L301 C12 4000 x 3000 1/2.3" CCD 250 

Sony DSC HX200V C13 4896 x 3672 1/2.3" BSI CMOS 250 

 

Table 4.1   Digital cameras in our image dataset. 

 

 

  

Figure 4-5  Examples of natural indoor and outdoor scenes in our dataset. 
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Camera brand Symbol 
Native 

resolution 

Sensor 

[inch or mm] 

Number 

of images 

AgfaPhoto DC-733s DC1 3072 × 2304 1/2.5" , CCD 281 

AgfaPhoto DC-830i DC2 3264 × 2448 1/1.8" , CCD 363 

Kodak M1063_0 DC3 3664 × 2748 1/2.33", CCD 464 

Kodak M1063_1 DC4   458 

Nikon D200_0 DC5 
3872 × 2592 

23.6 × 15.8 mm, 

CCD 

372 

Nikon D200_1 DC6   380 

Panasonic DMC-FZ50_0 DC7 3648 × 2736 1/1.8", CCD 265 

Panasonic DMC-FZ50_1 DC8   415 

Sony DSC-H50_0 DC9 3456 × 2592 1/2.33", CCD 284 

Sony DSC-H50_1 DC10   257 

 

Table 4.2   Digital cameras in the Dresden dataset. 

4.6 Experimental work 

The main aim in this chapter and the following chapters is to identify the particular 

digital camera that was used to capture each image. The camera identification problem 

can be viewed as the following; the enquiry image contains the PRNU characteristics. 

Therefore, the PRNU estimated from a camera should exhibit high similarity when 

compared to the noise residue extracted from the image.  The proposed pre-processing 

technique is evaluated using two common camera identification techniques which are 

basic-PRNU as proposed in  the work of Lukas et al. (2006) and phase-PRNU as 

explained in Kang et al. (2012). In this experimental work all of the above 23 digital 

cameras are applied to examine the performance of the proposed technique. It is worth 

noting that a wavelet based de-noising filter is used in the proposed technique. The 

query image PRNU and the camera reference PRNU are extracted from the green 

channel, which could include more physical PRNU components (Kang et al., 2012), 
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For each digital camera, the camera reference PRNU is extracted from 50 original 

digital images for both data sets, as described in the basic-PRNU and Phase-PRNU 

techniques. Then, for our data set, 200 test images obtained by the same sensor are 

selected to calculate the false negative rate (FNR), while 2400 digital images captured 

by the other twelve digital cameras (200 photos for every camera) are selected in order 

to compute the false positive rate (FPR). From the Dresden dataset, as mentioned 

above, 50 images are used for estimating the PRNU and the other available image are 

used to calculate the false negative and false positive rates. The FNR for a camera C 

represents the proportion of test images taken by C but incorrectly assigned to a 

different camera. On the other hand, the FPR for C is the proportion of test images 

assigned to C but taken by a different camera. The results show that the unsharp 

masking technique achieves greatly superior performance compared to that of the 

basic-PRNU technique and phase-PRNU techniques for all different image sizes. 

Table 4.3 illustrates the overall results for false negative rate and overall false positive 

rate with our dataset. It is worth noting that in most cases the proposed technique 

reduces the overall false negative rate by more than 4% compared to basic-PRNU and 

phase-PRNU, when image sizes are equal to 64×64. With images of 128×128 the 

overall false negative rate is downgraded by about 10% and 5% compared to basic-

PRNU and phase-PRNU techniques respectively. A small improvement is visible in 

sizes of 256×256 and 512×512. As shown in table 4.3, using the unsharp masking 

technique leads to a reduction in the overall false positive rate regardless of the size of 

the image. Moreover, a clear enhancement is shown with the Dresden dataset, for 

instance the overall false negative rate have been reduced compared with basic-PRNU 
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from 52.22% to 49.32 %, 30.48 % to 28.07 %, 11.40% to 10.05% and from 2.75% to 

2.32% depending on the image size used (see table 4.4).  

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

basic-PRNU 48.04 24.96 12.15 7.08 4.01 2.10 1.06 0.61 
Proposed basic-

PRNU with 
sharpening 

45.35 22.35 11.35 6.62 3.65 1.86 0.89 0.55 

Phase-PRNU 45.81 23.27 11.00 6.31 3.82 1.94 0.92 0.53 
Proposed Phase-

PRNU with 
sharpening 

43.77 22.08 10.50 5.27 3.65 1.82 0.87 0.41 

Table 4.3   Overall FNR and FPR for each technique with our dataset. 

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

basic-PRNU 
52.22 30.48 11.40 2.75 5.80 3.37 1.20 0.37 

Proposed basic-PRNU 
with sharpening 

49.32 28.07 10.05 2.32 5.19 2.81 0.92 0.27 

Phase-PRNU 
49.66 28.45 10.10 2.03 5.52 3.16 1.12 0.23 

Proposed Phase-PRNU 
with sharpening 

45.80 25.75 8.12 1.88 5.01 2.71 0.90 0.20 

Table 4.4  Overall FNR and FPR for each technique with the Dresden dataset. 
 

Another improvement is shown in the overall false negative rate compared with Phase-

PRNU, where the reduction in the overall false negative rate reach to 7%, 9%, 19% 

and 7% with image sizes of 128×128, 256×256 and 512×512 respectively (see table 

4.4). The results in more detail for our dataset and the Dresden dataset showing the 

false negative and false positive rates for each digital camera are shown in table 4.5 to 

table 4.12. With regards to the improvement to the basic-PRNU, note that the unsharp 

masking technique improves the results for the majority of digital cameras. For 

example, in table 4.5 the unsharp masking technique reduces the false negative rate 

from 54.50% to 50.50%, 25.50%   to 23.00% and 4% to 3.5% with image size of 
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64×64, 128×128 and 256×256 respectively for images taken by C1 (Canon 

IXUS115HS-1 digital camera). Meanwhile small improvements in the false positive 

rate are apparent for most digital cameras as shown in table 4.6. However, in a few 

cases, the false negative rate marginally increases when utilizing the proposed 

technique; for instance, in C3 with image size of 128×128 and 512×512 , the false 

negative rate rises from 17% to 17.50% and from 5.50 % to 6.00% and on 

improvement with image size of 64×64. In addition, the false positive rate slightly 

rises with same camera (C3) from 3.63% to 3.67% with image size 64×64. This is 

justified by the fact that the C3 camera includes a tiny sensor (1/1.7"), which may 

create much undesirable noise affecting the estimation of the PRNU noise 

(kenrockwell, 2008). Moreover, in C7 with image size of 256×256, the false positive 

rate increases from 0.00% to 0.50% .The reason for such a result is that the cameras 

C7 and C8 are of the same brand (inter-class PRNU) which may lead to an increase in 

similarity between the two PRNUs. For the same reason, the false positive rate also 

increases in C11 from 3.92% to 4.38% and in C6 from 0.71% to 0.88%, with image 

size of 64×64 and 512×512 respectively (see table 4.6). As for the Dresden dataset, the 

same observation can be made regarding the cameras DC7/ DC8 and DC9/ DC10 (see 

table 4.7, 4.8 and 4.9). 
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Image 

size 
Techniques C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

64×64 

basic-PRNU 54.50 48.50 45.00 54.00 71.50 37.50 17.50 81.50 70.50 50.00 43.00 11.00 40.00 

Proposed basic-PRNU 

with sharpening 

50.50 47.00 45.00 54.00 64.50 35.50 13.00 82.50 74.50 46.50 37.50 8.5 30.50 

128×128 

basic-PRNU 25.50 20.00 17.00 31.50 44.00 6.00 2.00 67.00 60.50 20.00 21.00 1.00 9.00 

Proposed basic-PRNU 

with sharpening 

23.00 16.00 17.50 28.50 41.50 4.50 2.00 63.00 57.50 15.00 14.00 1.50 6.50 

256×256 

basic-PRNU 4.00 2.50 7.50 17.00 10.50 1.50 0.00 50.00 47.50 8.50 7.00 0.00 2.00 

Proposed basic-PRNU 

with sharpening 

3.50 2.00 7.00 17.00 9.50 1.00 0.50 47.50 45.50 7.00 5.50 0.00 1.50 

512×512 

basic-PRNU 0.50 0.00 5.50 9.50 0.50 0.00 0.00 35.50 28.00 5.00 4.00 0.00 3.50 

Proposed basic-PRNU 

with sharpening 

0.50 0.00 6.00 9.00 0.00 0.00 0.00 33.00 26.00 4.00 4.00 0.00 3.50 

Table 4.5   False negative rate (%) of basic PRNU and proposed basic PRNU with sharpening for our dataset. 
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Image 

size 
Techniques C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

64×64 

basic-PRNU 4.50 3.88 3.63 4.67 3.42 3.75 5.71 3.42 4.04 3.67 3.92 3.17 4.29 

Proposed basic-PRNU 

with sharpening 

4.13 3.79 3.67 3.88 2.71 3.25 5.00 3.08 3.75 3.13 4.38 2.42 4.29 

128×128 

basic-PRNU 2.42 1.71 2.46 1.96 1.33 2.75 2.88 1.96 1.96 1.58 2.04 1.46 2.63 

Proposed basic-PRNU 

with sharpening 

2.38 1.58 2.46 1.63 1.17 2.00 2.46 1.92 1.54 1.42 1.63 1.38 2.63 

256×256 

basic-PRNU 1.04 0.88 1.50 0.92 1.04 1.21 1.17 0.96 1.17 0.88 1.21 0.79 0.96 

Proposed basic-PRNU 

with sharpening 

1.04 0.83 1.42 0.75 0.67 1.13 1.00 0.75 0.96 0.71 0.71 0.79 0.79 

512×512 

basic-PRNU 0.92 0.46 0.75 0.33 0.54 0.71 1.04 0.58 0.33 0.63 0.54 0.63 0.50 

Proposed basic-PRNU 

with sharpening 

0.79 0.42 0.54 0.33 0.46 0.88 1.04 0.38 0.17 0.50 0.54 0.63 0.50 

Table 4.6   False positive rate (%) of basic PRNU and proposed basic PRNU with sharpening for our dataset. 
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Image 

size 
Techniques C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

64×64 

phase-PRNU 52.50 42.00 40.50 54.00 69.00 31.00 19.50 80.50 71.50 46.50 39.50 10.50 38.50 

Proposed phase-PRNU 

with sharpening 

50.00 43.00 42.50 50.00 67.50 33.50 18.00 78.00 68.50 41.50 36.50 9.00 31.00 

128×128 

phase-PRNU 24.00 15.00 13.50 32.00 43.00 6.50 4.00 64.00 57.00 17.50 15.50 1.00 9.50 

Proposed phase-PRNU 

with sharpening 

23.00 13.00 13.50 32.00 41.50 4.50 4.50 61.50 55.50 15.50 14.50 1.00 7.00 

256×256 

phase-PRNU 3.50 1.50 8.00 14.50 10.50 0.50 0.00 46.50 40.50 9.00 6.50 0.00 2.00 

Proposed phase-PRNU 

with sharpening 

3.50 1.50 8.00 14.50 8.00 0.50 0.00 45.50 40.00 8.50 5.50 0.00 1.00 

512×512 

phase-PRNU 0.00 0.00 4.50 5.50 0.00 0.00 0.00 34.00 27.50 3.50 3.50 0.00 3.50 

Proposed phase-PRNU 

with sharpening 

0.00 0.00 6.00 3.50 0.00 0.00 0.50 26.50 25.00 3.00 2.00 0.00 2.00 

Table 4.7    False negative rate (%) of phase-PRNU and proposed phase-PRNU with sharpening for our dataset. 
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Image size Techniques C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

64×64 

phase-PRNU 4.04 3.42 3.54 4.00 3.21 4.33 5.00 3.54 3.54 3.50 4.38 2.63 4.50 

Proposed phase-PRNU 

with sharpening 

4.08 3.38 4.08 3.96 2.54 3.46 4.58 3.25 3.50 3.38 4.54 2.58 4.08 

128×128 

phase-PRNU 2.33 1.58 2.38 1.38 1.54 2.25 2.58 1.92 1.79 1.79 1.92 1.58 2.17 

Proposed phase-PRNU 

with sharpening 

2.58 1.79 1.96 1.46 1.33 2.04 2.50 1.83 1.63 1.63 1.29 1.46 2.17 

256×256 

phase-PRNU 1.29 1.00 1.38 0.79 0.88 1.00 0.79 0.58 0.67 0.96 0.75 0.83 1.00 

Proposed phase-PRNU 

with sharpening 

1.25 1.00 1.29 0.63 0.96 1.04 0.83 0.50 0.58 0.75 0.71 0.79 1.00 

512×512 

phase-PRNU 0.63 0.46 0.79 0.17 0.50 0.67 1.08 0.58 0.38 0.46 0.46 0.38 0.29 

Proposed phase-PRNU 

with sharpening 

0.63 0.25 0.50 0.38 0.21 0.58 0.71 0.38 0.25 0.33 0.58 0.17 0.38 

 Table 4.8   False positive rate (%) of phase-PRNU and proposed phase-PRNU with sharpening for our dataset.  
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Image size Techniques DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

64×64 

basic-PRNU 63.29 52.17 62.32 57.00 59.90 51.69 51.69 52.66 28.50 43.00 

Proposed basic-PRNU 

with sharpening 

54.59 48.79 51.21 50.72 50.24 56.52 56.04 54.11 29.47 41.55 

128×128 

basic-PRNU 35.27 25.60 44.44 43.00 45.89 28.50 32.85 27.05 8.70 13.53 

Proposed basic-PRNU 

with sharpening 

32.85 24.15 35.27 36.23 45.89 30.43 30.43 27.05 4.83 13.53 

256×256 

basic-PRNU 13.04 6.28 21.74 22.22 17.87 10.63 11.11 8.70 0.97 1.45 

Proposed basic-PRNU 

with sharpening 

11.11 5.8 18.36 15.46 18.84 10.63 9.18 8.7 1.45 0.97 

512×512 

basic-PRNU 4.35 1.93 4.35 4.35 4.35 0.48 2.90 4.83 0.00 0.00 

Proposed basic-PRNU 

with sharpening 

5.80 1.93 2.90 0.97 2.42 1.45 2.90 4.83 0.00 0.00 

Table 4.9   False negative rate (%) of basic PRNU and proposed basic PRNU with sharpening for the Dresden dataset. 
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Image 

size 
Techniques DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

64×64 

basic-PRNU 4.35 5.21 4.88 5.64 4.78 5.69 6.66 8.11 6.12 6.60 

Proposed basic-PRNU 

with sharpening 

3.97 3.86 3.92 3.76 4.78 4.67 6.28 8.64 6.17 5.80 

128×128 

basic-PRNU 2.68 3.49 2.90 3.22 3.22 3.97 3.60 3.38 3.81 3.44 

Proposed basic-PRNU 

with sharpening 

2.31 2.63 2.04 1.66 3.11 2.58 3.60 4.46 3.54 2.15 

256×256 

basic-PRNU 0.91 0.97 1.13 1.18 1.18 1.29 0.91 0.91 1.77 1.72 

Proposed basic-PRNU 

with sharpening 

0.54 0.59 0.59 0.48 1.66 1.29 0.91 1.07 1.02 1.02 

512×512 

basic-PRNU 0.21 0.32 0.32 0.38 0.16 0.54 0.21 0.16 0.75 0.64 

Proposed basic-PRNU 

with sharpening 

0.00 0.00 0.00 0.21 0.16 0.54 0.27 0.86 0.38 0.27 

Table 4.10  False positive rate(%) of basic PRNU and proposed basic PRNU with sharpening for the Dresden dataset. 

 

 

 



  

84 

 

Image 

size 
Techniques DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

64×64 

phase-PRNU 58.94 46.38 57.97 59.42 55.07 48.79 51.21 51.69 26.57 40.58 

Proposed phase-PRNU with 

sharpening 

57.00 46.86 53.62 54.11 44.44 48.79 51.21 41.06 24.64 36.23 

128×128 

phase-PRNU 34.30 21.26 38.65 38.65 37.68 28.99 34.78 29.95 5.80 14.49 

Proposed phase-PRNU with 

sharpening 

29.95 20.77 38.16 38.16 29.95 28.99 29.47 23.19 4.35 14.49 

256×256 

phase-PRNU 11.59 4.83 18.36 20.29 14.98 7.73 11.59 10.63 0.48 0.48 

Proposed phase-PRNU with 

sharpening 

10.14 3.38 18.36 18.84 9.66 4.35 8.70 7.25 0.00 0.48 

512×512 

phase-PRNU 3.38 1.45 3.86 1.45 4.35 0.00 1.45 4.35 0.00 0.00 

Proposed phase-PRNU with 

sharpening 

2.90 1.45 2.90 1.93 1.45 0.48 5.31 2.42 0.00 0.00 

Table 4.11  False negative rate (%) of phase-PRNU and proposed phase-PRNU with sharpening for Dresden dataset. 
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Image 

size 
Techniques DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

64×64 

phase-PRNU 5.21 4.88 5.37 5.10 4.35 4.56 5.96 6.87 6.44 6.44 

Proposed phase-PRNU with 

sharpening 

4.46 4.03 3.49 3.22 3.54 4.62 6.49 7.62 6.17 6.44 

128×128 

phase-PRNU 2.90 2.74 2.90 3.06 2.84 2.84 2.95 3.65 4.19 3.54 

Proposed phase-PRNU with 

sharpening 

2.25 2.52 1.99 1.99 2.68 2.42 2.79 3.22 4.08 3.17 

256×256 

phase-PRNU 0.86 0.91 1.34 1.13 1.13 1.13 1.23 0.75 1.23 1.50 

Proposed phase-PRNU with 

sharpening 

0.48 0.86 0.75 0.75 0.91 0.97 0.97 0.75 1.13 1.40 

512×512 

phase-PRNU 0.05 0.11 0.16 0.27 0.11 0.48 0.16 0.16 0.48 0.27 

Proposed phase-PRNU with 

sharpening 

0.05 0.00 0.00 0.16 0.11 0.32 0.11 0.64 0.38 0.27 

Table 4.12   False positive rate (%) of phase-PRNU and proposed phase-PRNU with sharpening for the Dresden dataset.
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4.7 Conclusion 

PRNU may be weak for smaller images or those with areas that contain a saturated 

background with dark areas (Chen et al., 2008). Furthermore, it would often be 

contaminated in the frequency domain by image content, non-unique artefacts, colour 

interpolation and sensor design. Consequently, the performance of source camera 

identification for small images needs to be further improved. In this chapter, an image 

sharpening technique has been proposed in order to enhance the source camera 

identification based on PRNU estimation. The proposed image sharpening technique, 

namely Unsharp masking, aims to amplify the PRNU noise present in the digital image 

in order the accuracy of its estimation. Extensive experiments on two different data 

sets have demonstrated that the proposed sharpening technique achieves considerable 

improvements between two recent state-of the-art source camera identification 

schemes with different sizes of images. In the future, it would be sensible to consider 

the improvement of unsharp masking by applying the confusion matrix, which 

contains information about actual and predicted classifications done by a classification 

system. 
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  WEIGHTED AVERAGING 

5.1 Introduction  

Noise could be described as an unwanted signal affecting the original signal. The 

presence of interference could be associated with the technique or sensor used for 

acquiring the signal. One of the common techniques for obtaining a useful signal and 

to reduce noise is averaging the signal, which could be achieved by a simple arithmetic 

average (John et al., 2001). Averaging signals in the time domain could be one of the 

major procedures of noise reduction in biomedical signal processing where some 

systems generate cyclic patterns such as in  electrocardiographic (ECG) acquisition 

systems (Momot, 2009; Pander et al., 2013). However, traditional averaging 

techniques may require particular assumptions (for instance, alignment signals of equal 

shape, uncorrelated and zero mean) in order give optimal performance. Basically, the 

assumption of stationarity cannot always be achieved. Variance in noise could change 

on some beats based on, for example, muscle tone or deviations in the acquisition 

environment (Bataillou et al., 1995). Motivated by this, in this chapter the generalised 

form of averaging namely weighted averaging (WA) has been applied for source 

camera identification, and to the best of the author’s knowledge, this technique has not 

been used in the PRNU estimation process. The traditional technique for estimating the 

PRNU uses a set of digital images where the pattern residue signal can be extracted 

from each image. The extracted residue signals are then averaged in order to determine 

the sensor pattern noise. Such a procedure is referred to as constant averaging in the 
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rest of this thesis. This chapter is organized as follows: the problems with the constant 

averaging technique will be discussed in section two. The weighted averaging 

technique is then introduced in section three. Next, the effectiveness of weighted 

averaging is evaluated in section four, and the conclusions are presented in section five. 

5.2 Problem formulation 

The constant averaging technique has been used for PRNU estimation in many studies 

(Chen et al., 2007; Chen et al., 2008; Goljan et al., 2009; Hu et al., 2010; Kang et al., 

2012; Li, 2009; Liu et al., 2010; Lukas et al., 2006). The assumption made is usually 

that every residue signal is a noisy observation of the sensor pattern noise. This 

hypothesis is well justified in practice because digital images can be obtained in 

various conditions, creating the corresponding residue signals which are different from 

each other. For example, bright digital images may provide better PRNU estimation 

than dark digital images. Moreover, saturated pixels can raise the estimation errors in 

residue signals (Lukas et al., 2006). Because every residue signal could carry 

undesirable image-dependent noise, as mentioned earlier, constant averaging may not 

give optimal results. In fact, treating all of the PRNU residue signals similarly through 

constant averaging can be an optimal solution only if they contain undesirable noise of 

similar power (variance). Based on this observation, the weighted averaging technique 

is suggested for effective PRNU estimation. The weighted averaging technique for 

PRNU estimation depends on the principle of the estimation of unknown signal from 

noisy observations (Laciar and Jane, 2001; Momot, 2011). As discussed earlier, the 

PRNU is estimated using N  images Ii, i = 1, 2 · · · ,N. Denote by L the number of 
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samples of each image rearranged in one direction (i.e. vertically or horizontally). In 

view of (1.3) and (3.1), the corresponding noise residue can be expressed as: 

 𝑟𝑖(𝑗) ≈  𝐼𝑖
0(𝑗)𝐾(𝑗) + 𝐢(𝑗)  , 𝑖 = 1,2, . . , 𝑁 ;   𝑗 = 1,2, … , 𝐿 5.1 

 

where Φi is an independent noise. For the sake of demonstration, let us assume that the 

images used for estimating the PRNU represent smooth regions describing the same 

color information such as blue-sky content (i.e., the variance of  𝐼𝑖
0 is extremely small 

σ
I
i(j)
0
2 ≪  1). This may not be true in practice but the development given below remains 

valid to some extent as will be shown in experiments on natural images of various 

content. Let 𝜉 be a constant so that  𝜉 =  
1

𝑁𝐿
 ∑ ∑ 𝐼𝑖

0𝐿
𝑗=1

𝑁
𝑖=1 (𝑗). it follows: 

 
𝑟𝑖(𝑗) ≈  𝜉𝐾(𝑗) + Ψ𝑖(𝑗)   

      = 𝑠(𝑗) + Ψ𝑖(𝑗)   
5.2 

where 𝑠(𝑗) = 𝜉𝐾(𝑗) and  

 
Ψ𝑖(𝑗) =  𝑖(𝑗) − 𝐾(𝑗)( 𝜉 − 𝐼𝑖

0(𝑗) )  

   Ψ𝑖(𝑗)    ≈ 𝑖(𝑗)   
5.3 

Here we are mainly interested in the sensor pattern noise K. In view of (5.2) and (5.5), 

the problem of estimating the PRNU from a set of N images can be seen as an 

estimation of an unknown signal s(j) with  j = 1; 2 · · · ;L in a noisy environment, i.e., 

using N noisy observations. The ith observation ri is the sum of a signal s and a random 

noise Ψi with zero mean and a variance for each observation equal to 𝜎𝑖
2  . The 

conventional method to estimate s consists of averaging the observations (Van 

Drongelen, 2006). 

 �̂�(𝑗) =  
1

𝑁
∑𝑟𝑖(𝑗)

𝑁

𝑖=1

 5.4 
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This technique will be referred as the constant averaging technique since each 

observation is multiplied by the same constant factor 1/N. Theoretically, the constant 

averaging technique is optimal if the noise variance is constant in all observations 

(Bataillou et al., 1995; Laciar and Jane, 2001). The procedure of estimating ŝ  by the 

constant averaging technique is shown in figure 5-1. If the noise variance changes 

from one observation to another, then the weighted averaging technique may offer the 

closest estimation to the actual signal in terms of the mean squared error (Bataillou et 

al., 1995; Laciar and Jane, 2001).  Figure 5-2 illustrations the procedure of weighted 

averaging which could be described as:  

 �̂�(𝑗) =∑𝑤𝑖

𝑁

𝑖=1

𝑟𝑖(𝑗)  5.5 

   

where 𝑤𝑖 is a weight corresponding to the ith noise residue ri .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1   The concept of constant averaging. 
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Figure 5-2   The concept of weighted averaging. 
 

The optimal weight for the ith observation can then be defined by: 

 𝑤𝑖 =
1

𝜎𝑖
2  (

1

∑
1
𝜎𝑘
2

𝑁
𝑘=1

)  5.6 

wi is optimal since it based on minimizing the Mean Square Error (MSE). The proof of 

equation (5.14) can be summarised as:   

First, to obtain an unbiased estimation, the weights are assumed to sum up to 1 

(Bataillou et al., 1995) 

 ∑𝑤𝑖

𝑁

𝑖=1

= 1  5.7 

Let us define the MSE as: 

 𝑒 =
1

𝐿
∑(�̂�(𝑗) − 𝑠(𝑗))2
𝐿

𝑖=1

  5.8 

where �̂� is the estimated version of s as given by (5.5). In a matrix form, the MSE can 

be expressed as 

  

𝑟1 

𝑟2 

𝑟𝑁 𝑤𝑁 

 

+ 
�̂� 

 

𝑤2 

𝑤1 

. 

. 
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𝑒 = 𝐸[ (𝑊𝑇 𝑋 − 𝑠)2 ] 

= 𝑊𝑇 𝐸[𝑋𝑋𝑇]𝑊 + 𝐸[𝑠2] − 2𝑊𝑇𝐸[𝑠𝑋] 
5.9 

where T is the transpose operation. X = [x1, x2, … xN]T and W = [w1, w2,… ,wN]T . The 

gradient of the MSE in respect to W is 

 ∆𝑤(𝑒) = 2𝐸[𝑋𝑋𝑇]𝑊 − 2𝐸[𝑠𝑋]  5.10 

Minimizing the MSE leads to the following estimate 

 ∆𝑤(𝑒) = 2𝐸[𝑋𝑋𝑇]𝑊 − 2𝐸[𝑠𝑋]  5.11 

Under the assumption that the noise Ψi is centered (i.e., zero mean) and independent of 

the signal s, we obtain 

 𝐸[𝑋𝑋𝑇] =  𝑈𝑇 𝐸[𝑠2]𝑈 + (

𝜎1
2 0 ⋯ 0

0 𝜎2
2 ⋯ 0

⋮
0

⋮
0

⋱
⋯

⋮
𝜎𝑁
2

) 5.12 

where U = [1,1, ..., 1] and E[sX] = E[s2]UT . From (5.19) and (5.12), it follow 

 𝑤1 𝜎1
2 = 𝑤2 𝜎2

2 = ⋯ = 𝑤𝑁 𝜎𝑁
2   5.13 

In view of (5.7) and (5.13), the weights can be deduced as shown in (5.6). Obviously, 

the weights depend on the variance of undesirable noise Ψi in each observation. As 

proposed in work of Laciar and Jane (2001) , the estimated noise variance can be 

computed as 

 �̂�𝑖 
2 = 

∑ (�̂�𝑖(𝑗) − �̅�𝑖)
2𝐿

𝑗=1

𝐿
 5.14 

With 
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  �̂�𝑖(𝑗) =  𝑟𝑖(𝑗) − �̅�(𝑗) , 𝑗 = 1,… , 𝐿 
5.15 

where �̅� denotes the mean of the estimated noise  �̂�𝑖  and   �̅� (𝑗) = ∑ 𝑟𝑖(𝑗)
𝑁
𝑖=1  represents 

the average signal. The estimated PRNU term with WA can be computed as 

 𝑃𝑅𝑁𝑈(𝑗) =∑𝑤𝑖

𝑁

𝑖=1

𝑟𝑖(𝑗)  
5.16 

5.3 Proposed WA technique for PRNU Estimation 

Most PRNU techniques estimated the PRNU using the constant averaging of residue 

signals extracted from a number of images. Such a technique could be optimal if every 

residue signal has the same quantity of undesirable noise with constant variance for all 

images. Nevertheless, this hypothesis may not hold since such noise depends heavily 

on the content of the image. The weighted averaging technique is suggested to enhance 

PRNU estimation for more efficient source camera identification (Lawgaly et al., 

2014). The next two sub-sections explain the usage of the weighted averaging 

technique with two recent state-of-the-art source camera identification schemes 

proposed in the work of Lukas et al. (2006) and Chen et al. (2008) respectively. 

5.3.1 Weighted basic PRNU estimation  

In the work of Lukas et al. (2006), the PRNU (𝐾) is the outcome of the traditional 

averaging technique as illustrated in equation 5.4. In the proposed technique, the 

residue signal is extracted as described in the technique of Lukas et al. (2006); and 

then the theory of weighted averaging, as explained previously in 5.16, which assumes 

that every residue signal can be a noisy version of the PRNU, is applied. 
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5.3.2 Weighted maximum likelihood estimator 

 

 As describe in the work of Chen et al. (2008) the MLE-PRNU estimation technique 

can be defined as : 

 

 �̂� =  
∑ 𝐫𝑖. 𝐈𝑖
𝑵
𝑖=1

∑ (𝐈𝑖)2
𝑁
𝑖=1

  5.17 

The MLE-PRNU estimation technique can be seen as a technique using constant 

averaging as follows, when equation 5.17 could be written as: 

 
�̂� =

𝑁 (
∑ 𝑺𝒊
𝑁
𝑖=1
𝑁 )

∑ (𝑰)2𝑁
𝑖=1

  ,   𝑺𝒊 = 𝒓𝒊𝑰𝒊  
5.18 

 

As seen above, the observations Si are averaged in order to estimate the PRNU. As 

opposed to constant averaging, the proposed modification, which will be called ‘WA 

MLE-PRNU’, uses a weighted averaging in order to estimate K. This can then be 

expressed as:  

 �̂� =
𝑁 (∑ 𝑤𝑖𝑺𝒊

𝑁
𝑖=1 )

∑ (𝑰)2𝑁
𝑖=1

  ,   𝑺𝒊 = 𝒓𝒊𝑰𝒊  5.19 

where 𝑤𝑖   is the weight corresponding to the ith observation 𝑆𝑖 . 

5.4 Experimental Work 

 

In this section, the effectiveness of the weighted averaging technique is examined with 

the formerly mentioned camera identification techniques as described in the work of 

Lukas et al. (2006) and Chen et al. (2008). Our dataset and the Dresden dataset have 
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been used in the experiments. Normally smaller images frequently provide less PRNU 

information and therefore the performance of source camera identification for small 

digital images may need to be improved further (Kang et al., 2012). In this 

experimental work, several values of blocks sizes 64×64, 128×128, 256×256 and 

512×512 are considered. The camera reference PRNU is extracted from 50 green 

images and the wavelet-based de-noising filter is utilized. The camera reference PRNU 

for each technique basic-PRNU, proposed WA basic-PRNU, MLE-PRNU and 

proposed WA MLE-PRNU is calculated as shown in equations, 5.4 , 5.16 , 5.17 and 

5.19 respectively. The residue signals have been divided into two, four, eight and 

sixteen intervals to examine their impact on the performance of the weighted averaging 

technique. The results have shown that the proposed WA basic-PRNU and the WA 

MLE-PRNU techniques offer the most significant improvements compared to basic 

PRNU and MLE-PRNU when eight intervals are used.  

  

5.4.1 Comparison with Constant basic PRNU Estimation 

In this sub-section, the false negative rate and the false positive rate for each digital 

camera are calculated, and also to summarize the performance for each technique the 

overall false negative and false positive rates are considered. Figure 5-3- Figure 5-10  

show the efficiency of WA basic PRNU compared to basic-PRNU. As can be seen, a 

clear improvement is demonstrated in an image sized 64×64 with a decrease in the 

false negative rate achieved for each digital camera in the Dresden dataset DC1 to 

DC10 of 21%, 9%, 19%, 18%, 29%, 6%, 18%, 33%, 1% and 25% respectively (see 

figure 5-3). With image size of 128×128 and 256×256, figure 5-4 and figure 5-5 have 
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shown that the false negative rate have been decreased in all available digital cameras. 

Moreover, a small improvement for the false negative rate is visible in images of 

512×512. Regarding the improvement in false positive rate for Dresden dataset, a clear 

enhancement is illustrated by using the proposed weighted averaging technique in 

images size of 64×64, 128×128 and 256×256 as shown in figure 5-7-5.9 where the 

false positive rate goes down in all Dresden digital cameras. However, when applying 

the weighted averaging technique with the DC5 digital camera the false negative rate 

is increased from 4.35% with basic-PRNU to 5.80% (see figure 5-6). Also, in DC8 the 

false positive rate goes up to 0.64% compared to only 0.16% when using basic-PRNU 

(see figure 5-10) . Both cameras (DC5 and DC8) give undesirable results only when 

image size is equal to 512×512. The Interpretation of such results is that the WA 

interval size (8 intervals) may be in conflict with such size of DC1 and Dc8 cameras. 

The DC1 and Dc8 show some improvement compared to constant averaging when 16 

intervals are used. Moreover, in specific cases such as DC5, DC6 and DC7, the WA 

gives the same performance as constant averaging (see figure 5.6 and 5.7). The reason 

for such performance could be that images are captured with deferent resolution and 

the DC5, DC6 and DC7 cameras have the highest resolution. In addition, the number 

of images, which are used for estimating the PRNU, could be small for such high-

resolution cameras. Therefore, for further confirmation of the reliability of the 

algorithm, estimating the PRNU with a larger set of images should be conducted. 
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Figure 5-3  False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 64×64). 

 

Figure 5-4   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 128×128). 
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Figure 5-5   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 256×256). 
 

 

Figure 5-6   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 512×512). 
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Figure 5-7   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 64×64). 
 

 

Figure 5-8   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 128×128). 
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Figure 5-9   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 256×256). 
 

 

Figure 5-10   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for 

Dresden dataset (image size 512×512). 
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In our dataset with image sizes of 64×64 and 128×128, a clear improvement is shown 

in figure 5-11 and figure 5-12 where in C5 ,C7 ,C10 ,C11 ,C12 and C13, the proposed 

approach  decreases the false negative rate up to 14%, 42%, 11%, 15%, 31% and 23% 

(see figure 5-11) and by more than 4 points less with image sizes of 128×128 as 

illustrated in C2, C4, C8, C9 and C11 (see figure 5-12). Nonetheless, a slight 

improvement in the false negative rate is shown for our dataset with image sizes of 

256×256 and 512×512 (see figure 5-13 and figure 5-14). Concerning the false positive 

rate for our dataset, the proposed weighted averaging achieves better performance than 

Basic PRNU with different image sizes as shown in figure 5-15- figure 5-18. However, 

due to the inter-class similarity (C10 and C11), the proposed WA does not show good 

performance with FPR in C11 camera, where it increases form 2.04% to 2.29% (see 

figure 5.16). On the other hand, the WA remains an efficient approach for C11 by 

decreasing the error rate by 16% compared to basic constant averaging, if the overall 

FNR and FPR for this camera are considered  
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Figure 5-11  False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 64×64). 

 

Figure 5-12   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 128×128). 
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Figure 5-13   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 256×256). 

 

Figure 5-14   False negative rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 512×512). 
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Figure 5-15   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 64×64). 

 

Figure 5-16   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 128×128). 
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Figure 5-17  False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 256×256). 

 

Figure 5-18   False positive rate (%) of Basic PRNU and proposed WA Basic PRNU for our 

dataset (image size 512×512). 
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Although the above figures indicate that the proposed weighted averaging does not 

always give an improvement for every digital camera, the overall false negative and 

false positive rates of the proposed WA basic PRNU technique exceeds that of the 

basic- PRNU. This is true for all image sizes as shown in table 5.1 and table 5.2.  

 

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

basic-PRNU 52.22 30.48 11.40 2.75 5.80 3.37 1.20 0.37 

WA Basic PRNU 42.13 23.73 7.44 1.69 4.64 2.62 0.92 0.20 

Table 5.1   Overall FNR and FPR for each technique on Dresden dataset. 
 

As can be observed, considerable improvements are obtained particularly with the 

Dresden dataset with images of sizes 64×64, 128×128, 256×256 and 512×512 where 

the decrease in overall false negative rate reaches 19%, 22%, 34%  and  45% , while  

the decrease in overall false positive rate reaches 20%, 22%, 23% and 45%  

respectively (see table 5.1). Nonetheless, less significant improvements have been 

achieved with our dataset, where the overall false negative rate goes down to about 

11%, 10%, 13%  and  12% , and also  the overall false positive rate has been reduced 

by approximately 11%, 10%, 15%  and  11%  with images of size 64×64, 128×128, 

256×256 and 512×512  respectively (see table 5.2).  

 

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Basic PRNU 48.04 24.96 12.15 7.08 4.01 2.10 1.06 0.61 

WA Basic PRNU 42.73 22.31 10.58 6.23 3.54 1.89 0.90 0.54 

Table 5.2   Overall FNR and FPR for each technique on our dataset 
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5.4.2 Comparison with Constant MLE estimation 

This section examines the performance of weighted averaging compared to the work of  

Chen et al. (2008). The camera reference PRNU for MLE-PRNU method is extracted 

as shown in equation 5.17, while the camera reference PRNU for the proposed WA 

MLE-PRNU method is estimated as shown in equation 5.19. For the Dresden dataset, a 

clear enhancement is displayed in image sizes of 64×64 and 128×128. For instance, 

with an image size of 64×64, the false negative rate for cameras DC1, DC3, DC5 and 

DC7 are decreased by 22%, 10%, 23% and 14% respectively. Furthermore, another 

example of a clear enhancement can be seen with the image size 128×128, especially 

for cameras DC1, DC7 and DC10 (see figure 5-20). Again, figure 5-21 and figure 5-22 

confirm the same observation with regards to the performance of the proposed 

weighted averaging with image sizes of 256×256 and 512×512. For example with 

256×256 the false negative rate goes down from 8.21% to 5.80%, 18.84% to 9.66%, 

and 13.53% to 8.21% in DC2, DC3 and DC5 respectively. In addition, with images of 

512×512 improvements can be observed especially in DC3 and DC8 (see Figure 5-22). 

Figure 5-23-Figure 5-26 illustrate the performance of the proposed weighted averaging 

technique in terms of the false positive rate. A significant improvement is shown in 

camera DC2 with image sizes of 64×64, 128×128, 256×256, and 512×512 where the 

false positive rates decrease from 5.31% to 2.15, 3.22% to 0.81%, 0.91% to 0.70 % 

and 0.11% to 0% respectively. Additionally, with image size 128×128 the false 

positive rate is improved in digital cameras DC2, DC4 and DC6 to more than 50% less. 

However, the proposed weighted averaging technique increases the false negative rate 

for digital camera DC1 compared to the MLE-PRNU technique with image sizes 
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128×128. Also, in images of 512×512 the proposed weighted averaging technique 

gives unexpected results in the two digital cameras DC4 and DC7, where the false 

negative rate increases from 1.93% to 2.90% and 2.90% to 3.86% respectively. 

Another unexpected aspect of performance with an image size of 256×256 is shown in 

DC3 and DC7 (see figure 5-25).  

 

 

 

Figure 5-19   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 64×64). 
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Figure 5-20   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 128×128). 

 

 

Figure 5-21  False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 256×256). 
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Figure 5-22   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 512×512). 

 

  

Figure 5-23   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 64×64). 
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Figure 5-24   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 128×128). 

 

Figure 5-25   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 256×256). 
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Figure 5-26   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for 

Dresden dataset (image size 512×512). 
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2.50% to 0.5% respectively (see figure 5-29). With the same image size of 256×256, 

the decrease in false positive rate reaches 10% in C1 while as shown in figure 5-33 the 

false positive rate decreases to more than 50% in C9, C11 and C12. Furthermore, in 

image size 512×512 the false positive rate is improved by using the proposed approach 

in most of our digital cameras (see figure 5-34). However, in limited cases the 

weighted averaging technique has increased the false positive rate for digital camera 

C3 compared to the existing MLE-PRNU technique for image sizes 64×64, 128×128 

and 256×256 (see figure 5-27-figure 5-29). The interpretation could be that the C3 

camera includes a tiny sensor (1/1.7"), which may lead to much undesirable noise, 

therefore more images should be used for PRNU estimation (kenrockwell, 2008). 

Beside this, in images sized 64×64 the WA MLE-PRNU technique shows a negative 

effect in the C2 and C4, where the increase in false positive rate reaches 5% and 7% 

respectively (see figure 5-31). Moreover, the C8 and C9 cameras do not show positive 

results in figure 5.27 and figure 5.28. The reason for such performance could be that 

the previous cameras belong to same model and brand camera and it includes CMOS 

sensor which may create more noise than the CCD (Li and Nathan, 2005).. 
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Figure 5-27   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 64×64). 

 

Figure 5-28   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 128×128). 
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Figure 5-29  False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 256×256). 

 
 

Figure 5-30   False negative rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 512×512).  
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Figure 5-31  False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 64×64). 

 

Figure 5-32   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 128×128).  
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Figure 5-33   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 256×256). 

 

Figure 5-34   False positive rate (%) of MLE-PRNU and proposed WA MLE-PRNU for our 

dataset (image size 512×512). 
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To summarize the performance of WA MLE-PRNU and MLE-PRNU techniques, the 

overall false negative and false positive rates needs to be considered. The results have 

shown that the proposed WA MLE-PRNU can achieve better performance than MLE-

PRNU in both dataset. This is true among all image sizes as shown in table 5.3 and 

table 5.4. As can be seen in table 5.3, significant enhancements are achieved especially 

on with Dresden dataset where the decrease in overall false negative rate reaches 9%, 

21%, 18%  and  25%, while  the decreases in overall false positive rate goes down  to 

14%, 22%, 26%  and  14% with images of sizes 64×64, 128×128, 256×256 and 

512×512 respectively. Regarding our dataset, the WA MLE-PRNU technique achieves 

less improvement for all image sizes. The improvement in overall false negative rate 

moves down to more than 4%, 2%, 9% and 8%, while the overall false positive rate 

decreases by almost 10%, 7%, 5%  and  5%  with images of size 64×64, 128×128, 

256×256 and 512×512  respectively (see table 5.4).  

 

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

MLE-PRNU 51.64 28.45 10.34 2.46 5.74 3.16 1.12 0.28 

WA MLE-PRNU 46.91 22.42 8.41 1.84 4.94 2.46 0.82 0.24 

 

Table 5.3   Overall FNR and FPR for each technique on Dresden dataset. 
 

Technique 

 FNR (%)  FPR (%) 

Image size 
64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

MLE-PRNU 49.12 23.62 11.04 6.35 4.18 1.96 0.91 0.53 

WA MLE-PRNU 47.04 23.08 10.00 6.04 3.73 1.81 0.83 0.50 
 

Table 5.4   Overall FNR and FPR for each technique on our dataset. 
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5.5 Conclusion 

Existing PRNU estimation techniques depend heavily on the idea of averaging residue 

signals estimated from a number of digital images. The residue signals can be seen as 

noisy observations of the PRNU. As opposed to existing studies, the proposed 

technique is based on weighted averaging in order to enhance PRNU estimation. This 

is justified by the fact that residue signals can carry noise of dissimilar variance since 

every instance of noise is image-dependent. The weighted averaging technique is 

applicable with any current PRNU estimation technique and it has been validated 

against two recent techniques (Basic PRNU and MLE-PRNU). Extensive experiments 

on two different datasets have shown that the performance of the PRNU estimation 

techniques for source camera identification is considerably improved with different 

sizes of images.  

  



  

120 

 

 IMPROVED LOCALLY ADAPTIVE 

DISCRETE COSINE TRANSFORM FILTER for 

SOURCE CAMERA IDENTIFICATION 

6.1 Introduction  

The PRNU estimation process can be faced with the presence of image-dependent 

information in addition to other non-unique noise components. Researchers have 

developed several techniques, in order to decrease such undesirable effects. For 

example wavelet based de-noising is one of the commonly used filtering technique for 

image restoration or enhancement applications and it has been recommended by 

researchers for better PRNU extraction. Wavelet-based denoising could perform well 

using criteria such as the mean squared error or peak-signal-to-noise ratio (Cooper, 

2013). Nonetheless, Matsushita and Kitazawa (2009)  pointed out that, using the 

wavelet may lead to a diffusion of the details, and edges of an image and producing a 

noise residue carries many disturbing signals around these areas. As a consequence, a 

new efficient filter is required to improve camera identification rate. Based on this 

observation, an improved version of the locally adaptive discrete cosine transform 

(LADCT) filter is proposed in this chapter, in order to improve the camera 

identification rate. The locally adaptive DCT filter has been originally designed  by 

(Öktem et al., 2007). This chapter is organized as follows; the advantages of the 

current LADCT filter are introduced in section two, and the improved version of the 
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LADCT fitter is presented in section three. The efficiency of the improved LADCT 

filter is then discussed in sections four and five. The conclusions are presented in 

section six. 

6.2 Locally adaptive discrete cosine transform (LADCT) 

The discrete cosine transform (DCT) has generally been used in image processing 

applications including feature extraction, quality assessment, filtering, and 

compression (Kurkin et al., 2012). The locally adaptive DCT filter (LADCT) has a 

number of advantages compared to other filters that operate on full images, such as 

wavelets and it is claimed to perform well on images affected by image-dependent 

noise including the multiplicative noise (Öktem et al., 2007). This provides a logical 

reason for adopting this filter because the PRNU is also multiplicative. The LADCT 

filter is also different from wavelet filters in that , it operates on sliding blocks (local 

action filter), which might provide more information about the spatial correlation 

properties of noise in an easier method (Ponomarenko et al., 2008). Furthermore, 

Lukin et al. (2010) reported that the LADCT can perform well with several noise 

models such as film-grain and Poisson types. In addition, averaging several de-noised 

estimates for each pixel in the block will overcome the problem of undershoots and 

overshoots which occur around the neighborhood of discontinuities as a result of the 

Gibbs Phenomenon (Coifman and Donoho, 1995) and this is directly linked to the 

problem of scene details in PRNU estimation. Öktem et al. (2007) proposed the 

LADCT filter for a type of noise that may contaminate the signal through a 

multiplicative rule. The authors used a sliding block window in order to gain de-noised 
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estimates of neighbouring and overlapping blocks. The multiple estimates can then be 

averaged to suppress artefacts produced by undershoots and overshoots around the 

highly textured regions (Ponomarenko et al., 2008). The threshold for every block is 

based on the local mean of the block and the local noise variance. In the rest of the 

thesis, the filter of Öktem et al. (2007) is referred to as LADCT_1. Due to the present 

concern with the estimation of PRNU, which is a multiplicative type of noise, for 

camera source identification, the advantages of the LADCT_1 filter are exploited in 

order to improve PRNU estimation. To the best of the present author’s knowledge, this 

filter has not yet been applied in the field of image forensics. The main steps of 

LADCT_1 are summarized below. 

 The digital image is first divided into blocks of 𝑁 × 𝑁. Let 𝑆 be a shift in pixels 

(𝑆 = 1) row or column-wise between two neighbouring blocks. According to 

Öktem et al. (2007), the best performance of the LADCT filter could be reached 

when 𝑆=1 and N=8 (This is why the number 1 is included in the notation of 

LADCT_1). 

 For every block 𝑥, with the upper left corner at (m,l), the DCT coefficients can be 

computed as:  

 𝐵(𝑝, 𝑞) = 𝑐(𝑝)𝑐(𝑞) × ∑ ∑b(m, l) cos (
(2m + 1)pπ

2N
) cos (

(2l + 1)qπ

2N
)

N−1

l=0

N−1

m=0

 6.1 

where  

𝑐(𝑝) =

{
 
 

 
 
√
2

𝑁
1 ≤  𝑝 ≤  𝑁 − 1 ,

1

√𝑁
𝑝 =  0,
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𝑐(𝑞) =

{
 
 

 
 
√
2

𝑁
1 ≤  𝑞 ≤  𝑁 − 1 ,

1

√𝑁
𝑞 =  0,

 

 A hard threshold is applied for each DCT coefficient X(p, q)  as follows:  

 𝐵′(𝑝, 𝑞) = {
B(p, q) , if  |B(p, q)| > 𝑇1 
0  ,                       Otherwise

 6.2 

 

 The threshold for each block can be computed as: 

 𝑇1  =  𝑘 . 𝜎𝑐 . 𝑔 ̅ 6.3 

where 𝑘  is a constant value to control the threshold value and it has been found 

empirically to be equal to 2.6,  g̅  denotes the local mean for that block, and σc  

represents the noise standard deviation. 

 The inverse DCT can be applied as:  

 𝑏′(𝑚, 𝑙) =  𝑐(𝑝)𝑐(𝑞) × ∑ ∑ 𝐵′(𝑝, 𝑞)  𝑐𝑜𝑠 (
(2𝑚 + 1) 𝑝𝜋

2𝑁
)  𝑐𝑜𝑠 (

(2𝑙 + 1)𝑞𝜋

2𝑁
)

𝑁−1

𝑞=0

𝑁−1

𝑝=0

 6.4 

 The final estimate for a pixel at (m,l) can be computed by averaging the multiple 

estimates at the same location which were gained from overlapping blocks due to 

the shifting process. Figure 6-1 shows the process of estimating the PRNU based 

on  the  original LADCT_1 as proposed in work of  Öktem et al. (2007). 

 

sliding window 
horizontally or 

vertically 

LADCT1 using 
(6.3) PRNU estimation 

noise residue 1Color plane of image 1

Color plane of image 2

Color plane of image N

noise residue 2

noise residue N

 

Figure 6-1: Estimating the PRNU based on original LADCT_1. 
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6.3 Improved LADCT for source camera identification  

It is worth pointing out that the idea underlying LADCT_1 assumes that the 

multiplicative noise is stationary for every block with similar statistical means. That is, 

the standard deviation of the noise σc  used in equation 6.3 is assumed to be constant. 

Nonetheless, the PRNU cannot be stationary as it depends on the homogeneity of the 

silicon in the imaging device sensor. It is consequently more sensible to suppose that 

the variance of the PRNU would differ particularly through blocks of small size (88). 

In order to adjust the LADCT_1 filter for PRNU estimation, an improved version of 

the filter is therefore proposed.   

LADCT1 using (6.3)
Horizontally 

LADCT1 using (6.3)
Vertically 

PRNU estimation 
using (6.5)

PRNU estimation 
using (6.5)

Estimating noise 
Variance for each 

block

Estimating noise 
Variance for each 

block

LADCT1 using (6.6)
Horizontally 

LADCT1 using (6.6)
Verticaly 

Horizontal noise residue 1

Phase 1

Phase 2

Color plane of image 1

Color plane of image 2

Color plane of image N

Horizontal noise residue 2

Horizontal noise residue N

Vertical noise residue 1

Vertical noise residue 2

Vertical noise residue N

 

Figure 6-2  Extraction of noise residues corresponding to a single color plane for PRNU 

estimation based on improved LADCT1 
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As demonstrated in figure 6-2, two improvements of the LADCT_1 are proposed. The 

first improvement relies on estimating the noise variance for each block independently 

using the threshold as described in the previous section (steps 1-6). This is used to 

estimate a block-dependent threshold which will be applied in another stage of the 

LADCT_1 filtering. The proposed technique for estimating a threshold for each block 

contains two steps as follows: 

Step 1: 

Let us define an estimate of the sensor pattern noise K (see equation 1.3 ) as. 

 �̂�  =  
∑ (𝐼𝑖 − 𝑓(𝐼𝑖))
𝑁
𝑖=1

∑ 𝑓(𝐼𝑖)
𝑁
𝑖=1

 6.5 

 

where Ii is the ith observed image and 𝑓(𝐼𝑖) represents its filtered version with the 

conventional LADCT_1 where  𝜎𝑐
2  = 0.002. Then, 

Step 2: 

The following threshold is proposed for each block b as  

 𝑇𝑏 = ∝  √
𝜎�̂�
2

𝜎�̂�𝑏
2  𝐸[𝑏2] 6.6 

where  is a constant which could be determined empirically. σK̂
2  is the variance of the 

estimated PRNU K̂  as described in equation 6.5 and σK̂b
2  is the variance of the 

estimated noise within the block b.  E[b2] is the second moment of the block. The idea 

underlying such a threshold value is based on the fact that the statistical variance of the 

estimated noise might differ significantly across blocks. Hence, blocks in which the 

estimated noise has high variance should be filtered with a relatively small threshold in 
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the DCT domain to retain the image content because the high activity of the estimated 

noise in such blocks could be likely from texture and edges. On the other hand, low 

variance noise within a block might well represent the actual PRNU and therefore 

should be filtered out with a relatively large threshold in the DCT domain. σK̂
2   is used 

in the ratio as a reference in order to measure the extent to which the estimated noise 

has high or low activity in a specific block. Finally, the second moment in equation 6.6 

allows bright regions to be exploited more than dark ones, as the multiplicative nature 

of the PRNU means that its presence is stronger in bright regions. Regarding the 

second technique of enhancement, it is worth mentioning that the LADCT_1 filter was 

initially used by Öktem et al. (2007) in just one direction. This might be a reasonable 

process for image de-noising purposes because the size of the filtered image must be 

the same as the original. Nonetheless, in our application we can have two versions of 

the filtered image and hence two PRNUs, each estimated in one direction (horizontal 

and vertical). The logic behind this process is to increase the size of the PRNU camera 

reference and noise residue in order to decrease the probability of false alarms (i.e. 

reducing the similarity among different camera PRNUs and noise residues). Indeed, 

there might be some components of the PRNU that can be difficult to estimate in the 

horizontal direction but which are estimable in the vertical direction and vice versa.  

The LADCT_1H & V refers to the combination of the PRNUs in the horizontal and 

vertical directions. 
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6.4 Analysis of enhanced LADCT_1 filtering   

In this section, the advantages of the proposed enhancements to the conventional 

LADCT_1 (Öktem et al., 2007) for source camera identification are demonstrated. The 

evaluation has been conducted using our dataset and the Dresden database. In this 

experimental evaluation, each PRNU is estimated from 50 natural images (green 

channel) captured by the same sensor.  To evaluate the performance of the filter and its 

improved versions, the false negative rate (FNR) and false positive rate (FPR) are 

calculated. Note that constant averaging is used to obtain the PRNU in this section 

which only and compares the results of the improved LADCT with those of the 

wavelet filter as described in the work of Lukas et al. (2006). With regards to the 

conventional LADCT_1, the noise variance for each image block is constant. In order 

to derive the optimal parameter setting for LADCT_1 for both datasets, different 

values of variance σ2 are tested in the two datasets. Table 6.1 and table 6.2 respectively 

show that the best results for overall FNR and overall FPR correspond to a value of σ2 

equal to 0.002.  

Noise variance for 

each block 

Overall FNR (%) Overall FPR (%) 

Image 

size 

128×128 

Image 

size 

256×256 

Image 

size 

512×512 

Image 

size 

128×128 

Image 

size 

256×256 

Image 

size 

512×512 

0.012 42.38 19.81 9.50 3.53 1.65 0.79 

0.007 35.54 16.42 8.81 2.96 1.37 0.73 

0.004 32.96 14.77 7.81 2.75 1.24 0.65 

0.002 29.50 14.62 7.38 2.46 1.22 0.62 

0.001 30.15 14.73 7.42 2.48 1.24 0.62 

 

Table 6.1  Overall FNR and FPR with constant noise variance for our dataset. 
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Noise variance for 

each block 

Overall FNR (%) Overall FPR (%) 

Image 

size 

128×128 

Image 

size 

256×256 

Image 

size 

512×512 

Image 

size 

128×128 

Image 

size 

256×256 

Image 

size 

512×512 

0.012 55.80 31.06 12.13 6.20 3.45 1.35 

0.007 48.12 24.40 8.31 5.35 2.71 0.92 

0.004 41.64 18.99 5.56 4.63 2.11 0.62 

0.002 36.47 16.28 5.41 4.05 1.79 0.60 

0.001 37.00 16.60 5.41 4.14 1.85 0.61 

 

Table 6.2   Overall FNR and FPR with constant noise variance for the Dresden dataset 
 

 

The results of the false negative and false positive rate based on constant noise 

variance for each digital camera is shown in appendix A. Regarding the improved 

LDACT filter, table 6.3 and table 6.4 summarize the camera identification performance 

by using LADCT_1 in the horizontal and vertical directions denoted here to as 

LADCT_1H&V, as well as the improvement of the proposed enhancement using 

block-based noise variance (i.e. block-based  σ2 ). As can be seen, the proposed 

enhancements significantly reduce the overall false negative and the false overall 

positive rates when compared with the conventional LADCT_1 filter.  

 

 

Filter  

Overall FNR (%) Overall FPR (%) 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Conventional filter (LADCT_1H 

with constant 𝛔𝟐 ) 
29.50 14.62 7.38 2.46 1.22 0.62 

LADCT_1H&V with 

constant 𝛔𝟐 
24.85 12.77 6.92 2.07 1.06 0.58 

LADCT_1H with 

block based 𝛔𝟐 
27.96 13.58 7.12 2.33 1.13 0.59 

LADCT_1H&V with 

block based  𝛔𝟐 
23.65 12.04 6.77 1.97 1.00 60.5  

 

 

Table 6.3   Overall FNR and FPR for each LADCT filter technique for our dataset. 
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Filter 
 

Overall FNR (%) Overall FPR (%) 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Conventional filter (LADCT_1H 

with constant 𝛔𝟐 ) 
36.47 16.28 5.41 4.05 1.79 0.60 

LADCT_1H&V with 

constant 𝛔𝟐 
29.71 11.21 3.57 3.30 1.25 0.40 

LADCT_1H with 

block base 𝛔𝟐 
33.14 13.77 4.69 3.68 1.53 0.52 

LADCT_1H&V with 

block based  𝛔𝟐 
25.75 9.23 2.61  2.86 1.05 0.32 

 

Table 6.4   Overall FNR and FPR for each filter technique (Dresden dataset). 
 

 

In our dataset the overall false negative rate for different image sizes is reduced from 

29.50%, 14.62% and 7.38% using the conventional LADCT_1H with constant σ2 to 

23.65%, 12.04% and 6.77% respectively when using the proposed LADCT_1H&V 

with block based σ2. Also the decrease in overall false positive rate reaches 19%, 18%, 

and 9% with image sizes equal to 128×128, 256×256 and 512×512 respectively (see 

table 6.3). Regarding the Dresden dataset, a significant improvement is shown in table 

6.4, where the enhancement of the overall false negative and false positive rates 

compared to conventional LADCT_1H with constant σ2 is more than 29%, 43%, and 

51% with image sizes of 128×128, 256×256 and 512×512 respectively (see table 6.4). 

The improvements due to the proposed filter based on each digital camera, and for and 

both datasets are shown in table 6.5- table 6.8. 
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Image 

size 
Filter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

 LADCT_1H with 

constant σ2  
33.00 24.50 22.50 40.50 48.00 10.50 6.00 71.50 63.00 28.50 20.50 1.50 13.50 

LADCT_1H&V with 

constant σ2 
22.50 16.00 16.00 33.00 38.00 9.00 3.00 72.00 61.50 23.00 18.00 1.00 10.00 

LADCT_1H with 

block base σ2 
26.50 22.50 19.50 36.00 48.00 10.50 6.50 71.00 61.50 26.50 19.50 3.00 12.50 

LADCT_1H&V with 

block based  σ2 
20.00 15.00 12.50 33.00 40.00 9.00 4.00 71.00 56.50 20.00 18.00 1.00 7.50 

256× 

256 

 LADCT_1H with 

constant σ2  
10.00 3.00 8.00 17.00 16.50 2.50 1.50 58.00 51.00 10.50 9.00 0.00 3.00 

LADCT_1H&V with 

constant σ2 
7.00 2.00 8.00 16.50 13.50 2.00 0.50 53.50 43.50 9.50 7.50 0.00 2.50 

LADCT_1H with 

block base σ2 
8.50 1.50 9.50 17.50 14.50 3.50 0.50 54.00 46.00 11.00 7.50 0.00 2.50 

LADCT_1H&V with 

block based  σ2 
7.00 1.50 8.50 17.00 11.50 2.50 0.50 50.00 38.00 11.00 6.50 0.00 2.50 

512× 

512 

 LADCT_1H with 

constant σ2  
1.00 0.00 7.00 10.50 0.50 0.00 0.00 35.50 29.00 6.00 3.50 0.00 3.00 

LADCT_1H&V with 

constant σ2 
1.00 0.00 6.00 9.00 0.50 0.00 0.00 33.50 27.00 5.50 3.50 0.00 4.00 

LADCT_1H with 

block base σ2 
1.00 0.00 7.50 11.00 0.50 0.00 0.50 32.50 28.00 6.00 3.00 0.00 2.50 

LADCT_1H&V with 

block based  σ2 
1.00 0.00 6.00 9.00 0.00 0.00 0.00 32.00 26.50 6.50 3.50 0.00 3.50 

 

Table 6.5   False negative rate for each digital camera using different LADCT filter methods (our dataset).
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Image 

size 
Filter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

 (LADCT_1H with 

constant σ2 ) 
2.04 2.38 2.58 2.21 2.00 2.58 3.08 2.08 2.75 2.21 3.13 2.04 2.88 

LADCT_1H&V with 

constant σ2 
1.58 1.92 2.08 2.00 1.38 2.04 2.71 1.83 2.00 2.33 2.29 2.08 2.67 

LADCT_1H with 

block base σ2 
2.13 2.50 2.50 2.17 1.71 2.46 3.13 2.08 2.33 2.00 2.42 2.38 2.50 

LADCT_1H&V with 

block based  σ2 
2.08 1.83 1.67 1.92 1.17 1.88 2.71 1.42 1.83 1.79 2.63 2.38 2.38 

256× 

256 

 (LADCT_1H with 

constant σ2 ) 
1.25 1.21 1.54 1.42 1.13 0.92 1.33 1.04 1.04 1.33 1.21 1.33 1.08 

LADCT_1H&V with 

constant σ2 
1.25 0.96 1.21 1.08 1.00 0.92 0.96 0.88 0.92 1.04 1.08 1.21 1.33 

LADCT_1H with 

block base σ2 
1.25 1.04 1.71 1.25 0.67 1.17 1.33 1.08 0.83 0.83 1.21 1.13 1.21 

LADCT_1H&V with 

block based  σ2 
1.21 1.00 1.21 0.83 0.58 0.96 1.25 0.83 0.58 1.25 0.96 1.13 1.25 

512× 

512 

 (LADCT_1H with 

constant σ2 ) 
0.79 0.79 0.75 0.29 0.38 0.58 0.63 0.63 0.71 0.58 0.58 0.50 0.79 

LADCT_1H&V with 

constant σ2 
0.71 0.71 0.67 0.54 0.38 0.29 0.75 0.42 0.33 0.63 0.63 0.54 0.92 

LADCT_1H with 

block base σ2 
0.58 0.67 0.79 0.46 0.54 0.58 0.54 0.50 0.63 0.75 0.50 0.46 0.71 

LADCT_1H&V with 

block based  σ2 
0.71 0.79 0.58 0.79 0.33 0.42 0.83 0.38 0.33 0.42 0.71 0.42 0.63 

 

Table 6.6   False positive rate for each digital camera using different LADCT filter methods (our dataset). 
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Image size Filter DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

 (LADCT_1H with 

constant σ2 ) 
42.03 31.88 51.69 49.28 51.21 40.10 36.23 29.95 12.08 20.29 

LADCT_1H&V with 

constant σ2 
36.23 28.50 43.96 43.96 43.00 28.50 31.40 20.29 6.76 14.49 

LADCT_1H with 

block base σ2 
44.44 28.02 48.31 46.38 46.86 30.92 36.23 27.05 8.21 14.98 

LADCT_1H&V with 

block based  σ2 
36.71 20.77 35.75 39.61 37.20 21.74 29.47 20.29 5.31 10.63 

256×256 

 (LADCT_1H with 

constant σ2 ) 
20.77 9.18 31.88 28.99 28.50 15.94 10.63 11.59 0.97 4.35 

LADCT_1H&V with 

constant σ2 
14.49 4.35 21.74 22.22 17.87 11.59 7.73 10.14 0.00 1.93 

LADCT_1H with 

block base σ2 
17.87 6.28 31.40 24.64 24.15 9.18 8.70 11.59 0.48 3.38 

LADCT_1H&V with 

block based  σ2 
13.04 2.90 17.39 17.39 15.94 6.28 7.73 9.66 0.48 1.45 

512×512 

 (LADCT_1H with 

constant σ2 ) 
6.28 1.45 12.56 12.56 8.21 1.45 3.38 7.73 0.00 0.48 

LADCT_1H&V with 

constant σ2 
5.80 1.45 4.83 8.70 5.31 0.48 1.93 7.25 0.00 0.00 

LADCT_1H with 

block base σ2 
7.73 1.45 10.14 9.66 5.80 0.97 3.38 6.76 0.00 0.97 

LADCT_1H&V with 

block based  σ2 
4.83 0.97 3.38 7.25 2.90 0.00 1.93 4.83 0.00 0.00 

 

Table 6.7  False negative rate for each digital camera using different LADCT filter methods (Dresden dataset). 

 

 



  

133 

 

 

Image size Filter DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

 (LADCT_1H with 

constant σ2 ) 
3.97 3.92 3.86 3.44 3.92 4.40 3.60 4.46 4.29 4.67 

LADCT_1H&V with 

constant σ2 
2.95 3.49 3.06 2.79 3.11 3.22 2.79 4.67 3.65 3.27 

LADCT_1H with 

block base σ2 
3.11 3.11 3.60 3.81 3.54 3.11 3.44 4.72 3.65 4.72 

LADCT_1H&V with 

block based  σ2 
1.99 3.70 2.90 2.25 2.52 2.47 2.58 3.92 3.11 3.11 

256×256 

 (LADCT_1H with 

constant σ2 ) 
1.61 1.61 1.72 1.40 1.77 1.93 1.18 1.99 2.15 2.52 

LADCT_1H&V with 

constant σ2 
1.13 1.29 1.02 0.97 0.97 1.29 1.23 1.07 1.83 1.66 

LADCT_1H with 

block base σ2 
1.18 1.50 1.56 1.61 1.07 1.77 1.34 1.13 1.88 2.25 

LADCT_1H&V with 

block based  σ2 
1.29 0.97 0.97 0.64 0.59 1.23 1.07 0.81 1.40 1.56 

512×512 

 (LADCT_1H with 

constant σ2 ) 
0.59 0.54 0.64 0.38 0.70 0.59 0.43 0.59 0.86 0.70 

LADCT_1H&V with 

constant σ2 
0.43 0.27 0.27 0.16 0.38 0.32 0.48 0.27 0.64 0.75 

LADCT_1H with 

block base σ2 
0.64 0.54 0.48 0.48 0.48 0.43 0.38 0.38 0.75 0.64 

LADCT_1H&V with 

block based  σ2 
0.21 0.27 0.21 0.32 0.38 0.11 0.21 0.16 0.64 0.59 

 

Table 6.8  False positive rate for each digital camera using different LADCT filter methods (Dresden dataset). 
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6.5 Improved LADCT Filter vs Wavelet Filter  

In this section, the proposed LADCT filter is assessed in comparison with the wavelet 

filter for source camera identification. It is worth mentioning that, for a fair 

comparison each PRNU is extracted from the green channel captured by the same 

sensor and the normalized correlation is applied to measure the similarity between the 

camera’s reference PRNU and the image noise residue. To evaluate the performance of 

each filter, the overall error rates for FNR and FPR are then computed. The results 

show that the proposed LADCT filter offers the most significant improvements 

compared to the wavelet filter. With the Dresden dataset, using the improved 

LADCT_1 filter reduces the overall false negative rate from 30.48% to 25.75 %, 

11.40 % to 9.37 %, and 3.09% to 2.80% while the decrease in overall false positive 

rate reaches 15%, 12%, 13% with image sizes of 128×128, 256×256, and 512×512 

respectively (see table 6.9). These improvements are also illustrated in figure 6-3  in 

terms of the mean error rate for overall false negatives and overall false positives. 

 

 

Filter technique 

Overall FNR (%) Overall FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Wavelet filter 
30.48 11.40 2.75 3.37 1.20 0.37 

LADCT_1H&V with 
block based  σ2 

25.75 9.23 2.61 2.86 1.05 0.32 

 

Table 6.9   Overall FNR and FPR for the wavelet and proposed LADCT filters (Dresden 

dataset). 
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Figure 6-3   Overall error rate for the wavelet and improved LADCT filters (Dresden dataset). 

 

However, only minor improvements have been achieved in our dataset. As shown in 

table 6.10, when compared to the wavelet filter the improved LADCT_1 filter reduced 

the overall false negative rate approximately by 5%, 1% and 4% and the overall false 

positive rate by 6%, 5%, and 8% with image sizes of 128×128, 256×256, and 512×512 

respectively. Figure 6-4 shows these minor improvements in overall error rate for all 

FNR and FPR. The results for the wavelet filters and improved LADCT_1 filters based 

on each digital camera can be seen in table 6.11- table 6.14. 
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Filter technique 

Overall FNR (%) Overall FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Wavelet filter 
24.96 12.15 7.08 2.10 1.06 0.61 

LADCT_1H&V with 

block based  𝛔𝟐 

23.65 12.04 6.77 1.97 1.00 60.5  

 

Table 6.10   Overall FNR and FPR for the wavelet and proposed LADCT filters (our dataset). 

 

 

Figure 6-4   Overall error rate for wavelet and improved LADCT filter (our dataset). 
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Image size Filter DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

Wavelet  
35.27 25.60 44.44 43.00 45.89 28.50 32.85 27.05 8.70 13.53 

Improved LADCT_1 
36.71 20.77 35.75 39.61 37.20 21.74 29.47 20.29 5.31 10.63 

256×256 

Wavelet  
13.04 6.28 21.74 22.22 17.87 10.63 11.11 8.70 0.97 1.45 

Improved LADCT_1 
13.04 2.90 17.39 17.39 15.94 6.28 7.73 9.66 0.48 1.45 

512×512 

Wavelet  
4.35 1.93 4.35 4.35 4.35 0.48 2.9 4.83 0 0 

Improved LADCT_1 
4.83 0.97 3.38 7.25 2.9 0 1.93 4.83 0 0 

 

Table 6.11  False negative rate for the wavelet and improved LADCT filters (Dresden dataset). 
 

Image size Filter DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

Wavelet  
2.68 3.49 2.90 3.22 3.22 3.97 3.60 3.38 3.81 3.44 

Improved LADCT_1 
1.99 3.70 2.90 2.25 2.52 2.47 2.58 3.92 3.11 3.11 

256×256 

Wavelet  
0.91 0.97 1.13 1.18 1.18 1.29 0.91 0.91 1.77 1.72 

Improved LADCT_1 
0.91 0.97 0.97 0.64 0.59 1.23 1.07 0.81 1.40 1.56 

512×512 

Wavelet  
0.21 0.32 0.32 0.38 0.16 0.54 0.21 0.16 0.75 0.64 

Improved LADCT_1 
0.21 0.27 0.21 0.32 0.38 0.11 0.21 0.16 0.64 0.59 

 

Table 6.12   False positive rate for the wavelet and improved LADCT filters (Dresden dataset). 
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Image 

size 
Filter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Wavelet  25.50 20.00 17.00 31.50 44.00 6.00 2.00 67.00 60.50 20.00 21.00 1.00 9.00 

Improved LADCT_1 20.00 15.00 12.50 33.00 40.00 9.00 4.00 71.00 56.50 20.00 18.00 1.00 7.50 

256× 

256 

Wavelet  4.00 2.50 7.50 17.00 10.50 1.50 0.00 50.00 47.50 8.50 7.00 0.00 2.00 

Improved LADCT_1 7.00 1.50 8.50 17.00 11.50 2.50 0.50 50.00 38.00 11.00 6.50 0.00 2.50 

512× 

512 

Wavelet  0.50 0.00 5.50 9.50 0.50 0.00 0.00 35.50 28.00 5.00 4.00 0.00 3.50 

Improved LADCT_1 1.00 0.00 6.00 9.00 0.00 0.00 0.00 32.00 26.50 6.50 3.50 0.00 3.50 

 

Table 6.13   False negative rate for the wavelet and improved LADCT filters (our dataset). 
 

Image 

size 
Filter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Wavelet  2.42 1.71 2.46 1.96 1.33 2.75 2.88 1.96 1.96 1.58 2.04 1.46 2.63 

Improved LADCT_1 2.08 1.71 1.67 1.92 1.17 1.88 2.71 1.42 1.83 1.79 2.63 2.38 2.38 

256× 

256 

Wavelet  1.04 1.00 1.50 0.92 1.04 1.21 1.17 0.96 1.17 0.88 1.21 0.79 0.96 

Improved LADCT_1 1.21 1.00 1.21 0.83 0.58 0.96 1.25 0.83 0.58 1.25 0.96 1.13 1.25 

512× 

512 

Wavelet  0.92 0.46 0.75 0.33 0.54 0.71 1.04 0.58 0.33 0.63 0.54 0.63 0.50 

Improved LADCT_1 0.71 0.79 0.58 0.79 0.33 0.42 0.83 0.38 0.33 0.42 0.71 0.42 0.63 

 

Table 6.14   False negative rate for the wavelet and improved LADCT filters (our dataset).
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6.6 Conclusion 

The PRNU estimation process can be affected by the existence of image-dependent 

information, and also some non-unique noise components. With the aim to reduce such 

undesirable effects, a new improved version of LADCT filter was proposed in this 

chapter. The LADCT filter can provide a number of advantages compared to other 

filters such as wavelets. The LADCT filter performs well with images affected by 

image-dependent noise, including multiplicative noise, and it also works on sliding 

blocks, which can provide more information about the spatial correlation properties of 

noise in an easier technique. The original LADCT_1 filter relies on the fact that the 

multiplicative noise is fixed for every block with similar statistical means, while the 

PRNU may not be stationary depending on the homogeneity of the silicon in the 

imaging device sensor. Therefore, two improvements of LADCT_1 are proposed, the 

first of which relies on estimating the noise variance for each block independently. The 

second technique of enhancement aims to capture more information about the PRNU 

to decrease to probability of false alarms) by applying the LADCT_1 in the horizontal 

and vertical directions. The improved LADCT_1 has been compared with the wavelet 

filter. The results show that the improved LADCT_1 filter can reduce the overall false 

negative and false positive rates more than wavelet filter and this is more clearly 

demonstrated with the Dresden dataset. In the future, it would be sensible to use a 

large number of images in estimation stage to overcome the issue of inter-class 

similarity and the high-resolution images. In addition, to obtain the actual and 

predicted classification, the confusion matrix should be applied. 
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 PROPOSED DIGITAL CAMERA 

IDENTIFICATION SYSTEM USING COLOUR PRNU 

COMBINATION 

7.1 Introduction  

In this chapter, a new PRNU-based source camera identification system is presented. 

The system uses enhanced components in several stages of the process. Firstly, the 

improved version of the locally adaptive discrete cosine transform filter is applied in 

the filtering stage. In the estimation stage, the weighted averaging technique as seen in 

chapter 5 is adopted. The post-estimation stage consists of combining the PRNU 

estimated from each colour plane, aiming to take advantage of the presence of physical 

PRNU components in different channels.  Although most researchers have used a gray 

version of the image or sometimes the green channel, exploiting RGB planes may lead 

to reducing the effect of colour interpolation and hence to more accurate estimation 

since this involves a larger number of observed signals. The experimental analysis 

covers three application scenarios: source camera identification, source camera 

verification and the purity of PRNU estimation. Experimental results with two image 

datasets acquired by various camera devices show a significant gain obtained with the 

proposed enhancements in each stage and the superiority of the overall system over 

state-of-the-art source camera identification systems. The rest of this chapter is 

structured as follows: section two describes the proposed colour planes for PRNU 

estimation, and the proposed digital camera identification system is introduced in 
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section three. Experimental results and analysis are provided in section four and the 

conclusions are drawn in section five. 

7.2 Colour Planes for PRNU Estimation 

A challenging task in estimating the PRNU is to consider the colour channel at each 

pixel location. Because there are three primary colours; i.e. red, green and blue, the 

sensor exhibits a physical noise pattern in one colour  component only at each pixel 

location, while the other components are estimated through interpolation involving the 

neighboring pixels (Lukas et al., 2006). Some PRNU estimation techniques, such as 

the techniques of Cooper (2013) and Chenyang et al. (2012) depend on the gray-scale 

version of images in order to extract the PRNU. On the other hand, others such as 

Goljan et al. (2008), Lukas et al. (2006), Li et al. (2014), and Goljan (2008) have 

estimated the PRNU from each channel individually and then combined them linearly 

to derive a colour-to-luminance PRNU. The common rule for calculating the 

luminance component is:  

 𝑌  =  0.3 𝑅 +  0.59 𝐺 +  0.11 𝐵 7.1 

 

where Y represents the luminance component and R, G and B stand for the red, green 

and blue channels respectively (Kanan and Cottrell, 2012). Other techniques use only 

the green channel in order to extract the PRNU as it contains more physical PRNU 

information when compared to the other channels (Kang et al., 2012; Qu et al., 2013). 

However, a linear combination of the colour channels with fixed weights would 

include some interpolation noise if a certain colour location does not correspond to the 
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physical light information. On the other hand, if only the green channel is used the 

physical PRNU information which could exist in the other two colour components; i.e. 

red and blue are not taken into account. In the work of Hu et al. (2010), a non-linear 

combination is applied by extracting the PRNU from each colour  channel separately, 

and then the largest coefficient in magnitude at each location is chosen. In this thesis, 

the PRNU is estimated from every channel separately and then the resulting PRNUs 

are concatenated to form a combined PRNU. Similarly, a combined noise residue can 

be obtained from the test image through the concatenation of the three noise residues, 

each corresponding to a colour plane. This way the physical information characterizing 

the PRNU can be exploited efficiently.  

 

7.3 Proposed digital camera identification system using colour 

PRNU combination 

 

Figure 7-1 shows the proposed source camera identification system. Firstly, digital 

images can be considered in the form of individual colour channels. Next, an improved 

version of the LADCT de-noising filter is adopted in order to decrease the effect of 

scene details on noise residues. Then, for effective PRNU estimation, the obtained 

noise residues are averaged using the proposed WA technique. Finally, concatenating 

the PRNUs estimated from the primary colour planes is proposed in order to exploit 

the presence of physical PRNU components in different colour channels. It worth 

noting that the proposed system performs the circular correlation norm (CCN) as 
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proposed by Kang et al. (2012) to measure the similarity between the PRNU and a 

noise residue estimated from a query image. 
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Figure 7-1   Proposed source camera identification and verification system. 

7.4 Experimental Work 

This section describes a number of experiments conducted to assess the performance 

of the proposed system.  The evaluation has been conducted using two different 

datasets: our dataset and the Dresden database. In the rest of this chapter, the improved 

LADCT_1 filter, that is, the LADCT_1H&V with block-based noise variance, is used 

unless otherwise stated.  
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7.4.1 Colour PRNU Evaluation 

Here the WA technique as discussed in chapter 5 is adopted. Different techniques for 

combining colour channels in PRNU estimation are assessed. That is, the green 

channel-based PRNU as suggested in the work of Kang et al. (2012),and Qu et al. 

(2013), the luminance image-based PRNU estimation as mentioned in Cooper (2013) 

and Chenyang et al. (2012) , and the colour -to-luminance PRNU technique as 

proposed in the technique of  Goljan et al. (2008), Lukas et al. (2006), and  Li et al. 

(2014) as well as, finally the colour  combination scheme developed by Hu et al. 

(2010). Note that Hu et al. (2010) developed three schemes, but in this thesis their 

scheme 3 is used because it has been found to deliver the best performance. The results 

shown in table 7.1 and table 7.2 reveal an interesting finding in that the PRNU 

estimated from gray-level images seems to offer better source camera identification 

than that of the green channel for both datasets. The main reason of such results could 

be that, the gray-level image includes more physical PRNU components than the green 

images (the PRNU components could exist in the other two colour components). 

Moreover, it is clear that the combination of the three RGB channels as recommended 

by Hu et al. (2010) outperforms the techniques which use the green channel only, the 

Luminance image and the luminance PRNU. Finally, the proposed combination 

achieves the best performance among all methods tested. The results of FNR and FPR 

for each digital camera based on each colour component are shown in appendix B. 
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Methods  

Overall FNR (%) Overall FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Green image (Kang et al., 2012), 
(Qu et al., 2013) 

23.58 11.12 6.69 1.96 0.92 0.55 

Gray image (Cooper, 
2013),(Chenyang et al., 2012) 

23.35 10.73 6.42 1.95 0.89 0.54 

Grey Colour -to-luminance PRNU 
Lukas et al. (2006), Li et al. 

(2014) 
22.46 10.42 6.40 1.87 0.90 0.52 

RGB scheme 3 (Hu et al., 2010) 22.46 10.58 6.31 1.87 0.88 0.52 

Proposed method 21.35 10.20 6.12 1.78 0.85 0.52 
 

Table 7.1  Overall FNR and FPR based on each colour component (our dataset). 
 

Methods  

Overall FNR (%) Overall FPR (%) 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Green image (Kang et al., 2012), 
(Qu et al., 2013) 

21.69 6.62 1.79 2.41 0.74 0.20 

Gray image (Cooper, 
2013),(Chenyang et al., 2012) 

20.10 6.09 1.64 2.23 0.68 0.18 

Grey Colour-to-luminance PRNU 
Lukas et al. (2006), Li et al. 

(2014) 
19.28 5.60 1.60 2.14 0.60 0.20 

RGB scheme 3 (Hu et al., 2010) 18.31 5.41 1.55 2.03 0.60 0.17 

Proposed method 14.40 4.15 1.45 1.72 0.51 0.16 
 

Table 7.2  Overall FNR and FPR based on each colour component (Dresden dataset). 
 

7.4.2 Comparison with State-of the- art Systems 

In this  sub-section, the proposed system is assessed in comparison with existing state-

of the- art systems, namely the basic-PRNU (Lukas et al., 2006), the MLE-PRNU1 

(Chen et al., 2008), Phase-PRNU (Kang et al., 2012), CD_PRNU (Chang-Tsun and 

Yue, 2012), WA (Lawgaly et al., 2014), and Wiener_median PRNU (Cooper, 2013). 

The comparative analysis covers three different aspects, i.e., source camera 

                                                 
1 Note that the MLE method (Chen et al., 2008) delivered adversary results for σ =5  as opposed to the best 

performance shown here with σ =3. 
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identification, source camera verification, and the purity of PRNU estimation. It is 

worth mentioning that CCN has been used in the proposed system. 

7.4.2.1 Source Camera Identification  

In source camera identification, the forensic analyst possesses a number of cameras 

and the objective is to identify the specific camera used to take a picture. Here, it is 

assumed that the picture has been taken by one of the cameras available. Therefore, a 

test image is assigned to a specific camera if the corresponding PRNU provides the 

highest similarity when compared with the noise residue extracted from that image. 

The results for overall false negative rate and overall false positive rate for our dataset 

and the Dresden dataset are illustrated in table 7.3 and table 7.4, respectively. As can 

be seen, the proposed system offers the best performance with the two datasets for all 

different image sizes. The difference is more significant on the Dresden dataset with 

clear enhancements to overall false negative and false positive rates exceeding 50% 

when compared with other techniques (see table 7.4).  

 

Technique 

FNR (%) FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Basic PRNU(Lukas et al., 2006) 24.15 11.27 6.88 2.06 0.94 0.58 

MLE  PRNU(Chen et al., 2008) 23.54 11.04 6.35 1.96 0.91 0.53 

Phase-PRNU (Kang et al., 2012) 23.27 11.00 6.31 1.94 0.92 0.53 

CD_PRNU (Chang-Tsun and Yue, 2012) 23.88 10.20 5.81 1.99 0.85 0.50 

WA (Lawgaly et al., 2014) 22.31 10.58 6.23 1.89 0.90 0.54 

Wiener & median PRNU(Cooper, 2013) 29.15 13.08 6.38 2.43 1.09 0.54 

The proposed system 21.27 9.85 5.46 1.77 0.82 0.48 

 

Table 7.3   Overall FNR and FPR for each technique on our dataset. 
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Technique 

FNR (%) FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Basic PRNU(Lukas et al., 2006) 29.90 10.53 2.51 3.26 1.13 0.28 

MLE  PRNU(Chen et al., 2008) 28.45 10.34 2.46 3.16 1.12 0.27 

Phase-PRNU (Kang et al., 2012) 28.45 10.10 2.03 3.14 1.12 0.23 

CD_PRNU (Chang-Tsun and Yue, 2012) 31.25 10.48 2.41 3.50 1.10 0.26 

WA (Lawgaly et al., 2014) 23.72 7.44 1.69 2.62 0.92 0.20 

Wiener & median PRNU(Cooper, 2013) 30.00 10.92 2.37 3.33 1.21 0.26 

The proposed system 14.11 3.96 0.93 1.72 0.70 0.10 

 

Table 7.4   Overall FNR and FPR for each technique on Dresden dataset. 
 

 

The results for FNR are FPR for each technique based on each digital camera are 

shown in appendix C. These enhancements are better illustrated in table 7.5 and table 

7.6 where the basic PRNU estimation technique(Lukas et al., 2006) has been used as a 

reference point. Note that the Wiener & median PRNU technique (Cooper, 2013) does 

not bring improvements compared to the reference technique. This could be justified 

by the fact that the number of images used for PRNU estimation by Cooper (2013) is 

more than 100 images. Furthermore, the authors adopted blue sky images in their 

experiments though this setting might not be available in practical scenarios. It is 

however worth highlighting some improvements with larger size images which suggest 

that the technique’s performance is also sensitive to the image size (see table 7.5 and 

table 7.6).  
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Technique 

Gain for FNR (%) Gain for FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

MLE  PRNU(Chen et al., 2008) +2.53  +2.04  +7.70  +4.85  +3.19  +7.02 

Phase-PRNU (Kang et al., 2012) +3.64 +2.40 +8.28 +5.83 +2.13 +7.02 

CD_PRNU (Chang-Tsun and Yue, 2012) +1.12  +9.58  +15.55  +3.40  +9.57  +12.28 

WA(Lawgaly et al., 2014) +7.62  +6.12  +9.45  +8.25  +4.26  +5.26  

Wiener & median PRNU(Cooper, 2013) -20.70  -16.06  +7.27  -17.96  -15.96  +5.26 

The proposed system +11.93  +12.60  +20.64  +14.08  +12.77  +15.79  

 

Table 7.5  Obtained source camera identification gain on our dataset. 
 

 

Technique 

Gain for FNR (%) Gain for FPR (%) 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image size 

512×512 

MLE  PRNU(Chen et al., 2008) +4.85  +1.80  +1.99  +3.07  +0.88  +3.57  

Phase-PRNU (Kang et al., 2012) +4.85  +4.08  +19.12  +3.68  +0.88  +17.86  

CD_PRNU (Chang-Tsun and Yue, 2012) -4.52 +0.47 +7.57 -7.36 +2.65 +7.14 

WA(Lawgaly et al., 2014) +20.67  +29.34  +32.67  +19.63  +18.58  +28.57  

Wiener & median PRNU(Cooper, 2013) -0.33  -3.70  +5.58  -2.15  -7.08  +7.14  

The proposed system +52.81  +62.39  +62.95  +46.63  +38.05  +64.29  
 

Table 7.6   Obtained source camera identification gain (%) on Dresden dataset. 
 

 

7.4.2.2 Source Camera Verification   

The task of the investigator in source camera verification is to verify whether a specific 

camera has been used to acquire a given picture. Because a threshold must be set in 

order to reach such a decision2, one can measure the performance of the system, i.e., 

FPR and FNR, for each threshold value. This leads us to what is known in the 

literature as the Receiver Operating Characteristics (ROC) curve. In this experiment, 

23 cameras (our dataset combined with the Dresden dataset) have been used to 

calculate the values of similarity between each source camera PRNU and the noise 

                                                 
2 This threshold represents the least possible similarity between the reference PRNU of a camera and the noise 

residue of an image acquired by the same device. 
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residues of images captured by different cameras. This will enable us to determine the 

false positive rate for each threshold value. On the other hand, the values of similarity 

between every source camera PRNU and the noise residues of images acquired by the 

same camera have been calculated. This is to define the false negative rate (i.e., 1-TPR) 

for each threshold value. It is worth mentioning here that the process of removing non-

unique components is applied as proposed by Goljan (2008) in order to decrease the 

correlation between the PRNUs extracted from different cameras. The ROC curve 

performance of the proposed system along with that of existing state-of-the-art 

techniques are demonstrated in figure 7-2- figure 7-4 for a various image sizes 

respectively. In practical applications, it is extremely important to ensure a sufficiently 

low false positive rate, and so the ROC performance in cases of low false positive rate 

is more critical; consequently, the horizontal axis of all the ROC curves is adjusted, in 

order to illustrate the detail of the ROC with a low false positive rate accordingly.  The 

experimental results show that the proposed system performs better than its 

competitors. This is true for all image sizes. In table 7.7 the true positive rate (TPR) at 

fixed values for FPR (10−2 and 10−3) are depicted. As can be seen, the systems perform 

differently in source camera verification when compared to the results of source 

camera identification. Indeed, the CD PRNU technique is outperformed by the basic 

PRNU technique. Also, the Wiener-median PRNU technique appears significantly 

more powerful than CD PRNU and Basic PRNU on images with size 256×256 and 

512×512 and close to the phase PRNU. These results also confirm the superiority of 

the proposed system. Surprisingly, CD PRNU performs worse than the Basic PRNU 

and MLE in camera verification. Note that CD PRNU has been shown in the work of 
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Chang-Tsun and Yue (2012) to outperform MLE in a number of PRNU-based image 

authentication experiments but these were slightly different from my approach. Indeed, 

in the ROC curves plotted in in the work of Chang-Tsun and Yue (2012), the estimated 

the values of TPR and FPR for an individual camera by varying a certain threshold. 

This is a single camera verification problem and such a different setting could justify 

the different performance here since my varying threshold is applied to multiple 

cameras in order to estimate the overall TPR and FPR. In this context, it is worth 

noting that experiments on single and multiple camera verification were conducted in 

work of (Swaminathan et al., 2008) ,where it was shown that the performance of their 

system differs in each experiment. Overall, the results of source camera verification 

confirm the superiority of the proposed system. 

Figure 7-2  Overall ROC curve for our dataset and Dresden dataset, image size 128×128. 
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Figure 7-3  Overall ROC curve for our dataset and Dresden dataset, image size 256×256. 

 

 

Figure 7-4   Overall ROC curve for our dataset and Dresden dataset, image size 512×512. 
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Technique 

TPR at low FPR of 10-2 TPR at low FPR of 10-3 
Image 

size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Image 
size 

128×128 

Image 
size 

256×256 

Image 
size 

512×512 

Basic PRNU(Lukas et al., 2006) 0.5660 0.7113 0.7608 0.3358 0.4230 0.5289 

MLE  PRNU(Chen et al., 2008) 0.5730 0.8081 0.9286 0.3527 0.6578 0.8965 

Phase-PRNU (Kang et al., 2012) 0.5878 0.7839 0.9317 0.4480 0.6772 0.8970 

CD_PRNU (Chang-Tsun and Yue, 2012) 0.3079 0.6460 0.7392 0.0300 0.1480 0.3947 

WA(Lawgaly et al., 2014) 0.5929 0.8178 0.9283 0.3116 0.6728 0.8734 

Wiener & median PRNU(Cooper, 2013) 0.5251 0.7906 0.9214 0.3827 0.6820 0.8850 

The proposed system 0.6238 0.8227 0.9317 0.4647 0.7321 0.9026 
 

Table 7.7    TPR values of the different methods at a low FPR of 10-2 and 10-3 
 

7.4.2.3 Purity of PRNU Estimation   

In this experiment, we aim to quantify the purity of the estimated PRNU with the 

proposed system as well as with other competing systems. The idea underlying this 

experiment is that the similarity between PRNUs extracted from the same sensor must 

be equal to the highest possible value while the similarity between PRNU’s estimated 

from different cameras must be minimum because the actual PRNUs are statistically 

independent and similar to a white Gaussian noise. Five PRNUs have been estimated 

for each digital camera where each uses 50 different images. Different block size 

values are considered of 64×64, 128×128 and 256×256. The equal error rate (EER) has 

also been adopted in this experiment in order to illustrate the purity of PRNU 

estimation for each technique.  The EER defines the point where the false negative rate 

becomes equal to the false positive rate. As can be seen in table 7.8, the proposed 

system offers the smallest EER values. It is clear that all techniques provide a better 

PRNU estimation than the one given by the Basic PRNU technique.  
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Furthermore, although MLE and WA outperform the Basic PRNU, their estimated 

PRNUs are less accurate than those obtained with other techniques for the block size 

of 128 × 128. This suggests that the estimation of the noise residue from individual 

images plays a crucial role in source camera identification and verification.  

 

 

Table 7.8   EER for each technique based on the purity of PRNU estimation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Technique 

EER (%) 
Image 

size 

64×64 

Image 
size 

128×128 

Image 
size 

256×256 

Basic PRNU(Lukas et al., 2006) 2.62 2.60 2.18 
MLE  PRNU(Chen et al., 2008) 2.20 1.31 0.007 

Phase-PRNU (Kang et al., 2012) 2.54 0.87 0 
CD_PRNU (Chang-Tsun and Yue, 2012) 3.09 0.90 0 

WA(Lawgaly et al., 2014) 2.28 1.31 0 
Wiener & median PRNU(Cooper, 2013) 2.64 0.95 0 

The proposed system 2.17 0.51 0 
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7.5 Conclusion 

In this chapter, an efficient source camera identification system has been introduced. 

The idea uses an improved locally adaptive DCT Filter followed by a weighted 

averaging technique to exploit the content of images carrying the PRNU efficiently. 

Furthermore, since the physical PRNU is present in all colour planes, the estimated 

colour PRNUs has been combined for better matching. The system has been 

thoroughly assessed where the gain obtained with each of its components has been 

highlighted through intensive experiments on two different image datasets 

considering various image sizes. Finally, an experimental analysis covering three 

application scenarios in digital image forensics has shown the superiority of the 

proposed system over state of the art techniques. However, when the UM technique 

is combined with our source camera identification system, it does not show a 

significant gain. This shows that the filtering stage followed by weighted averaging 

contribute significantly to the final performance and seem to capture well the PRNU 

components that exist in high frequencies. In the future, it would be sensible to 

examine the performance of our source camera identification system by applying 

different image sharpening techniques such as Gaussian-based unsharp masking 

(Laplacian of Gaussian).  
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 CONCLUSIONS 

8.1 Contributions of the thesis 

Over the last decade, digital multimedia has acquired great relevance in many aspects 

of our lives and represents one of the main forms of information that could affect 

public opinion. In specific situations, such as in the forensics field, visual information 

might be exploited as promising evidence in a courtroom, therefore supporting the 

final outcome. In such scenarios, it is very important to know the history and the origin 

of multimedia documents involved in order to be able to guarantee that such 

information has not been altered. Multimedia forensics could deliver evidence on a 

digital asset by analysing the intrinsic fingerprints which characterise a piece of 

information throughout its life time. In other words, the evaluation of such patterns 

could result in identifying the origin of a video or image and establishing data 

integrity. Consequently, to increase the reliability of digital images, image 

authentication and copyright protection must be accomplished. Motivated by this, the 

present research has investigated the performance of existing techniques which are 

based on estimating photo response non-uniformity (PRNU), in order to contribute to 

the development of new estimation approaches to improve the performance of digital 

camera identification. The principles and motivations of digital image forensics are 

considered and new methods in digital image forensics are offered in this thesis. 
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In chapter 3, different techniques of image authentication have been 

investigated. More specifically, techniques of sensor fingerprint estimation based on 

photo response non-uniformity have been examined. PRNU noise is mainly caused by 

the sensitivity of pixels to light which is produced due to the imperfections and non-

homogeneity of silicon wafers during the manufacture of camera sensor. PRNU has 

been generally used for source camera identification and image authentication. The 

abundant information that sensor pattern noise carries in terms of frequency content 

makes it unique and hence suitable for identifying the source camera and detecting 

image forgeries. Nonetheless, the PRNU estimation process is inevitably faced with 

the presence of image-dependent information as well as other non-unique noise 

components. With the aim to reduce such undesirable effects, new novel techniques 

are proposed in this thesis in different stages of the digital camera identification system: 

the pre-processing stage, the filtering stage, the estimation stage, and the post-

estimation stage.   

In chapter 4, an image sharpening technique has been suggested to enhance the 

source camera identification based on PRNU estimation. The proposed pre-processing 

Unsharp masking technique, aims to amplify the PRNU noise present in the digital 

image in order improve the accuracy of its estimation, which may rely on differences 

among a set of digital images and their smoothened versions in order to identify the 

characteristics of the sensor. Therefore, such a process can use part of the content of 

the sensor noise which can be concentrated in the high frequency range and present in 

contours, edges and textured areas of digital images. Motivated by this, the unsharp 
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masking technique is utilized to amplify the high frequency content of the PRNU, and 

consequently of strengthen its presence in sample images in order to facilitate efficient 

source camera identification. The results of extensive experiments have shown that the 

proposed sharpening technique achieves significant improvements to two recent state-

of the-art source camera identification schemes with different sizes of images.  

In chapter 5, a new PRNU estimation technique based on weighted averaging is 

proposed to enhance PRNU estimation. The traditional technique of PRNU estimation 

uses a set of digital images where a pattern residue signal is extracted from each image. 

The extracted residue signals are then averaged in order to obtain the sensor pattern 

noise. This constant averaging technique has been used in most PRNU estimation 

studies. The common assumption made in these studies is that every residue signal is a 

noisy observation of the sensor pattern noise and then each observation is multiplied 

by the same constant factor 1/N. Theoretically, the constant averaging technique is 

optimal only if the variance of noise is constant in all observations, and such an 

assumption is not justified in practice since digital images can be obtained in various 

conditions, creating the corresponding residue signals which are different from each 

other (bright digital images can provide better PRNU estimation than dark digital 

images). Moreover, saturated pixels can increase the estimation error in residue signals 

because each signal could carry undesirable image-dependent noise. Based on this 

observation, the weighted averaging technique is proposed for effective PRNU 

estimation. The technique depends on the principle of estimating an unknown signal 

from noisy observations. Note that the weighted averaging technique is only applied in 
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the estimation stage. The weighted averaging technique is applicable with any existing 

PRNU estimation technique and it has been validated against two recent techniques 

(basic PRNU and MLE-PRNU). Intensive experiments have shown that the 

performance of WA technique for source camera identification is considerably 

improved with different sizes of images.  

In chapter 6, an improved version of the locally adaptive discrete cosine 

transform (LADCT) filter is proposed to improve camera identification performance. 

The LADCT filter can offer several advantages compared to other filters such as 

wavelets that operate on full images, and it is claimed to perform well on images 

affected by image-dependent noise including the multiplicative noise. Also, the 

LADCT performs well with several noise models. Furthermore, averaging numerous 

de-noised estimates for each pixel in the block can lead to resolving the problem of 

undershoots and overshoots which can be directly linked to the problem of scene 

details in PRNU estimation. Two improvements of the LADCT_1 are suggested, the 

first depending on estimating the noise variance for each block individually in order to 

estimate a threshold for each block. The principal idea of such a threshold value is 

based on the fact that the statistical variance of the estimated noise might differ 

considerably across blocks. Therefore, blocks in which the estimated noise may have 

high variance would be filtered with a relatively small threshold in the DCT domain as 

the high activity of the estimated noise in such blocks could be more likely to arise 

from texture and edges. In contrast, low variance noise within a specific block could 

well represent the actual PRNU and therefore should be retained by applying a 
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relatively large threshold in the DCT domain. The second technique of enhancement is 

based on applying the improved LADCT_1 in both the horizontal and vertical 

directions. This process can lead to two PRNUs, each estimated in one direction. The 

logic behind this process is to increase the size of the PRNU camera reference and 

noise residue in order to decrease the probability of false alarms. Also, it could be that 

some components of the PRNU that may be hard to estimate in the horizontal direction 

and will be easier to estimate in the vertical direction and vice versa. The improved 

LADCT_1 is validated against the wavelet filter, and the results show that the 

improved LADCT_1 filter can reduce the overall false negative and the overall false 

positive rates more than the wavelet filter.  

In chapter 7, a novel source camera identification system based on colour 

PRNU combination is presented by adopting enhancements in several stages of the 

process. The camera sensor exhibits a physical noise pattern in one colour component 

only at every pixel location, while the other components can be estimated through 

interpolation involving the neighboring pixels. Some PRNU estimation techniques rely 

on the luminance rule to estimate the final PRNU; however, a linear combination of 

the colour channels with fixed weights may contain some interpolation noise. 

Furthermore if the green channel only is utilized, the physical PRNU information 

which could exist in other colour components is not taken into account. Motivated by 

this, the PRNU is estimated from each channel individually and then the resulting 

PRNUs are concatenated to form a combined PRNU. The use of this technique means 

that the physical information characterizing the PRNU would be exploited efficiently. 
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The improved locally adaptive DCT Filter followed by a weighted averaging 

techniqueis adopted in order to efficiently exploit the content of images carrying the 

PRNU. The results show that the PRNU estimated from gray-level images appears to 

give better source camera identification than the green channel. Moreover, the 

recommended colour combination achieves the best performance among all methods 

tested. The proposed system has been thoroughly validated against six recent state-of-

the-art source camera identification schemes with different sizes of images. As 

opposed to other proposed techniques, the experimental analysis in chapter 7 covers 

three application scenarios in digital image forensics: source camera identification, 

source camera verification, and the purity of PRNU estimation. The results have 

shown a significant gain obtained with the proposed system over state-of- the-art 

source camera identification systems.  

  

8.2 Future Work 

While a number of aspects of digital image forensics mechanisms have been 

considered in this thesis, some particular ideas to extend the current work are as 

follows:  

 

 Digital image dataset: An image dataset is essential for the assessment of a 

proposed algorithm. However, although some datasets are available for the 

research community to use, several issues that could call for the establishment of a 

benchmark dataset can be discussed. For example, experiments including images 

taken with various acquisition settings (i.e., at different resolutions) could be used 
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to evaluate the effect of these settings on PRNU performance. Moreover, images 

captured by scanners, cell phones and imaging devices operating in invisible 

frequencies such as ultraviolet or infrared cameras can be included for a more 

comprehensive work. 

 

 Temporal digital image forensics: In several digital image forensics applications it 

would not be enough to identify the digital imaging device but it would be 

beneficial to determine a temporal localization of the digital image.  For instance, 

in the case of an image or video with illegal content distributed over the Internet, 

and the digital camera involved may since have changed ownership. In this 

situation, estimating the date when the images with illegal content were captured 

may help the investigator to make a link between the camera and the owner. In 

order to obtain the temporal characteristics of a digital device, it is necessary to 

introduce a model for the identification of defective pixels over time. It would be 

very interesting to investigate PRNU performance in terms of temporal image 

forensics. 

 PRNU similarity measurement: PRNU-based forensic applications normally 

depend on measuring the similarity among estimated PRNU signals. Although 

several similarity measurements have been used in the literature, such as 

normalized correlation, PCE and CCN, in the future it could be sensible to consider 

a novel similarity measure based on the statistical model of the noise residue by 

considering methods of signal detection in noisy environments. 
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 Robustness of PRNU estimation: Although several PRNU estimation techniques 

have been introduced, an efficient algorithm to analyse PRNU robustness against 

post-processing operations is still lacking. In the future it would be useful to 

evaluate proposed systems against some common image processing. For example 

how the FNR and RPR rates may changes with JPEG compression or gamma 

correction could be investigated. Moreover, various issues for camera 

identification and forgery detection could be considered in cases of application of 

certain types of geometrical processing, for instance cropping or resizing, which 

could lead to desynchronization with the PRNU. 

 

 Application-specific PRNU Estimation: The literature review has highlighted the 

fact that many algorithms have been used to identify a source camera and to verify 

image integrity. However; each algorithm may only perform well when specific 

assumptions are satisfied; for instance an algorithm for PRNU estimation could 

work well for camera identification purposes and be less performing for forgery 

detection. Therefore, estimating the PRNU to target a specific application may be a 

better approach for optimizing the performance. 



  

163 

 

REFERENCES 

Abry, P. (1997) Ondelettes et turbulences: multirésolutions, algorithmes de 

décomposition, invariance d'échelle et signaux de pression. Paris: Diderot éd. 

Al-Ani, M., Khelifi, F., Lawgaly, A. and Bouridane, A. (2015), 'A novel image 

filtering approach for sensor fingerprint estimation in source camera 

identification', Advanced Video and Signal Based Surveillance (AVSS), 12th 

IEEE International Conference. Karlsruhe, 25-28 Aug. 2015. IEEE, pp. 1-5. 

Amerini, I. (2010), 'Image Forensics: source identification and tampering detection', 

PhD thesis, Universita degli studi di Firenze, Italy. 

Badamchizadeh, M. and Aghagolzadeh, A. (2004), 'Comparative study of unsharp 

masking methods for image enhancement', Third International Conference on 

Image and Graphics (ICIG'04), . Hong Kong, China, 18-20 Dec. 2004. IEEE, 

pp. 27-30. 

Bataillou, E., Thierry, E., Rix, H. and Meste, O. (1995) 'Weighted averaging using 

adaptive estimation of the weights', Signal Processing, vol. 44, no. 1, pp. 51-66. 

Baxes, G.A. (1994) Digital image processing: principles and applications. New York: 

Wiley. 

Bayram, S., Sencar, H.T., Memon, N. and Avcibas, I. (2005), 'Source camera 

identification based on CFA interpolation', Image Processing, 2005. ICIP 2005. 

IEEE International Conference on. vol. 3, 11-14 Sept. 2005. IEEE, pp. III-69-

72. 

Bayram, S., Sencar, H.T., Memon, N. and Avcibas, I. (2006) 'Improvements on source 

camera-model identification based on CFA interpolation', Proc. of WG, vol. 11, 

pp. 24-27. 

Bhardwaj, S. and Mittal, A. (2012) 'A survey on various edge detector techniques', 

Procedia Technology, vol. 4, pp. 220-226. 

Bracewell, R.N. (1999) The Fourier transform and its applications. 3th edn. New 

York: McGraw Hill. 

Burrus, C.S., Gopinath, R.A. and Guo, H. (1998) Introduction to wavelets and wavelet 

transforms: a primer. Upper Saddle River, N.J: Prentice Hall. 

Celiktutan, O., Avcibas, I. and Sankur, B. 2007, 'Blind identification of cellular phone 

cameras', paper presented to the Electronic Imaging 2007. 

Çeliktutan, O., Avcibaş, I. and Sankur, B. (2007), 'Blind identification of cellular 

phone cameras', Electronic Imaging 2007. vol. 6505, 15 February 2007. 

International Society for Optics and Photonics. 

Celiktutan, O., Sankur, B. and Avcibas, I. (2008) 'Blind identification of source sell-

phone model', IEEE Transactions on Information Forensics and Security, vol. 

3, no. 3, pp. 553-566. 

Chan, L.-H., Law, N.-F. and Siu, W.-C. (2013) 'A confidence map and pixel-based 

weighted correlation for PRNU-based camera identification', Digital 

Investigation, vol. 10, no. 3, pp. 215-225. 



  

164 

 

Chang-Tsun, L. and Yue, L. (2012) 'Color-decoupled photo response non-uniformity 

for digital image forensics', IEEE Transactions on Circuits and Systems for 

Video Technology, vol. 22, no. 2, pp. 260-271. 

Chen, J.-S., Huertas, A. and Medioni, G. (1987) 'Fast convolution with Laplacian-of-

Gaussian masks', IEEE Transactions on Pattern Analysis and Machine 

Intelligence, no. 4, pp. 584-590. 

Chen, M., Fridrich, J. and Goljan, M. (2007), 'Digital imaging sensor identification 

(further study)', Electronic Imaging 2007. vol. 6505, CA, USA, Jan. 2007. 

International Society for Optics and Photonics, pp. 0P-0Q. 

Chen, M., Fridrich, J., Goljan, M. and Lukáš, J. (2008) 'Determining image origin and 

integrity using sensor noise', IEEE Transactions on Information Forensics and 

Security, vol. 3, no. 1, pp. 74-90. 

Chenyang, S., Yuting, S., Jing, Z. and Junyu, X. (2012), 'Sensor pattern noise in JPEG 

compressed images', IEEE International Conference on Audio, Language and 

Image Processing (ICALIP). Shanghai, 16-18 July 2012. IEEE, pp. 155-159. 

Chierchia, G., Parrilli, S., Poggi, G., Sansone, C. and Verdoliva, L. (2010), 'On the 

influence of denoising in PRNU based forgery detection', Proceedings of the 

2nd ACM Workshop on Multimedia in Forensics, Security and Intelligence. 

ACM, pp. 117-122. 

Chierchia, G., Poggi, G., Sansone, C. and Verdoliva, L. (2013), 'PRNU-based forgery 

detection with regularity constraints and global optimization', IEEE 15th 

International Workshop on Multimedia Signal Processing (MMSP). Pula 

(Sardinia), Italy, 30 Sept -2 Oct. 2013. IEEE pp. 236-241. 

Chierchia, G., Poggi, G., Sansone, C. and Verdoliva, L. (2014) 'A Bayesian-MRF 

approach for PRNU-based image forgery detection', IEEE Transactions on 

Information Forensics and Security, vol. 9, no. 4, pp. 554-567. 

Cohen, K. (2007) 'Digital still camera forensics', Small Scale Dgital Device Forensics 

Journal, vol. 1, no. 1, pp. 2-8. 

Coifman, R.R. and Donoho, D.L. (1995) Translation-invariant de-noising. New York: 

Springer. 

Cooper, A.J. (2013) 'Improved photo response non-uniformity (PRNU) based source 

camera identification', Forensic Science International, vol. 226, no. 1, pp. 132-

141. 

Cortiana, A., Conotter, V., Boato, G. and De Natale, F.G. (2011), 'Performance 

comparison of denoising filters for source camera identification', IS&T/SPIE 

Electronic Imaging. 10 Feb.2011. International Society for Optics and 

Photonics. 

Costa, F.D., Silva, E., Eckmann, M., Scheirer, W.J. and Rocha, A. (2014) 'Open set 

source camera attribution and device linking', Pattern Recognition Letters, vol. 

39, no. 1, pp. 92-101. 

Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2007) 'Image Denoising by 

Sparse 3-D Transform-Domain Collaborative Filtering', IEEE Transactions on 

Image Processing, vol. 16, no. 8, pp. 2080-2095. 



  

165 

 

Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) 'Maximum likelihood from 

incomplete data via the EM algorithm', Journal of the Royal Statistical Society. 

Series B (Methodological), pp. 1-38. 

Dirik, A.E. (2010), 'New techniques in multimedia forensics', PhD thesis, New York 

University, New York. 

Dirik, A.E., Bayram, S., Sencar, H.T. and Memon, N. (2007), 'New features to identify 

computer generated images', IEEE International Conference on Image 

Processing, 2007. ICIP 2007. vol. 4, San Antonio, TX, Sept. 16 2007-Oct. 19 

2007. IEEE, pp. IV-433-IV-436. 

Dirik, A.E., Sencar, H.T. and Memon, N. (2008) 'Digital single lens reflex camera 

identification from traces of sensor dust', IEEE Transactions on Information 

Forensics and Security, vol. 3, no. 3, pp. 539-552. 

Donoho, D.L. (2006) 'Compressed sensing', IEEE Transactions on Information Theory, 

vol. 52, no. 4, pp. 1289-1306. 

Farid, H. (2008) 'Digital image ballistics from JPEG quantization: A followup study', 

Department of Computer Science, Dartmouth College, Tech. Rep. TR2008-638. 

Farid, H. (2009) 'Image forgery detection', IEEE Signal Processing Magazine, vol. 26, 

no. 2, pp. 16-25. 

Fridrich, A.J., Soukal, B.D. and Lukáš, A.J. (2003), 'Detection of copy-move forgery 

in digital images', in Proceedings of Digital Forensic Research Workshop. 

Citeseer. 

Fridrich, J. (2009a) 'Digital image forensics', Signal Processing Magazine, IEEE, vol. 

26, no. 2, pp. 26-37. 

Fridrich, J. (2009b) 'Digital image forensics introducing methods that estimate and 

detect sensor fingerprint', IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 

26-37. 

Geradts, Z.J., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K. and Saitoh, N. (2001), 

'Methods for identification of images acquired with digital cameras', Enabling 

Technologies for Law Enforcement. International Society for Optics and 

Photonics, pp. 505-512. 

Gisolf, F., Malgoezar, A., Baar, T. and Geradts, Z. (2013) 'Improving source camera 

identification using a simplified total variation based noise removal algorithm', 

Digital Investigation, vol. 10, no. 3, pp. 207-214. 

Gloe, T. and Böhme, R. (2010) 'The Dresden image database for benchmarking digital 

image forensics', Journal of Digital Forensic Practice, vol. 3, no. 2-4, pp. 150-

159. 

Gloe, T., Franz, E. and Winkler, A. (2007), 'Forensics for flatbed scanners', Security, 

Steganography, and Watermarking of Multimedia Contents IX. vol. 6505, San 

Jose, CA, USA, 28 January 2007. SPIE pp. 65051I-65051I-65012. 

Goljan, M. (2008), 'Digital camera identification from images estimating false 

acceptance probability', Digital watermarking. Heidelberg: Springer, pp. 454-

468. 

Goljan, M., Fridrich, J. and Filler, T. (2009), 'Large scale test of sensor fingerprint 

camera identification', IS&T/SPIE Electronic Imaging. 5 Feb 2009. 

International Society for Optics and Photonics. 



  

166 

 

Goljan, M., Fridrich, J. and Lukáš, J. (2008), 'Camera identification from printed 

images', Electronic Imaging 2008. International Society for Optics and 

Photonics, pp. 68190I-68112. 

Gonzalez, R.C. and Woods, R.E. (2008) Digital image processing. Upper Saddle River, 

N.J: Pearson Education. 

Graham, R. (1998) Digital imaging. Latheronwheel: Whittles. 

Guangdong, W., Xiangui, K. and Liu, K.J.R. (2012), 'A context adaptive predictor of 

sensor pattern noise for camera source identification', 19th IEEE International 

Conference on Image Processing (ICIP), 2012. Orlando, FL, Sept. 30 2012-Oct. 

3 2012.  pp. 237-240. 

Guillon, S., Baylou, P., Najim, M. and Keskes, N. (1998) 'Adaptive nonlinear filters 

for 2D and 3D image enhancement', Signal Processing, vol. 67, no. 3, pp. 237-

254. 

Hany, F. (2006), Digital image ballistics from JPEG quantization, Technical Report 

TR2006-583, Department of Computer Science, Dartmouth College. 

Hou, J.U. and Lee, H.K. (2016) 'Detection of Hue Modification Using Photo Response 

Non-Uniformity', IEEE Transactions on Circuits and Systems for Video 

Technology, vol. PP, no. 99, pp. 1-1. 

Hsu, Y.-F. and Chang, S.-F. (2006), 'Detecting image splicing using geometry 

invariants and camera characteristics consistency', IEEE International 

Conference on Multimedia and Expo. . Toronto, Ont., 9-12 July 2006. IEEE, pp. 

549-552. 

Hu, Y., Li, C.-T. and Jian, C. (2010), 'Building fingerprints with information from 

three color bands for source camera identification', Proceedings of the 2nd 

ACM Workshop on Multimedia in Forensics, Security and Intelligence. ACM, 

pp. 111-116. 

Hu, Y., Li, C.-T. and Lai, Z. (2015) 'Fast source camera identification using matching 

signs between query and reference fingerprints', Multimedia tools and 

applications, vol. 74, no. 18, pp. 7405-7428. 

Hu, Y., Yu, B. and Jian, C. (2009), 'Source camera identification using large 

components of sensor pattern noise', 2nd International Conference on 

Computer Science and its Applications (CSA’09). Jeju, Korea (South), 10-12 

Dec. 2009.  pp. 1-5. 

Ibrahim, H. and Kong, N.S.P. (2009) 'Image sharpening using sub-regions histogram 

equalization', IEEE Transactions on Consumer Electronics., vol. 55, no. 2, pp. 

891-895. 

Jain, A.K. (1989) Fundamentals of digital image processing. Englewood Cliffs, N.J: 

Prentice Hall. 

Janesick, J.R. (2001) Scientific charge-coupled devices. vol. 117. Bellingham: SPIE 

press  

John, M.S., Dimitrijevic, A. and Picton, T.W. (2001) 'Weighted averaging of steady-

state responses', Clinical Neurophysiology, vol. 112, no. 3, pp. 555-562. 

Johnson, M.K. and Farid, H. (2005), 'Exposing digital forgeries by detecting 

inconsistencies in lighting', Proceedings of the 7th Workshop on Multimedia 

and Security. 1 Aug 2005. ACM, pp. 1-10. 



  

167 

 

Johnson, M.K. and Farid, H. (2006), 'Exposing digital forgeries through chromatic 

aberration', Proceedings of the 8th Workshop on Multimedia and Security. 26 

Sep 2006. ACM, pp. 48-55. 

Jong-Sen, L. (1980) 'Digital image enhancement and noise filtering by use of local 

statistics', IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. PAMI-2, no. 2, pp. 165-168. 

Kanan, C. and Cottrell, G.W. (2012) 'Color-to-grayscale: does the method matter in 

image recognition?', PloS one, vol. 7, no. 1, p. e29740. 

Kang, X., Chen, J., Lin, K. and Anjie, P. (2014) 'A context-adaptive SPN predictor for 

trustworthy source camera identification', EURASIP Journal on Image and 

Video Processing, vol. 2014, no. 1, pp. 1-11. 

Kang, X., Li, Y., Qu, Z. and Huang, J. (2011), 'Enhancing ROC performance of 

trustworthy camera source identification', IS&T/SPIE Electronic Imaging. 

International Society for Optics and Photonics, pp. 788009-788011. 

Kang, X., Li, Y., Qu, Z. and Huang, J. (2012) 'Enhancing source camera identification 

performance with a camera reference phase sensor pattern noise', IEEE 

Transactions on Information Forensics and Security, vol. 7, no. 2, pp. 393-402. 

Khanna, N. (2009), 'Forensic characterization of image capture devices', PhD thesis, 

Purdue University, West Lafayette, Indiana. 

Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P. and Delp, E.J. (2007a), 

'Forensic classification of imaging sensor types', In Electronic Imaging. vol. 

6505, 15 Feb 2007. International Society for Optics and Photonics. 

Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P. and Delp, E.J. (2007b), 

'Scanner identification using sensor pattern noise', Security, Steganography, 

and Watermarking of Multimedia Contents IX. vol. 6505, San Jose, CA, USA 

28 January 2007. SPIE pp. 65051K-65051K-65011. 

Khanna, N., Mikkilineni, A.K., Martone, A.F., Ali, G.N., Chiu, G.T.C., Allebach, J.P. 

and Delp, E.J. (2006) 'A survey of forensic characterization methods for 

physical devices', Digital Investigation, vol. 3, pp. 17-28. 

Kharrazi, M., Sencar, H.T. and Memon, N. (2004), 'Blind source camera identification', 

International Conference on Image Processing, 2004. ICIP'04. . vol. 1, 

Singapore, 24-27 Oct. 2004. IEEE, pp. 709-712. 

Kumar, M. and Saxena, R. (2013) 'Algorithm and technique on various edge detection: 

a survey', Signal & Image Processing, vol. 4, no. 3, p. 65. 

Kurkin, D., Lukin, V., Abramova, V., Abramov, S., Vozel, B. and Chehdi, K. (2012), 

'Image DCT coefficient statistics and their use in blind noise variance 

estimation', Mathematical Methods in Electromagnetic Theory (MMET), 2012 

International Conference on. IEEE, pp. 316-319. 

Laciar, E. and Jane, R. (2001), 'An improved weighted signal averaging method for 

high-resolution ECG signals', Computers in Cardiology 2001. Rotterdam, 23-

26 Sep 2001. IEEE, pp. 69-72. 

Langelaar, G.C., Setyawan, I. and Lagendijk, R.L. (2000) 'Watermarking digital image 

and video data: a state-of-the-art overview', IEEE,  Signal Processing 

Magazine, vol. 17, no. 5, pp. 20-46. 



  

168 

 

Lawgaly, A., Khelifi, F. and Bouridane, A. (2013), 'Image sharpening for efficient 

source camera identification based on sensor pattern noise estimation', Fourth 

International Conference on Emerging Security Technologies (EST). 

Cambridge, 9-11 Sept. 2013. IEEE, pp. 113-116. 

Lawgaly, A., Khelifi, F. and Bouridane, A. (2014), 'Weighted averaging-based sensor 

pattern noise estimation for source camera identification', IEEE International 

Conference on Image Processing (ICIP), 2014. Paris, 27-30 Oct. 2014. IEEE, 

pp. 5357-5361. 

Li, C.-T. (2009), 'Source camera linking using enhanced sensor pattern noise extracted 

from images', 3rd International Conference on Crime Detection and 

Prevention (ICDP 2009). 3 Dec 2009. IET, pp. 1-6. 

Li, C.-T. (2010) 'Source camera identification using enhanced sensor pattern noise', 

IEEE Transactions on Information Forensics and Security, vol. 5, no. 2, pp. 

280-287. 

Li, F.M. and Nathan, A. (2005) CCD image sensors in deep-ultraviolet: degradation 

behavior and damage mechanisms. New York: Springer. 

Li, R., Guan, Y. and Li, C.-T. (2014), 'PCA-based denoising of sensor pattern noise for 

source camera identification', IEEE China Summit & International Conference 

on Signal and Information Processing (ChinaSIP), 2014 Xi'an,China, 9-13 July 

2014. IEEE, pp. 436-440. 

Lin, X. and Li, C.-T. (2016) 'Preprocessing reference sensor pattern noise via spectrum 

equalization', IEEE Transactions on Information Forensics and Security, vol. 

11, no. 1, pp. 126-140. 

Liu, B.-B., Hu, Y. and Lee, H.-K. (2010), 'Source camera identification from 

significant noise residual regions', 17th IEEE International Conference on 

Image Processing (ICIP), 2010. Hong Kong, 26-29 Sept. 2010. IEEE, pp. 

1749-1752. 

Liu, B.-b., Wei, X. and Yan, J. (2015), 'Enhancing sensor pattern noise for source 

camera identification: an empirical evaluation', Proceedings of the 3rd ACM 

Workshop on Information Hiding and Multimedia Security. 17 Jun 2015. ACM, 

pp. 85-90. 

Lukas, J., Fridrich, J. and Goljan, M. (2006) 'Digital camera identification from sensor 

pattern noise', IEEE Transactions on Information Forensics and Security., vol. 

1, no. 2, pp. 205-214. 

Lukáš, J., Fridrich, J. and Goljan, M. (2005), 'Digital" bullet scratches" for images', 

IEEE International Conference on Image Processing, ICIP 2005. . vol. 3, 11-

14 Sept. 2005. IEEE, pp. III-65-68. 

Lukáš, J., Fridrich, J. and Goljan, M. (2006), 'Detecting digital image forgeries using 

sensor pattern noise', Electronic Imaging 2006. 2 Feb 2006. In Proceedings of 

SPIE,International Society for Optics and Photonics, pp. 60720Y-60711. 

Lukin, V.V., Fevralev, D.V., Ponomarenko, N.N., Abramov, S.K., Pogrebnyak, O., 

Egiazarian, K.O. and Astola, J.T. (2010) 'Discrete cosine transform–based local 

adaptive filtering of images corrupted by nonstationary noise', Journal of 

Electronic Imaging, vol. 19, no. 2, pp. 023007-023015. 



  

169 

 

Luo, W., Qu, Z., Pan, F. and Huang, J. (2007) 'A survey of passive technology for 

digital image forensics', Frontiers of Computer Science in China, vol. 1, no. 2, 

pp. 166-179. 

Mallat, S.p. (1999) A wavelet tour of signal processing. London: Academic Press. 

Matsushita, K. and Kitazawa, H. (2009), 'An improved camera identification method 

based on the texture complexity and the image restoration', Proceedings of the 

2009 International Conference on Hybrid Information Technology. 27 Aug. 

2009. ACM, pp. 171-175. 

Mihcak, M.K., Kozintsev, I. and Ramchandran, K. (1999), 'Spatially adaptive 

statistical modeling of wavelet image coefficients and its application to 

denoising', IEEE International Conference on Acoustics, Speech, and Signal 

Processing vol. 6, Phoenix, AZ, 15-19 Mar 1999. IEEE, pp. 3253-3256. 

Momot, A. (2009) 'Methods of weighted averaging of ECG signals using Bayesian 

inference and criterion function minimization', Biomedical Signal Processing 

and Control, vol. 4, no. 2, pp. 162-169. 

Momot, A. (2011), 'Methods of weighted averaging with application to biomedical 

signals', in G.D. Gargiulo. & A. EcEwan (eds), Applied Biomedical 

Engineering. INTECH Open Access Publisher. 

Monga, V. and Evans, B.L. (2006) 'Perceptual image hashing via feature points: 

performance evaluation and tradeoffs', IEEE Transactions on Image 

Processing, vol. 15, no. 11, pp. 3452-3465. 

Monga, V. and Mihçak, M.K. (2007) 'Robust and secure image hashing via non-

negative matrix factorizations', IEEE Transactions on Information Forensics 

and Security, vol. 2, no. 3-1, pp. 376-390. 

Motwani, M.C., Gadiya, M.C., Motwani, R.C. and Harris, F.C. (2004), 'Survey of 

image denoising techniques', Proceedings of GSPX.  pp. 27-30. 

Öktem, R., Egiazarian, K., Lukin, V.V., Ponomarenko, N.N. and Tsymbal, O.V. (2007) 

'Locally adaptive DCT filtering for signal-dependent noise removal', EURASIP 

Journal on Advances in Signal Processing, vol. 2007, no. 1, pp. 1-10. 

Pander, T., Przybyła, T. and Czabański, R. (2013) 'An application of the Lp-norm in 

robust weighted averaging of biomedical signals', JMIT, vol. 22, pp. 71-78. 

Parker, J.R. (1997) Algorithms for image processing and computer vision. Chichester: 

Wiley. 

Perona, P. and Malik, J. (1990) 'Scale-space and edge detection using anisotropic 

diffusion', IEEE Transactions on Pattern Analysis and Machine Intelligence, 

vol. 12, no. 7, pp. 629-639. 

Petrou, M. and Petrou, C. (2010) Image processing: the fundamentals. Hoboken, NJ: 

Wiley. 

Ponomarenko, N.N., Lukin, V.V., Zelensky, A.A., Astola, J.T. and Egiazarian, K.O. 

(2008), 'Adaptive DCT-based filtering of images corrupted by spatially 

correlated noise', Electronic Imaging 2008. 14 Feb 2008. International Society 

for Optics and Photonics, pp. 68120W-68111. 

Popescu, A.C. and Farid, H. (2005) 'Exposing digital forgeries in color filter array 

interpolated images', IEEE Transactions on Signal Processing, vol. 53, no. 10, 

pp. 3948-3959. 



  

170 

 

Qu, Z., Kang, X., Huang, J. and Li, Y. (2013), 'Forensic sensor pattern noise extraction 

from large image data set', IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP). Vancouver, BC, 26-31 May 2013. 

IEEE, pp. 3023-3027. 

Redi, J.A., Taktak, W. and Dugelay, J.-L. (2011) 'Digital image forensics: a booklet for 

beginners', Multimedia Tools and Applications, vol. 51, no. 1, pp. 133-162. 

Rey, C. and Dugelay, J.-L. (2002) 'A Survey of Watermarking Algorithms for Image 

Authentication', EURASIP Journal on Applied Signal Processing, vol. 2002, no. 

6, pp. 613-621. 

Rudin, L.I. and Osher, S. (1994), 'Total variation based image restoration with free 

local constraints', IEEE International Conference on Image Processing, ICIP-

94. vol. 1, Austin, TX, 13-16 Nov 1994. IEEE, pp. 31-35. 

Rudin, L.I., Osher, S. and Fatemi, E. (1992) 'Nonlinear total variation based noise 

removal algorithms', Physica D: Nonlinear Phenomena, vol. 60, no. 1, pp. 259-

268. 

San Choi, K., Lam, E.Y. and Wong, K.K. (2006), 'Source camera identification using 

footprints from lens aberration', Electronic Imaging 2006. 2 Feb 2006. 

International Society for Optics and Photonics, pp. 60690J-60698. 

Schalkoff, R.J. (1989) Digital image processing and computer vision. Chichester: 

Wiley. 

Sonka, M., Hlavac, V. and Boyle, R. (1999) Image processing, analysis, and machine 

vision. Pacific Grove, Calif: PWS Publishing. 

Starck, J.-L., Candès, E.J. and Donoho, D.L. (2002) 'The curvelet transform for image 

denoising', IEEE Transactions on image processing, vol. 11, no. 6, pp. 670-684. 

Sutcu, Y., Bayram, S., Sencar, H.T. and Memon, N. (2007), 'Improvements on Sensor 

Noise Based Source Camera Identification', IEEE International Conference on 

Multimedia and Expo. Beijing, 2-5 July 2007. IEEE pp. 24-27. 

Swaminathan, A., Mao, Y. and Wu, M. (2006) 'Robust and secure image hashing', 

IEEE Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 

215-230. 

Swaminathan, A., Wu, M. and Liu, K. (2007) 'Nonintrusive component forensics of 

visual sensors using output images', IEEE Transactions on Information 

Forensics and Security., vol. 2, no. 1, pp. 91-106. 

Swaminathan, A., Wu, M. and Liu, K. (2008) 'Digital image forensics via intrinsic 

fingerprints', IEEE Transactions on Information Forensics and Security, vol. 3, 

no. 1, pp. 101-117. 

Swaminathan, A., Wu, M. and Liu, K. (2009) 'Component forensics', Signal 

Processing Magazine, IEEE, vol. 26, no. 2, pp. 38-48. 

Tomioka, Y., Ito, Y. and Kitazawa, H. (2013) 'Robust digital camera identification 

based on pairwise magnitude relations of clustered sensor pattern noise', IEEE 

Transactions on Information Forensics and Security, , vol. 8, no. 12, pp. 1986-

1995. 

Tomioka, Y. and Kitazawa, H. (2011), 'Digital camera identification based on the 

clustered pattern noise of image sensors', IEEE International Conference on 

Multimedia and Expo (ICME) Barcelona, 11-15 July 2011.  pp. 1-4. 



  

171 

 

Tran Van, L., Kai-Sen, C., Emmanuel, S. and Kankanhalli, M.S. (2007), 'A survey on 

digital camera image forensic methods', IEEE International Conference on 

Multimedia and Expo. Beijing, 2-5 July 2007. IEEE, pp. 16-19. 

Trichili, H., Bouhlel, M.-S., Derbel, N. and Kamoun, L. (2002), 'A survey and 

evaluation of edge detection operators application to medical images', IEEE 

International Conference on Systems, Man and Cybernetics. vol. 4, 6-9 Oct. 

2002. IEEE, p. 4 pp. vol. 4. 

Valsesia, D., Coluccia, G., Bianchi, T. and Magli, E. (2015) 'Compressed fingerprint 

matching and camera identification via random projections', IEEE Transactions 

on Information Forensics and Security, vol. 10, no. 7, pp. 1472-1485. 

Van Drongelen, W. (2006) Signal processing for neuroscientists: an introduction to 

the analysis of physiological signals. Boston: Academic Press. 

van Houten, W. and Geradts, Z. (2012) 'Using anisotropic diffusion for efficient 

extraction of sensor noise in camera identification', Journal of Forensic 

Sciences, vol. 57, no. 2, pp. 521-527. 

Van Lanh, T., Chong, K.-S., Emmanuel, S. and Kankanhalli, M.S. (2007), 'A survey 

on digital camera image forensic methods', IEEE International Conference on 

Multimedia and Expo. Beijing, 2-5 July 2007. IEEE, pp. 16-19. 

Van, L.T., Emmanuel, S. and Kankanhalli, M.S. (2007), 'Identifying source cell phone 

using chromatic aberration', IEEE International Conference on Multimedia and 

Expo. Beijing, 2-5 July 2007. IEEE, pp. 883-886. 

Yang, O. and Rhee, K.H. (2010) 'A Survey on Image Hashing for Image 

Authentication', IEICE TRANSACTIONS on Information and Systems, vol. 93, 

no. 5, pp. 1020-1030. 

Zimba, M. and Xingming, S. (2011) 'DWT-PCA(EVD) Based Copy-move Image 

Forgery Detection', International Journal of Digital Content Technology and 

its Applications, vol. 5, no. 1. 

 

  



  

172 

 

Appendices  

Appendix A:   LADCT filter results based on constant noise variance. 

Image 

size 

Noise 

variance for 

each block 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128×128 

0.012 58.00 48.50 47.00 52.00 75.00 21.50 10.00 77.00 66.50 38.50 32.50 7.50 17.00 

0.007 42.00 36.50 31.00 40.00 60.50 16.50 7.00 78.50 69.00 33.00 31.00 4.00 13.00 

0.004 38.50 27.50 27.50 38.50 56.50 15.50 7.00 76.00 69.50 31.50 26.00 3.50 11.00 

0.002 33.00 24.50 22.50 40.50 48.00 10.50 6.00 71.50 63.00 28.50 20.50 1.50 13.50 

256×256 

0.012 25.50 15.50 14.50 23.50 39.00 3.50 0.50 63.50 49.00 11.00 7.00 1.00 4.00 

0.007 16.00 9.00 10.50 22.00 21.00 1.50 0.50 57.00 52.50 13.00 7.50 0.00 3.00 

0.004 12.00 5.00 8.50 17.00 17.50 2.00 0.50 56.00 51.50 10.00 8.00 0.00 4.00 

0.002 10.00 3.00 8.00 17.00 16.50 2.50 1.50 58.00 51.00 10.50 9.00 0.00 3.00 

512×512 

0.012 3.00 1.50 7.50 14.50 2.50 0.00 0.00 46.00 35.50 5.50 4.50 0.00 3.00 

0.007 2.50 0.50 8.00 11.00 3.00 0.00 0.00 41.50 33.50 6.50 4.00 0.00 4.00 

0.004 2.00 0.00 6.50 10.50 0.50 0.00 0.00 38.00 31.00 6.50 3.00 0.00 3.50 

0.002 1.00 0.00 7.00 10.50 0.50 0.00 0.00 35.50 29.00 6.00 3.50 0.00 3.00 

 

Table A1: False negative rate (%) based on constant noise variance with our dataset. 
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Image 

size 

Noise 

variance for 

each block 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128×128 

0.012 3.38 2.71 3.71 4.42 3.04 2.58 4.21 3.00 4.29 3.58 4.50 2.96 3.54 

0.007 3.46 2.21 3.38 2.96 2.63 2.58 2.92 2.67 3.54 2.88 3.38 2.38 3.54 

0.004 2.63 2.50 3.13 2.79 2.29 2.75 3.08 2.54 2.71 2.92 3.13 1.88 3.38 

0.002 2.04 2.38 2.58 2.21 2.00 2.58 3.08 2.08 2.75 2.21 3.13 2.04 2.88 

256×256 

0.012 2.17 1.38 2.04 1.83 1.29 1.25 1.71 1.13 1.67 1.83 1.79 1.42 1.96 

0.007 1.71 1.58 1.54 1.50 1.50 1.17 1.08 1.17 1.25 1.13 1.38 1.21 1.58 

0.004 1.46 1.08 1.63 1.38 1.42 1.08 1.00 1.17 1.00 1.08 1.17 0.96 1.58 

0.002 1.25 1.21 1.54 1.42 1.13 0.92 1.33 1.04 1.04 1.33 1.21 1.33 1.08 

512×512 

0.012 1.00 1.38 1.21 0.67 0.63 0.50 0.67 0.71 0.58 0.71 0.75 0.63 0.88 

0.007 1.08 1.13 1.25 0.58 0.75 0.50 0.92 0.58 0.67 0.50 0.46 0.38 0.75 

0.004 0.79 1.00 0.79 0.54 0.79 0.58 0.92 0.50 0.33 0.46 0.79 0.42 0.54 

0.002 0.79 0.79 0.75 0.29 0.38 0.58 0.63 0.63 0.71 0.58 0.58 0.50 0.79 

 

Table A2: False positive rate (%) based on constant noise variance with our dataset. 
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Image 

size 

Noise 

Variance for 

each block 

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

0.012 58.94 54.11 58.45 59.42 78.26 71.50 60.87 51.69 22.22 42.51 

0.007 55.07 49.76 52.17 52.17 71.01 57.49 50.72 46.38 16.91 29.47 

0.004 44.93 36.23 49.28 46.38 67.63 54.59 43.48 36.71 13.53 23.67 

0.002 42.03 31.88 51.69 49.28 51.21 40.10 36.23 29.95 12.08 20.29 

256×256 

0.012 26.57 22.71 41.55 41.55 64.73 52.66 31.88 19.32 3.38 6.28 

0.007 22.71 13.04 35.27 33.33 57.49 36.71 23.19 16.91 1.45 3.86 

0.004 16.43 9.18 29.95 26.57 44.93 30.92 15.94 12.08 0.97 2.90 

0.002 20.77 9.18 31.88 28.99 28.50 15.94 10.63 11.59 0.97 4.35 

512×512 

0.012 9.18 6.76 19.32 16.91 37.20 18.84 6.76 5.80 0.00 0.48 

0.007 8.70 3.86 14.49 10.63 26.09 10.63 3.86 4.83 0.00 0.00 

0.004 8.21 2.90 9.18 8.70 13.53 4.35 2.42 6.28 0.00 0.00 

0.002 6.28 1.45 12.56 12.56 8.21 1.45 3.38 7.73 0.00 0.48 

 

Table A3: False negative rate (%) based on constant noise variance with the Dresden dataset. 
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Image 

size 

Noise 

Variance for 

each block 

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128×128 

0.012 5.21 6.33 5.74 5.37 6.28 6.44 5.58 7.41 6.39 7.25 

0.007 4.78 5.42 5.05 5.58 4.56 4.78 5.26 5.58 6.12 6.33 

0.004 4.46 4.88 4.24 4.29 4.51 4.03 4.51 4.83 4.99 5.53 

0.002 3.97 3.92 3.86 3.44 3.92 4.40 3.60 4.46 4.29 4.67 

256×256 

0.012 3.33 3.92 2.09 3.11 3.33 3.54 3.44 3.65 3.86 4.24 

0.007 3.17 2.52 2.04 2.31 2.31 2.79 2.58 2.90 3.70 2.79 

0.004 1.99 2.25 1.93 1.93 1.93 2.25 1.88 2.15 2.84 1.93 

0.002 1.61 1.61 1.72 1.40 1.77 1.93 1.18 1.99 2.15 2.52 

512×512 

0.012 1.40 1.72 1.07 1.13 1.02 1.93 1.40 1.13 1.13 1.56 

0.007 1.07 0.91 0.81 1.02 1.13 1.18 0.70 0.64 0.97 0.81 

0.004 0.75 0.59 0.43 0.48 0.81 0.64 0.54 0.43 0.70 0.81 

0.002 0.59 0.54 0.64 0.38 0.70 0.59 0.43 0.59 0.86 0.70 

 

Table A4: False positive rate (%) based on constant noise variance with the Dresden dataset. 
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Appendix B: Results for Colour PRNU  

Image 

size 
Methods DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128× 

128 

Green image  43.96 14.49 34.30 32.85 14.49 20.77 25.12 10.14 7.25 13.53 

Gray image  33.82 13.53 35.27 34.78 11.59 14.01 27.54 14.01 6.28 10.14 

Grey Colour -to-luminance PRNU  33.82 13.04 37.20 29.95 13.04 10.63 25.60 13.53 4.35 11.59 

RGB scheme 3  32.37 13.53 30.43 26.09 13.53 6.28 26.09 15.94 7.25 11.59 

Proposed 31.88 12.08 19.32 20.77 10.14 8.70 17.87 6.28 3.86 13.04 

256× 

256 

Green image  14.98 4.83 9.66 10.63 2.42 4.35 10.14 1.93 3.86 3.38 

Gray image  10.63 2.90 14.01 10.63 2.90 2.42 11.11 4.35 0.97 0.97 

Grey Colour -to-luminance PRNU  11.11 1.93 12.08 10.63 2.90 1.45 9.66 4.83 0.97 0.48 

RGB scheme 3  11.59 2.42 9.18 8.70 3.86 0.48 10.63 5.80 0.00 1.45 

Proposed 12.08 1.93 4.83 6.28 2.42 0.97 8.21 2.42 1.45 0.97 

512× 

512 

Green image  5.31 2.42 1.45 1.45 0.97 0.48 4.83 0.00 0.97 0.00 

Gray image  4.35 0.48 3.86 1.45 0.97 0.48 4.83 0.00 0.00 0.00 

Grey Colour -to-luminance PRNU  4.35 0.48 2.90 1.45 0.48 0.48 5.31 0.48 0.00 0.00 

RGB scheme 3  2.90 0.48 2.42 0.97 0.48 0.00 4.83 3.38 0.00 0.00 

Proposed 3.38 2.42 1.93 0.97 0.48 0.48 4.83 0.00 0.00 0.00 

 

Table B1: False negative rate (%) based on each color component with the Dresden dataset. 
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Image 

size 
Methods DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128× 

128 

Green image  1.34 1.99 1.56 1.45 3.01 1.45 3.60 5.74 1.72 2.25 

Gray image  1.56 1.93 2.15 1.40 2.42 1.66 2.74 3.97 2.52 1.99 

Grey Colour -to-luminance PRNU  1.23 2.36 1.66 1.40 2.42 1.40 2.47 3.81 2.58 2.09 

RGB scheme 3  1.45 2.09 1.45 1.29 1.93 1.66 2.04 3.70 2.63 2.09 

Proposed 0.75 1.29 1.29 0.97 1.72 2.74 1.66 3.70 1.93 1.18 

256× 

256 

Green image  0.32 0.59 0.38 0.32 0.81 0.38 1.45 2.36 0.54 0.21 

Gray image  0.16 0.75 0.54 0.38 0.70 0.48 0.70 1.56 0.91 0.59 

Grey Colour -to-luminance PRNU  0.21 0.64 0.54 0.43 0.43 0.38 0.59 1.29 1.13 0.38 

RGB scheme 3  0.21 0.64 0.54 0.48 0.27 0.48 0.21 1.18 1.34 0.64 

Proposed 0.16 0.48 0.54 0.27 0.32 0.38 0.38 1.40 0.48 0.59 

512× 

512 

Green image  0.11 0.16 0.11 0.05 0.05 0.00 0.43 0.75 0.11 0.21 

Gray image  0.16 0.27 0.11 0.21 0.05 0.05 0.21 0.59 0.00 0.16 

Grey Colour -to-luminance PRNU  0.11 0.16 0.16 0.27 0.05 0.00 0.05 0.64 0.38 0.11 

RGB scheme 3  0.11 0.05 0.11 0.16 0.00 0.16 0.05 0.64 0.38 0.05 

Proposed 0.00 0.00 0.11 0.21 0.05 0.11 0.11 0.91 0.05 0.05 

 

Table B2: False positive rate (%) based on each color component with the Dresden dataset. 
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Image 

size 
Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Green image  20.00 12.00 15.50 33.50 42.00 16.50 1.50 69.50 51.50 19.00 17.50 1.50 6.50 

Gray image  20.00 13.00 15.50 29.50 47.00 17.00 1.50 66.50 52.00 18.50 15.50 2.00 5.50 

Grey Colour -to-

luminance PRNU  
15.50 10.00 15.50 30.00 43.00 16.50 1.00 65.00 53.00 18.50 17.00 1.00 6.00 

RGB scheme 3  18.50 10.50 14.00 29.50 47.00 13.50 1.50 67.00 51.50 18.00 13.50 1.50 6.00 

Proposed 15.00 9.50 14.00 26.50 42.00 14.00 1.00 64.50 50.00 18.00 17.00 1.00 4.50 

256× 

256 

Green image  4.00 0.50 8.50 17.50 9.50 8.50 0.00 45.50 36.50 6.50 6.50 0.00 1.00 

Gray image  6.50 0.50 8.00 13.50 11.50 8.00 0.00 42.50 34.00 8.00 6.00 0.00 1.00 

Grey Colour -to-

luminance PRNU  
3.50 0.50 8.50 14.50 9.50 8.00 0.00 43.00 34.50 6.50 6.00 0.00 1.00 

RGB scheme 3  4.50 0.00 8.00 15.00 11.50 5.50 0.00 45.00 33.50 8.00 5.50 0.00 1.00 

Proposed 3.50 0.50 8.50 13.50 9.00 8.00 0.00 43.00 34.00 6.00 5.50 0.00 1.00 

512× 

512 

Green image  0.50 0.00 8.00 7.00 1.00 3.50 0.00 31.50 27.50 5.00 2.50 0.00 0.50 

Gray image  0.50 0.00 8.00 6.50 0.50 3.00 0.00 30.50 27.50 4.00 2.50 0.00 0.50 

Grey Colour -to-

luminance PRNU  
0.50 0.00 8.00 7.50 1.00 3.00 0.00 29.50 25.50 5.50 2.50 0.00 0.50 

RGB scheme 3  1.00 0.00 8.00 5.50 1.50 3.00 0.00 29.50 26.50 4.00 2.50 0.00 0.50 

Proposed 0.50 0.00 7.50 5.50 1.00 3.00 0.00 28.50 26.00 5.00 2.00 0.00 0.50 

 

Table B3: False negative rate (%) based on each color component with our dataset. 
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Image 

size 
Methods C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Green image  2.29 1.92 1.54 1.54 1.29 2.58 3.67 1.00 1.79 1.21 2.58 2.54 1.58 

Gray image  2.00 2.04 1.79 1.92 0.92 2.46 3.00 1.25 2.42 1.17 2.58 1.88 1.88 

Grey Colour -to-

luminance PRNU  
1.79 1.96 2.00 1.63 0.96 2.04 3.17 1.08 1.96 1.38 2.92 1.88 1.50 

RGB scheme 3  2.04 2.04 1.67 1.54 0.92 1.92 2.75 1.21 1.92 1.75 3.17 2.00 1.42 

Proposed 1.75 1.75 1.63 1.42 0.92 1.92 2.75 1.13 2.17 1.54 2.88 1.79 1.50 

256× 

256 

Green image  1.08 0.96 0.67 0.83 0.75 1.00 2.21 0.21 0.71 1.04 0.79 1.17 0.63 

Gray image  0.88 0.63 0.79 1.00 0.67 1.04 1.63 0.54 0.75 0.92 1.08 0.83 0.88 

Grey Colour -to-

luminance PRNU  
1.17 0.67 0.79 0.79 0.67 0.92 1.92 0.29 0.88 0.88 0.96 0.88 0.96 

RGB scheme 3  0.88 0.54 1.04 0.83 0.63 0.88 1.33 0.38 0.88 1.13 1.17 1.04 0.75 

Proposed 1.17 0.79 0.79 0.88 0.29 1.00 1.58 0.38 0.71 0.92 1.17 0.75 0.67 

512× 

512 

Green image  0.58 0.71 0.29 0.71 0.58 0.71 0.67 0.29 0.38 0.33 0.71 0.58 0.63 

Gray image  0.75 0.58 0.38 0.67 0.42 0.75 0.58 0.21 0.29 0.67 0.58 0.42 0.67 

Grey Colour -to-

luminance PRNU  
0.71 0.54 0.33 0.83 0.38 0.58 0.67 0.21 0.33 0.50 0.71 0.46 0.67 

RGB scheme 3  0.50 0.54 0.50 0.83 0.25 0.54 0.50 0.21 0.42 0.42 0.83 0.58 0.75 

Proposed 0.67 0.67 0.25 0.79 0.29 0.63 0.54 0.25 0.42 0.42 0.83 0.33 0.67 

 

Table B4: False positive rate (%) based on each color component with our dataset. 
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Appendix C : Overall FNR and FPR for each technique 

Image 

size 
Technique DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128× 

128 

Basic PRNU 34.30 24.15 40.58 39.13 45.89 32.85 32.37 26.57 6.28 16.91 

MLE  PRNU 33.33 29.95 41.06 40.10 35.27 27.05 31.40 23.67 8.21 14.49 

Phase-PRNU  34.30 21.26 38.65 38.65 37.68 28.99 34.78 29.95 5.80 14.49 

CD_PRNU  32.37 28.02 39.27 49.28 31.40 32.85 29.47 32.37 14.49 23.19 

WA  32.85 19.32 40.58 36.23 25.60 16.43 29.47 21.74 6.28 8.70 

Wiener & median PRNU 36.71 21.74 38.16 33.82 38.65 28.50 37.20 29.47 14.01 21.74 

proposed system 26.57 12.08 18.84 23.19 10.14 6.76 15.94 10.14 5.80 11.59 

256× 

256 

Basic PRNU 13.04 6.28 18.36 18.84 17.87 10.63 11.11 7.25 0.48 1.45 

MLE  PRNU 12.56 8.21 18.84 22.71 13.53 8.21 11.59 7.73 0.00 0.00 

Phase-PRNU  11.59 4.83 18.36 20.29 14.98 7.73 11.59 10.63 0.48 0.48 

CD_PRNU  4.83 6.28 19.81 17.87 9.66 12.56 10.63 14.01 5.80 3.38 

WA  11.11 6.28 11.11 18.36 7.25 2.42 10.14 7.73 0 0 

Wiener & median PRNU 14.98 5.80 15.94 17.87 13.04 7.25 16.91 11.59 2.90 2.90 

proposed system 8.21 1.93 5.31 7.25 3.86 0.97 4.83 5.31 1.45 0.48 

512× 

512 

Basic PRNU 4.35 1.93 4.35 2.42 4.35 0.00 2.90 4.83 0.00 0.00 

MLE  PRNU 4.83 1.93 3.38 1.93 2.42 0.00 2.90 7.25 0.00 0.00 

Phase-PRNU  3.38 1.45 3.86 1.45 4.35 0.00 1.45 4.35 0.00 0.00 

CD_PRNU  0.97 2.90 4.83 7.73 0.48 0.48 1.93 4.35 0.48 0.00 

WA  5.80 1.45 4.35 0.97 0.48 0.48 2.90 0.48 0.00 0.00 

Wiener & median PRNU 4.35 1.93 4.35 2.90 1.93 0.97 3.86 3.38 0.00 0.00 

proposed system 2.42 0.48 1.93 1.45 0.48 0.48 0.97 0.97 0.00 0.00 

Table C1: False negative rate (%) for each technique with the Dresden dataset. 
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Image 

size 
Technique DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 

128× 

128 

Basic PRNU 3.54 3.17 3.01 3.01 3.06 3.97 2.84 3.38 3.70 2.95 

MLE  PRNU 2.52 3.22 3.06 2.84 2.79 3.70 3.60 3.17 3.33 3.38 

Phase-PRNU  2.90 2.74 2.90 3.06 2.84 2.84 2.95 3.65 4.19 3.38 

CD_PRNU  3.11 3.17 3.44 2.74 4.62 4.13 3.44 3.17 4.03 3.11 

WA  1.88 2.52 2.63 1.83 2.63 2.84 2.79 2.74 3.38 2.95 

Wiener & median PRNU 2.84 2.95 3.92 3.92 3.06 3.06 3.65 3.49 3.01 3.44 

proposed system 0.97 1.29 1.56 0.81 1.45 2.74 2.58 3.17 1.72 1.02 

256× 

256 

Basic PRNU 0.91 1.02 1.07 0.91 1.18 1.45 0.59 1.13 1.45 1.56 

MLE  PRNU 0.86 0.91 1.23 1.72 0.86 1.29 0.70 0.81 1.72 1.13 

Phase-PRNU  0.86 0.91 1.34 1.13 1.13 1.13 1.23 0.75 1.23 1.50 

CD_PRNU  3.33 0.32 0.48 0.11 2.42 2.68 0.59 0.27 0.43 0.32 

WA  0.64 0.86 0.81 0.75 0.59 1.13 0.64 0.75 1.77 1.23 

Wiener & median PRNU 0.81 1.07 1.50 1.23 1.07 1.72 0.86 1.29 1.34 1.23 

proposed system 0.16 0.54 0.59 0.27 0.32 3.11 0.48 0.75 0.48 0.32 

512× 

512 

Basic PRNU 0.11 0.32 0.32 0.38 0.16 0.54 0.21 0.21 0.27 0.27 

MLE  PRNU 0.27 0.11 0.32 0.27 0.11 0.32 0.16 0.21 0.38 0.64 

Phase-PRNU  0.05 0.11 0.16 0.27 0.11 0.48 0.16 0.16 0.48 0.27 

CD_PRNU  0.27 0.00 0.11 0.00 0.75 0.86 0.27 0.16 0.00 0.16 

WA  0 0.05 0 0.21 0.16 0.11 0.21 0.64 0.21 0.27 

Wiener & median PRNU 0.27 0.21 0.32 0.21 0.11 0.38 0.38 0.27 0.21 0.27 

proposed system 0.05 0.00 0.16 0.21 0.05 0.11 0.11 0.11 0.21 0.05 

 

Table C2: False positive rate (%) for each technique with the Dresden dataset. 
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Image 

size 
Technique C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Basic PRNU 25.50 20.50 16.00 31.50 44.00 4.50 1.00 66.00 59.00 15.00 21.00 1.00 9.00 

MLE  PRNU 23.50 22.50 19.00 32.00 39.50 11.00 2.00 59.00 54.00 23.50 12.50 1.00 6.50 

Phase-PRNU  24.00 15.00 13.50 32.00 43.00 6.50 4.00 64.00 57.00 17.50 15.50 1.00 9.50 

CD_PRNU  16.50 18.50 18.50 30.00 36.50 8.00 7.50 55.50 73.00 19.50 17.00 4.50 5.50 

WA  23.00 15.50 15.00 27.50 41.00 6.00 1.00 61.50 55.00 18.50 17.00 0.50 8.50 

Wiener & median 

PRNU 

29.00 22.50 23.50 33.50 59.50 22.50 9.00 65.50 54.00 26.00 16.00 6.00 12.00 

proposed system 14.50 8.50 14.50 27.00 40.00 9.00 2.00 65.00 53.50 18.50 18.00 1.00 5.00 

256× 

256 

Basic PRNU 3.00 1.00 7.50 17.00 8.00 0.00 0.00 48.00 44.50 8.50 7.00 0.00 2.00 

MLE  PRNU 4.00 1.50 8.00 16.50 7.00 1.00 0.00 49.50 37.50 8.50 7.50 0.00 2.50 

Phase-PRNU  3.50 1.50 8.00 14.50 10.50 0.50 0.00 46.50 40.50 9.00 6.50 0.00 2.00 

CD_PRNU  5.50 1.50 6.50 13.50 7.50 0.00 0.50 41.00 38.00 10.00 7.00 0.50 1.00 

WA  2.50 1.00 6.50 17.00 9.50 0.50 0.00 47.00 38.50 6.50 7.00 0.00 1.50 

Wiener & median PRNU 4.00 3.00 9.00 17.00 27.50 4.00 1.50 46.00 35.00 10.50 8.00 0.50 4.00 

proposed system 3.00 0.50 8.50 12.00 10.00 0.50 0.00 42.50 36.50 6.50 6.00 0.00 1.00 

512× 

512 

Basic PRNU 0.50 0.00 5.50 9.50 0.50 0.00 0.00 35.00 26.50 5.00 3.50 0.00 3.50 

MLE  PRNU 0.00 0.00 4.50 7.00 0.00 0.00 0.00 32.00 27.50 4.50 3.50 0.00 3.50 

Phase-PRNU  0.00 0.00 4.50 5.50 0.00 0.00 0.00 34.00 27.50 3.50 3.50 0.00 3.50 

CD_PRNU  1.00 0.00 4.00 5.00 0.00 0.00 0.00 25.50 30.50 4.50 4.00 0.00 1.00 

WA  0.00 0.00 5.50 6.00 0.00 0.00 0.00 30.00 28.00 4.50 4.00 0.00 3.00 

Wiener & median PRNU 1.00 0.50 6.00 8.00 1.00 0.50 0.00 29.50 24.50 5.00 4.50 0.00 2.50 

proposed system 0.50 0.00 6.00 5.50 0.00 0.00 0.00 28.00 25.00 4.00 2.00 0.00 0.00 

 

Table C3: False negative rate (%) for each technique with our dataset. 
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Image 

size 
Technique C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 

128× 

128 

Basic PRNU 2.33 1.75 2.54 1.88 1.63 2.75 2.46 1.92 2.00 1.75 1.92 1.46 2.42 

MLE  PRNU 1.92 2.13 2.33 1.79 1.33 2.33 2.79 1.79 1.96 1.46 2.00 1.46 2.21 

Phase-PRNU  2.33 1.58 2.38 1.38 1.54 2.25 2.58 1.92 1.79 1.79 1.92 1.58 2.17 

CD_PRNU  2.38 1.46 3.46 1.79 2.83 3.58 1.75 2.67 0.08 1.17 1.17 1.38 2.17 

WA  2.25 1.67 2.46 1.88 1.33 1.71 2.42 1.63 2.00 1.67 2.29 1.33 1.96 

Wiener & median PRNU 2.63 2.33 3.08 2.50 2.13 2.46 2.29 2.04 3.04 2.00 2.58 2.25 2.25 

proposed system 1.92 1.96 1.63 1.54 1.13 2.04 2.58 1.17 1.50 1.63 2.33 1.88 1.75 

256× 

256 

Basic PRNU 0.92 0.88 1.50 0.92 0.75 1.08 1.00 0.88 1.04 0.88 0.92 0.67 0.79 

MLE  PRNU 0.88 1.21 1.08 0.79 0.92 0.88 0.96 0.58 0.92 0.79 1.00 1.00 0.88 

Phase-PRNU  1.25 1.00 1.29 0.92 0.71 1.04 0.83 0.71 1.04 0.88 0.71 0.79 0.92 

CD_PRNU  0.92 0.33 1.21 1.04 2.08 1.54 0.92 0.75 0.58 0.54 0.08 0.42 0.63 

WA  0.92 0.75 1.42 0.75 0.92 0.92 0.92 0.71 0.63 0.71 1.21 0.79 0.96 

Wiener & median PRNU 1.38 0.75 1.25 1.38 0.88 1.17 0.96 0.42 1.13 1.13 1.33 1.29 1.13 

proposed system 1.13 0.83 1.13 0.92 0.46 1.04 1.00 0.38 0.54 0.88 0.92 0.79 0.67 

512× 

512 

Basic PRNU 0.92 0.46 0.46 0.42 0.54 0.54 0.88 0.46 0.46 0.63 0.67 0.63 0.42 

MLE  PRNU 0.83 0.38 0.71 0.46 0.46 0.54 0.79 0.46 0.42 0.54 0.71 0.38 0.25 

Phase-PRNU  0.63 0.46 0.79 0.17 0.50 0.67 1.08 0.58 0.38 0.46 0.46 0.38 0.29 

CD_PRNU  0.71 0.46 0.54 0.46 0.50 0.33 0.67 0.46 0.46 0.46 0.83 0.33 0.25 

WA  0.50 0.46 0.75 0.38 0.33 0.67 0.79 0.54 0.33 0.42 0.75 0.63 0.42 

Wiener & median PRNU 0.71 0.67 0.83 0.42 0.38 0.92 0.54 0.42 0.50 0.42 0.54 0.25 0.42 

proposed system 0.67 0.71 0.29 0.92 0.33 0.33 0.25 0.25 0.29 0.42 0.63 0.54 0.58 

 

Table C4: False positive rate (%) for each technique with our dataset. 


