

Rhodes, K. M., Mawdsley, D., Turner, R. M., Jones, H. E., Savovi, J., & Higgins, J. P. T. (2018). Label-invariant models for the analysis of metaepidemiological data. *Statistics in Medicine*, *37*(1), 60-70. [7491]. https://doi.org/10.1002/sim.7491, https://doi.org/10.1002/sim.7491

Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available): 10.1002/sim.7491 10.1002/sim.7491

Link to publication record in Explore Bristol Research PDF-document

This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1002/sim.7491/abstract . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Supporting Information: WinBUGS code for label-invariant models

Univariable model for the influence of a single study-level characteristic

Data required:

```
N study=no. of studies
        N=no. of studies x 2 arms
        N_ma=no. of meta-analyses
Study-level:
        treat=1 if treatment arm, 0 if control
        r=no. of events
        n= no. of participants
        C1[i] = 1 if the ith study has the characteristic of interest, 0 otherwise
        ma[i]<- meta-analysis index
        s[i]<-study index
Meta-analysis level:
        kappa_ok[m] = 1 if there are at least two studies with, and two studies without, the
        characteristic in the mth meta-analysis, 0 otherwise
The WinBUGS model
model{
for (i in 1:N) {
        r[i] ~ dbin(p[i],n[i]) # likelihood (binary data r/n=no.of events/no. of participants)
        logit(p[i]) <- alpha[s[i]] + treat[i]*(theta.minus[i]*+ beta[i] *C1[i])</pre>
                # model (treat indicator of treatment group; C1 indicator of study characteristic)
        beta[i]~dnorm(mean[ma[i]],p.k2[ma[i]])I(-10,10)
                # between study, within meta-analysis, variation in difference in effect associated
with characteristic
theta.minus[i]~dnorm(d[ma[i]],p.d[ma[i]])I(-10,10) #RE for intervention effect within meta-analysis
        rhat[i] <- p[i] * n[i]
                                 #calculate residual deviance
```

```
dev[i] < 2 * (r[i] * (log(r[i])-log(rhat[i])) + (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))
}
```

```
resdev <- sum(dev[])
```

```
for (j in 1:N_study) {alpha[j] ~ dnorm(0,.001)}
```

priors for study baseline effects - unrelated

```
for (m in 1:N_ma) {
       mean[m] <- d[m] + b[m]
       d[m] ~ dnorm(0,.001)
                                       # priors for true fixed (unrelated) intervention effects
       b[m] \sim dnorm(b0, p.phi)
                                       # between meta-analysis variation in average difference in
effect associated with characteristic
       var d[m]~dlnorm(mu,p.tau)
                                       # log-normal distribution for between-study variances
       p.d[m] <- 1/var d[m]
       p.k2[m] <- equals(kappa ok[m],1)/(var d[m]*lambda)
               +equals(kappa_ok[m],0)/(var_d[m]*cut(lambda))
       }
#Prior for unknown parameters
b0 \sim dnorm(0,.001)
                       # vague prior for overall average difference in effect associated with
characteristic
```

lambda ~dlnorm(0,1) # vague prior for change in between-study variation associated with characteristic

p.phi1 ~ dgamma(.001,.001) # vague prior for between meta-analysis variation in average difference in effect associated with characteristic phi <- pow(p.phi,-0.5) p.phi <- p.phi1/(1-patom.phi) patom.phi ~ dbeta(1,1) mu~dnorm(0,0.001) p.tau<-1/(sd.tau*sd.tau) sd.tau~dunif(0,2)

log.tau2.new~dlnorm(mu,p.tau) # predictive distn for heterogeneity among studies without the characteristic tau2.new<-exp(log.tau2.new)

Parameters to monitor q[1] <- b0 q[2] <- exp(b0) q[3] <- lambda q[4] <- phi q[5]<- log.tau2.new q[6]<-tau2.new</pre>

}

Multivariable model for the influence of three study-level characteristics

Data required:

N_study=no. of studies N=no. of studies x 2 arms N_ma=no. of meta-analyses

Study-level:

treat=1 if treatment arm, 0 if control
r=no. of events
n= no. of participants
C1[i,j] = 1 if the *i*th study has the *j*th characteristic, 0 otherwise
ma[i]<- meta-analysis index
s[i]<-study index</pre>

Meta-analysis level:

kappa_ok[m,j] = 1 if there are at least two studies with, and two studies without, the *j*th characteristic in the *m*th meta-analysis, 0 otherwise

clambda[m,j] = 1 if there are 1, K-1 or K studies with or without the *j*th characteristic in the *m*th meta-analysis, 0 otherwise, where K is the no. of studies in the meta-analysis. C0[m,j]=1 if there are no studies in the *m*th meta-analysis with the *j*th characteristic

The WinBUGS model

```
model {
for (i in 1:N) {
    r[i] ~ dbin(p[i],n[i]) # likelihood (binary data r/n=no.of events/no. of participants)
    logit(p[i]) <- alpha[s[i]] + theta[i]*treat[i]
```

theta[i] < theta.minus[i]* (1-C1[i,1])*(1-C1[i,2])*(1-C1[i,3]) #effect in study without any of the

characteristics
 +theta.plus[i]* (1-(1-C1[i,1]) *(1-C1[i,2]) *(1-C1[i,3])) effect in studies with
one or more characteristics

theta.plus[i] ~ dnorm(mean[i], p.k2[i])I(-10,10)

theta.minus[i]~dnorm(d[ma[i]],p.d[ma[i]])I(-10,10) #RE for treatment effects within meta-analysis

```
mean[i]<-d[ma[i]]+b[ma[i],1]*C1[i,1]+b[ma[i],2]*C1[i,2]+b[ma[i],3]*C1[i,3]
```

k2[i]<- ((1-C1[i,1]) + # without characteristic 1

C1[i,1] * kappa_ok[ma[i],1] * lambda[1] + # with characteristic 1 and inform C1[i,1] * clambda[ma[i],1] * cut(lambda[1]) + # with characteristic 1 but don't inform C1[i,1] * CO[ma[i],1] * 1) * # no studies have characteristic 1 in the MA ((1-C1[i,2]) + # without characteristic 2 C1[i,2] * kappa_ok[ma[i],2] * lambda[2] + # with characteristic 2 and inform C1[i,2] * clambda[ma[i],2] * cut(lambda[2]) + # with characteristic 2 but don't inform C1[i,2] * CO[ma[i],2] * 1) *# no studies have characteristic 2 in the MA ((1-C1[i,3]) + # without characteristic 3 C1[i,3] * kappa_ok[ma[i],3] * lambda[3] + # with characteristic 3 and inform C1[i,3] * clambda[ma[i],3] * cut(lambda[3]) + # with characteristic 3 but don't inform C1[i,3] * C0[ma[i],3] * 1)* # no studies have characteristic 1 in the MA var d[ma[i]]

p.k2[i]<-1/k2[i]

rhat[i] <- p[i] * n[i] #calculate residual deviance dev[i] <- 2 * (r[i] * (log(r[i])-log(rhat[i])) + (n[i]-r[i]) * (log(n[i]-r[i]) - log(n[i]-rhat[i])))

}

```
resdev <- sum(dev[])
```

for (j in 1:N_study) {alpha[j] ~ dnorm(0,.01)} # priors for study baseline effects - unrelated

```
for(m in 1:N_ma){
```

```
d[m] ~ dnorm(0,0.01) # priors for true fixed (unrelated) intervention effects
    for(j in 1:3){b[m,j] ~ dnorm(b0[j], p.phi[j])} # between meta-analysis variation in average
difference in effect associated with characteristic
```

```
var_d[m]~dlnorm(mu,p.tau) # log-normal distribution for between-study variances
p.d[m] <- 1/var_d[m]
```

```
}
```

#Prior for unknown parameters

```
for(j in 1:3){
```

b0[j] ~dnorm(0,0.001) # vague prior for overall average difference in effect associated with characteristic

 $lambda[j] \sim dlnorm(0,0.1) \text{ # vague prior for change in between-study variation associated with characteristic j} p.phi1[j] \sim dgamma(0.001, 0.001)$

```
phi[j] <- pow(p.phi[j],-0.5)
```

p.phi[j] <-p.phi1[j]/(1-patom.phi[j]) # vague prior for between meta-analysis variation in average difference in effect associated with characteristic

```
patom.phi[j] ~ dbeta(1,1)
```

exp.b0[j]<-exp(b0[j]) }

mu~dnorm(0,0.01) p.tau<-1/(sd_tau*sd_tau) sd_tau~dunif(0,2)

log.tau2.new~dlnorm(mu,p.tau) tau2.new<-exp(log.tau2.new)

predictive distn for heterogeneity among studies without the characteristics

}