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Infiltration sintering of WCu alloys from copper-coated tungsten composite 

powders for superior mechanical properties and arc-ablation resistance  

Wenge Chen1*, Yingge Shi1, Longlong Dong1*, Lijian Wang1,  

Hanyan Li, Yongqing Fu2, * 

1 School of Materials Science and Engineering, Xi’an University of Technology, 

Shaanxi Xi’an, 710048 P.R. China 

2 Faculty of Engineering and Environment, Northumbria University, Newcastle upon 

Tyne, NE1 8ST, UK. 

Abstract: W70Cu30(W-30 wt.% Cu) alloys were fabricated using cold pressing and 

infiltration sintering methods from two types of powders, i.e., mixed copper-tungsten 

(M-Cu-W) powders and our newly developed copper-coated tungsten composite 

(Cu@W) powders. Microstructure, mechanical and arc-ablation properties of the 

W70Cu30 alloys were investigated, and the mechanism of enhanced 

physical/mechanical properties and arc-erosion resistance of the W70Cu30 alloys was 

discussed. For the W70Cu30 alloys prepared using the Cu@W powders, their 

physical properties, including hardness, electrical conductivity and relative density 

were much better than those prepared from the M-Cu-W powders. The W70Cu30 

alloys fabricated from the Cu@W powders were free of cracks, and showed 

homogenous distributions of W and Cu network structures. Whereas for the alloys 

prepared from the M-Cu-W powders, segregation of Cu was observed and the 

segregation size was about 40~100 µm. Characterization of arc-erosion morphologies 
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of the W70Cu30 alloys prepared with the Cu@W powders revealed the occurrence of 

evaporation of Cu phase; whereas that of W70Cu30 alloys prepared with the M-Cu-W 

powders revealed the occurrence of the sputtering of Cu. After arc breakdown for 200 

times, mass loss of alloys made using the mixed powders was twice as much as those 

made using the coated composite powders. Based on the experimental results and 

theoretical analysis, an arc breakdown mechanism of the WCu-C alloys using the 

composite powders was proposed which is attributed to the formation of a 

homogeneous Cu-Cu network structure to uniformly disperse arc energy and dissipate 

the generated heat, thus prolonging the service life of the WCu alloy contacts. 

Key words˖̟̟̟Coated composite powders; Infiltration sintering; WCu alloy; Arc erosion; 

Breakdown morphology 

1. Introduction 

WCu alloys are widely used as electrical contact materials in high-voltage circuit 

breakers due to their high melting point, high hardness, low coefficient of thermal 

expansion (CTE), good arc erosion resistance of W, and remarkable thermal and 

electrical conductivities of Cu [1-8]. Phenomena of melting/evaporation, or sputtering 

of contact materials are commonly observed during their services when the high 

voltage circuit breakers are subjected to breaking current operations. As results, 

repeated and concentrated arc erosion will lead to the catastrophic failure of electrical 

contacts [9-11]. With the development of new switches with larger capacities operated 

at ultrahigh voltages [12], the conventional preparation methods for the WCu alloys 

cannot meet the strong demands in applications.  
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Powder metallurgy (PM) technology has widely been used to fabricate WCu 

composites. However there are large differences in the material properties between W 

and Cu, and grain coarsening is difficult to prevent during the high temperature PM 

sintering process. Cu was reported to be leached out from the skeleton of W during 

the preparation process which leads to Cu segregation and non-homogenous 

microstructure, thus poor performance of the final products [13-17]. Therefore, it is 

critical to control the microstructure and overall density of the products through the 

PM process, and improve the physical, mechanical and functional properties of the 

final products.  

Preparation of high-performance WCu alloys should start with the improved 

processing techniques of raw powder materials. Various new methods have been 

proposed to synthesis WCu powders, such as hydrothermal synthesis, co-reduction 

method [18], mechanical alloying [19, 20], chemical co-deposition, and hydrogen 

reduction [21]. The above-mentioned methods can effectively prevent segregation of 

individual components and promote formation of a homogeneous microstructure, 

however, it is truly challenging to fabricate highly densified WCu composites using 

these new technologies, simply because of the large differences in physical properties 

between W and Cu phases. 

Coating the composite powders with two different materials has been frequently 

used by many researchers in advanced powder metallurgy because this method has no 

limits on shapes and substrates for the fabrication processes [12]. For example, 

Sunday et al. produced Fe3O4 coated Fe powders, and found that coating Fe with 
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Fe2O3 particles can effectively reduce core loss in soft magnetic composites 

components [22]. Fan et al [23] obtained homogenous Al-Mg microstructures using 

silver-coated Al-Mg alloy powders by electroless plating process. Park et al [24] 

prepared core-shell structures of Ag coated Cu powders using wet chemical processes, 

and found that dendritic Ag-coated Cu powders exhibit large surface areas, excellent 

conductivity and good oxidation resistance.  

We believe that copper can be coated on tungsten powders surfaces to form 

composite powders, which could be used in the powder metallurgy to achieve much 

finer microstructure and superior properties of the WCu alloys. As far as we know, 

there were no previous studies on copper-coated tungsten composites fabricated via 

low cost and conventional processes such as thermo-electroless plating process. The 

arc-ablation properties of the WCu alloys prepared from Cu coated W powders have 

never been investigated. This is critical as the WCu alloys have been extensively used 

in electrical contact field, and their arc-ablation properties are critical for their 

successful application.  

In the present work, Cu coated W composite powders were prepared using the 

method. For comparisons, W-Cu powders processed using simple mechanical mixing 

were also fabricated. Then WCu alloys were synthesized using an infiltration process 

with the above mentioned two types of powders (i.e., mechanical mixed powders and 

chemical-coated powders). Finally, the mechanical and arc-ablation properties of 

these two types of WCu alloys were investigated and the arc-erosion mechanisms 

were discussed. 
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2. Experimental procedure 

2.1 Raw materials  

Commercially available tungsten powders (with an average particle size of 5~7 

µm, oxygen content ̆ 600 ppm, purity ≥ 99.9%) and electrolytic copper powders 

(particle size 48 µm, purity ≥ 99.9%) were purchased from Zhuzhou Cemented 

Carbide group Co., Ltd, Hunan, China. The detailed information of the chemicals is 

listed in Table 1. All the other chemicals were obtained from Sinopharm Chemical 

Reagent Co. Ltd., Shanghai, China.  

2.2 Synthesis of Cu-coated W composite powders 

As shown in Fig. 1, Cu-coated W composite powders were prepared using the 

thermo-electroless plating method. The compositions of plating solution and reaction 

conditions are listed in Table 2. Before the electroless plating process, the W powders 

were successively etched using solutions of HCl (37 wt.%) and NaOH (30 wt.%) for 

half an hour successively, and then washed using deionized water.  

The detailed electroless plating processes are listed as follows. (a) Copper sulfate, 

stabilizing agent and complexing agent were mixed together to form an electroless 

plating solution (see Fig. 1(a)); (b) A certain amount of W powders were added into 

formaldehyde solution (HCHO) until the surfaces of W powders were thoroughly 

wetted, then were poured into the electroless plating solution (as shown in Fig. 1(b)); 

(c) The mixed solution was intensively stirred using a magnetic stirrer to disperse the 

W powders at 50 °C for 40 min, and simultaneously the NaOH solution was dripped 

inside the solution to adjust the PH value between 4 to 7 (see Fig. 1(c)); (d) The 

precipitates were separated from the solution after the chemical reactions were 

completed (see Fig. 1(d)). Deionized water and concentrated hydrochloric acid were 
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used to wash the precipitates for several times; (e) The composite powders were then 

heat-treated at 300 oC under H2 atmosphere to re-produce Cu which is coated on W 

powder surface (Fig. 1(e)). The pH value in the bath was continuously measured 

using a pH monitoring instrument, and was maintained by adjusting the added NaOH 

solution using a peristaltic pump. The temperature during electroless plating process 

was controlled using a constant temperature water bath. After electroless plating 

process, the Cu-coated W composite powders were then washed using deionized 

water for more than three times and dried using a vacuum freezed drying machine.  

2.3 Property measurement and microstructure characterization 

Tungsten-copper mechanical mixed powders (M-Cu-W for a short name, with 

average particle sizes of W 6~8 µm) and copper coated tungsten powders (Cu@W for 

a short name with an average particle size of coated powder 12~14 µm) were chosen 

to fabricate bulk W70Cu30 alloys using the infiltration sintering at 1350 oC for 90 

min under H2 atmosphere. The detailed preparation process was reported in our 

previous study [25]. The hardness of W70Cu30 alloys was measured using a TUKON 

2100 Vickers micro-hardness tester with a load of 100 g and a dwell time of 20 s. The 

density of sample was studied using the Archimedes' method. D60K digital 

conductivity meter was used to examine the conductivity of W70Cu30 alloys by 

measuring 3~5 points on the same sample to obtain the average value. The thermal 

diffusivity(α) was measured by using TC3020L at room temperature. The thermal 

conductivity (κ) was calculated from the relationship(1). 

 κ=cρα                (1) 

where c and ρ are specific heat capacity and actual density of the composite, 
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respectively. 

In order to measure breakdown field strength and arc ablation rate during the 

make-and-break of the contacts, the tests were carried out in the simulator of 

HYJH-YY/20 kV high voltage switching equipment as shown in Fig. 2. A cylindrical 

WCu alloys specimen with dimensions of Ф14mm×5mm was polished along the 

cross-section direction into a mirror surface and used as the cathode, and a W needle 

was used as the anode. The cathode was slowly moved up with a speed of 0.2 

mm/min, and the arc was ignited by the charge breakdown through the gap when the 

electrode distance was smaller than 1 mm. A direct current (DC) voltage of 18 kV was 

applied. The breakdown field strength can be obtained using equation (2):  

                            

U
E

d
=

                               (2) 

where E is the breakdown field strength (V/m), U is the breakdown voltage (V), and d 

is the distance between the cathode and anode (m). 

The arc ablation/erosion tests were performed in a chamber with SF6 atmosphere 

and the arc erosion rate was determined by the mass loss of the WCu sample. The arc 

ablation experiments were repeated for 200 times. When the arc was generated 

between cathode and anode, the arc distance was estimated using a digital micrometer 

(3101-25AC). The microstructure characterization after electrical breakdown was 

performed using a scanning electron microscope (SEM) equipped with an energy 

dispersive X-ray spectrum analyzer (EDS). 

In this work, for simplicity, the alloy prepared using the Cu@W composite 

powders was named as WCu-C, whereas the alloy prepared using the M-Cu-W 
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powders was named as WCu-M. 

3. Results and discussions 

3.1 Preparation of Cu@W composite powders 

Fig. 3 shows the morphologies of pure W powders and Cu@W composite 

powders. It can be seen from Fig. 3(a) that the surface of pure W powder (with 

average sizes of 6-8 µm) is clean, smooth without contaminants. The polyhedral 

structures of W particles were also clearly observed. However, some W particles show 

aggregation phenomena due to their larger specific surface areas. Fig. 3(b) shows that 

surface of Cu coated W particles appears some contaminants and W particles are 

nearly spherical after thermo-electroless plating. The crystal size of the W powders 

has been increased (8-12 µm) after the electroless plating process, and the 

morphology shows that the Cu were successfully coated on the W particle surface. 

The cross-section image of the coated powder is shown in Fig. 3(c). It can be clearly 

observed that Cu phase is uniformly coated on the surface of W particles, with the 

coating thickness in the range from 4-8 µm. Also some porosity were observed 

arounding coating, which is due to poor interficial bounding between W and Cu. It 

indicated that some Cu@W powders are not fully covered. 

The electroless plating process could happen on the catalytic surfaces at certain 

pH value and temperature. The electroless Cu deposition process with the 

formaldehyde as reduction agent can be written using the following reaction:  

Cu2++2HCHO+4OH-       Cu+2HCOO-+2H2O+H2                       ˄3˅ 

The above reaction is composed of oxidation of formaldehyde and the reduction 
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of copper ions. The oxidation of formaldehyde is usually a catalytic reaction which 

occurs in the presence of catalytic metals such as Au, Pd, and Cu. In this work, W 

powders were coated with Cu, thus without a need to have the catalytic metals, 

indicating that the deposited Cu could effectively act as the catalytic agent. The Cu 

thickness was increased and the grain size of the deposited Cu layer was also 

increased with the reaction time. 

Fig. 4 shows the XRD patterns of WCu composite powders. It can be seen from 

Fig. 4(a) that except the Cu and W, there are also obvious CuO peaks in the diffraction 

peaks of Cu@W without reduction. This is because that powders were washed and 

dried at 80 oC for 12 h under air atmosphere after electroless plating. The surface of 

the Cu particles can easily be oxidized to CuO in the long-term exposure to the air. 

Only W and Cu diffraction peaks were observed in Fig. 4(b), which indicated that 

CuO could be completely reduced at 300 oC under H2 atmosphere. Comparing Fig. 

4(b) with Fig. 4(c), it can be seen that W peak of Cu@W powders is lower than that of 

M-Cu-W powders, which is due to the fact that the surface of the W particles is 

covered by Cu. 

3.2 Microstructure of W70Cu30 alloys 

Microstructures of W70Cu30 alloys fabricated using the infiltration sintering 

method are shown in Fig. 5, in which the gray-white particles are W phase and the 

black ones are Cu phase. It can be seen from Fig. 5(a) that the Cu phase has a certain 

segregation in the WCu-M alloys (denoted by red arrow in Fig. 5(a)). The Cu are 

distributed among the W particles and the size distribution is varied in a range of 
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40~100 µm. In contrast to that, in the WCu-C alloy, the W powders are distributed 

homogeneously and no obvious Cu or W agglomerates can be observed as shown in 

Fig. 5(b). Fig. 5(c) and (d) shows the fracture morphology of the W70Cu30 alloys. As 

can be seen from the images, the network structure of Cu phase was formed and 

throughout the composites. There are some pores at the junction of W particles and 

Cu network (denoted by red arrow) in Fig. 5(c). While a small amount of pores were 

also observed in Fig. 5(d), the bonding phase of Cu fully covered the surface of W 

particles, indicating that bonding strength between W and Cu is strong. The above 

analysis shows that Cu@W alloy is more evenly distributed, and the interface 

connection of W particles and Cu network is stronger than that of M-Cu-W alloys. 

In order to explain the microstrutural differences before the sintering, the 

morphologies of green compacts of WCu-M alloy and WCu-C alloys were 

characterized and the results are shown in Fig. 6. Comparing Fig. 6(a) with Fig. 6(b), 

the distribution of W and Cu particles is extremely uneven in the WCu-M green 

compact, and a number of holes can be observed. However for the coated WCu-C 

powder structures, few pores could be observed on the green powder surface, as 

shown in Fig. 6(b). This is understandable because the W particles are uniformly 

coated by the Cu layer after electroless plating process, and this special structure 

makes the formation of Cu-Cu contacts preferentially instead of that of W-W contacts 

during the fabrication process. Additionally, the good plastic deformation of Cu can 

effectively reduce the arch bridge effect caused by direct contact of W particles, thus 

the porosity is significantly reduced. The binder Cu phase can lead to the 
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rearrangement of W particles, thus achieving the closest packing density. The initial 

point- or small area contacts among particles are gradually changed into the atomic 

bonding through the heating, volume diffusion, grain boundary diffusion of material 

migration during the infiltration sintering process, thus resulting in a densified 

structure. W particles are distributed homogeneously in the coated powders, and the 

number of W particles in contact with each other is much higher.  

For WCu-C alloys, the distance of material transfer during sintering is obviously 

shortened during the sintered neck formation, leading to formation of a continuous W 

skeleton. Simultaneously, the melted Cu liquid can be adequately immerged into 

compact pores under the capillary force, and Cu phase is distributed around the W 

skeleton forming a network structure.  

3.3 Physical and mechanical properties of W70Cu30 alloys 

Physical and mechanical properties of the W70Cu30 alloys made of different 

powders are listed in Table 3. It can be seen from Table 3 that both the alloys of 

WCu-C and WCu-M meet the requirements of the industrial Standard (GB/ 

T8320-2003). Whereas the properties of WCu-C alloy are much better than those of 

the WCu-M one. The reason for the relatively inferior properties of WCu-M alloys is 

due to the uneven distribution of W and Cu and the large difference in density of W 

(19.36 g/cm3) and Cu (8.96 g/cm3). In addition, the network structure of Cu phase and 

less porosity are very important for the excellent conductivity and thermal 

conductivity of WCu alloys [26]. These problemes can be solved by using core-shell 

structures of the WCu-C composite powders, as seen in Fig. 3(c) and Fig.5(d). 
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Therefore, the electrical and thermal conductivities of the alloys can be improved by 

the core-shell structures. Moreover, the Cu layer coated onto the W particles can play 

a good lubrication role during the following molding/demolding processes, so that the 

W particles can be easily deformly and moved to realize full contacts among W and 

Cu particles, thus reducing the porosity of the green compacts. Accordingly, during 

the sintering process the wettability between W skeleton and Cu molten particles can 

be improved by using the WCu-C powders. Therefore, the molten Cu would be 

thoroughly immerged into the W skeleton (as shown in Fig. 6(b)). As a result, the 

physical and mechanical properties of the WCu-C alloy can be significantly enhanced. 

Whereas for the WCu-M alloy, the relatively poorer performance is mainly due to the 

uneven distribution of W phase and Cu phase in the sintered alloys. 

Due to the immiscibility of solutions between Cu and W, the densification of 

WCu composites mainly occurs during solid-state sintering which is strongly 

influenced by the homogeneity and sinterability of W and Cu powders. When the W 

and Cu powders are mixed together, the initial density of the WCu composites is quite 

low, and this is mainly because the inhomogeneous distributions of W and Cu 

powders produce many pores which inhibit the mass transport of the Cu and W atoms. 

It is well- known that it is rather difficult to homogeneously mix W and Cu powders 

due to the large differences in the densities of W and Cu. During sintering process, 

many W powders agglomerate together, thus generating the bridge effect, however, 

Cu powders are difficult to fill inside these pores. Whereas if the Cu-coated W 

powders are used, the high relative density of WCu composites can be achieved due 
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to the formation of homogeneously distributed W powders and improved sinterability 

of the composite powders. As the W powders are coated with Cu forming a core-shell 

structure, the bridge effect between W powders can be eliminated to reduce pores in 

the compact of WCu composites. During the heating stage in the sintering, the Cu 

diffuses easily on the surfaces of the composite powders, thus resulting in the necking 

effect. The composite powders are easily sintered together with growth of rapid Cu 

necking effects, thus the mass transport of Cu and W atoms will be significantly 

enhanced. It was reported that the activation energy for self-diffusion on the W 

surface was decreased from 300 to 87 kJ/mol as the W was coated with Ni [27]. 

Similarly the Cu@W powders are also beneficial to promote the self-diffusion of W 

atoms. Also the activation energy for self-diffusion QSD for Cu(QSDCu=203.6 KJ/mol) 

on the surface of coated powders were lower than that of W(QSDW=626.3 KJ/mol)[27], 

which is benefical to diffision. Thus shortening the time of material migration. This 

improvement in the mass transport by using the composite powders also leads to the 

rapid densification of WCu composites. Therefore, both the increased mass transport 

effect and enhanced sintering mode through self-diffusion of W significantly enhance 

the densification of WCu composites after sintering. According to above results and 

analysis, using the Cu@W powders, the densification of WCu composites can be 

significantly increased, and also the porosity of the WCu composites is also 

significantly decreased, thus achieving the excellent physical properties of the 

sintered alloys( as seen in Fig. 5(d)). 

3.4 Arc-ablation properties of W70Cu30 alloys 
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Fig. 7 plots the relationship between the mass loss and arc breakdown times of 

W70Cu30 alloys. Clearly there are three stages during the arc ablation process of the 

WCu-M alloy. The first stage is before 80 times breakdown (Ⅰ), and the relationship 

between the mass loss and breakdown times showed a linear increasing trend. After 

this stage (Ⅰ), with the further increase in the breakdown times, the mass loss of the 

alloy is gradually reduced, thus reaching to the steady stage of the arc ablation (Ⅰ). It 

was reported that the lifetime of the contact material depends on this critical stage 

[28]. In the third stage, the mass loss increases constantly, and the mass loss reaches 

0.6 mg after arc breakdown for 200 times (Ⅰ). For the WCu-C alloy, its trend is 

similar to that of WCu-M alloy, and the apparent differences are: (1) there is a much 

longer second stage (up to 160 times); and (2) the mass loss is much less after the 

same repeated breakdown times. 

In the initial stage, the mass loss of both the two types of W70Cu30 alloys is 

quite large because some burrs and other oxide are inevitably existed on the surface of 

alloy. They are easily subjected to arc breakdown, and local heating or ion sputtering 

can be generated, thus resulting in the rapid removal of those attachments on the 

surfaces, which was often called old-refine stage [5]. However, the mass loss 

increases after this as the removed W and Cu vapors would react with SF6 (an 

arc-extinguishing medium) at the high arc temperature, the main recation is shown in 

equation (4), leading to formation of metal fluorides, which are attached to the surface 

of the alloy.  

3SF6ˇW→WF6(g)̌ 3SF4(g)̍  

SF6ˇCu→CuF2(s)̌ SF4(g)̍    (4) [29] 
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4SF6ˇ3WˇCu→2S2F2(g)̌ 3WF6(g)̌ CuF2(s) 

The ablation products of the WCu-C and WCu-M alloy were examined using the 

EDS. Results show that there are F and S elements but not W and Cu element as 

shown in Fig. 8, which clearly proves the above assumptions.  

The steady ablation stage of the WCu-C alloy is much longer than that of 

WCu-M one, and the ablation mass loss is much less. These are mainly due to the 

formation of network microstructures for the WCu-C alloy, which is efficient to 

conduct the heat transfer [30]. Therefore, most of heat generated by the arc ablation 

can be quickly transferred out. Also, much finer and more homogeneous distribution 

of Cu phases in the alloys is in favor of uniform distribution of arc charging. 

Accordingly the arc energy per unit area becomes much smaller and the breakdown 

field strength of the WCu-C alloy (4.22×106V/m) is higher than that of the WCu-M 

alloy (3.78×106V/m). With further increase of the arc breakdown times, the Cu 

content on the surface becomes rapidly lost, and part of W particles were exposed, 

leading to the decrease the bonding strength of W and Cu phases. The pores also 

appear collapsed and the ablation weight loss of the W70Cu30 alloy is significantly 

increased due to the arc breakdown. This is the failure mechanism of the contact 

materials in the last stage. 

The surface morphologies of the W70Cu30 alloy after the first arc breakdown in 

the SF6 (extinguished medium) is shown in Fig. 9. A circular arc erosion region with a 

diameter of 220~230 µm can be observed on the surface of WCu-C alloy. The ablation 

region is smooth, and some sprayed products are appeared on the ablation center (as 
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shown in arrow in Fig. 9(a)). EDS analysis showed they are mainly Cu element with a 

small quantity of W element, which may be attributed to the arc preferential 

breakdown on the lower work function of Cu phase during arc ablation process.  

Comparing Fig. 9(a) with Fig. 9(b), it can be concluded that the ablation area of 

the WCu-M alloy are much smaller than that of the WCu-C one. In addition, a molten 

region was formed in the process of arc action, and the liquid droplets of copper were 

sprayed out from the molten region under the arc force then they were quickly 

solidified and deposited on the surface, thus forming many tiny bumps and leading to 

a rough surface. The above results reveal that the arc breakdown on the surface of 

WCu-M alloy is more concentrated and the arc is mainly focused in the copper 

segregation region, which can explain the formation of copper spraying and 

evaporation. Finally, the ablation craters were formed in these positions as shown in 

the arrows in Fig. 9(b). Similar phenomena have been reported in Ref [11]. However, 

this phenomenon was not observed in the WCu-C alloy due to its finer and more 

uniform distribution of Cu phase. Under the same condition, arc energy of per unit 

area in the WCu-C alloy is much less, and the ablation morphology is much less 

significant. It is believed that a uniform distribution of Cu phases play an important 

for uniformly dispersing the arc energy throughout the whole area. Of course, the high 

electrical and thermal conductivity of composites can not be ignored. For WCu 

contacts materials, the conductivity of composite is higher, and its anti-ablation is 

stronger. Because good conductivity or thermal conductivity can quickly spread the 

heat generated by the arc, avoiding the alloy contacts to withstand excessive heat 
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ablation. 

Fig. 10 shows SEM morphologies of the W70Cu30 alloys after arc breakdowns 

for 200 times. Comparing Fig. 10(a) and Fig. 10(c), it can be found that a certain 

ablation regions are formed on the surfaces of WCu-C and WCu-M alloys after arc 

breakdowns 200 times, and the ablation areas in Fig. 10(a) is much smaller than that 

in Fig. 10(c). In Fig. 10(a), the ablation surface is much smoother without obvious 

ablation defects, whereas in Fig. 10(c), the surface is relatively rough with some 

bumps and ablation holes existed on the surface. This clearly indicates the severe loss 

of materials in the WCu-M alloy under the repeated arc action. The differences in the 

morphologies after multiple breakdowns between WCu-C and WCu-M alloys are 

mainly caused by the differences in the uniformity of microstructure distribution.  

Of course the influences of the ablation morphology after the first breakdown on 

the subsequent breakdown processes should also significantly influence the 

morphologies. According to the previous analysis shown in Fig. 9(b), lots of bumps 

are appeared on the WCu-M alloy after the first arc breakdown. The electric field 

strengths of these bumps are increased dramatically compared with that of the smooth 

substrate surface under the strong electric filed. The tips of these bumps are suffered a 

concentrated electric field, thus their field emission strength are increased to generate 

new arc breakdown. With the increase of the breakdown times, even though some 

bumps disappear due to the arc ablation, the other bumps in a larger area could 

generate new arc breakdown, thus resulting in a much larger ablation area than that of 

the WCu-C alloy. 
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Comparing Fig. 10(b) and Fig. 10(d), it is clear to see the cumulative effect of 

multiple breakdowns in the ablation area for both the WCu alloys. The arc 

breakdowns are mainly focused in the Cu segregation regions of the WCu-M alloy, 

whereas there is no obvious such type of region for the WCu-C alloy. The deposition 

of the Cu phases can also be observed in both Figs. 10(b) and 10(d). A large amount 

of Cu droplets are observed to attach to the W particles in Fig. 10(b), whereas only a 

small amount of Cu droplets are observed to attach to W particles as shown in Fig. 

10(d).  

Results clearly reveal that there are significant differences in the residual 

amounts of Cu phase on the surface layers of two types of alloys and the arc-erosion 

process during the arc breakdowns. The dominant arc-erosion mechanism of WCu-C 

alloy is the evaporation of Cu phase, which can be manifested by the large amount of 

Cu phases observed on the surface layer and the finer and more uniform of deposited 

Cu particles. The erosion morphology from the multiple arc breakdowns occurs on a 

much larger area of the surface than that on the first arc breakdown.  

However, for the WCu-M alloy, the arc-erosion mechanism is mainly the sputtering of 

Cu phase, in which Cu instantly becomes Cu vapour under the high arc temperature 

thus bursting and generating large pressure. As shown in Fig. 10(d), there is an 

ablation crater with a diameter of 80~100 µm observed on the ablation region, whose 

surrounding microstructures are not having a large stress. The loss of Cu phase occurs 

not only on the surface, but also inside the alloy. In addition, some cracks can be 

observed around the ablation crater, which are formed mainly by the large thermal 
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stresses caused by the large differences in the CTEs of the W and Cu (CTECu =17.5 × 

10-6/K, CTEW = 4.6 × 10-6/K) [31]. as well as the large internal stresses produced in 

the sintering and solidification processes. The thermal mismatch between Cu and W 

results in large thermal stress within composites as cooling from arc ablation 

temperature to room temperature. When the thermal stress is higher than the 

interfacial bonding strength between Cu and W, it will produce gaps at the interfaces 

of Cu and W. 

3.6 Discussions on the arc breakdown mechanisms for W70Cu30 alloys 

In order to explain the phenomena observed in the present work and to further 

understand the principles and mechanisms, a schematic model is plotted in Fig. 10 to 

explain the arc ablation phenomena occurring on the W70Cu30 alloy surface. As is 

known, surface ablation processes mainly include thermal chemical reaction of 

surface material and ambient air flow, material melting, evaporation (sublimation), 

high velocity particle impact (erosion) and mass loss caused by mechanical erosion 

[32]. 

For the WCu-M alloys, W skeleton phase is prone to launch electrons because 

the work function of Cu is less than that of W. Hence the selective arc breakdown 

should take place on the surface of W phase under the action of arc. However, Cu 

phase was molten instantaneously since the melting point of Cu is three times lower 

than that of W. At the same time, the Cu phase is partially clustered and uneven (In 

Fig. 10(a) and (c)), which result in a large area of pits and craters, as shown in Fig. 9(c) 

~ (d). 
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Whereas for the WCu-C alloys, Cu is uniformly coated on the surfaces of W 

particles to form Cu-Cu interconnecting network skeleton, as shown in Figs. 10(b) 

and (d). Therefore, the arc movement of sample surface is different from that on the 

WCu-M alloys, which could be described as follows. When the arc breakdown occurs, 

copper cladding can restrain the electron emission, also the generated heat can be 

quickly dissipated inside the homogeneous Cu-Cu network structure and also released 

by evaporation of Cu. At the same time, the arc energy is uniformly dispersed on all 

the Cu@W particles, then multiple weak arcs will be easily generated and quickly 

dispersed under the action of the strong electric field (Fig. 10(d)). The arc energy 

distributed on each Cu@W particle is significantly reduced. Subsequently, the 

temperature of arc breakdown zone could be significantly reduced through heat 

transfer by the connected Cu-Cu skeleton, thus avoiding the generation of splashed 

molten droplets of Cu. When the arc breakdown happens again, the formation of the 

secondary spots is relatively easier due to the uniform distribution of the weak Cu 

phases. So the whole surface of the WCu-C alloys have the equal chance of arc 

breakdown in all directions, and the cathode spots are uniformly distributed in all 

directions on the surface, thus resulting in the morphologies shown in Figs. 9(a) ~ (b). 

On the other hand, the electron emission was suppressed due to low function of Cu 

coated on high function of W, delaying the high temperature generation from the arc. 

As a result, the splash of liquid Cu was reduced effectively, thus improving arc 

stability, prolonging the life of W70Cu30 alloys contact. 

4. Conclusions 
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In this work, the arc-erosion properties and mechanical properties of the 

W70Cu30 alloys prepared using both W-Cu mechanical mixed powders and copper 

coated tungsten powders have been investigated. The following conclusions can be 

drawn from the present work: 

(1) The microstructures of the W70Cu30 alloy prepared using the coated composite 

powders are more uniform and finer, with a homogenous W skeleton formed in the 

alloys. However, the Cu phase in the simple mechanical mixed powder has a certain 

segregation which appeared to be strip-like shape with the size of 40-100 µm.  

(2) The hardness, density , electrical and thermal conductivity of the WCu alloys 

using the coated powders fabrication are all excellent than that of obtained using the 

mixed powders.  

(3) The arc-erosion resistance of the WCu-C alloy is better than that of WCu-M alloy. 

For the WCu-C alloy, the ablation area was larger and the ablation crater was 

shallower, and the arc erosion is mainly attributed to the evaporation of the low 

melting point Cu. However, for the WCu-M alloy, the arc erosion was mainly due to 

the sputtering of Cu. After arc breakdowns 200 times, the ablation morphology was 

serious and the mass loss was 0.6 mg, which was 2 times as much as those of the 

WCu-C alloy. 

(4) The arc breakdown mechanism of WCu-C alloys was considered to be the 

formation of a homogeneous Cu-Cu network structure to disperse arc energy and 

dissipate heat, thus prolonging the service life of the WCu contacts. 
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Fig. 11 Schematic illustration of the vacuum breakdown process for WCu alloys. 
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Fig.1 Illustration of the preparation process of Cu coated W powders via thermo-electroless 

plating. 

 

 

 

 

 

 

Fig. 2 Experiment testing apparatus: (a) the scheme of the testing facility; (b) experimental 

circuitry diagram of vacuum struck. 

 

(b) Mixing W and HCHO stiring 

in electroless plating solution 
(a) Electroless plating (b) W powders stirring in HCHO 

CuSO4•5H2O 

C4H4O6KNa•4H2O 

C10H14N2O8•2H2O 

(c) Mixture solution was stirred at 

the same time with drippedaOH 

(d) Precipitates were washed 
(e) Reduced at 300 oC 

NaOH H2 

(a) (b) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 
 

 

 

 

 

 

 

 

 

 

Fig. 3 The morphology of copper coated tungsten composite powders (a) Pure tungsten powders, 

(b) Copper coated tungsten powders, (c) Cross section of the coated powder. 

 

 

 

 

 

 

Fig. 4 XRD patterns of (a) Cu@W without reduction, (b) after reduction and (c) M-Cu-W powders 
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Fig. 5 Microstructure and fracture morphlogy of W70Cu30 alloys prepared with (a),(c) 

M-Cu-W powders, (b),(d) Cu@W composites powders. 

 

 

 

 

 

Fig. 6 The morphology of W70Cu30 green compacts (a) M-Cu-W powders, (b) Cu@W 

composites powders. 

 

 

 

 

 

 

Fig. 7 The curves of arc ablation times and mass accumulated lost of different W70Cu30 

alloys. 
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Fig. 8 EDS energy spectrum of W70Cu30 alloy arc breakdown under SF6 gaseous medium. 

 

 

 

 

 

Fig. 9 The surface microstructure after first arc breakdown of W70Cu30 alloy  

(a) WCu-C alloy, (b) WCu-M alloy. 
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Fig. 10 The surface microstructure after arc breakdown 200 times of W70Cu30 alloy prepared 

with different powders (a) and (b) WCu-C alloy, (c) and (d) WCu-M alloy. 
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Fig. 11 Schematic illustration of the vacuum breakdown process for WCu alloys. 

 

Table 1 Chemical compositions of W and Cu powders (mass fraction, %). 

Powders W Cu Fe Cr Ni Mn 

W (wt%) Bal. 0.05 0.002 ＜0.002 - ＜0.005 

Cu (wt%) - Bal. 0.008 - ＜0.1 ＜0.005 

 

Table 2 The compositions of plating solution and reaction conditions. 

Chemical Function Concentration 

CuSO4•5H2O Source Cu 20g/L 

C4H4O6KNa•4H2O Complexing agent 50g/L 

C10H14N2O8•2H2O Stabilizing agent 5.0mL/L 

HCHO Reducing agent 25mL/L 

NaOH Adjust the pH value 30 wt.%, PH=12 
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Table 3 The Physical and mechanical properties of W70Cu30 alloy prepared with different 

composites powders. 

Raw material 

powders 

Relative 

density(%) 

Electrical 

conductivity(IACS %) 

Thermal 

conductivity(W·m-1·K-1) 

Hardness 

(HV) 

Coated powders 99.1 56.4 234 238 

Mixing powders 98.0 50.2 210 213 

National standard 

(GB/T8320-2003) 
≥96.3 ≥42  ≥183 
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Highlights 

� The physical properties of WCu-C alloys are much better than WCu-M alloys.  

� WCu-C alloys are free of cracks, and show uniformly distribution of W and 

Cu-Cu.  

� WCu-C alloy reveals evaporation of Cu, but WCu-M alloy reveals sputtering of 

Cu.  

� Arc erosion mechanism of WCu-C alloy is Cu-Cu network to disperse arc energy.  

 


