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Abstract: We investigated time-resolved ultraviolet-visible (UV-vis) 

light absorbance to identify the formation behaviour of formaldehyde 

(HCHO) and hydroxyl (OH) within the wavelength range of 280-400 nm in a 

homogeneous charge compression ignition (HCCI) engine fuelled with 

dimethyl ether (DME). The time-resolved HCHO and OH profiles at different 

initial pressures showed that HCHO absorbance increased in the low-

temperature reaction (LTR) and thermal-ignition preparation (TIP) regions 

and decreased gradually as the combustion approached the high-temperature 

reaction (HTR) region. At higher intake pressures, HCHO absorbance 

decreased and OH absorbance increased. The time-resolved absorbance 

spectra of HCHO, with peaks at 316, 328, 340, and 354 nm for all 

combustion cycles, were evaluated and it was found that average 

absorption at 328 nm was slightly higher than at 316, 340, and 354 nm. 

For knocking combustion cycles, the absorbance of HCHO in the LTR region 

was high for cycles with low knock intensity and low for cycles with high 

knock intensity, showing a high level of OH absorbance. Chemical kinetics 

analyses showed that for different fuel/oxidiser ratios, initial O2 

concentration and intake temperature had no effect on in-cylinder 

temperatures in the LTR or TIP regions. However, they did have 

significant effects on HTR combustion. In-cylinder temperature in the LTR 

region had less effect on HCHO and H2O2 formation than pressure. 



 HCHO absorbance increased in LTR and TIP regions and decreased in HTR region

 HCHO decreased as RoHR increased and vice versa

 O2 and intake temperature did not affect in-cylinder temperature in LTR and TIP

 O2 and intake temperature had significant effects on HTR combustion

 HCHO concentration was very low when knock intensity was very high, and vice versa

Highlights (for review)
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Abstract 42 

We investigated time-resolved ultraviolet-visible (UV-vis) light absorbance to identify the 43 

formation behaviour of formaldehyde (HCHO) and hydroxyl (OH) within the wavelength range 44 

of 280–400 nm in a homogeneous charge compression ignition (HCCI) engine fuelled with 45 

dimethyl ether (DME). The time-resolved HCHO and OH profiles at different initial pressures 46 

showed that HCHO absorbance increased in the low-temperature reaction (LTR) and 47 

thermal-ignition preparation (TIP) regions and decreased gradually as the combustion 48 

approached the high-temperature reaction (HTR) region. At higher intake pressures, HCHO 49 

absorbance decreased and OH absorbance increased. The time-resolved absorbance spectra of 50 

HCHO, with peaks at 316, 328, 340, and 354 nm for all combustion cycles, were evaluated and it 51 

was found that average absorption at 328 nm was slightly higher than at 316, 340, and 354 nm. 52 

For knocking combustion cycles, the absorbance of HCHO in the LTR region was high for 53 

cycles with low knock intensity and low for cycles with high knock intensity, showing a high 54 

level of OH absorbance. Chemical kinetics analyses showed that for different fuel/oxidiser ratios, 55 

initial O2 concentration and intake temperature had no effect on in-cylinder temperatures in the 56 

LTR or TIP regions. However, they did have significant effects on HTR combustion. In-cylinder 57 

temperature in the LTR region had less effect on HCHO and H2O2 formation than pressure. 58 

59 

Key words: HCCI, low-temperature combustion, dimethyl ether combustion, UV-vis light 60 

absorption, formaldehyde, OH 61 
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Nomenclature 69 

DME dimethyl ether 70 

HCCI homogeneous charge compression ignition 71 

DARS digital analysis of reactive systems 72 

RCM rapid compression machine 73 

CAD crank angle degree 74 

TDC top dead centre 75 

BDC bottom dead centre 76 

IVC intake valve closure 77 

LTC low-temperature combustion 78 

LTR  low-temperature reaction 79 

NTC negative temperature coefficient 80 

TIP thermal ignition preparation 81 

HTR high-temperature reaction 82 

ROHR max maximum rate of heat release (J/deg) 83 

ROHR LTR peak peak of heat release rate in low-temperature reaction region (J/deg) 84 

KI knock intensity (MPa) 85 

Pin intake pressure (MPa) 86 

PEC end-of-compression pressure (MPa) 87 

Tin intake temperature (K) 88 

HCHO formaldehyde 89 

OH hydroxyl 90 

ICCD intensified charge-coupled device 91 

92 

93 

94 

1. Introduction95 

Homogeneous charge compression ignition (HCCI) engines have drawn the attention of many 96 

researchers due to their high efficiency and lower nitrogen oxide (NOx) and particulate matter 97 

(PM) emissions. Most recent studies on HCCI have focussed on four-stroke engines [1, 2]. 98 

Dimethyl ether (DME: CH3OCH3) is an attractive alternative to conventional diesel fuel for 99 

compression-ignition (CI) engines because it auto-ignites favourably and burns with little soot 100 

formation [3, 4]. DME is an oxygenated hydrocarbon, with a low carbon-to-hydrogen ratio and 101 

the absence of a C-C bond, leading to very low emissions of PM during combustion. DME is 102 

also considered a promising alternative fuel with the potential to solve air-pollution problems 103 
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caused by NOx emissions [4]. DME shows very strong low-temperature kinetic reactions in 104 

HCCI. The processes of low-temperature reactions (LTRs) involve branched chain reactions, the 105 

evolution of which is determined by the processes of parallel and consecutive elementary 106 

reactions, with the participation of free radicals and atoms. It is known that slow combustion of 107 

hydrocarbons follows a degenerate branched mechanism and is characterised by a large variety 108 

of elementary reactions, with the participation of free radicals having complex structures. 109 

Apparently, these specific features are responsible for the kinetic manifestations of the oxidation 110 

processes: the slow combustion of hydrocarbons, shown by cool flames and a negative 111 

temperature coefficient (NTC) of the reaction rate, collectively called the LTR region, the 112 

thermal-ignition preparation (TIP), the high-temperature reaction (HTR), and thermokinetic 113 

oscillations (Fig. 1). Interest in the cool flames, NTCs, and oscillations is high because of the 114 

need to take into account the influence of these factors on the dynamics, kinetics, and 115 

mechanisms of hydrocarbon oxidation and combustion in practice. Thus, a study of an HCCI 116 

engine fuelled with DME may provide useful information on the low-temperature kinetic 117 

reactions for HCCI operation with other fuels. The oxidation of DME has been examined in 118 

several studies and research has led to the development of detailed and reduced chemical kinetics 119 

models of DME combustion [5-11]. 120 

To understand the DME oxidation mechanism in an HCCI engine, an experimental kinetic 121 

study of DME combustion is needed. An effective way to study DME combustion is to use a 122 

spectrum analysis to determine the major active aldehyde group species, such as formaldehyde 123 

(HCHO) and other active radicals [12, 13]. Studies have examined HCHO absorption in a 124 

constant volume vessel or a reactor [14, 15]. A few studies have also examined HCHO formation 125 

and absorption under normal engine conditions [16, 17]. HCHO is an important intermediate 126 

species that influences the low-temperature chain reactions in hydrocarbon, oxygenated, and 127 

biofuel combustion processes [18, 19]. Some research groups have stated that, under certain 128 

experimental conditions, HCHO can act as a hydroxyl (OH) radical inhibitor and can suppress 129 

engine knock [20, 21]. Other groups have emphasised that HCHO reacts as a promoter of 130 
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auto-ignition by advancing auto-ignition timing, resulting in a higher heat release rate [22]. Thus, 131 

it is important to detect in situ and monitor HCHO formation inside the engine cylinder [23-27] 132 

to understand in detail the in-cylinder processes and be able to design advanced combustion 133 

control systems [28]. Existing diagnostic methods for HCHO detection are based mostly on the 134 

laser-induced fluorescence (LIF) technique [23, 29, 30]. Previous attempts by other groups to 135 

measure HCHO absorption in the infrared (IR) region [31-34] were successful; however, it was 136 

concluded that it would be almost impossible to readily detect and measure HCHO 137 

concentrations due to a lack of sensitivity and/or interference from other molecules as 138 

combustion products, such as H2O, CO2, and CO [35, 36]. Understanding the HCHO formation 139 

process would help to resolve problems related to knocking combustion. In internal combustion 140 

(IC) engines, engine knock is related to HCHO in the hot spots (exothermic centres) of the slow 141 

oxidation process prior to autoignition [37, 38]. HCHO is an important intermediate species in 142 

the cool flames preceding the main combustion. It has been shown that the local HCHO 143 

concentration decreases dramatically in locations with peak heat release rates [39]. 144 

Thus, the objective of this study was to investigate the combustion characteristics in an 145 

HCCI engine fuelled with DME. Ultraviolet-visible (UV-vis) absorption spectroscopy was used 146 

to determine the light absorption of chemical species during the DME combustion process, 147 

which includes low-temperature oxidation and high-temperature ignition. The major aim was to 148 

characterise the combustion cycles in terms of time-resolved spectra of HCHO and OH species, 149 

as representative indicators of low-temperature oxidation and thermal ignition, respectively, 150 

during HCCI combustion. Chemical kinetics analyses were performed to evaluate the effects of 151 

pressure and temperature on HCHO and OH formation, taking into account the interactions of 152 

these species with H2O2 and HO2. The absorbances of HCHO and OH during knocking 153 

combustion in HCCI were investigated by estimating the knock intensity derived from 154 

in-cylinder pressure oscillations. 155 

156 

2. Experimental setup and procedure157 
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Test engine and light absorbance acquisition system 158 

An HCCI fuelled with DME was studied in an optical compression-expansion test engine with a 159 

single cylinder and a compression ratio of 9.0. Figure 2 shows a schematic diagram of the test 160 

engine with its specification and experimental conditions summarised in Table 1. The engine 161 

crank was driven externally by a 2,000-W induction motor and made to rotate at a fixed rpm. 162 

The DME was premixed with gas at a ratio of 20% oxygen to 80% argon (Ar) at molar 163 

proportions equivalent to  = 0.30. Argon was used instead of nitrogen, to increase the 164 

in-cylinder temperature at the end of compression by decreasing the heat capacity of the 165 

in-cylinder gas-fuel mixture, and to initiate HCCI combustion at a compression ratio that was 166 

significantly lower than those usually used in conventional HCCI engines. The DME-O2-Ar fuel 167 

mixture was supplied to the mixture tank, where it was heated to the required temperature and 168 

maintained at the required pressure. During operation, the intake valve remained open, and the 169 

fuel mixture was sucked into the cylinder and pushed back into the mixture tank. When the 170 

thermocouple reading had stabilised, the intake valve was closed at around bottom dead centre 171 

(BDC), and the fuel mixture was compressed, autoignited, and combusted. Changes in the gas 172 

pressure were measured using a Kistler 6052B pressure transducer during the compression and 173 

expansion strokes. The compressed gas temperature range accessible in the 174 

compression-expansion test engine was relevant to combustion in HCCI and related engines, but 175 

the in-cylinder pressure at top dead centre (TDC) was somewhat lower because the initial 176 

pressure was less than 1 atmosphere. Thus, good temporal resolution was more readily achieved, 177 

but at the expense of longer ignition delays than those encountered in practical applications. The 178 

volumetric heat release in the final stage of ignition was also lower as a result of the reduced gas 179 

densities. However, pressure oscillations were still observed, even with very lean mixtures. The 180 

gaseous charge admitted to the cylinder of the compression-expansion test engine was premixed 181 

at the molecular level. Thus, unlike engines with a normal induction system for evaporating 182 

liquid fuels, the problem of distinguishing the effect of the initial spatial composition variations 183 

from the spatial temperature field variations did not arise. 184 
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UV-vis absorption measurements were performed using a specially designed cylinder head, 185 

equipped with sapphire windows, optical fibres, a deuterium lamp, and an Andor 186 

Shamrock-163 spectrograph with an attached intensified charge-coupled device (ICCD; Fig. 3). 187 

Data were acquired, stored, and processed using the Andor Solis software. 188 

The UV-vis and infrared spectral absorbances were determined by applying the 189 

Beer-Lambert law to the measured spectral transmission: 190 

cL
)(I

)(I
log)(A 0

10 













(1), 191 

where A() is the spectral absorbance, I0() is the intensity through air, I() is the intensity 192 

through a DME-O2-Ar mixture, and , c, and L are the molar absorption coefficient, molar 193 

concentration, and measurement length, respectively. For HCHO and OH UV-vis light 194 

absorption experiments, a deuterium lamp was used as the light source. A deuterium lamp is a 195 

low-pressure gas-discharge light source often used in spectroscopy when a continuous spectrum 196 

in the UV region is needed. The arc created in the lamp excites the molecular deuterium 197 

contained within the bulb to a higher energy state. The deuterium then emits light as it transitions 198 

back to its initial state. The light is then transmitted to the combustion chamber through an 199 

optical fibre with a collimator and further transmitted from the combustion chamber through a 200 

12-point optical fibre with a collimator, and finally to the spectrometer (SR-163; Andor 201 

Technology), which was equipped with an ICCD (DK720-18F-04; Andor Technology) (Fig. 3). 202 

Spectral absorbance measurements were made under engine conditions for HCHO and OH in the 203 

region of 280–400 nm. 204 

205 

3. Results and discussion206 

3.1 Time-resolved UV-vis HCHO and OH absorbance spectra 207 

UV-vis light absorbance was investigated to identify the formation behaviour of HCHO and OH 208 

during HCCI combustion. Light absorbance spectra were obtained for 10 selected piston 209 

positions. The crank-angle resolution for the spectral results was 11 crank-angle degrees (CAD; 210 

http://en.wikipedia.org/wiki/Gas-discharge_light_source
http://en.wikipedia.org/wiki/Spectroscopy
http://en.wikipedia.org/wiki/Continuous_spectrum
http://en.wikipedia.org/wiki/Ultraviolet
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~3 ms at 600 rpm). Two molecular species were apparent in the spectra. The absorption was 211 

caused by HCHO at wavelengths of 316, 328, 340, and 354 nm, and by OH at a wavelength of 212 

308 nm. Figure 4 shows the absorbance spectra at different intake pressures and temperatures. 213 

Figure 4 (A), (B), (C) and (D) show the time-resolved absorbance spectra at the pre-set initial 214 

temperatures and pressures at different ICCD exposure start times. Figure 4 (E), (F), (G) and (H) 215 

show ROHR obtained for the same initial conditions as the absorbance data was taken.  For 216 

these results the absorbance and in-cylinder pressure were obtained concurrently. The purpose 217 

for showing this graph was to demonstrate the consistent trend in HCHO and OH peaks which 218 

occur at the specified wavelengths for a number of experimental conditions. It is seen that as the 219 

time between the start of LTR and the start of HTR decreases the HCHO peaks gradually become 220 

weaker and OH peaks become more distinct. This suggests that there is a correlation between the 221 

residence of LTR+TIP regions and HCHO formation. It can be seen that the intensity of the 222 

spikes at 316, 328, 340, and 354 nm changed due to the formation of HCHO [40, 41] and the 223 

absorption at those wavelengths was consistent for all of the combustion cycles. 224 

It was found that average absorption at 328 nm was slightly higher than at 316, 340, and 354 nm. 225 

The significance of this observation was to find out at which wavelength the absorption level 226 

was the highest in order to focus on this particular wavelength band in the future and use the type 227 

of laser with a narrow bandwidth. From 340 CAD, which corresponds to TIP, to 370 CAD, 228 

which in turn corresponds to a gradual decrease in in-cylinder pressure during the expansion 229 

stroke, the intensities of the spikes at 316, 328, 340, and 354 nm changed due to an increase in 230 

OH concentration at 308 nm, due to H2O2 decomposition. Previous investigations have reported 231 

different timings for the H2O2 decrease and OH increase. Westbrook [42] reported that the H2O2 232 

decrease and the OH increase took place almost simultaneously, and H2O2 decomposition was 233 

the initiator of thermal ignition. However, Kuwahara and Ando [43] reported that the H2O2 234 

decrease started earlier than the OH increase, and they showed that the rapid OH increase started 235 

during the final stage of the H2O2 decrease. Nevertheless, both research groups concurred that 236 

the OH rapid increase occurred in the TIP region. In our case the combustion progresses under 237 
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HCCI conditions, which, by nature, is not really homogeneous and we suspect that during the 238 

compression stroke there are different states of mixture and local equivalence ratio distribution in 239 

the cylinder which can affect the states of cool and hot chemistry. Even if we try to completely 240 

eliminate any in-cylinder turbulence effects in HCCI combustion, we must accept that it will be 241 

practically impossible. Therefore, we believe that it was important to demonstrate HCHO and 242 

OH trends experimentally. Nevertheless, to support the statement made above we can say that 243 

there is an overlap for HCHO and OH formation as shown in Figure 4 (C) and (D). This may be 244 

due to various reasons and require further investigation that may be done in the future studies. 245 

Figure 5 shows the trends of time-resolved HCHO and OH absorbance peaks versus the 246 

maximum rate of heat release (ROHR) at various inlet temperatures and pressures.  As can be 247 

seen, the peak absorbance of HCHO decreased as the maximum rate of heat released in the HTR 248 

region increased. We observed a consistent trend for all HCHO absorption wavelengths. In 249 

contrast, the peak absorbance of OH increased with the increase in heat release in the HTR 250 

region. This confirmed the trend that the peak amount of HCHO formed in the LTR and TIP 251 

regions affected the high-temperature combustion reactions and we can make assumptions based 252 

on the results in figure 5 where we can see the trend of absorbance vs max peak of ROHR that 253 

occurs in HTR region. It shows clear positive trend for OH vs ROHRmax and negative trend for 254 

HCHO vs ROHRmax. This suggests that HCHO may act as an inhibitor of the chain-branching 255 

reactions in the TIP regions before HTRs occur. This statement can be made based on the 256 

knowledge of chemistry that occurs in the low-temperature reaction region where H2O2 257 

decomposes to OH or in reverse, and HCHO reacts with OH producing HCO and water. It is 258 

basically a competition between H2O2 and HCHO formation developed based on the species 259 

concentration and reaction rate. The trend in figure 5 suggests that HCHO decreases and OH 260 

increases as ROHR increases and vice versa, so we anticipate the effect of formaldehyde 261 

suppressing chain-branching reactions and holding OH formation before HTR reactions occur. 262 

Figure 5 shows the absorbance results for the range of pressures and temperatures, that’s why 263 

pressure was not indicated on this figure. 264 
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This is consistent with the results of other studies showing that the temperature before the 265 

LTR does not contribute to the progress of reactions in the low-temperature combustion region, 266 

and that formation of HCHO inhibits HTRs [44]. This correlation has shown the general and 267 

opposite trends for HCHO and OH vs ROHRmax and supports our statements made throughout 268 

this manuscript. The purpose was to demonstrate the correlation of HCHO and OH absorption 269 

with the energy release. 270 

Time-resolved absorption was studied at intake absolute pressures of 50, 60, and 85 kPa. 271 

Figures 6 and 7 show that at 50 and 60 kPa, the peak absorbance of HCHO from 340 CAD 272 

increased gradually as the start of ICCD exposure changed further for different cycles and there 273 

was no visible increase in OH. For cycles at 85 kPa intake pressure (Fig. 8), HCHO absorbance 274 

was almost not seen as the start of ICCD exposure changed further from 340 CAD, but OH 275 

absorbance increased significantly at 308 nm. The equivalence ratio for all three conditions was 276 

maintained at 0.3. These results suggest that, at lower intake pressures, reactions in LTR and TIP 277 

prevail and HCHO is formed as the piston moves from BDC to TDC. At higher intake pressures, 278 

the combustion passes the LTR temperature threshold more quickly and progresses to the HTR 279 

region, where the decomposition of H2O2 permits access to secondary reactions and forms very 280 

reactive OH radicals [45]. Previous studies showed that at higher intake valve closing pressures 281 

of 225kPa, H2O2 concentration increases during the H2O2(+M) = OH + OH(+M) reaction [46]. 282 

This is because at higher pressures the high concentration of the mixture leads to a sufficient 283 

concentration of HO2, which is less reactive than other free radicals, forming H2O2. 284 

285 

3.2 Effect of intake pressure on HCHO and OH absorbance 286 

We studied the effects of intake pressure on HCHO and OH absorbance in DME-HCCI 287 

combustion experiments. The fuel equivalence ratio and temperature were set constant, at 288 

0.3 and 293, respectively, and the mixture pressure in the mixture tank (Fig. 2) was varied from 289 

48 to 85 kPa. The exposure start was fixed at TDC (360 CAD) and 5 CAD after TDC (365 CAD), 290 

with an exposure duration of 11 CAD; hundreds of individual combustion cycles were recorded. 291 
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The absorbance obtained for each interval of 11CAD is the average of that exposure duration. 292 

Therefore, we believe that no allowance was needed with the variation of temperature and 293 

pressure during compression. Figure 9 shows the absorbance results at selected initial pressures 294 

in order to investigate the effect of pressure; therefore, the pressure was indicated on the graph. 295 

The pressures relate to the pressure in the mixture tank or intake pressure. This figure shows that 296 

HCHO absorbance that was taken at TDC (360 CAD), increased in the thermal ignition 297 

preparation region when the ROHR was very low. In contrast, when the ROHR in the HTR 298 

region was high, HCHO absorbance was minimal but OH absorbance increased significantly. 299 

Due to the combustion cyclic variations, the effects of intake pressure on HCHO and OH 300 

absorbance remain unclear. However, the general trend in Figure 10, where the absorbance was 301 

taken at TDC (360 CAD) and 5 CAD after TDC (365 CAD), shows that with an increase in OH 302 

absorbance, HCHO absorbance decreased. 303 

We also compared the HCHO and OH average absorbance levels at different wavelengths 304 

for nearly 120 individual combustion cycles and found that the HCHO absorbance at 328 nm 305 

was slightly higher than that at other wavelengths. Figure 11 shows that at lower intake pressures, 306 

the OH absorbance level at 308 nm was lower than the HCHO absorbance level but for higher 307 

intake pressures, OH absorbance was significantly higher than HCHO absorbance. 308 

The effect of in-cylinder pressure on the amount of heat released in the LTR region, and any 309 

correlation with the HCHO and OH absorbance, was unclear. Thus, to investigate these trends – 310 

and the effects of in-cylinder pressure and temperature on HCHO and OH formation during 311 

DME fuel compression ignition – chemical kinetics analyses of DME-O2-Ar and DME-O2-N2 312 

mixture combustion were performed. First, a single-zone HCCI model was used to compare 313 

various DME detail and reduced mechanisms for in-cylinder pressure with that from experiments. 314 

The DME chemical kinetics mechanisms considered for this comparison were DME 2000 [8], 315 

DME 2008 [9], the DME skeletal mechanism [10], and the San Diego mechanism 316 

(http://combustion.ucsd.edu). The intake valve closing (IVC) time was 180 CA BTDC and the 317 

simulation ran for 360 CA. The mixture pressure and temperature at IVC were set as in these 318 
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experiments. The base San Diego mechanism with a DME sub-mechanism showed the closest 319 

match with the experiments and was selected for further chemical kinetics analyses in Digital 320 

Analysis of Reactive Systems (DARS) software with Rapid Compression Machine (RCM) 321 

model [47]. This mechanism takes into account recent chemical-kinetic studies of DME 322 

combustion processes [11]. The DME sub-mechanism included 14 new reactions that involved 323 

five new species (CH3OCH3, CH3OCH2, CH3OCH2O2, CH2OCHOOH, and HO2CH2OCHO). 324 

The mechanism was developed and validated by comparison with experimental results and 325 

different chemical kinetics mechanisms over a wide range of temperatures, pressures, and 326 

equivalence ratios [9, 48-51]. In the reaction HO2CH2OCHO  OH + CH2O + CO2 + H, the 327 

decomposition of hydroperoxymethyl formate releases an additional OH radical and forms 328 

CH2O, H, and CO2. 329 

The DARS-RCM model that includes Woschni heat transfer model was used to study the 330 

effects of pressure, temperature, and initial fuel and oxidant concentrations on HCHO and OH 331 

formation. DME-RCM combustion conditions were evaluated at intake temperatures of 293, 303, 332 

313, 323, and 450 K, end-of-compression pressures of 20, 50, 80, and 100 bars, and the initial 333 

fuel-oxidiser mass fractions shown in Table 2. Initial fuel-oxidiser mass fractions were chosen 334 

based on: Case 1 (A) – Eq. ratio 0.3, Case 2 (B) - Eq. ratio 0.6 and Case 3 (C) – Eq. ratio 1.0. 335 

The sum of mass fractions (DME + O2 + (Ar or N2)) for each case was equal to 1. The initial 336 

temperature was 293 K and pressure at the end of compression was 100 bar. The equivalence 337 

ratio wasn’t mentioned there to avoid the readers’ confusion when they may think that if the 338 

equivalence ratio increases then HTR region temperature should also increase. We want to draw 339 

the attention that with the increase of fuel concentration, O2 concentration wasn’t fixed but 340 

decreased. The objectives of this study were to show whether thermal or chemical effects are 341 

more important for the combustion progress in the HTR region. This analysis was used to 342 

investigate the combined effects of the fuel concentration, oxidant, in-cylinder temperatures and 343 

pressure on HCHO, H2O2, and OH formation in the LTR, TIP, and HTR regions during 344 

DME-HCCI combustion. 345 
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Figure 12 shows conditions (A), (B), and (C) with different DME/O2 and O2/Ar ratios, based 346 

on the initial mass fractions shown in Table 2. The in-cylinder temperature level at which LTR 347 

and TIP reactions occurred (the pink region on Figure 12, T = 800  1,000 K) remained the same 348 

for all conditions as the DME/O2 ratio increased. The HCHO concentration also increased with 349 

the increase in pressure in the LTR and TIP regions, as highlighted. As the O2/Ar ratio increased, 350 

the in-cylinder temperature, ROHR, and OH concentration increased in the HTR region. From 351 

this, we can conclude that the O2 concentration does not affect the temperature change in the 352 

LTR or TIP regions and does not affect HCHO or H2O2 formation; however, it plays an 353 

important role in the HTRs. These results also suggest that the temperature in the 354 

low-temperature region did not have any effect on high-temperature combustion and OH 355 

formation before the HTR reactions have been suppressed by the increased amount of HCHO. 356 

This chemical kinetics study was introduced as an extension to the experiments to study these 357 

effects.  358 

Previous work on DME chemical kinetics analysis in a constant volume chamber, by 359 

Kuwahara et al. [43], proposed a four-stage oxidation process of a hydrocarbon fuel with a cool 360 

flame. The transition from cool flame to NTC was determined by the competition between O2 361 

addition reactions and OH subtraction reactions, accompanied by the formation of HCHO. Major 362 

products of the cool flame and NTC regimes were oxygen-containing species like HCHO and 363 

H2O2. Based on these results, it can be presumed that the highest radical activity in the LTR 364 

region was associated with the chemistry that occurs when the HCHO concentration increased. 365 

This caused a subsequent deceleration in the rate of pressure rise, leading to low or negligible 366 

chain branching and a fall in the overall heat release, because OH radicals were replaced as a 367 

propagating species, mainly by less reactive HO2 radicals. The maximum deceleration of the 368 

pressure rise rate corresponded to the reaction taking place at its minimum rate in the negative 369 

temperature-dependent regime. The evolution of the thermal ignition and the subsequent 370 

acceleration in the pressure rise rate can be attributed predominately to the production and 371 

decomposition of H2O2. 372 
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At lower initial temperatures, it was observed that the HCHO formed in the LTR and TIP 373 

regions had a greater effect on HTR combustion than in-cylinder temperature. This can be stated 374 

based on the chemical kinetics analysis results shown in Figure 12. All three conditions (A), (B) 375 

and (C) were simulated with the same initial temperature T=293K and the pressure at the end of 376 

compression, P=100 bar. We can see from this figure that the combustion in LTR and TIP regions 377 

for conditions (A), (B) and (C) occurs in the same temperature range (pink layer). However, the 378 

concentration of HCHO that is formed during LTR and TIP regions increases as DME/O2 ratio 379 

increases, although O2/Ar ratio decreases. Fuel concentration is correlated with the amount of 380 

HCHO and its concentration increases from (A) towards (C), and on the contrary, the in-cylinder 381 

temperature and ROHR in the HTR region decreases. Figure 12 shows that in the case of a lower 382 

temperature (Tin = 293 K), when Ar was used as the dilutant gas, the HCHO concentration in 383 

LTR and TIP regions increased commensurate with an increase in the DME/O2 ratio; this 384 

inhibited the high combustion rate, so the temperature in the HTR region decreased despite the 385 

increase in fuel concentration. All arguments here are about trying to find out whether it is the 386 

effect of temperature during LTR and TIP region or the effect of HCHO on temperature increase 387 

in HTR and if both then which one has a greater influence. For all cases, rapid OH growth was 388 

observed after the HCHO concentration dropped. HCHO increased as the initial fuel 389 

concentration increased. As the O2/Ar ratio decreased, the in-cylinder temperature and OH also 390 

decreased. As expected, the initial O2 concentration in the mixture directly affected the 391 

combustion intensity and the in-cylinder temperature in the HTR region; however, it did not 392 

affect the in-cylinder temperature in the LTR or TIP regions (the pink region on Figure 13, 393 

T = 800 1,000 K). In contrast, when the initial temperature was high (Tin = 450 K), as shown in 394 

Figure 13(A) for Ar gas, despite the decrease in the O2/Ar ratio, the combustion rate in the HTR 395 

region was extremely high. However, the heat release in the cool flame and NTC regions was 396 

negligibly small. Therefore, based on the results of chemical kinetics analysis shown in Figure 397 

12 (A), (C) and Figure 13 (A), (B) we have compared two cases with different initial 398 

temperatures, 293K and 450K, with the same DME/O2 and O2/Ar ratios. If we look at the region 399 
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where LTR and TIP occur we can find that the temperature range in these regions for both cases 400 

(293K and 450K) is almost the same. However, the temperature and ROHR in HTR region are 401 

higher for the case with 450K. We believe that this is a very important finding because it can 402 

suggest that in the real HCCI engine how to implement the combustion control. On the one hand, 403 

we want to control HCHO and its effect on OH and on the other, we want to control HTR region 404 

where the power is mainly generated. This is especially important when the fuel reactivity 405 

controlled combustion concepts are developed.  406 

When N2 was used as a dilutant gas, as shown in Figure 13(B), due to the higher heat 407 

capacity of N2 versus Ar, the resulting in-cylinder combustion temperature in the HTR region 408 

was much lower and heat release in the cool flame and NTC regions was seen distinctly. Thus, 409 

comparing these two different temperature cases, we can presume that the intake temperature 410 

does not affect the in-cylinder temperature level in the LTR or TIP region. These results 411 

demonstrate the validity of the experiments when Ar was used instead of N2 as a dilutant gas. 412 

The results of the chemical kinetics analysis with Ar and N2 show that for both conditions the 413 

LTR and TIP occur at almost the same temperature range meaning that there is no effect of 414 

temperature in these regions on HTR combustion (temperature range in LTR+TIP regions for Ar 415 

and N2 cases are the same). However, the temperature and ROHR in HTR region are very much 416 

lower in the case with N2 background gas. If this is the case, we can presume that only HCHO 417 

formed in these low-temperature regions can have an effect on HTR combustion. Comparing 418 

(A)-(C) and (B)-(D) in the Figure 13 we can see that the concentration of HCHO in the LTR+TIP 419 

region is almost doubled in N2-case compared to that of Ar-case. The computation has validated 420 

the fact that the temperature ranges in the LTR+TIP region, when Ar and N2 background gases 421 

were used, are the same. However, for N2 the HCHO concentration is increasing and suppressing 422 

the OH formation and therefore the amount heat release in HTR region. 423 

To study the effects of pressure on HCHO formation, we compared two different conditions: 424 

1) the initial temperature was kept constant and in-cylinder pressure was varied, and 2) the425 

in-cylinder pressure was kept constant and the initial temperature was varied. Figure 14 shows 426 
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the comparison of these conditions. The change in cylinder pressure had a greater effect on the 427 

amount of HCHO formed than the change in initial temperature. However, the intake 428 

temperature had a greater effect on the ignition delay than pressure. At fixed pressure and higher 429 

intake temperatures, the ignition delay advances, HCHO is formed earlier, and the combustion 430 

rate increases; however, the concentration of HCHO formed in the LTR and TIP regions 431 

decreases. These combined effects of temperature, pressure, initial fuel concentration, and O2 432 

concentration suggest that the increased HCHO concentration at higher in-cylinder pressures is 433 

due to a larger amount of air/fuel charge in the cylinder, while the lower in-cylinder temperature 434 

is due to the decreasing O2 concentration in the mixture, and the lower HCHO concentration at 435 

higher initial temperatures is due to the evolution of the thermal ignition. The subsequent 436 

acceleration in the pressure rise rate can be attributed predominately to the production and 437 

decomposition of H2O2, and to the competition between O2 addition reactions and OH 438 

subtraction reactions, accompanied by the formation of HCHO. 439 

440 

3.3 Time-resolved UV-vis HCHO and OH absorbance spectra for knocking combustion 441 

The formation of HCHO and OH species, and their lifetimes in the LTR, NTC, and TIP regions, 442 

provides better understanding of knocking combustion mechanism and helps us to control 443 

knocking in HCCI engines. We studied the effect of HCHO formed in the LTR and TIP regions 444 

on the rate of combustion and engine knock. A fixed exposure duration of 11 CAD with various 445 

ICCD-triggered instances was applied to each cycle. On the left, Figures 15–19 show the 446 

combustion cycles with different in-cylinder pressure oscillations and knock intensities. On the 447 

right, they show HCHO and OH absorbances detected at different crank angles. The maximum 448 

amplitude of the high-frequency component of the pressure (2.5–12 kHz) was taken as the 449 

knocking intensity of the corresponding cycle by applying a fast Fourier transform (FFT) to the 450 

pressure signal. 451 

Figure 15 shows the absorption scan in the LTR region; we observed very small peaks of 452 

HCHO during combustion with moderate knock intensities. Figure 16 shows an almost 453 
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negligible level of knock intensity and a high level of HCHO absorbance. This suggests that the 454 

reaction rate was such that it produced high concentration of HCHO in the LTR and TIP regions 455 

and thus failed to result in knock in the HTR region. Figures 17 and 18 show the correlation 456 

between the high concentration of OH, the low concentration of HCHO, and combustion with 457 

high knock intensity. In Figure 19, with the exposure start time at 375 CAD after TDC, it can be 458 

seen that the OH concentration decreased. The HCHO concentration is always low when the OH 459 

concentration is high. 460 

The results in Figures 15–19 show a clear trend between knock intensity and HCHO/OH 461 

formation. This work helps to characterise combustion cycles with HCHO and OH absorption 462 

during combustion in a DME-HCCI engine. These results will help in understanding the 463 

complex processes of intermediate species formation during combustion, and in the design of 464 

advanced optical sensors for effective combustion control. 465 

466 

4. Conclusions467 

From this study, the following conclusions can be drawn: 468 

1. The time-resolved HCHO and OH profiles during the DME-O2-Ar mixture combustion469 

cycles showed that the HCHO absorbance increased in the LTR and TIP regions and decreased 470 

gradually as combustion approached the HTR region. The opposite trend was observed for OH 471 

absorbance profiles. OH was at a minimum in the LTR region and increased as the combustion 472 

approached the HTR region. The increased HCHO concentration at higher in-cylinder pressures 473 

is due to a larger amount of air/fuel charge in the cylinder. The lower in-cylinder temperature is 474 

due to the reduced O2 concentration in the mixture. 475 

2. Due to the existing combustion cyclic variability, it was difficult to precisely determine, from476 

the experiments, the effect of pressure on HCHO and OH formation in the LTC; thus, a chemical 477 

kinetics analysis was performed. The chemical kinetics analysis showed that the initial O2 478 

concentration and intake temperatures did not affect the in-cylinder temperature in the LTR or 479 

TIP regions. However, they had significant effects on HTR combustion. At an intake temperature 480 
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of 450 K, with Ar as the dilutant gas, the rate of heat release was extremely high. The ROHR in 481 

the cool flame and NTC regions did not change. When N2 was used as the dilutant gas, a distinct 482 

ROHR in the cool flame and NTC regions was observed. 483 

3. A correlation between the in-cylinder spectral HCHO/OH formation and knocking intensity484 

was observed. By applying different ICCD exposure timing vs. crank angle degree settings, it 485 

was possible to demonstrate a trend whereby HCHO concentration was very low and OH 486 

concentration was very high when knock intensity was very high, and vice versa. 487 

488 

The English in this document has been checked by at least two professional editors, both native 489 
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Bore 78 mm

Stroke 85 mm

Connecting rod length 153 mm

Displacement volume 406.2 cm3

Compression ratio 9.0:1

Combustion chamber Pancake type

Engine speed 600 rpm

Valve closure time 180 deg.BTDC

Equivalence ratio 0.3

Intake temperature 293K, 295K, 303K

Intake pressure 48kPa  85kPa

Table 1



DME O2 Ar or N2

Case 1 (A) 0.013406 0.087307 0.899287

Case 2 (B) 0.017232 0.056113 0.926655

Case 3 (C) 0.019453 0.038007 0.94254

DME-O2-Ar / DME-O2-N2

Table 2
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