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Exploring islands of stability in the design space of cylindrical shell
structures
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ABSTRACT: The structural stability of a simple benchmark problem – the snap through of a shallow cylin-
drical roof – is revisited. The problem is analysed in a robust manner using a technique known as generalised
path-following, which combines the mathematical domains of finite element analysis and numerical continua-
tion. Using this technique, the well-known arc-length method for tracing equilibrium paths in load-displacement
space is extended to explore other interesting paths on a two-dimensional solution manifold in three-dimensional
load-displacement-parameter space. These paths include unconventional equilibrium paths traced by varying a
model parameter, e.g. shell thickness, as well as critical paths that describe points where the tangential stiffness
matrix is singular – that is where buckling, snap-through or other instabilities occur. For the chosen bench-
mark problem, a localised region of stable equilibrium exists on one of the unstable equilibrium branches. The
evolution of this stable region with variations in shell thickness is explored by tracing the locus of critical
limit points that separate the stable and unstable portions of the equilibrium curve. Hence, without resorting to
computationally expensive parametric studies, we establish a two-dimensional manifold of stable equilibria in
displacement-load-thickness space, which can be graphically interpreted as an island of stability.

1 INTRODUCTION

Structural instabilities are generally regarded as un-
wanted aberrations rather than beneficial design fea-
tures. The adoption of structures that exploit struc-
tural nonlinearities, e.g. morphing composites that use
snap-buckling as a shape-changing mechanism, has
been hampered for a dearth of numerical methods to
analyse these structures robustly and efficiently, par-
ticularly in a manner that is compatible with accepted
methods used in industry. The importance of robust
computational tools for designing the next generation
of optimised, thin-walled structures is paramount, es-
pecially because confidence in computational tools
can serve as an enabler for non-conventional designs.

For example, the shape-changing mechanism of
composite morphing structures is typically governed
by instabilities that allow the structures to snap be-
tween two different equilibrium configurations (Pir-
rera, Avitabile, & Weaver 2012). Commercial finite
element packages can be used to analyse morphing
structures, but most of the time, these analyses are
rather ad hoc, because current commercial finite el-
ement packages are incapable of robustly predict-
ing instabilities in detail. In fact, the analyst needs
to be aware of possible instabilities and distinct sta-

ble configurations a priori, and then “coax” the algo-
rithm to land on the required mode shape, using, for
example, initial imperfections (Pirrera, Avitabile, &
Weaver 2012).

In pure and applied mathematics, a rich literature
on the so-called numerical continuation techniques
exists that are used to explore the solution space of
nonlinear ordinary or partial differential equations in
terms of a set of arbitrary parameters that govern the
intrinsic properties or external factors acting on the
physical system. When coupled with the concepts de-
veloped in bifurcation theory, a numerical continua-
tion algorithm is capable of tracing any nonlinear so-
lution path, traverse and identify different instability
points, and switch onto other solution branches if so
required. Hence, such an algorithm, embedded within
the finite element method, significantly enhances the
engineer’s capability to design nonlinear structures.

The purpose of this paper is to showcase the capa-
bilities of such a technique by means of a recurring
benchmark problem that, to the authors’ knowledge,
has not been analysed to the extent presented here. We
show that the design space of a cylindrical roof struc-
ture subjected to a transverse snap-through load con-
tains a multitude of symmetry-breaking bifurcation
branches, one of which, previously shown by Zhou et



al. (Zhou, Stanciulescu, Eason, & Spottswood 2015),
displays a localised region of stability surrounded by
unstable branches. Using the capabilities of the nu-
merical continuation solver, we easily determine the
bounds of this island of stability with respect to other
parameters, in this case, the shell thickness.

2 THEORY

Path-following techniques in commercial finite ele-
ment packages are based on tracing an equilibrium
solution in two-dimensional load-displacement space.
Such an equilibrium path only represents a single lo-
cus of points on a multi-dimensional solution mani-
fold parametrised by any number of other variables
such as material properties, geometric dimensions,
etc. Therefore, conventional path-following methods
are a specific subset of a generalised path-following
technique which enables visualisation of the struc-
tural behaviour in multi-dimensional space (Eriksson
1997).

The conventional equilibrium of internal and exter-
nal forces can be expressed as a function of a loading
parameter, λ, and the displacement state variables, u,
in the form:

F (u, λ) = f(u)− p(λ), (1)

where p(λ) is the external (non-follower) load vector
and f(u) is the internal force vector. For generalised
path-following, Eq. (1) is adapted to incorporate any
number of additional parameters, such that,

F (u,Λ) = f(u,Λ1)− p(Λ2), (2)

where Λ= [Λ>1 ,Λ
>
2 ]
> = [λ1, . . . , λp]

> is a vector con-
taining p control variables.

The n number of equilibrium equations in Eq. (2),
correspond directly to the n number of displacement
degrees of freedom in the system. Because the struc-
tural response is parametrised by p additional param-
eters, a p-dimensional solution manifold inR(n+p) ex-
ists. Following the notation and framework by Eriks-
son (Eriksson 1997), specific solution subsets on the
p-dimensional manifold are defined by incorporating
additional auxiliary equations, g. Hence, we wish to
evaluate solutions to the augmented system

G (u,Λ) ≡
(
F (u,Λ)
g(u,Λ)

)
= 0. (3)

For r auxiliary equations, the solution to Eq. (3) be-
comes (p− r)-dimensional and hence p− 1 auxiliary
equations are required to define a one-dimensional
curve, or so-called subset curve of the multi-
dimensional solution manifold. As outlined by Eriks-
son (Eriksson 1997), these subset equations can de-
fine fundamental equilibrium paths (the fundamen-
tal load parameter is varied); parametric equilibrium

paths (a non-load parameter is varied); bifurcation
branches emanating from another equilibrium path;
critical paths (the tangential stiffness matrix is singu-
lar); etc. To constrain the system to a locus of singular
points, we need to simultaneously enforce the fulfill-
ment of a criticality condition, e.g. KTφ = 0. In the
most general form, q number of auxiliary variables v
are added to the auxiliary equations g,

G(u,Λ,v) ≡
(

F (u,Λ)
g(u,Λ,v)

)
= 0. (4)

Following the example from above, when the n-
dimensional null vector at the critical state is intro-
duced as the auxiliary variable, v, a singular subset
curve in two parameters, p = 2, is appropriately con-
strained by the associated r = n+ 1 auxiliary equa-
tionsKTv = 0 and ||v||2 = 1.

When evaluating one-dimensional curves (r = p+
q − 1), one additional equation is needed to uniquely
constrain the system to a solution point y = (u,Λ,v).
Hence,

GN (y) ≡

(
F (u,Λ)
g(u,Λ,v)
N(u,Λ)

)
= 0, (5)

where N is a scalar equation which plays the role of
a multi-dimensional arc-length constraint. A specific
solution to Eq. (5) is determined by a consistent lin-
earisation coupled with a Newton-Raphson algorithm,

yj+1 = yj −
(
GN

,y(yj)
)−1 ·GN(yj) (6)

with

GN
,y =

 F ,u F ,Λ 0n×q
g,u g,Λ g,v
N>,u N>,Λ 01×q

 , (7)

where j corresponds to the jth increment and the
comma notation has been used to denote differenti-
ation.

3 RESULTS

Consider the classical nonlinear finite element bench-
mark problem of an hinged cylindrical roof, drawn
schematically in Figure 1. The radius of the shell
is R = 2540mm with hinged longitudinal edges of
length L = 508mm and free circumferential edges of
equal arc-lengthB = 508mm. The thickness, Young’s
modulus and Poisson’s ratio of the shell are t =
6.35mm,E = 3102.75MPa and υ = 0.3, respectively.
A transverse point load Pc is applied at the centre C
of the roof planform.

The shell is discretised into a 31× 31 node mesh of
100 fully integrated 16-node, total Lagrangian shell
elements using the shell director parametrisation of
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Figure 1: Hinged cylindrical shell with a central point load.

Ramm (Ramm 1977) (two rotations per node, no
drilling around director). The effects of shear and
membrane locking are minimised by using cubic
isoparametric interpolation functions and by refining
the mesh sufficiently until convergence with respect
to a 68× 68 element mesh of reduced integration S4R
elements of the commercial finite element software
ABAQUS is obtained.

Figure 2 shows a number of equilibrium paths plot-
ted in terms of the transverse displacement wc ver-
sus the applied transverse load Pc at the centre C
of the roof. Blue segments denote stable equilibrium
paths (all eigenvalues of the tangential stiffness ma-
trix are positive), whereas red segments denote unsta-
ble equilibrium solutions (at least one negative eigen-
value). Black points correspond to critical points,
i.e. equilibrium solutions where at least one eigen-
value of the tangential stiffness matrix is exactly zero.
Limit points are always symmetry-preserving bifur-
cations, i.e. no additional branch intersects the curve.
At a pitchfork bifurcation point, a symmetry-breaking
secondary branch intersects the primary branch.

The equilibrium path beginning at the origin
(path 1) in Figure 2 is the typical fundamental
path reported in numerous studies in the litera-
ture, e.g. (Zhou, Stanciulescu, Eason, & Spottswood
2015). In total, there are three secondary bifurcation
branches emanating from the fundamental path (paths
2-4), but in an experimental test, these branches can
not be realised as they are unstable equilibria un-
der the imposed load control regime. Additional ter-
tiary branches (paths 5-7) emanate from the three sec-
ondary branches (paths 2-4), which either connect
back to the secondary branches from which they em-
anated (paths 5 and 6), or connect to other secondary
branches. For example, tertiary branch 7 connects
branch 4 to branch 3.

As shown in Figure 2, the fundamental path 1 and
bifurcation branch 2 traced by ABAQUS’ Riks solver
using S4R shell elements matches closely with the
present model. To trace the bifurcated branch 2 in
ABAQUS, an initial imperfection based on a linear
eigenvalue analysis needs to be imposed. All other
bifurcation branches are much more cumbersome to
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Figure 2: Design space of equilibrium curves of an hinged cylin-
drical shell with a central point load. The path numbering system
is shown in circles. The ABAQUS reference solution is superim-
posed as a black dashed curve. Path 1 corresponds to the classical
fundamental path; paths 2-4 are secondary branches bifurcating
from the fundamental path; and paths 5-7 are tertiary branches
emanating from the secondary branches.

trace in this manner because linear eigenvalue analy-
sis would need to be performed in the vicinity of each
critical point, and the analysis then restarted with the
pertinent imperfection.

Interestingly, Figure 2 also shows a localised region
of stability on bifurcation branch 3. Identifying this
region experimentally is not a trivial task, as this re-
gion cannot be reached by simply increasing the ap-
plied load from the unloaded state. Rather, a load of
around 200N would be applied, and the roof then per-
turbed into the mode shape corresponding to the lo-
calised region of stability.

It is, however, interesting to investigate how this
stable region evolves as individual parameters of the
roof are varied. This could be done parametrically by
running the full solution shown in Figure 2 for a num-
ber of different models. Given that the stable region is
bounded by two limit points, a minimum on the left
and a maximum on the right, a computationally more
efficient method is to use the capabilities of gener-
alised path-following to evaluate the locus of these
two critical points – a so-called foldline.

One of the black curves in Figure 3 shows this
foldline, which was traced with a single call to the
generalised path-following algorithm and delimits the
boundary of the stable region for changes in shell
thickness. The direction of decreasing thickness is in-
dicated by the direction of the arrows with the −t la-
bel. Visually, this region is akin to an island of stabil-
ity with extremities at t = 7.12mm, where the stable
region ceases to exist, and the limiting case of zero
thickness. On one side, the foldline approaches a lo-
cus of pitchfork bifurcation points – herein referred to
as a pitchfork line – which shows that the bifurcation
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Figure 3: Evolution of the stable region on secondary branch 3
with varying shell thickness (direction of decreasing thickness
is shown by the arrows with label −t.). A generalised path-
following algorithm allows the analyst to trace the locus of limit
points that bound the localised stable region.

point and minimum limit point merge as the thickness
of the shell decreases. For clarity, the evolution of the
stable region is also shown parametrically in Figure 4
where portions of the fundamental path 1 and sec-
ondary branch 3 for t = 4.76mm and t = 3.175mm
are shown in a three-dimensional plot.
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Figure 4: Three-dimensional view of Figure 3 with two superim-
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4 CONCLUSIONS

The capabilities of generalised path-following have
been demonstrated by means of a simple benchmark
problem – the snap through of a shallow cylindrical
roof. For the chosen benchmark shell thickness, a lo-
calised region of stable equilibrium exists on one of

the unstable equilibrium branches. The evolution of
this stable region with changing shell thickness was
determined by tracing the locus of the critical limit
points that separate the stable and unstable portions
of the equilibrium curve. Hence, we established a
two-dimensional manifold of stable equilibria in load-
displacement-thickness space, which can be graphi-
cally interpreted as an island of stability.

In conclusion, this simple example has high-
lighted some of the key features of generalised path-
following:

• Limit and pitchfork bifurcation points are evalu-
ated exactly while an equilibrium path is traced.

• Bifurcation branches emanating from another
equilibrium path can be systematically explored.

• A locus of limit or pitchfork bifurcation points
can be followed without parametrically evaluat-
ing the entire equilibrium path.

The implications of these features are that the non-
linear design space of shell structures can be robustly
explored in a computationally efficient manner, which
is especially valuable for imperfection sensitivity and
optimisation studies.
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