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Abstract Local binary pattern (LBP) algorithm and its

variants have been used extensively to analyse the local

textural features of digital images with great success.

Numerous extensions of LBP descriptors have been sug-

gested, focusing on improving their robustness to noise and

changes in image conditions. In our research, inspired by

the concepts of LBP feature descriptors and a random

sampling subspace, we propose an ensemble learning

framework, using a variant of LBP constructed from Pas-

cal’s coefficients of n-order and referred to as a multiscale

local binary pattern. To address the inherent overfitting

problem of linear discriminant analysis, PCA was applied

to the training samples. Random sampling was used to

generate multiple feature subsets. In addition, in this work,

we propose a new feature extraction technique that com-

bines the pyramid histogram of oriented gradients and

LBP, where the features are concatenated for use in the

classification. Its performance in recognition was evaluated

using the Hong Kong Polytechnic University database.

Extensive experiments unmistakably show the superiority

of the proposed approach compared to state-of-the-art

techniques.

Keywords Multispectral palmprint recognition � Ensemble

learning framework � Multiscale local binary patterns �
Pyramid histogram of oriented gradients

1 Introduction

Palmprint is a relatively newly discovered physiological

biometric trait that has recently arisen as an active area of

study. The rich features of the palmprint are the key to its

recognition power. Patterns elicited from palms have

excellent discriminatory power as they have more features

on the surface than fingerprints while being stable. How-

ever, it should be noted that observations of palmprint

features are often affected by various issues, i.e. variations

in lighting, orientation and noisy sensors, which make the

task of identification more complex. Variance in illumi-

nations in particular can seriously affect the ability of

systems to recognize individuals. The majority of palm

recognition methods can be regarded as sufficiently robust

to deal with all variations in image conditions. However,

researchers today continue to attempt to solve this problem

and develop systems that can be used accurately to identify

a person.

In the literature, a number of techniques are reported for

use in palmprint recognition, classified into several dif-

ferent categories: structure based, statistic based, subspace

based and code based. Structure-based algorithms mainly

concern information on the direction and location of the

main lines and folds in the palmprint, such as principal

lines, wrinkles, delta points and minutiae. Structure-based

algorithms are the traditional approaches to extract the
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features of palmprints and provide effective representation

and matching. For feature extraction, there are many pro-

posed approaches which use a variety of line detection

operators. Funada et al. [1] presented an algorithm that

extracts high probability local palmprint features, such as

ridges, by eliminating the creases. Zhang and Shu [2]

attempted to determine datum points from the main lines

using a directional projection technique. These datum

points are found to be rotation and translation invariant due

to the steadiness of the main lines. Sobel and morpholog-

ical operations were used in [3] to extract line features from

palmprints. For the representation of the features, this

method primarily uses straight line segments or feature

points instead of ridges. Housdorrf and Euclidean distances

are widely used for the matching process.

In the case of statistic-based palmprint identification, the

works that have been published include local or global

statistical approaches. Systems based on the local features

of the palmprint include discrete cosine transform, Fourier

transform, wavelet transform and Gabor transform. These

tools have been studied and used to transform images

before feature extraction task in order to extract more

distinctive features. In [4], the authors transformed a

palmprint image into the wavelet domain and computed the

average and variance of each patch to create a normalized

palmprint vector. The standard deviation of the small block

is used as a feature. In [5], the mean and standard deviation

of the small patch are employed as a feature after trans-

formation with a Gabor filter. In [6], a histogram of a local

binary palm image was used as a palmprint feature. Global

statistical approaches compute the global features of the

palmprint, such as moments, centres of density and gravity

, directly on the palmprint image. Correlation coefficients,

first-order norms and the Euclidean distance are often used

for the purpose of matching. A palmprint recognition sys-

tem is proposed in [7] using Hu invariant moments as

patterns on an Otsu binarized palmprint.

Other efforts in this domain have also explored a variety

of subspace-based algorithms to derive a compact feature

subspace for palmprint data. The main subspace approa-

ches reported in the literature employ a palmprint as a

high-dimensional matrix and mapping it to a lower-di-

mensional matrix. Then, the generated images can be

represented and matched in this low-dimensional space.

Subspace-based approaches include linear and nonlinear

space algorithms. Lu et al. [8] introduced PCA effectively

in palmprint recognition. Notwithstanding the significant

achievements of PCA, some challenges remain requiring

more investigation. In [9], two-dimensional PCA (2DPCA)

was successfully introduced for palmprint recognition. This

method relies on a two-dimensional palm image matrix

rather than one-dimensional vector, and a palm covariance

matrix is generated directly employing the original palm

matrices. In [10], Niyogi suggested locality preserving

projection (LPP). The aim of LPP is to solve a generalized

eigenvalue problem. It seems to be more stable to noise

than PCA and LDA [10]. Researchers have also proposed a

number of approaches based on coding to extract features

for palmprint recognition. These include Fourier transform,

the Gaussian derivative filter, wavelet transform and Gabor

wavelet transform. Among these methods, Kong and Zhang

[11] suggested a fusion code algorithm to encode the Gabor

filter phase using six directions. Moreover, based on ordi-

nal code, Song et al. [12] proposed a phase coding

scheme using 2D orthogonal Gabor filters. These are

employed for various directions to extract texture features,

and a phase coding algorithm is applied to describe the

palm image. Another approach, discussed in [13], intro-

duced a robust line orientation code (RLOC) for palmprint

recognition as an improved version of the competitive

code. In the proposed approach, the LBP technique is

customized based on conventional thresholding using

Pascal’s coefficients of order n [14]. The proposed variant

called Pascal coefficient LBP (PCLBP) descriptor is

inspired by the SLBP descriptor [15, 16] . This allows us to

detect only the robust patterns from the palmprint images.

This approach has many advantages, such as the simplifi-

cation of implementation and high-speed computation. The

main idea is to use a varied number of intervals to generate

a distribution of binary codes for every pixel position thus

creating more robust descriptors to cope with the changing

image distortions. In the proposed variant, the main dif-

ference from LBP is that the threshold value is tuned using

Pascal’s coefficients of order n with an alternating sign.

Furthermore, this variant is also extended to MLBP in this

paper, referred to as the Pascal coefficient MLBP

(PCMLBP) descriptor, for which the PCMLBP features of

the different scales are first extracted and their histograms

subsequently concatenated into a long feature. Further-

more, to achieve higher recognition rates, we propose a

novel feature method to form a new set of features based on

the combination of the pyramid histogram orientation

gradient (PHOG) descriptor with the PCLBP descriptor, so

that the histogram bins have a more powerful discrimina-

tory capability. Nevertheless, having a large number of

features can become a curse in terms of classification. To

solve this problem, PCA is used to reduce the size of the

dimension of the vector of palm features. In addition, we

construct a multiple LDA classifier from many individual

clarifiers. A powerful decision rule is used for the purposes

of combination and is known as ensemble learning. LDA

can be achieved by maximizing the ratio of the determinant

of the within-class variance and the determinant of the

between-class variance. The assessment of the performance

of our proposed approaches was conducted using the

multispectral palmprint database available from the Hong
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Kong Polytechnic University (PolyU), using LDA classi-

fication. In addition, a comparative analysis of our pro-

posed algorithms was performed against a number of state-

of-the-art counterparts, including the techniques described

in [17–20]. The main body of this paper is composed of six

main sections. Sections 2 and 3 describe the different steps

constituting our proposed multispectral palmprint recog-

nition approach, whereas the experimental results related to

the proposed methods are reported in Sect. 4. Section 5

discusses the computational complexity of the proposed

methods. The paper ends with a conclusion and proposals

for future work in Sect. 6.

2 Multispectral palmprint recognition: proposed
approach

Palmprint recognition can be effectively performed by

using the best spectrum wavelength range (blue, green, red

and NIR). A typical scheme for such a system comprises of

the following steps: palmprint image acquisition, feature

extraction, dimensionality reduction and classification.

Figure 1 shows the main steps of our proposed method. The

palmprint and textures are extracted using PCMLBP and

PCLBP–PHOG descriptors. The classification of this new

set of features is undertaken using PCA and random sub-

space LDA. The correct identification is achieved when the

test palmprint label matches the palmprint label of the

same subject in the training samples. The process may

result in misclassification when the test palmprint is

classified using a palmprint label of a different subject from

the training sample. LDA-based classification results are

combined at the fusion stage to obtain higher recognition

rates. In this work, an ensemble framework is proposed

based on the PHOG and the customized LBP descriptor for

the classification of palmprint images. To enhance the

accuracy of existing LBP descriptors, Pascal coefficients’

approach is used for the purpose of customization.

2.1 PCLBP-based feature extraction

In the conventional LBP, only eight neighbours of the pixel

are considered. Ojala et al. [21] were among the first to

proposed the use of LBP in recognition, demonstrated the

superior discriminative of this descriptor for texture clas-

sification. Later, this was extended with different modified

versions, used extensively to analyse the local textural

features of digital images with great success. In this

approach, we suggest adopting a different pixel threshold.

PCLBP descriptor proved to be tolerant of illumination

changes and computational simplicity. In addition, it does

not require many parameters to be set. First, the value of

the pixel in use gc is used as a threshold for each of its

neighbouring gp f0; 1; . . .;G� 1g; taking the result as a

binary number. Using Pascal’s coefficients, a local binary

pattern (PCLBP) is created for each pixel location. By

changing the expression ðgp � gcÞ in LBPG;rðw; zÞ ¼
PG�1

p¼0 Sðgp � gcÞ2p
to ðgp � gc � lÞ.

The PCLBP is presented in Eq. 1 for a location

(w, z) and a value l. Here, l takes the different coefficients

of the Pascal values with an alternating sign, as shown in

Eq. 3; for each change in l, a new binary number is formed

and included in the histogram.

PCLBPG;rðw; z; lÞ ¼
XG�1

p¼0

S gp � gc � l
� �2p ð1Þ

where G is a set of sample points regularly spaced on a

circle of radius r while S is described as follows:

SðwÞ ¼
1 if w� 0

0 otherwise

�

ð2Þ

In our case, l is the coefficient in a Pascal triangle of order

n, which represents a threshold value; l is defined as

follows:

ln;j ¼ ð�1Þj
n

j

� �

; j ¼ 0; 1; . . .; n ð3Þ

where

n

j

� �

¼ n!

j!ðn� jÞ! ð4Þ
Fig. 1 Structure of the proposed palmprint-based personal recogni-

tion system
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If n is set equal to 3, for example, the Pascal coefficients

(l) from Eq. 3 will be ð�1Þ0 3

0

� ��

¼ 1; ð�1Þ1 3

1

� �

¼

�3; ð�1Þ2 3

2

� �

¼ 3 and ð�1Þ3 3

3

� �

¼ 1Þ, which corre-

spond to the fourth row of the Pascal triangle as shown in

Fig. 2. Therefore, for each pixel location, l will generate

four binary codes contributing to the histogram. Thus,

similarly to other LBP techniques, the final histogram is

divided by nþ 1, resulting in a histogram sum equal to the

number of pixel positions previously considered.

2.2 PCMLBP-based feature extraction

Our proposed PCMLBP method proves to be an efficient

and effective descriptor for palmprint recognition. In real

scenarios in which only one scale is used, there is a sig-

nificant constraint attributed to the dimension of the sup-

port area, i.e. the 3 � 3 neighbourhood which cannot cope

with significant structures in capturing the dominant fea-

tures of some textures. Formally, the use of the multiscale

local binary pattern (MLBP) results in considerable success

in capturing structures at different levels [22]. In our pro-

posed method, the multiscale version of the PCLBP has

been used to improve the classification results and hence

the prediction of the model. In a multiscale version, the

principle is based on changing the radius of the PCLBP and

then concatenating all the resulting features. However,

there is an issue in terms of the high dimension of the

combined feature vector resulting from the multi-resolution

decomposition; this issue can be overcome by means of

effective feature selection to reduce the unnecessary or

redundant information. Changes in the dimension of radii

depend on the distance of the neighbouring pixel from the

centre of the window used, making it possible to generate a

multiscale representation by concatenating PCLBP

histograms that determine the size of the radius [21] [e.g.

28 yields 1280 bins for 5 scales (R ¼ 1; 3; 5; 7; 9)]. The

information contained in the histogram is related to how

the multiscale features are distributed over the whole

palmprint. The multiscale approach has been found to be

more precise than the single-scale description of PCLBP.

The resulting PCMLBP histograms for each scale of image

size M � N are computed as follows:

HG;rðpÞ ¼
XM�1

i¼0

XN�1

j¼0

k PCLBPG;rði; jÞ; p
� �

;

p 2 ½0; n� 1�; and r 2 ½0;R�
ð5Þ

where n is the maximum bin value of the PCLBP and R is

the maximum radius used to the multiscale.

kðx; yÞ ¼
1 if x ¼ y

0 otherwise

�

ð6Þ

The PCLBP histograms calculated at various radii provide

local information on the observation vector. The resultant

multiscale palmprint histogram is as follows:

FG;r ¼ ½HG;1;HG;2; . . .;HG;R� ð7Þ

2.3 PHOG-based feature extraction

A PHOG descriptor represents the spatial structure of a

local imagery shape in a flexible manner. First, the PHOG

extracts the edge contour of given stimuli known as the

canny edge operator. The palmprint image is then split into

spatial grids through an iterative technique which will

double the number of splits in every dimension; for

example, level k would have 2k cells in each dimension.

Then, the histograms of oriented gradients (HOGs) are

computed using the 3 � 3 Sobel mask is followed by the

weighted contribution of each edge in accordance with its

related magnitude. Every single cell’s histogram is given a

particular quantity described as M bins. The bins relate to a

number of edge directions in an angular range. The final

PHOG descriptor is then obtained where the HOGs are

determined one after the other at the same level. Therefore,

the PHOG descriptor of an image is obtained from the

HOGs computed at various pyramid levels. The PHOG

descriptor for the related region is a vector of the dimen-

sion d ¼ M
PK

k¼0 4k. We used pyramid K ¼ 3 with a bin

size M ¼ 8 and a range of orientation [0,360]. This results

in a descriptor of the dimension 680 [23].

2.4 Principal components analysis (PCA)

PCA, also called Karhunen–Love transformation, is a lin-

ear transformation that obtains the variance of the inputFig. 2 Construction of Pascal coefficients
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data. PCA is a powerful unsupervised method for trans-

forming a number of possibly correlated attributes into a

number of uncorrelated attributes named principal com-

ponents. This technique computes the eigenvectors of the

covariance matrix and approximates the original data set by

a linear combination of the leading eigenvectors. The idea

of using the PCA approach is to reduce the size of data set

without much loss of features, where the eigenvectors help

to find the optimal feature subspace in the lower dimen-

sionality needed for the recognition of a test image. Sup-

pose the training data set of the palm is Z1; Z2; . . .; ZN ,

where N is the number of palmprints in the training data

set. The palmprint images are mean centred at the training

set by subtracting the matrix Z from the mean palmprint

image, defined as follows [24]:

/i ¼ Zi � l; where l ¼ 1

N

XN

i¼1

Zi ð8Þ

The data matrix Z is multiplied by transpose ZT to obtain

the covariance matrix X [25]:

X ¼ ZZT ð9Þ

The covariance matrix X has eigenvectors and corre-

sponding nonzero eigenvalues. The eigenvectors are sorted

in ascending order of the eigenvalues. To reduce the

dimensionality, it is necessary to select the eigenvectors

with the largest eigenvalues to be components of the

eigenvectors which represent the variance space of the

training palmprint set.

When testing the proposed method, six spectrum-related

training images for each subject were used to construct the

training vector in Protocol I, whereas three training images

were used in Protocol II. Thus, the training feature vector

dimension is D�M, where D denotes the PCMLBP and

PCLBP–PHOG feature dimensions and M is the total

number of subjects for each spectrum. The covariance

matrix is derived from randomly selected features from the

training data, and finally, eigenvectors and eigenvalues

from this covariance matrix are obtained. Sufficient

dimensions in the training data were retained to account for

99% of the total energy. Using the new palm eigenvector

matrix, the training and testing samples were transformed

onto the new subspace. The mathematical representation of

this transformation matrix can be expressed as follows:

Step 1: Centralize all training palmprint images by

subtracting the mean palmprint image as given in

Eq. 8.

Step 2: Compute the covariance matrix as given in Eq. 9.

Step 3: Compute the eigenvectors of the covariance

matrix.

Step 4: Sort the eigenvectors by decreasing eigenvalues.

Step 5: Choose k eigenvectors with the largest

eigenvalues.

Step 6: Transform the samples onto the new subspace.

2.5 LDA-based classification

LDA is a generative probabilistic method and is one of the

most popular approaches used for biometric recognition.

The basic concept of LDA is to separate classes by finding

a suitable border between them, and the classification is

then executed in the transformed space depending on some

metric such as Euclidean distance. The classification pro-

cedure can be divided into two steps: (1) computing the

posterior (confidence) values for each class and (2) deter-

mining the index of the class to which the test sample

belongs in relation to the class with the maximum scores by

solving arg maxlgl [26, 27]. Thus,

gl xið Þ ¼ xTR�1
l ll �

1

2
llR

�1
l ll þ log pl; ð10Þ

where Rl is the class covariance matrix of the class l, ll is

the mean vector of the class l and pl is the prior probability

of the class l. These are estimated by:

l̂l ¼
1

nl

Xnl

i¼1

xi; ð11Þ

R̂l ¼
1

nl

Xnl

i¼1

ðxi � llÞðxi � llÞT; ð12Þ

p̂l ¼
nl

n
; ð13Þ

where nl is the number of images in class l and n is the total

number of objects in the training set. The construction of

the classifier can be summarized as follows:

Step 1: Calculate the mean vector ll and prior

probability of class pl as given in Eqs. 11 and 13.

Step 2: Compute the pooled covariance matrix Rl, as

given in Eq. 12, which must be positive definite.

Step 3: Estimate the linear discriminant1 as given in

Eq. 10.

Step 4: Choose the maximum of arg maxlgl.

3 Feature sampling

The previous section has demonstrated that LDA outper-

forms common subspace methods. However, there is still

plenty of room to improve its performance further. One

likely avenue for improvement has been proposed which

1 Matlab offers to find discriminant functions with the command

classify.
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enhances performance by employing numerous LDAs

trained on various parts of the data which are then com-

bined in an ensemble [28].

An ensemble is a method used to merge a number of

weak classifiers to build up a strong classifier, as shown in

Fig. 3. Such multiple classifier ensembles are variously

called mixtures of experts or combinations of multiple

classifiers. The idea is to use a set of weak classifiers and

assemble them to build an ensemble classifier with a

powerful decision rule. It should be noted that weak clas-

sifiers do not always make the same error. The overall error

of the combined classifiers together provides an outcome

that improves considerably on what any individual classi-

fier could achieve on its own. One main condition for the

success of combining different weak classifiers is that the

outcomes of single classifiers for the same inputs must

vary. The diverse individual classifiers are obtained by

employing various training datasets, various feature data-

sets, different types of single classification methods and a

fusion rule. A multiple LDA classifier is constructed in this

study by combining many individual weak classifiers,

aiming to build a more robust LDA classifier that includes

the overall palm feature space without loss of discriminant

information [28].

3.1 Random sampling-based LDA for palmprint

recognition

The random sampling method (RSM) is a common

ensemble building method used to improve the precision of

weak classifiers. The classifiers are constructed using the

concept of random sampling of the palmprint feature to

develop an ensemble from the individual classifiers trained

using different feature subsets. This section proposes the

application of the random sampling procedure to build

many weak LDA classifiers. Different palmprint feature

subsets are first randomly selected. Then, an LDA classifier

is built on each of those palm subsets, and a fusion rule is

used at the end for prediction with the palm testing set. The

proposed random sampling LDA classification methodol-

ogy includes the following steps:

Step 1: Generate random training data set.

Step 2: Use PCA on the palm training sets. Then remove

all the eigenvectors with null eigenvalues.

Step 3: The M LDA classifiers are the constructs from

the low-dimensional PCA subspace.

Step 4: In the palm recognition step, the outcomes of the

M LDA classifiers are fused using a fusion rule

to generate with a final decision.

Figure 4 illustrates the main steps of the FKP recogni-

tion process.

3.2 Fusion process

In ensemble learning, strong classifiers are built by com-

bining different weak classifiers to overcome the overall

error for the results of classification. Different feature

subsets, data sets and individual classifiers are used to

obtain the set of weak classifiers. Fusion rules are used to

combine the individual classifiers. The proposed ensemble

framework based on various training samples is presented

in Fig. 2.

In our proposed approach, it possible to undertake the

fusion at two levels: the feature level and the score level.

1. Feature-level fusion The fusion technique is preferred

in the area of biometrics because it provides sufficient

informational content. In our approach, a palmprint

Fig. 3 Diagram of proposed ensemble learning for palmprint

recognition

Fig. 4 Flowchart of main steps of palmprint recognition process
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image sample has two different types of feature,

PCLBP and PHOG. PCLBP and PHOG features are

concatenated for the purpose of classification.

2. Score-level fusion The objective of using fusion is to

improve performance by constructing an ensemble of

different LDA classifiers, which are trained on the

different feature subsets. In our proposed method,

several classifiers are combined by applying the sum

score rule for reducing overall error. The overall

accuracy of palmprint recognition appears to be

improved by using this ensemble approach.

4 Experiments and results

Extensive experiments were conducted to validate and

evaluate the effectiveness of the proposed methods, using

the multispectral palmprint database. The multispectral

palmprint database was obtained from the Hong Kong

Polytechnic University (PolyU) [29].

4.1 Palm database

The palmprint images were captured from 195 male and 55

female volunteers (a total of 250) who were aged between

20 and 60 years. The images in the database were captured

with infrared and visible light, i.e. red, green, blue and NIR

illuminations, in two individual sessions. Furthermore,

regarding each session, the researcher captured six images

for each type of illumination—red, green, blue and NIR

spectra. Overall, for each illumination type, the database

contains 6000 (500 � 12) images obtained from 500 dif-

ferent palms. Therefore, in total the database contains

6000 � 4 ¼ 24;000 palmprint images. The average interval

between the consecutive sessions was approximately 9

days. Figure 5 presents sample palmprint images of dif-

ferent spectra (red, green, blue and NIR).

4.2 Protocol I

In our experiments, we used an evaluation protocol similar

to nearest feature space DWT [17], (NFS)[19], CFKNNC

[19] and TPTSR [20]. In this protocol, the palmprint

images gathered in the first session were selected as the

training set and all of the samples from the second session

were employed as the testing set (six training sets and six

test sets). Therefore, for each spectrum (blue, green, green

and NIR) there were 3000 (500 � 6) training samples and

3000 (500 � 6) test samples. For palm features, a PCMLBP

descriptor was generated with different radii for five scales

(R ¼ 1; 3; 5; 7; 9) and eight neighbours. The final

dimension of the PCMLBP is 1280 (5 � 256) for five

scales. Furthermore, in terms of PCLBP–PHOG, the

PCLBP descriptor was generated with a radius of six and

eight neighbours. For the PHOG descriptor, we used L ¼ 3

pyramids, a bin size of N ¼ 8 and an orientation range of

[0,360]. This results in a descriptor with a dimension of

680. It should be noted that the experimentation process

was repeated ten times to obtain the different training

datasets. The results of the experiments presented in

Table 1 show the recognition rates obtained for 250 ran-

dom subsets of the feature dataset.

In the case of the blue spectrum, the PCLBP–PHOG

approach yields the highest rate of 99.4%, while the

PCMLBP has the second highest rate of 98.90%. More-

over, it can be seen that in the case of the green spectrum,

Fig. 5 Specimen ROI images extracted from multispectral palmprint

images from PolyU database: a NIR, b red, c green and d blue

Table 1 Comparison of recognition rates calculated for Protocol I of

the proposed approach and state-of-the-art techniques for different

spectral bands (blue, green, red and NIR), computed using six training

sets and six testing sets

Methods Recognition rate (%)

Blue Green Red NIR

DWT [17] 93.83 93.50 95.20 94.60

NFS [19] 97.30 96.37 97.97 98.17

CFKNNC [19] 98.83 98.77 98.00 96.40

TPTSR [20] 78.13 98.02 98.58 98.34

Proposed PCMLBP 98.90 97.27 98.74 97.54

Proposed PCLBP ? PHOG 99.40 99.07 99.60 99.27

Results in bold indicate the highest performance achieved
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the PCLBP–PHOG method achieves the best result with a

rate of 99.07%. Furthermore, comparing the ensemble

approach to other state-of-the-art methods, it results in

increased performance of 2.7, 0.3, 5.57 and 1.05% over

NFS, CFKNNC, DWT and the TPTSR, respectively. The

PCMLBP method offers the best result of 97.27%, higher

than for NFS and the DWT, but 1.5 and 0.75% lower than

CFKNNC and the TPTSR, respectively. In the case of the

red spectrum, the PCLBP–PHOG yields better results than

the NFS, CFKNNC, DWT and TPTSR. Furthermore, the

results indicate that PCLBP–PHOG achieves the best

result, with a performance accuracy of 99.6% followed by

the PCMLBP with a rate of 98.74%. The table also con-

firms that the accuracy of performance of the PCLBP–

PHOG is greater than that of other existing methods, i.e.

the NFS, DWT and TPTSR. In addition, the experiments

reveal that the PCMLBP technique achieves an accuracy of

97.54%, outperforming the DWT and CFKNNC methods,

respectively, although it is 0.63 and 0.8% lower than the

NFS and TPTSR methods, respectively, for the NIR

spectrum.

Furthermore, using an ensemble of several LDA clas-

sifiers has an impact on the recognition rates, exhibiting an

improvement in recognition accuracy compared to the

individual LDA classifier recognition rates. The results of

the different features selected (50, 100, 150, 200, 250, 300

and 350) for the training sets in the PCLBP–PHOG

approach are shown in Fig. 6. The X-axis indicates the

number of features in the training set, while the Y-axis

shows the accuracy of the test images. The multiclassifier

recognition rate of the blue spectrum offers the highest

performance, above all other spectra, when using the

PCMLBP features. However, red was the best spectrum

when the fusion PCLBP–PHOG was applied. Figures 7 and

8 illustrate the receiver operating characteristic (ROC)

curves, plotting the false acceptance rate (FAR) versus the

genuine acceptance rate (GAR) for the different multi-

spectral palmprint data sets. These curves represent the red,

green, blue and NIR spectra. It is apparent from these

figures that the recognition rate of the ensemble classifier in

the proposed PCLBP–PHOG method is better for the red

spectrum than the other spectral bands (blue, green and

NIR).

4.3 Protocol II

To validate the performance of our methodology, we used

the same palmprint database to compare the proposed

PCMLBP and PCLBP–PHOG approaches to two state-of-

the-art methods, specifically the RBF [18] and the NFS

Fig. 6 Recognition rates for the six training samples and six testing

samples from the PolyU multispectral palmprint database. The

horizontal axis represents the number of features (50, 100, 150,

200, 250, 300 and 350), and the vertical axis indicates the recognition

rates of the PCLBP–PHOG descriptor for the four spectra (blue,

green, red and NIR)

Fig. 7 LDA ROC curves for the PCMLBP descriptor under the blue,

green, red and NIR spectra using six images captured in the first

session for the training set and six images captured in the second

session for the testing set

Fig. 8 LDA ROC curves for the PCLBP and PHOG descriptors under

the blue, green, red and NIR spectra using six images captured in the

first session for the training set and six images captured in the second

session for the testing set
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[19]. For validation purposes, we followed the standard

evaluation protocol as given in [18, 19], using the first three

images under the blue, red, green and NIR spectra for the

training set and six palms from the second session for the

testing set. Moreover, all parameters of the proposed

methods were initialized as described in Protocol I. A

detailed comparison of the results using the LDA ensemble

trained on a subset of 250 random features is summarized

in Table 2. This table clearly demonstrates the advantage of

the robustness of the PCLBP–PHOG approach in terms of

the histogram features, in addition to its effectiveness over

other reported methods. The PCLBP–PHOG offers attrac-

tive recognition performance rates of 99.17, 98.33, 99.34

and 98.77% for the blue, green, red and NIR spectra,

respectively. Moreover, the results displayed in the

table indicate that the PCMLBP approach outperforms the

NFS. With regard to the red spectrum, the PCMLBP

method achieves an accuracy of 97.67%, which is higher

than the NFS but 0.53% lower in comparison with the

RBF. The recognition rate of the PCMLBP in relation to

the blue spectrum is 97.99% and thus outperforms the RBF

method. However, the PCMLBP method still achieves

lower results than the RBF method for the other spectra

(green, red and NIR). The ROC curves for the PCMLBP

method are shown in Fig. 9. The effectiveness of the pro-

posed PCLBP–PHOG method is presented in Figure 10,

which reflects the ROC curves showing the best recogni-

tion rates for all spectra.

4.4 Discussion

The proposed approach successfully captures discrimina-

tive information using the multi-LDA classifier. The

method combines ten LDA classifiers based on random

sampling using the sum score rule. This leads to a signif-

icant increase in the recognition rates compared to other

existing methods. The results are plotted in Fig. 11, which

shows that the ensemble of several LDA classifiers has an

impact on the recognition rates. It has also been demon-

strated that the accuracy of recognition is above the indi-

vidual LDA classifier recognition rates.

In the two experiments, we noticed that the results of our

proposed method for Protocol II are slightly lower in

comparison with the outcomes obtained in Protocol I. This

is because three training and six testing samples are used

for the experimentation in Protocol II, which does not

Table 2 Comparison of recognition rates calculated for Protocol II of

the proposed approach and state-of-the-art techniques (RBF and NFS)

for different spectral bands (blue, green, red and NIR), computed

using three training sets, and six testing sets

Methods Recognition rate (%)

Blue Green Red NIR

RBF [18] 96.70 96.50 98.20 98.40

NFS [19] 95.10 92.87 95.40 95.63

Proposed PCMLBP 97.99 95.44 97.67 95.84

Proposed PCLBP ? PHOG 99.17 98.33 99.34 98.77

Results in bold indicate the highest performance achieved

Fig. 9 LDA ROC curves for the PCLBP and PHOG descriptors under

the red spectrum using six palmprint images were gathered in the first

session for the training sample and six palmprint images were

gathered in the second session for the testing sample. Comparison of

the use of single classifiers versus an ensemble approach

Fig. 10 LDA ROC curves for the PCMLBP descriptor under the

blue, green, red and NIR spectra using three palmprints images

gathered in the first session for the training sample and six palmprint

images gathered in the second session for the testing sample
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provide results as good as those for the six training and six

testing samples in Protocol I. Moreover, as different

training and testing samples are used in our two experi-

ments, we provide a comparison reliant on the number of

testing and training sets applied in state-of-the-art tech-

niques. Our PCLBP–PHOG approach is found to outper-

form existing methods in all respects. The ROCs in Figs. 7,

8, 9 and 10 plot the false acceptance rate versus the genuine

acceptance rate for the different multispectral palmprint

data sets, represented by the red, green, blue and NIR

spectral. As shown in these figures, it is possible to achieve

greater accuracy using six training and six testing samples

compared to three training and six testing samples. More-

over, there are several results in Tables 1 and 2 that show

the PCLBP–PHOG method performs well and can obtain a

higher recognition rate than PCMLBP and other state-of-

the-art methods. It is also observed from the tables and

graphs that red spectrum palmprints perform better in

comparison with other spectral palmprints. The red spec-

trum captures the palm line and analysis the vein struc-

tures; this helps in the comparison and classification of

palms with similar palm lines [29, 30].

5 Computational complexity

The first method used different radii of the PCLBP oper-

ator. It is noticeable that there are too many patterns in the

multiscale PCLBP, with high computational complexity.

The second method is a combination of PHOG and

PCLBP, which leads to the dimensionality problem and

further increases computational complexity. Thus, the idea

was to reduce the dimension size, which has a large

number of palmprint features for use in the classification.

The dimension of the PCLBP–PHOG feature vector can be

reduced by using feature selection or extraction methods.

PCA was applied to a randomly selected feature subset in

order to reduce both the dimensionality of the palmprint

feature vector and the computational complexity involved.

The performance of the proposed PCLBP–PHOG method

was compared to other methods. The experimental results

obtained showed that it gives outstanding results when

compared to other existing methods.

6 Conclusion

A new multispectral palmprint recognition methodology has

been proposed based on the combination of PCLBP and

PHOG descriptors. The study used random sampling to con-

struct many individual LDA clarifiers and applied PCA for to

reduce the dimensions on random length feature vectors

before using an LDA classifier for final classification. In this

work, we use the fusion rules to fuse a number of LDA clas-

sifiers and thus demonstrate the concept of the framework

proposed. The experimentation is performed according to two

different protocols, confirming that the proposed methodol-

ogy achieves higher recognition rates. Furthermore, it can be

observed that in the PCMLBP approach, both with three and

six training samples, there is better performance for the blue

spectral band than other spectral bands. Moreover, the

PCLBP–PHOG approach achieves a higher recognition rate

and outperforms the PCMLBP and other state-of-the-art

techniques, with the red spectral band performing better

compared to other palmprint spectra. The proposed method,

using either protocol, has many advantages, such as being

simple to implement. Currently, we are extending this work to

finger knuckle print data for validation purposes and to verify

the effectiveness of the proposed approach.
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