
Citation:  Chen,  Mingming,  Blacklock,  Matthew,  Zhang,  Daxu  and  Gong,  Jinghai  (2017) 
Effects of stochastic tow waviness on stiffness and strength of plain-weave ceramic matrix 
composites. Advances in Mechanical Engineering, 9 (8). p. 168781401772797. ISSN 1687-
8140 

Published by: SAGE

URL:  https://doi.org/10.1177/1687814017727973 
<https://doi.org/10.1177/1687814017727973>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/31804/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 
access the University’s research output. Copyright ©  and moral rights for items on NRL are 
retained by the individual author(s) and/or other copyright owners.  Single copies of full items 
can be reproduced,  displayed or  performed,  and given to third parties in  any format  or 
medium for personal research or study, educational, or not-for-profit purposes without prior 
permission or charge, provided the authors, title and full bibliographic details are given, as 
well  as a hyperlink and/or URL to the original metadata page.  The content must  not  be 
changed in any way. Full  items must not be sold commercially in any format or medium 
without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 
made available online in accordance with publisher policies. To read and/or cite from the 
published version of the research, please visit the publisher’s website (a subscription may be 
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/96783363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


Special Issue Article

Advances in Mechanical Engineering
2017, Vol. 9(8) 1–10
� The Author(s) 2017
DOI: 10.1177/1687814017727973
journals.sagepub.com/home/ade

Effects of stochastic tow waviness on
stiffness and strength of plain-weave
ceramic matrix composites

Mingming Chen1, Matthew Blacklock2, Daxu Zhang1 and Jinghai Gong1

Abstract
This article presents the development of a finite element model, which considers stochastic tow waviness using a
Markov Chain algorithm and non-linear material properties using Binary Model, to predict the stress–strain and fracture
behaviour of plain-weave ceramic matrix composites under uniaxial extension. The stochastic waviness is described by
fluctuations in the centroid coordinates of tow positioning. The tow deviations are generated by marching sequentially
from one grid point to next along a tow path. The deviations depend only on the deviation of the previous point using a
probability transition matrix. A non-linear orthotropic constitutive model was implemented in a commercial finite ele-
ment code Abaqus using a user-defined subroutine. Two 2 3 2 unit cell models of a plain-weave ceramic matrix compo-
site laminate are created using stochastic tow elements generated by the virtual specimen generator, which was
developed on the basis of the Markov Chain algorithm. A comparison has been made between the systematic and sto-
chastic models to assess the effects of stochastic tow waviness on the stiffness and strength of the laminate. The numeri-
cal results have been validated by the comparison of predictions with the experimental data. The stochastic model which
considers random waviness correlates well with the experimental data.
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Introduction

Ceramic matrix composites (CMCs) are characterised
by low density, high modulus and good thermal stabi-
lity; they are of increasing interest for hot structures,
such as rocket nozzles, combustor liners of turbine
engines, space shuttle thermal protection systems and
nuclear fuel cladding tubes.1,2 For actual fibre tows,
there are some geometrical defects like matrix voids,
fibre waviness and variations in tow positioning and
cross-section, which may arise during the manufactur-
ing process. Fibre waviness is one of the most fre-
quently encountered process-induced defects in CMCs
and seriously affect the performance of CMC compo-
nents under complex loading conditions. Therefore, it
necessitates the development of an accurate yet highly

computational efficient model, which is capable of sto-
chastically modelling fibre waviness.

In the last three decades, numerous efforts have been
made to investigate the effects of fibre waviness on
mechanical behaviour of woven composites. Yurgatis.3

and Jelf and Fleck4 measured the local fibre
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misalignment angle and showed that the geometric
morphology of wavelength is sinusoidal. Hsiao and
Daniel5 proposed an analytical model to investigate the
compressive behaviour of thick composites with fibre
waviness. Chun et al.6 developed analytical model, in
which the geometric non-linearities triggered by out-of-
plane waviness were considered and the tensile and
compressive behaviour of composites was predicted.
Zhang and Hayhurst7–9 developed a conceptually sim-
ple and computationally efficient finite element model
to study the effects of fibre misalignment of 7� on stiff-
ness and strength of CMCs under uniaxial tension.
However, these works deal with fibre waviness by the
means of averaging tow orientations, without consider-
ing random irregularity in realistic materials. Stochastic
waviness can initiate local stress concentration and fati-
gue damage initiation which has significant influence
on the life prediction of CMC components that would
experience multiaxial stress states. Therefore, stochastic
distribution of fibre waviness must be taken into
account and explicitly modelled to predict accurate
stress distributions and ultimate strength.

Generally, existing approaches for representing the
stochastic geometry can be categorised into two types:
non-intrusive and intrusive. Non-intrusive methods use
the deterministic representations of geometry, while
intrusive techniques involve the reformulation of
model.10 The most common non-intrusive model is in
the Monte Carlo framework, which is used to generate
random samples of input variables from statistical dis-
tributions. In the case of intrusive techniques, such as
that of Sasikumar et al.,11 they used Karhunen–Loeve
(K-L) and polynomial chaos expansions to represent
the input and output random fields, respectively, to
quantify the random variables of multilayer compo-
sites. In an analogous approach, Wang and Wang12

derived the theoretical model by introducing Taylor’s
expansion of local stochastic variable into stiffness of
textile composites. Nevertheless, intrusive techniques

require a quite large number of equations especially in
the case of complex and multi-directional stochastic
problems, leading to high computational costs.

This work utilises a probabilistic collocation method,
that is, the non-intrusive Markov Chain algorithm, in
which stochastic waviness can be described by fluctua-
tions in the centroid coordinates of tow positioning,
and then, the tow deviations are generated by marching
sequentially from one grid point to next along a tow
path. The deviations depend only on the deviation of
the previous point, using the probability transition
matrix (PTM) that can be calibrated using experimental
data. Bale et al.,13 Blacklock et al.14 and Rinaldi et al.15

indicated that the Markov Chain algorithm is physi-
cally appropriate for reconstruction problem of textile
composites. The dominant correlations must be those
along a tow, while correlations between inter-tows are
relatively weak, which satisfies the Markovian proce-
dure. Consequently, the one-dimensional (1D) repre-
sentations of tows with stochastic waviness are
generated within virtual specimen generator.

As shown in Figure 1, the Binary Model consists of
two virtual components, 1D tow elements and three-
dimensional (3D) effective medium elements, which
represent the fibre-dominated and the matrix-
dominated properties, respectively. Almost all works
using the Binary Model assumed that effective medium
elements are taken to be isotropic and tow elements are
considered to be linear elastic. Such as those of Flores
et al.,16 Rajan et al.17 and Rossol et al.;18 they used a
linear Drucker–Prager yield criterion for failure initia-
tion in the effective medium along with isotropic
elastic–plastic evolution law. Yang and Cox19 employed
the rule of mixture to determine the material properties
and assumed that the effective medium is isotropic and
the properties of both virtual constituents are linear
elastic. The assumption of isotropic medium is reason-
able for polymer matrix composites (PMCs) since tow
elements usually take dominant role due to the low

Figure 1. Principle of binary model: one tow element AB embedded in one eight-noded effective medium element.
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stiffness of polymer matrix. Nevertheless, this postula-
tion may not be appropriate for CMCs because of the
high stiffness of ceramic matrices and their progressive
damage behaviour, which can be better described by
orthotropic effective medium properties. The axial
response of elastic fibres is characterised by the axial
stiffness of the tow elements. The strength of fibres can
be taken to be either deterministic or stochastic. Most
work using the Binary Model assumed that the proper-
ties of tow elements are linear elastic using the simple
choice of deterministic strength. If the fibre strength is
stochastic, the cumulative effects of fibre-matrix
debonding, fibre fractures and subsequent frictional
pull-out within each tow are stochastically modelled by
a 1D non-linear constitutive law. In this article, the lat-
ter method has been used. On the basis of previous
work,7–9 this article employs a non-linear orthotropic
constitutive model. Consequently, accurate predictions
of their mechanical behaviour, for example, non-linear
stress–strain curves, orthotropic damage initiation and
evolution and catastrophic failure in a brittle manner
can be obtained.

This article addresses the development of a finite ele-
ment model which considers both the stochastic tow
waviness and the non-linear tow properties. This work
relies on a good understanding of characteristic of tow
misalignments as well as constitutive properties of the
individual composite constituents. The layout of this
article is as follows. First, the microscopic structure of
CMCs will be introduced. Second, the statistical analy-
sis of stochastic waviness using the Markov Chain
algorithm is made. Then, the Binary Model and its
non-linear orthotropic constitutive equations employed
are described. After that, the test data of the 10 high-
carbon fibre/amorphous carbon matrix–SiC matrix
(C/C-SiC) DLR-XT plain-weave laminates will be used
to validate the predictions. Also, the effects of stochas-
tic waviness will be investigated on composite stiffness,
strength and overall stress–strain response.

Material description

The microstructures of CMCs depart significantly from
those of PMCs due to their constituents and infiltration
method. Polymer matrix can be adequately infiltrated
into interior tows and interstices of fibre bundles, which
creates nearly porosity-free and homogeneous matrices.
For CMCs, in contrast, the matrix is formed by chemi-
cal vapour infiltration (CVI) or other process that com-
monly contains residual microcracks and porosities
over relatively large volumes, as illustrated in Figure 2.
The distribution of matrix within and between the fibre
tows appears to be non-uniform. Additionally, Figure 2
shows the wavy tow paths, which are idealised by piece-
wise linear tow elements. These paths of a single layer
are marked by yellow broken lines.

Statistical analysis of stochastic waviness

The reconstruction algorithms or generators for sto-
chastic heterogeneous materials are related to the statis-
tical physics.14 A statistical description of tow centroid
deviations in the plain-weave architecture is made. The
statistical parameters required to calibrate the virtual
specimen generator are introduced in this section. The
formulation of Markov Chain algorithm is also
presented.

Systematic variations and stochastic deviations

The unit cell of plain-weave DLR-XT material consists
of two warp and two weft yarns with reference periods
lz and lx as shown in Figure 3. But actually, two tow
elements are used to represent a physical tow of this
material, and therefore, four warp and four weft tow
elements are included in unit cell. Considering the
weaving process, the warp tows can be represented by
one tow genus, and the weft tows can be represented by
another tow genus.

Figure 2. Side elevation of microstructures for DLR-XT
material required from SEM images, along with idealised tow
topologies of a single layer.

Figure 3. Schematic drawing of the unit cell with reference
periods for DLR-XT material, all dimensions in millimetre.
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A uniform grid is defined over the reference period
with nine grid points, i=1, ., 9. It is assumed that the
tow at grid point 10 is statistically equivalent to the tow
at point 1. All tows are discretised with an equal num-
ber of grid points and the grid spacing of tow genus.
The coordinates of the centroid of any section of indi-
vidual tow can be represented by the vector (j, y) in the
global coordinate system, with j = x for warp tows and
j = z for weft tows. The centroid positions of tow paths
can be decomposed into periodic, systematic variations
and non-periodic, stochastic deviations. Thus, the coor-
dinates of the centroids of tows are expressed as follows

(j, y)(j, k)i =\(j, y)(j, k)i .+(dj, dy)(j, k)i ð1Þ

where \ . . . . infers to the average value and the super-
script denotes the jth tow of tow genus k and subscript i
denotes the grid point along the reference period.

Due to the periodicity of systematic variation, any
warp or weft tow can be made to coincide with any
other tow of the same genus by shifting some vector
(rlz=4e

*

z, slx=4e
*

x) with r and s integers

\(j, y)(j, k)i .= u
(j, k)
i + r

lz

4
e
*

z + s
lx

4
e
*

x ð2Þ

Determination of the statistical parameters

The deviations of centroid coordinates from the sys-
tematic value at all available points can be used to (1)
determine the root mean square deviations (RMSDs)
and (2) determine the correlation lengths within one
tow and inter-tows.

The RMSD s
(k)
j is calculated at all grid points i

along each tow j of tow genus k

s
(k)
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i, j(dj

( j, k)
i )

2
=N

r
ð3Þ

with N =
P

Ni, the sum of datapoints for grid point i.
The RMSD is assumed to be independent of the grid
point. s(wp)

x , s(wp)
y , s(wf )

z and s(wf )
y are the components of

the stochastic part of the centroid coordinates for each
of the warp and weft tows.

Correlation length is defined in terms of Pearson’s
correlation parameter for pairs of data dj

( j, k)
i , dj

( j, k)
i+K

n o
along a tow spaced by Kd. The autocorrelation coeffi-
cient of a parameter dj

( j, k)
i is determined by

C
(k)
j (K)=

Pn�K

i= 1

dj
( j, k)
i d

( j, k)
i+K

s
(k)
z

� �2
ð4Þ

where n is the number of pairs. The correlation length
is essential to evaluate the spatial dependencies that
means deviations at a certain position have an influence

on the deviations at another position. For each tow
genus, this parameter is determined by linear approxi-
mation of the first autocorrelation values for small
spacing of grid points

C
(k)
j (K)’ 1� Kd=z( j, k) ð5Þ

with z( j, k) the correlation length. z(wp)
x , z(wp)

y , z(wf )
z and

z(wf )
y are the components of the stochastic part of the
centroid coordinates for each of the warp and weft
tows. Equation (5) uses only the interval datapoints for
spacing K � 3. Higher spacing K. 3 will result in that
the correlation length calculated by much smaller data
sets is too large to beyond the range of significant
length and therefore inappropriate for calculating the
correlation length.

The RMSD and correlation length parameters for
the various components of the deviations of the tow
centroid coordinates are summarised in Table 1.

Generation of tow centroid deviations with the
Markov Chain algorithm

The tow centroid fluctuations around the mean cen-
troid paths are generated from the Markov Chain algo-
rithm. As for the angle interlock weave of Blacklock
et al.,14 no significant inter-tow correlations for the
same genus are presented. Hence, the plain-weave com-
posites do not exhibit significant inter-tow correlations.
The deviations of considered parameter are discretised
on an interval { –ma, 2(m2 1)a, ., 0, ., (m2 1)a,
ma} with grid spacing a and number of intervals m that
satisfy the relation ma=3s. The possible values of gen-
erated deviations are limited by the 3s, since the high-
standard deviation may cause the high amplitude of
spikes in the generated deviations along the tow length.
The probability of occurrence of the discrete values of
ji constitutes the distribution vector Pj

i for grid point i

P
j
i = p ið Þ

m p
ið Þ

m�1 . . . p
ið Þ

0 . . . p
ið Þ
�m+ 1 p ið Þ

�m

h iT

ð6Þ

Table 1. Experimental data: RMSD and correlation length for
the in-plane and out-of-plane deviations of centroid coordinates
of tows.

Warp tows

s(wp)
x (mm) z(wp)

x (mm) s(wp)
y (mm) z(wp)

y (mm)

0.034 1.247 0.049 0.954
Weft tows

s(wf )
z (mm) z(wf )

z (mm) s(wf )
y (mm) z(wf )

y (mm)

0.036 1.308 0.049 0.957

4 Advances in Mechanical Engineering



where T denotes the transpose operation. The Markov
process generates the distribution vector P

j
i+ 1 of the

parameter ji at the next grid point i + 1 using the
PTM A

P
j
i+ 1 =AP

j
i ð7Þ

In the initial form, this PTM is constructed as (2m
+ 1) 3 (2m + 1) tridiagonal PTM

A0 =

a g 0 : : 0

b0 a g 0 : :
0 b a : : :
: 0 : : g 0 :

: : b a d 0

: 0 b a b 0 :
: 0 d a b : :

: 0 g : : 0 :
: : : a b 0

: 0 g a b0

0 : : 0 g a

2
66666666666666664

3
77777777777777775

ð8Þ

All elements have values between [0,1] and each col-
umn adds to unity. The generated deviations ~ji are con-
trolled by varying the relative magnitudes of b and g.
The value of a is fixed and arbitrarily chosen to be
0.9.14 The PTM is calibrated with the RMSD and cor-
relation length.

The Markovian process assumes that a deviation at
any point only depends on the deviation at the previous
point and not on the distribution of the deviation at
prior points. Since the PTM is assumed to be indepen-
dent for tows in a given genus, the process is stationary.
To eliminate grid effects arising from the Markov
Chain operator, the stochastic deviation can be
smoothed to remove mesh-dependent small-scale fluc-
tuations using the modified moving average.

Finite element model

In order to demonstrate the fidelity of virtual specimen
generator to create large numbers of replicas of the
microstructures, two samples of 2 3 2 unit cell Binary
models are generated for the plain-weave DLR-XT
laminate. The material properties of effective medium
and tow elements are the required input for Binary
Model simulations. The effects of the random waviness
on the stiffness and ultimate strength of the laminate
are studied. Finally, a comparison is made between the
systematic and stochastic predictions as well as the
results of more conventional finite element models and
the experimental data.

Constituent properties for the Binary Model

The Binary Model utilises two virtual components that
comprise the composite tow: a 1D tow element and a

3D effective medium element to represent the fibre-
dominated and the matrix-dominated properties,
respectively.20 Effective medium elements, which repre-
sent matrix-dominated contributions to stiffness, are
assumed orthotropic with nine independent material
properties. Due to the reinforcement of continuous
fibre bundles, CMC tows exhibit significantly different
longitudinal and transverse non-linear behaviour. The
degradation of different longitudinal and transverse
shear stiffness as well as Poisson’s ratios can be taken
into account. Tow elements represent the fibre-
dominated properties and therefore are assumed to have
only axial stiffness. Unlike the use of deterministic
strength of elastic fibres, the cumulative effects of fibre-
matrix debonding, fibre fractures and consequent fric-
tional pull-out mechanisms within each tow can be
stochastically modelled by a non-linear constitutive law.

The failure criteria for effective medium and tow ele-
ments are defined by the maximum principal strain cri-
terion to capture the strain-induced damage, which
means when strain components in principle material
direction exceed the critical value associated to the
cracking, the damage takes place.

The constituent properties used in the Binary Model
are derived from the material properties for a DLR-XT
unidirectional lamina reported in Zhang and
Hayhurst.7 In the local coordinate system (detailed in
Appendix 1), equation (9) implies that there are many
possible solutions for the axial stiffness of a tow ele-
ment kTow

1 because the effective medium is a virtual
material and therefore no experimental data are avail-
able for its longitudinal stiffness k1

EM or Young’s mod-
ulus E1

EM . This does not mean that the value of E1
EM

can be chosen arbitrarily since equation (10) needs to
be satisfied in order to perform an analysis with reason-
able physical meaning

E1
EM = vEM

12 =vEM
21 EEM

2 :(nEM
21 \0:5) ð9Þ

Substitution of EEM
2 =EEM

3 =EUD
x and nEM

12 = nEM
13

= nUD
zx to equation (10) yields

EEM
1 .2vUD

ZX EUD
X ð10Þ

It can then be determined that EEM
1 is greater than

11.2GPa, and 12GPa is adopted for the initial Young’s
modulus of the effective medium. As shown in Figure
4(a), the longitudinal stress–strain curve of the effective
medium is assumed to drop linearly from the peak at the
matrix cracking strain of 0.05% to zero at the composite
failure strain of 0.38%. The variation with longitudinal
strain of the two identical Poisson’s ratios, nEM

12 and nEM
13 ,

are shown in Figure 4(b). The through-thickness and
shear stress–strain curves are assumed to be linear elastic
until failure, as shown in Figure 4(c) and (d). The mate-
rial properties of tow elements are shown in Figure 5.
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The non-linear constitutive properties of tow ele-
ments and orthotropic constitutive properties of effec-
tive medium elements are implemented by Abaqus/
standard21 with a user-defined field subroutine
(USDFLD), in which field variables are used to govern
the degradation of constitutive properties.

2 3 2 unit cell Binary Model generated from virtual
specimen generator

In comparison with other numerical models for woven
CMCs, for example, conventional fine-mesh model22 or

homogenised coarse-mesh model,7 the mesh generation
of Binary Model is much more straight forward. The
topology of woven tows can be represented by 1D tow
elements. Due to the periodic and symmetrical charac-
teristics of plain-weave DLR-XT laminate, a unit cell
has been chosen to represent the whole laminate. The
Binary Model employs two mesh systems comprising
two-node truss elements representing the fibre tows
and eight-node solid effective medium elements that
define the external geometry and represent the matrix-
dominated properties. The two mesh systems facilitate
the spatial matching of fibre tows and matrix and obvi-
ate the complexity of matrix grids, which are coupled
by the multi-point constraints in Abaqus. To satisfy the
continuity of stress and compatibility of displacement
at the boundaries of unit cell, periodic boundary condi-
tions have been applied.

In addition, the stochastic 1D tow representations
that are generated from virtual specimen generator are
suitable for insertion into Binary Model simulations of
textile composites.14,23 On the basis of statistical para-
meters defined in Table 1, two 2 3 2 unit cells are gen-
erated for the plain-weave DLR-XT laminate. The
difference between the two finite element models lies in
the tow waviness, where the systematic model has no
waviness and the stochastic model has random wavi-
ness, as shown in Figures 6 and 7.

Figure 4. Material properties of effective medium for DLR-XT composites: (a) longitudinal stress–strain curve; (b) Poisson’s ratios,
n12, n13 and n23; (c) transverse stress–strain curve and (d) shear stress–strain curve.

Figure 5. Material properties of tow elements for DLR-XT
composites.
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In the solution of a non-linear finite element analy-
sis, the non-linear stress–strain properties were discre-
tised to multi-linear curves. The loading was imposed
in terms of the displacement boundary condition, that
is, loading was modelled with displacement control
rather than force control. The applied displacement
was divided into many small increments. In each
increment, linear material properties were used in the
constitutive equations for both tow element material
and for effective medium/matrix material (detailed in
Appendix 2).

Results and discussion

Fibre waviness exists in woven CMCs, and in fact, it is
often significantly more severe than that in unidirec-
tional composites, especially for high fibre volume
fraction. Figure 8 shows the stochastic in-plane and
out-of-plane centroid coordinate paths around the sys-
tematic paths for warp genus. The out-of-plane cen-
troid coordinates appear to have the largest deviations,
as observed in Figure 8(b). This is due to the compres-
sion and interaction of preform through its thickness

during the weaving process, and a tow can rotate more
easily lying out-of-plane than in-plane. The relatively
straight tow segments do not exhibit substantial misa-
lignments, which might be attributed to the presence of
flat surface in the moulding process.

It can be seen that all of the tow centroid coordinate
paths vary in the deviations, rarely exhibiting the sym-
metry implied by their representations in the systematic
path. All deviations are less than 3s from the mean
value, indicating that good control was maintained in
generating procedure. Nevertheless, extreme values will
exceed the dimensions of unit cell. The misalignment
angles can be calculated between the locations of tow
centroid coordinates and are mainly within the range
of 29.2� to 25.9� and 5.3� to 10.9�. The average value
is about 6.8�, compared well to the misalignment angle
of 7� measured by Zhang and Hayhurst.7

Using the developed Binary Model and the non-
linear orthotropic constitutive properties shown in
Figures 4 and 5, two sets of predictions are made for
the plain-weave DLR-XT laminate under strain-

Figure 6. Mesh and geometry of a systematic 2 3 2 unit cells
Binary Model of a plain-weave DLR-XT (C-C/SiC) material, all
dimensions in millimetre.

Figure 7. Mesh and geometry of a stochastic 2 3 2 unit cells
Binary Model of a plain-weave DLR-XT (C-C/SiC) material, all
dimensions in millimetre. Figure 8. Stochastic deviations from the systematic path for

the centroid coordinates of the warp tows in 2 3 2 unit cells
Binary Model of a plain-weave DLR-XT (C-C/SiC) material:
(a) in-plane centroid paths and (b) out-of-plane centroid paths.

Chen et al. 7



controlled uniaxial tension. Figure 9 shows a compari-
son among the systematic and stochastic predictions,
the finite element results7 and the experimental data in
the literature.24 It can be seen that the effects of wavi-
ness on the stiffness of the stress–strain curves are sig-
nificant. The stochastic model predicts a lower stiffness,
a lower ultimate strength, but a higher failure strain
than the systematic model. Upon loading, both curves
predicted by systematic model and stochastic model are
similar until the proportional limit is reached. But after-
wards, the curve for the stochastic model yields signifi-
cantly lower stiffness and stress. The range of tensile
strengths predicted is from 210.27 to 190.26MPa,
which indicates a difference of approximately 10%.
This is because the well-aligned fibre tows of systematic
model can carry greater stresses than misaligned tows,
and therefore, the former model predicts an earlier fail-
ure, but a higher strength than the latter one.

In comparison with experimental data, only the pre-
diction which considers the waviness compares well
with experimental data. For both the systematic and
the stochastic models, the predicted failure strains have
good correlations with the test data. The catastrophic
manner observed in the experiments is also well cap-
tured by the sharp drop in the stress at the failure
strain. The same conclusions have been drawn in Zhang
and Hayhurst.7

Conclusion

Two binary models of 2 3 2 unit cells have been cre-
ated by the virtual specimen generator that possesses
the same statistics as experimental data derived from
scanning electron microscope (SEM) images. The
Markov Chain algorithm with specific input para-
meters generates deviations of the coordinates of tow
centroids that subsequently are added to systematic

path. A stochastic model with random waviness is
obtained. Comparisons between systematic and sto-
chastic models have been made to investigate the effects
of random waviness on stiffness and strength of the
stiffness and ultimate strength of CMC laminate under
uniaxial tension. The accuracy and computational effi-
ciency of the virtual specimen generator have been eval-
uated by comparing the predicted and experimental
results. Some conclusions can be obtained as follows:

1. The non-linear orthotropic Binary Model con-
sidering stochastic waviness can accurately pre-
dict the axial tensile behaviour of a plain-weave
DLR-XT laminate.

2. The out-of-plane centroid coordinates are sub-
ject to the largest deviations from its systematic
path due to the compression and interaction of
preform through its thickness during the weav-
ing process.

3. The random waviness has significant effects on
the material stiffness and strength. The loss of
tensile strength is approximately 10%.

4. The high efficiency of reconstructing the same
statistics of measured sample makes the
approach a useful tool to model large multi-
scale-woven composites.
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Appendix 1

Local material orientation

Due to the constitutive properties described in section
‘Constituent properties for the Binary Model’, the spa-
tial variation in elastic properties is modelled by defin-
ing the local material orientation along the tow axis for
orthotropic material, that is, effective medium
elements.

The spatially varying local coordinate system (1, 2,
3) for the elements is defined as follows: First, the 1-

axis is defined to align with the fibre direction in terms
of the pair of centroid coordinates of successive points.
There are many possible solutions for the determina-
tion of 2-axis. In this article, 2-axis is considered to lie
parallel to the x-z plane in global coordinate system.
Next, the 2-axis is defined to be orthogonal to the 1-
axis and normal direction of x-z plane

2= 13 ey ð11Þ

where ey = 0, 1, 0f g is the base vector for the global y-
axis. Finally, 3-axis is further determined by the follow-
ing vector cross product

3= 13 2 ð12Þ

The local coordinate system is implemented by com-
piling python script into Abaqus. The main code calls
two files which are used to record nodal coordinates
and element definitions for both the effective medium
and tow elements. The same procedure is used to obtain
the local coordinate system of each element for warp
and weft tows.

Appendix 2

Incremental constitutive equations

In the solution of a non-linear finite element model, the
incremental constitutive equations can be expressed by

Dsf g= C(De)½ � Def g ð13Þ

where Dsf g is the stress increment vector, C(De)½ � is
the incremental stiffness matrix and Def g is the strain
increment vector. The explicit form of equation (13) for
effective medium is
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where the primed values E0i, G0ij and n0ij refer to the local linearised material properties, and

D=
(1� n0end

12 n0end
21 � n0end

23 n0end
32 � n0end

13 n0end
31 � 2n0end

21 n0end
32 n0end

13 )

E01E02E03

and n0ij =(E0i=E0j)n
0
ji (i, j=1–3 and i 6¼ j).

More details of the incremental constitutive equations for orthotropic effective medium materials can be found
in Zhang and Hayhurst.7
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