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Abstract
Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as
a universal resource formeasurement-based (one-way) quantum computation. In ballistic approaches
to LOQC, cluster states are generated passively from small entangled resource states using so-called
fusion operations. Results frompercolation theory have previously been used to argue that universal
cluster states can be generated in the ballistic approach using schemeswhich exceed the critical
threshold for percolation, but these results consider cluster states with unbounded size.Here we
consider how successful percolation can bemaintained using a physical architecture withfixed
physical depth, assuming that the cluster state is continuously generated andmeasured, and therefore
that only afinite portion of it is visible at any one point in time.We show that universal LOQCcan be
implemented using a constant-size device withmodest physical depth, and that percolation can be
exploited using simple pathfinding strategies without the need for high-complexity algorithms.

1. Introduction

Within the last decade, great progress has beenmade in the theoreticalfieldof quantumcomputer architectures.
Modern fault-tolerant schemes relyon the use ofmany error-prone physicalqubits to create individual logicalqubits
with fewer errors.Whilstweunderstand thesemethods of abstraction theoretically, implementing them in reality is
not a trivial taskwhen experimental constraints are applied. The study of quantumcomputation architecturesmust
therefore incorporate both anunderstanding ofhigh-level theoreticalmodels and experimental limitations.

While there aremany attractive aspects of photonic qubits, utilizing them for linear-optical quantum
computation (LOQC) presents some unique architectural challenges [1].Most significantly, LOQC suffers from
a lack of deterministic entangling gates, with initial proposals requiring large resource overheads to compensate
[2, 3]. However, themain challenge formodern LOQCarchitectures [4–14] remains the generation and
utilization of highly-entangled resource states. This is now generally addressedwithin the paradigmof cluster
states [15, 16] applied to LOQC [4] and the use of entangling fusion gates [5, 17, 18].

One particularly appealing approach to LOQCuses ideas frompercolation theory as first proposed in [8].
Themain idea is to passively entangle small resource states (also calledmicroclusters), using fusion gates, to
generate a large cluster state which can enable universal quantum computing. The cluster state which is
generated corresponds to a randomgraph on a geometric lattice withmissing sites and bonds. By using schemes
which exceed the critical threshold for percolation on the lattice [8–10, 19], a cluster state which supports
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universal quantum computation can be guaranteed. A lattice of logical qubits can then be identified using
methods such as renormalization as given in [8], or the lattice concentration algorithmof [20]. Themain virtue
of using the percolation approach to LOQC is that it enables ballistic architectures that sidestep requirements for
extensive adaptive switching networks, which are technologically very challenging [21].

In this work, we address a vital question thatmust be addressed for any high-level LOQCarchitecture based
on percolation: can successful percolation be sustained using a physical device offixed finite size, andwhat size
(cross-section and depth) of percolating cluster statemust be kept online at any point in time to do so? The
methodswe use to answer this question differ from conventional treatments of percolation, and are based on
pathfinding algorithmswhichmust exploit information in real-time about the outcomes of recent fusion
operations.We assume that photonsmaking up the percolating cluster state can only be kept online formodest
periods using optical delays, which provide limited lookahead capability beforemeasurementsmust be
performed on the photons. Our analysis can have implications for all aspects of LOQCarchitecture by impacting
hardware specifications at the component level. Specifically, this work presents three key results: (i) spanning
paths can exist on extremely elongated blocks of edge-percolated cluster state lattice, but only when the cross-
sectional side length exceeds someminimum length set by the lattice edge probability; (ii) an LOQCdevice with
a physical-depth of only 10–20 layers is sufficient to producemeasurement-based quantum computation
(MBQC) qubit channels (within a loss- and error-less LOQCarchitecturemodel); (iii) long-range limited-
lookahead pathfinding can be achievedwith algorithmswithminimal complexity, thereby reducing associated
classical co-processing requirements for LOQC.

The structure of this work is as follows: in section 2we briefly review recent work on percolation-based
architectures for LOQC. In section 3we consider theminimum resource requirements of percolated cluster
state lattices for producing long-range single-qubit channels. In section 4we present themain results of our
work, wherewe define the Random-node pathfinding process, conjecture a condition of pathfinding success
and present results fromnumerical pathfinding simulations. Section 5 considers implications of the results
presented for LOQCarchitectures, identifying key architectural trade-offs and specifications. Finally, a selection
of open questions for future work are presented in section 6.

2. Percolation-based architectures for LOQC

The fundamental challenge of LOQC is the construction of large graph states. Graph states are a subset of
stabilizer states [22] that can be uniquely described by simple graphs (for a review of graph states see [23]). In this
formalism, a graph G V E,( ) containing vertices (or nodes)V and edges (or bonds)E, uniquely represents the state

CZ , 1G
i j E

i j
v V

v
,

,Y ñ = +ñ
á ñ Î Î

∣ ⨂ ∣ ( )

where CZ 00 00 01 01 10 10 11 11i j i j i j i j i j, , , , ,= ñá + ñá + ñá - ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ and 0 11

2
+ñ = ñ + ñ∣ (∣ ∣ ).We specifically

refer to graph states represented by regular lattices as cluster states. In LOQC, cluster states can be probabilistically
built using two types of fusion gate [5]. Known as type-I and -II fusion gates, these gates destructively consume 1
and 2 photonic qubits respectively and on success produce entanglement between the remaining qubits in the
clusters (and on failure the input qubits are subjected to single-qubitmeasurements).Whilst type-I fusion
consumes fewer qubits, it cannot herald photon loss, whereas type-II can herald such loss, but at the cost of
consuming an extra qubit. In standard operation, both gates operate with a 50% success rate.However, Type-II
fusion can be boosted to increase the success rate above 50% through the consumption of additional auxiliary
resources [17, 18]. For example, a success rate of 75% can be achieved through either the consumption of a Bell
pair or 4 single photons.

To overcome nondeterministic entangling gates, renormalization is used to produce an idealized lattice *
from a coarse graining of some percolated lattice . For example, in one common strategy,microcluster states
are placed on the sites of a lattice and fusion gates of success probability pf are applied to produce entanglement
between the centre qubits of adjacentmicroclusters. Once  is constructed, a single central qubit is identified on
each renormalization block that is path-connected to central qubits of adjacent blocks by sets of path qubits6. As
inMBQCprotocols [15, 16], all other qubits in the lattice are then removed by adaptive single-qubit
measurements, thereby producing * . An example of this is depicted infigure 3, where a single-qubitMBQC
channel is produced from the renormalization of a 2D lattice.

The size of blocks on  required for renormalization to afixed * depends only on the percolation
threshold pc of , as produced by the lattice’s structure. Reducing the overall resource requirements for a LOQC
device therefore relies on producing a lattice with low pc without the need for high-degree and therefore costly

6
For the renormalization of 2D lattices, a differentmethod based on the identification of topologicalminors is also know [20], however this

has yet to be extended to higher dimensional lattices.

2

QuantumSci. Technol. 3 (2018) 015005 SMorley-Short et al



microcluster resource states. Initial work on renormalization identified cubic, diamond and pyrochlore lattices
as potential candidates, requiring 7-, 5- and 4-qubitmicrocluster resources respectively [8]. By extending a
percolation approach to the generation of resource states, it was shown that bothmicrocluster creation and
fusion could be achieved fromboosted fusion [17, 18] of 3-photonGHZ states to produce a ‘brickwork’
diamond lattice with p pfc < [10] and pyrochlore [9]. Recently, this schemewas further generalized for higher-

dimensional lattices and n-qubitmicroclusters [19]. After  has been constructed, renormalization can be
abstracted to the graph-theoretical problemoffinding crossing clusters on percolated lattices, which can be
solved efficiently [24].

Commonly, schemes for generating  correspond to a bond-percolation, where successful bonds
correspond to open edges [25, 26]. On percolated lattices with bond probability p, the existence of an infinite
open cluster exhibits threshold behaviour. In the limit of an infinite lattice ¥, the probability P p, ¥ ¥( ) that
an infinite open cluster ¥ undergoes a phase transition (from0 to 1) at p pc= . This threshold represents the
division between two distinct percolation regimes for p pc< and p pc> , known respectively as the sub- and
super-critical regime. The degree of connectivity within the lattice is fundamentally different between these
regimes; for example, the scaling in size of the largest connected component transitions from sub-linear to linear
across the threshold, as depicted in figure 1(a). For finite lattices , thefinite-sized analogue to P¥ is probability
P p,i ( ) that a spanning cluster  exists along the i direction, thereby containing a path connecting opposite
faces of the lattice block along axis i. Thresholds for P p,i ( ) correspond to continuous functions, becoming
sharper for larger lattices and converge to P p, ¥ ¥( ), as depicted by figure 1(b). In practise, percolation
thresholds can be found by identifying the crossing point of functions P p,i ( ) for various sizes of  [26], or
numerically using theNewman–Ziff algorithm [27].

In order to exploit percolation phenomenawithin a scheme for quantum computation, [10] also considered
percolation on a subregion of the lattice with a small cross sectionwhich is to be used as a single-qubit channel
forMBQC. By simulating P p 0.75,t f =( ) for L L Lt ´ ´ brickwork diamond lattices over a range of L (for
L Lt  ), it was shown that long-range percolation, and hence a single-qubit channel, was produced above some
minimum L. This result can also be applied tofinding long-range renormalization.

3. Long-range percolation for single-qubit channels

Ourfirst set of new results extends the study of lattice percolation for single-qubit channels presented in [10],
whichwas limited to the generation of the partially amorphous7 and anisotropic brickwork diamond lattice,
built specifically with pf = 0.75 fusion gates. To do so, we present a generalizedmodel of percolation on
elongated bond-percolated cubic lattices and establish a relationship between theminimum side-length Lmin

required for consistent long-range percolation and edge probability p.

Figure 1.Percolation phenomena in the sub- and super-critical regime for p pc< and p pc> respectively, here produced by

simulation of percolation on L L´ square lattices with edge probability p. (a)The size of the largest connected component ∣ ∣ as a
function of percolated lattice size L (where ∣ ∣ is the number of nodes in the connected component  ). For sub-critical percolation
when p pc< , the size of the largest connected component scales sub-linearly o L ~∣ ∣ ( ), whereas for super-critical percolation
when p pc> , the size of the largest component is proportional to the lattice size L µ∣ ∣ . (b)The probability of percolation P as a
function of edge probability p depicted for small,medium and large lattices (L 10, 20= and 100 respectively), depicting the phase
transition between sub- and super-critical percolation at the percolation threshold pc.

7
Here partially amorphous describes a lattice thatmay contain bonds other than those defined by the lattice structure, such as diagonal edges

or edges between non-adjacent nodes.When constructing a brickwork diamond lattice by the scheme presented in [10], this occurs for
certain choices of fusion gate bases.
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Themodel we use is as follows: consider a block of percolated L L Lt ´ ´ cubic lattice t with edge
probability p, where L Lt  , depicted in the inset offigure 2. On t , we examine the existence of an end-to-end
spanning cluster, occurringwith probability P p,t t( ). To produce a reliable single-qubit channel, we
specifically consider probabilities of percolation near unity, P p, 1t t »( ) .We therefore generally consider
successful outcomes (for percolation and, in later sections, pathfinding) as having probability of at least 0.95, and
long-range as referring to L 1000t  . These definitions are chosen such that if the above conditions are satisfied,
a renormalized qubit loss rate below 10−3 can be achieved (given reasonable assumptions of renormalization
blocks with side-length 10( ) in the scheme of Kieling et al [8])8. Given the known trade-off between
correctability of qubit error and qubit loss for topological codes [28], minimizing loss rates is essential for
maximizing tolerance for unavoidable computational errors. Such a low rate is also expected be a negligible
contribution to renormalized qubit loss in the face of other potential sources of errorwithin the architecture
(such as photonic qubit loss, detector inefficiencies, distinguishability, etc).

However, within thismodel, percolation phenomena are less-well studied than in the standard regime.
When considering finite-sized, elongated lattices such as t , it is challenging tomake analytic statements about
the existence of spanning clusters, as can often be done for the limit of infinite lattices. For example, while for a
lattice t , one canfind some p 1< such that P p, 1t t »( ) , it is necessarily true9 that as Lt  ¥,
P p, 0t t ( ) . As such, we highlight that all results presented in this work are expected to have someminor
functional dependence on our specific definition of successful and long-range given above. Therefore, we apply a
more phenomenological and empirical approach to the relevant percolation effects, andwithin the context of
LOQC such results provide important information for designing an architecture.

We now consider the following question: what is theminimum side length Lmin required to successfully
produce a long-range spanning cluster  on t as a function of edge probability p? To answer this question
numerically, we have generated instances of L L1000´ ´ sized t for a given p, and identified theminimum
value L Lmin= for which P p, 0.95t t ( ) . Infigure 2we show values of Lmin over a range of p pc> .We
observe that for edge probabilities well above pc= 0.248 (the percolation threshold for a simple cubic lattice
[29]), small Lmin can be achieved (such as L 5min = for p= 0.5), with small increases in Lmin providing large
reductions in p. However, as p approaches pc, the scaling in Lmin is less favourable, requiring progressively
greater increases in Lmin for incremental reductions in p. This scaling region suffers fromparticularly punitive
resource costs if used forMBQC, as the number of qubits in L1000t

2 = scales quadratically in L.We also note
that such a relationship for L pmin ( ) can be inverted to define p Lmin ( ), such that for a given L, long-range
percolation can only be achieved for some p pmin .

Furthermore, we can consider the implications of these results for a renormalization-based LOQC scheme.
In this context, Lmin provides a lower bound on the side length for renormalization blocks.Whether or not this
bound can be reached depends onfinding intersections between spanning clusters connecting pairs of opposing
faces within a single block as well as between adjacent blocks. This is especially problematic for p close to pc as
inter- and intra-block connectivity is sparse; however for pwell above pc, the increased connectivity also
increases the likelihood such intersections occur.

Figure 2.Minimum side length L Lmin= required for successful long-range block percolation (P p, 0.95t t ( ) for Lt= 1000) as a
function edge probability p for cubic lattice. For a given edge probability, Lmin represents not only the smallest L required for
pathfinding, but also the smallest renormalization block size achievable. Inset: an illustrative example of a block of percolated cubic
lattice with a valid percolated path highlighted in red.

8
This can be seen by noting that if the probability of creating 100 renormalized qubits is greater than 0.95, then the probability of a creating a

single renormalized qubit is (to a reasonable approximation) greater than 0.95 0.9995
1

100 » , and thus the loss rate for said qubit is less than
10−3.
9
This can be seen by considering that the probability of no open edges occurring between two layers spanning the cross-section of the block

is p1 L2-( ) , and hence the probability that this never occurs over Lt layers is p1 1 1L Lt
2 G = - -( ( ) ) . Since a spanning cluster is

contingent on this never occurring then Pt  < G( ) , but for p L1, 0t<  ¥  G  , and therefore in the limit of infinite length,
percolation never occurs.
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4. Limited-lookahead pathfinding

In a physical LOQCdevice,  exists in one time and two spatial dimensions with 3 node coordinates t y z, ,( )
and size L L Lt y z´ ´ . To construct , at each time t from t=0 to t Lt= , a L Ly z´ layer of  is created and
entangled to the previous layer at t 1- , where Ly and Lz arefixed by the renormalization protocol. However, all-
optical storage of Lt lattice layers in timewould require lengthy delay lines, producing a physical qubit loss rate
that scales with computation length (for some applications Lt is effectively unbounded); under such conditions,
it is unlikely such a scheme could succeed.

It is therefore expected that an LOQCdevice will have afinite fixed depth, storing only afinite-depthwindow
W of the lattice at any time t. In thismodel, depicted infigure 3, any classical co-processing algorithms applied to
 suffer from a limited-lookahead, preventing analysis of a complete  (as previously assumed by algorithms for
MBQCand renormalization). Under this limitation, previously-considered algorithms no longer apply, or their
optimality proofs and scaling efficiencies are no longer guaranteed. To address this, new non-trivial dynamic
algorithmsmust be designed.

However, finding optimality proofs for graph algorithms that only ever have partial knowledge of a problem
is highly non-trivial, and different input scenariosmay require different algorithm strategies for optimal
performance. To study the limitations of the necessary dynamic algorithms, we consider the aforementioned
task of identifying single-qubit channels on percolated lattices. Specifically, we extend the task of finding a
spanning cluster presented in section 3 to the identification of a single end-to-end path, given a limited-
lookahead. To do so, we next construct a basic limited lookahead pathfinding (LLP) algorithm.

4.1. Random-node pathfinding
Wenow introduce somenotationneeded for describing theLLPalgorithm.Consider again the lattice t as defined in
section3,withnodes labelledby their coordinates t y z, ,( ).Wedefine a layer lt as the subgraphof t inducedby the
2D L L´ layer of nodes at time t, that is l v t y z y z L, , , , 1, ,t = = " = ¼[{ ( ) }],whereG G V¢ = [ ]denotes
the induced subgraphG¢ ofGby thenode setV.Wedefine ablock a b, as the subgraphof t inducedby the 3Dblock
of nodeswithin layers a to b (inclusive), that is v t y z t a b y z L, , , , , , , 1, ,a b, = = " = ¼ = ¼[{ ( ) }].Note
that under this definition t L0, t

 = . Thenodeswithin a b, that are also part of spanning cluster  of t are
denoted a b a b, ,  = Ç and represent nodes that are potentially usable for pathfinding. Similarly, lt t = Ç . In
some a b, , a b, may containmore thanone connected component.Therefore,we alsodefine va b, =( )

v v v:a b, ¢ Î á « ¢ñ[{ }]as the connected componentof a b, containingnode v, where v vá « ¢ñ indicates that
there exists anopenpath connecting v and v¢.Hence, if twonodesu and v arenot path-wise connectedwithin a b, ,
then theymust exist in disjoint connected components and u va b a b, , Ç = Æ( ) ( ) . Lastly, the superscript E E‐
denotes components that extend end-to-end across the layers indicated, e.g. a b

E E
,
‐ are the components in a b, that have

nodes inboth la and lbwith thenumber of separate end-to-end components givenby n a b
E E
,( )‐ .

To represent a limited lookahead, we consider the restriction that at a given time t, we can only have
knowledge of the lattice structurewithin the finite block t t W, + offixedwindow-lengthW. This ‘visible’ block of
lattice is known as the active block. At the end of every time-step, the next far layer of lattice lt W1+ + is revealed
and nearest layer layer lt is removed, the active block nowbecoming t t W1, 1 + + + for time t 1+ .

Figure 3.Renormalization process applied to a 2D lattice (existing in one time and one spatial dimension)with limited-lookahead to
create aMBQC single-qubit channel. The lattice block can be divided into three regions in time: past, active and future. Past qubits
exist in the past, before time t, having already been created and destructivelymeasured by the device. Active qubits exist in the present
between time t and t+W, having been created by the device, but not yetmeasured. Future qubits exist in the future, after time t+W,
and are yet to be created.Here the red, dashed lines and highlighted edges correspond to the allocation of renormalization blocks and
renormalization paths respectively.
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This limitation requires us to consider an iterative approach tofinding spanning paths, whichwe shall call
limited-lookahead pathfinding, where each time-step the algorithmmust choose a path inside the lattice based on
only partial information of the lattice. Specifically, we shall consider a low-complexity instance of pathfinding,
whichwe callRandom-node pathfinding.We consider a naive algorithm such as this to both identify a lower
bound on the success rates of general pathfinding strategies as well as their computational complexities. Tofind a
path  the following pathfinding algorithm is applied (depicted visually infigure 4), starting at t=0, (with

v0 = for some v0 0Î ) and is repeated until success or failure occurs:

Random-node pathfinding:

1) Find far nodes. From the current path node vt in the nearest layer lt,find the set of all nodes
v l v v:t t W t = Î «+{ } in the farthest active block layer lt W+ towhich a path exists (only considering nodes

and edges within the active block). If  = Æ, pathfinding fails.

2) Find path to far node.Randomly pick a far node ft from t , andfind the shortest path v f, ,t t t = ¼( )within
thewindow to it.

3) Find next layer node. Find the node in layer lt 1+ that occurs furthest along t and assign it to the next time-
step path node vt 1+ . Append the v v, ,t t 1¼ +( ) section of t , to  . If the final node ft in  is amember of lLt

,
pathfinding succeeds.

4)Advance one layer.Remove layer lt and reveal layer lt W1+ + .

Thefirst thing to note is that this algorithm is far fromoptimal, and in fact is almost theworst strategy one
could apply (other thanmaking deliberately bad path choices). The only non-trivial analysis of structure occurs
at step 3, where the action of finding the furthest lt layer node allows the inclusion of paths that double-back on
themselves, advancing forwards and then back to layer lt before eventually reaching thefinal layer, an example of
which is shown in step 3 offigure 4. Themost computationally expensive operation in the algorithmoccurs in
step 1, when finding t . This operation consists of runningDijkstra’s algorithm (for finding shortest paths on
arbitrary graphs) from vt, thus providing Random-node pathfindingwith an overall worst-case performance of

E V Vlog +(∣ ∣ ∣ ∣ ∣ ∣) [30].
Finding optimal pathfinding strategies which demand onlyminimal values forW is very challenging in

general and the Random-node strategy can be used to explore theworst-case scenario, fromwhich
improvementmay bemade. Inevitably,more complex strategies that require detailed analysis of the active

Figure 4. Single iteration of the Random-node LLP strategy withwindow lengthW applied to a percolated 2D cubic lattice.
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block’s configuration are computationally expensive, which is amajor concern for real-time implementation in
hardware devices. A secondary aim of ourwork is therefore also tominimize the computational overhead
required for pathfinding, and theRandom-node strategy also adheres to this goal.

4.2. Successful long-range pathfinding
Wenow consider the conditions required for successful long-range LLP and show that these can be framed in
terms of standard block percolation. This aims to reduce the complexity of analysing a dynamic pathfinding
algorithm to the simpler problemof calculating percolation statistics on small lattices.

First and foremost, pathfinding fails if no spanning cluster exists. To ensure that a path does exist (with
probability P 0.95t  for a given pathfinding distance Lt), we immediately require two conditions: p pc> and
L L pmin ( ). Having satisfied these, we then seek to identify the conditions such that pathfinding almost
certainly succeeds. In this section, we prove that pathfinding always succeeds if the number of end-to-end
components in each active block never exceeds one, and subsequently conjecture that successful pathfinding is
only achieved if the probability of this number exceeding one is less than some small ò.

Before outlining our argument we assert two key assumptionsmade. Firstly, we assume a unique spanning
cluster always exists across  (where unique specifies that only one ever exists), and hence exclude any cases
where long-range block percolation does not exist (e.g. by assuming L L pmin> ( )). The validity of this
assumption is provided by recalling that for p pc> themean size of afinite cluster decreases exponentially in
p [25], thereby preventingmore than one cluster from spanning the lattice. Given this assumption, failure
therefore only occurs from incorrect choicesmade during pathfinding. Secondly, we assume that at any given
time, the pathfinding algorithmmay only have access to information of the lattice’s structure within the active
block, i.e. it cannot store inmemory any information about past lattice structure, nor gain preemptive
knowledge of any future lattice structure. This allows us to consider each individual active block as a single
instance of block percolation on a small lattice, and hence percolation statistics are constant across all active
blocks.

Under these assumptions, the probability P W,pf t( ) of pathfinding across t withwindow lengthW, is
given by the product of the probabilities Ppf

t
t t W, +( ) that, at each time-step t, a path node vt 1+ in t t W, + is

chosen that still allows for successful pathfinding to distance Lt, that is

P W P v, , , 2pf t
t

L W

pf
t

t t W t
0

,

t

 =
=

-

+( ) ( ) ( )

such that forW Lt= , P p W P, 1pf pf L
0

0, t
= =( ) ( ) (fromourfirst assumption). However, forW Lt< , the

values of Ppf
t are less easily computed.

We can easily see that the probability of successful pathfinding given next node choice vt 1+ depends on the
probability that vt 1+ exists in a component extending to the farthest layer, that is
P v P vpf

t
t t W t t t L

E E
, 1 1 1, t

 = Î+ + + +( ∣ ) ( )‐ (wherewe recall that t L
E E

1, t
 +

‐ are the end-to-end connected components
containedwithin t L1, t

 + that have one ormore nodes in both lt 1+ and lLt
). However, at any given time step, we

cannot knowwhether vt t L
E E

1 1, t
Î+ +

‐ or notwhen t L Wt - (by our second assumption). Instead, we desire
some active block proxy condition for P vt t L

E E
1 1, t
Î+ +( )‐ based only on block percolation statistics.

Specifically, we are interested here in the case of P W, 1pf t »( ) and hence P 1pf
t

t t W,   -+( ) (where
1  ) for all t. Ideally, we therefore desire some feature function of active blocks F: 0, 1t t W, +  { }, such that

if F 1t t W, =+( ) , then P 1pf
t

t t W, =+( ) surely, but if F 0t t W, =+( ) then P 1pf
t

t t W, <+( ) . From this, we then
conjecture that if lattice parameters can be found such that P F t1 1t t W,  = - "+( ( ) )) , successful long-
range pathfindingwill be achieved.Wenowprove one such feature function to be the number of end-to-end
connected components within an active block, and thereby define a condition forW such
that P F 1 1t t W,  = -+( ( ) )) .

Wefind that one such feature function can be defined from the uniqueness of end-to-end connected
components, such that

F
n

n

1 if 1

0 if 1
. 3t t W

t t W
E E

t t W
E E,

,

,





=

=

>+
+

+

⎧
⎨⎪
⎩⎪

( )
( )

( ) ( )
‐

‐

To see that this satisfies our feature function requirements, consider two possible structures of t t W, + , either
n 1t t W

E E
, =+( )‐ , or n 1t t W

E E
, >+( )‐ . In the case of n 1t t W

E E
, =+( )‐ , the previous choice of path nodewas essentially

irrelevant, since all connected nodes in the far layer t W + can be reached from any vt tÎ . If this condition is
satisfied for every active block, then at each time-step all choices of path node (using our pathfinding process) are
practically equivalent, and thus P W, 1pf t =( ) . Alternatively, one can understand this by saying that if

n 1t t W
E E
, =+( )‐ , the current connected component vt t W

E E
t, + ( )‐ must be part of the spanning component t L, t


extending to thefinal layer, or
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v , 4t t W
E E

t t L
E E

, , t
 Ç ¹ Æ+ ( ) ( )‐ ‐

assuming that n 1t W L
E E

, t
 =+( )‐ (which holds for t W Lt+  , from the uniqueness of L0, t

 ).
Conversely, if n 1t t W

E E
, >+( )‐ , no choice of vt tÎ can possibly allow for all nodes in t W + to be reached,

and hence presents a possibility that vt is not in a component that extends forward to the final layer, vt t L
E E
, t
Ï ‐ . In

such a scenario, two possibilities exist: either, equation (4) is ultimately satisfied, indicating that a path passing
through vt t W t, + ( ) can reach layer Lt, and therefore allows successful pathfinding, or

v , 5t t W
E E

t t L
E E

, , t
 Ç = Æ+ ( ) ( )‐ ‐

indicating that structure within vt t W t, + ( ) cannot contribute to pathfinding, and therefore represents a dead-
end, which causes pathfinding to fail. Note, due to effect offinite block side lengths L, there is always some non-
zero probability that equation (5) is satisfied (such as no open edges existing between nodes in vt W t + ( ) and

t W 1 + + ) and thus P W, 1pf t <( ) . This proves that the condition n 1t t W
E E
, =+( )‐ satisfies our desired feature

function requirements.
We now consider the lattice requirements such that P n t1 1t t W

E E
,  = - "+( ( ) )‐ . To satisfy this

requirement, we define (for a given p and L) theminimumwindow lengthW L p,min ( ) as the smallestW such that
P n t1 1t t W

E E
,  = - "+( ( ) )‐ . Note that for L Lmin such aminimumwindow lengthmust exist; for any

t , clearly P n 1 1W
E E
0, = =( ( ) )‐ whenW Lt= (from the uniqueness of W

E E
0,

‐ ), but asW is decreased from Lt,

eitherWmin is foundwhen P n 1 1t t W
E E
,  = < -+( ( ) )‐ occurs, or else no lookahead is required (andW 2min = ).

We further defineW L p,max min( ) as themaximumwindow length required by LLP occurring for a given L at
pmin, abovewhich any further increase inW provides no advantage.

We have shown that for a given t with lattice parameters p and L, n 1t t W
E E
, =+( )‐ is a sufficient feature

function.We hence conjecture that P n 1 1W
E E
0,  = -( ( ) )‐ is a necessary and sufficient condition for

successful long-range LLP. That is, if this condition is not satisfied then no strategy (regardless of complexity)
can ever produce successful long-range LLP, and that this condition is always satisfied forW Wmin as 0  .

4.3. Numerical simulation
Wenow consider numerical simulation of LLP applying a Random-node strategy.

Firstly, we address the conjecture that P n 1 1W
E E
0,  = -( ( ) )‐ is a necessary and sufficient condition for

successful pathfinding. Figure 5 depicts simulation of both LLP and W0, block percolation over a range ofW for
a cubic lattice.We observe that successful pathfinding occurs forminimumwindow lengthW 20, 0.3 16min =( ) ,
where P p W, 0.983pf =( ) and P n 1 0.991W

E E
0, = =( ( ) )‐ , such that 10 2 = - .We also note that P p W,pf ( )

drops significantly as P n 1W
E E
0, =( ( ) )‐ decreases below 1 - , further validating our choice of feature function.

In conjunctionwith the proofs of our feature function presented in section 4.2, these results support our
conjecture that P n 1 1W

E E
0,  = -( ( ) )‐ is a necessary and sufficient condition for successful pathfinding.

We now consider the interdependence of pathfinding parameterWmin and lattice parameters L and p. To do
so, we consider the probability of successful pathfinding P p W,pf ( ) on instances of cubic lattice t with
dimensions L L1000´ ´ over a range of p andW. Figure 6 depicts such a simulation for L=7.

Figure 5.Comparison between P n 1W
E E
0, =( ( ) )‐ on instances of W 20 20´ ´ edge percolated cubic lattice and the success probability

of pathfinding across a lattice of size 1000 20 20´ ´ withwindow-lengthW (with p= 0.3 in both cases). Note that the large cross-
section (L= 20) is necessary due to p close to p 0.248c » , such that L L pmin> ( ) (see figure 2). This supports the conjecture that
P n 1 1W

E E
0,  = -( ( ) )‐ is a necessary and sufficient condition for successful pathfinding, achieved for someminimumwindow

length. Herewe find that successful pathfinding P 95%pf  occurs for W 16min  and is achieved for 0.01  , with both thresholds
respectively depicted by coloured lines.
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Thefirst andmost striking feature of these results is the sharp threshold at p 0.4» for largeW. This clearly
identifies theminimumedge probability p L 7min =( ) belowwhich no long-range percolation occurs, and agrees
with numerical Lmin results depicted infigure 2, showing that p L 7 0.4min = »( ) . From the argumentmade in
section 4.2, we expect this pathfinding threshold to recreate the standard block percolation threshold of a

L L1000´ ´ cubic lattice.We confirm this numerically withfigure 7, which depicts LLP and block percolation
thresholds found over a range of L, showing LLP reproducing long-range block percolation statistics.
Furthermore, we find that percolation statistics found for active blocks can be used to estimate pathfinding
performance over long distances. In this simplified stacked-block heuristic, wemodel long-range LLP as W1000
consecutive instances of block percolation, as if adjacently stacked face-to-face in t to form the full block t
(without requiring two adjacent blocks’ percolation paths are connected at adjacent faces), such that
P p W P p, ,pf t W0, W

1000
»( ) ( ) . Figure 7 shows that even for large L, this heuristic provides a good estimate for

P p W,pf ( ) andPt(p) (whenW Wmax ).
The second feature we observe is the effect of small window lengths upon pathfinding. For p pmin= , we

observe amaximumwindow lengthW L p, 10max min »( ) . As conjectured, W Wmax> provides no additional

Figure 6. Limited-lookahead pathfinding success probability P p W,pf ( ) for 1000 7 7´ ´ cubic lattices found over a range of window
sizesW and edge probabilities p. These results clearly depict the combination of both long-range block percolation phenomena and
the effect of a limited lookahead on pathfinding. Firstly, a clear percolation threshold is observed at p 0.4min » , as predicted (by
numeric simulations for Lmin in figure 2). Secondly, the detrimental effect of a limited lookahead on pathfinding forwindow sizes
W 10< is also observed. This shows that for p pmin= , amaximumwindow length W L p,max min( ) exists, belowwhich pathfinding
can only be achieved by a complementary increase in p. The region of successful long-range pathfinding (P p W, 0.95pf ( ) ) is found
above the highlighted blue contour.

Figure 7.Comparisonbetween the thresholds inLLP success rates Ppf andblockpercolationPton instances L L1000´ ´ cubic lattices
over a rangeofL. For pathfinding, depictedby solids lines, a largewindowsize (ofW W L15 max= ( ))was chosen to ensure the thresholds
foundwere due topercolation effects, rather thanpathfinding’s limited lookahead. By comparisonwith long-rangeblockpercolation,
depictedbydashed lines,we can see that P Ppf t» , confirming that for sufficiently largewindow lengths, LLP is equivalent to long-range
blockpercolation. Furthermore,wefind thatwithin this regimeboth long-rangeblockpercolationandLLPcanbe approximated asmultiple

stacked instances of ( L L15´ ´ ) active blockpercolation, such that P p P p P p, , 15 , ,pf t t t t 0,15
1000

15  » »( ) ( ) ( ) , as depictedby the
dotted lines.Given that simulating LLP is computationally expensive, this stacked-blockheuristic provides a quick and inexpensive
approximation for investigating theperformanceof LLPonother percolated lattices for LOQC.
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benefit to pathfinding, whereas forW Wmax< , the probability of successful LLP is significantly reduced (for
fixed p).While it is possible to realize successful pathfinding forW W L p,max min< ( ), this can only be achieved
by a complementary increase in p.

To fully understand the parameter space for successful pathfinding, we consider contours of P 0.95pf = in
p andW for L 2, 3, 4, 5, 10= and 15, depicted infigure 8. From these results we can also incorporate the effects
of L into our previous analysis. As identified by the results offigure 2, an increase in L reduces theminimumedge
probability pmin at which long-range percolation occurs, and hence the value of pmin which LLP can succeed.
However, whilst an increase in L (for afixedW) always decreases the required p for successful pathfinding, these
gains aremost significant whenW is also increased, allowing the new p Lmin ( ) to be achieved. Such insights
provide uswith far greater clarity into the inherent resource trade-offs in a LOQCdevice.

Finally,wenote that even for the largest active blocks considered, p L W 15min = =( ) hadyet to approachpc.
This indicates that successful pathfinding is likely to require a latticewith edgeprobability greater thanpc by some
non-insignificant amount. Furthermore,whenmore sophisticated and computationally expensive pathfinding
strategieswere simulated, they didnot reduce L pW ,max min( ), only improvingpathfinding in the regionof p pmin>
andW L pW ,max min< ( ). For furtherdetails on theperformanceof such strategies, see the SupplementaryMaterials.

5. Implications for LOQCarchitectures

Using the results presented in section 4.3 additional clarity can nowbe given to the resource trade-offs inherent
to a realistic LOQCdevice.

Firstly, generating a latticewith p pc> is necessary for the reductionof activeblock size. Forp close topc, small
increases inpwill lead to significant resource savings inblock size.The success rateof LOQC’s boosted fusiongates10

pf canbe increased from50%to75%through the consumptionof either aBell stateor four single photonsper gate
[17, 18].However, above thisfirst level of boosting, gains inpf becomemoremarginal at the expenseof increasingly
costly resource states (whichcannotbeproduceddeterministically using linearopticswithout significant resource
overheads). This leadsus tobelieve that it is likely thatLOQCwill utilizeboosted fusionof at least p 75%f = , from

whicha choiceof active blockdimensions,W andL, canbemadeaccordingly.Wenote that in [10], itwas shown that
p 75%f = greatly exceeds thepercolation thresholdof p 62.5%c = . Inpractise, experimental fusiongate success rates

will be reducedbyerrormechanisms, suchasphoton loss.However, if this reductioncanbe sufficientlyminimized, our
results indicate that small activeblock sizes canbe achieved, thereby reducingoverall resource requirements forLOQC.

Secondly, the probability of successful pathfinding affects the accommodation of bond/qubit11 loss for a
renormalized lattice. From the perspective of the lattice renormalization, a failure in pathfinding simply
represents amissing bond/qubit along the time axis. Thus the quantum error correction (QEC) protocol’s
ability to deal with bond/qubit loss on the renormalized lattice explicitly determines the required Ppf (which
adds to all other lossmechanisms). For example, consider the pathfinding requirements for a linear cluster of

Figure 8.Contours of successful pathfinding (P p W, 0.95pf =( ) for t with dimension L L1000´ ´ ) for a range of side lengths L.
From this, we can fully understand the various resource trade-offs one canmake in order to achieve successful pathfinding.

10
Note p pf¹ , as in current proposalsmultiple fusion operationsmust succeed for a given edge to be created in the target lattice.

Furthermore, failuremodes of boosted fusion gates can alsomaintain connectivity, producing additional connectivity outside the standard
percolationmodel.
11

If a block lacks connectivity to be successfully renormalized, one can choose to represent this either as the loss of individual bonds or an
entire qubit.
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100 renormalized qubits, with each renormalized block being 10 layers long, such that the dimensions of t are
L L1000´ ´ . If less that one bond/qubitmust be lost per string of 100 renormalized qubits, thenwe require

P W, 0.99pf t >( ) . However, ifmore bond/qubit loss can be accommodated, this reduces the required
pathfinding probability, thus allowing for a further reduction in L orW.

Finally, we expect the identified resource costs and trade-offs to be somewhat sensitive to our chosen value
of Ppf , andwould expect a reduction in size of the successful long-range pathfinding parameter space (L,W, p) if
it were increased (say to 0.99). However, we further expect that the effect of such a difference would be very small
and furthermorewould decrease12 as P 1pf  , and therefore our presented results provide an accurate
description of the relevant limited-lookahead phenomenon.

6.Open questions

There are other architectural necessities thatmust be incorporated to produce a completemodel. In this work
pathfinding is only consideredwithin the context of producing a single-qubit channel, but in order to produce a
renormalized lattice forQECpercolated pathsmust also be found in y and z.While an renormalization
algorithmwith optimal scaling is known for 2D [20], none are known for higher-dimension lattices.
Additionally, for a realistic device, local pathfinding algorithmsmust also be designed to reduce the associated
computational overheads forfinding percolated paths in both y and z (for example, similar to recently proposed
cellular automata decoders forQEC [31]).

Also, we do not consider the effects of experimental errors on our pathfinding strategy. It is known that one
of themost significant challenges for LOQC is photon loss. The teleportation of quantum information via
MBQC in ourmodel assumes that each photon ismeasured successfully. However, in a physical device some
degree of both heralded and unheralded photon loss will undoubtably occur from active components and
memory delay lines. For heralded qubit loss occurring in the lattice generation stage, it is known that the affected
qubit’s neighbours can be removed from the lattice.With this approach, it was shown in [10] that a loss rate up to
1.5% could be tolerated by the diamond brickwork lattice (with p 75%f = ). Given that forW W L p,max ( )we
recover standard percolation statistics, we therefore expect a similar loss tolerance for our pathfindingmodel.
But for an unheralded qubit loss it is not yet knownwhether it is possible to performMBQCwithout an explicit
loss-tolerant encoding (such as presented in [32]), especially under the realistic restriction of afixed order of
qubitmeasurement.

We additionally note that in the context of a LOQCarchitecture, our approach here is far fromoptimal. For
example, our pathfinding algorithmonly considers a single path per qubit channel at anyone time.However, for
p pc the number of percolation paths spanning one axis of a L L L´ ´ block scales as L( ), compared to

1( ) for p pc> close to pc [33]. Itmay therefore be possible to utilize these extra paths as backup paths to insure
against both unheralded photon loss and unforeseen dead ends. Thismay have the combined effect of both
reducingW L p,min ( ) and providing loss tolerance, without resulting in an increased susceptibility to accrued
Pauli errors (from increasedMBQCmeasurements per single-qubit channel).

Lastly, it remains to extend such pathfinding simulations to candidate lattices for percolated LOQC cluster
states. Due to the amorphism, anisotropy and correlations of bond percolation applied to the brickwork
diamond lattice presented in [10], a directmapping of resource costs cannot bemade fromour results. However,
preliminary simulations have shown comparable effects as presented here, suggesting that the presented LLP
phenomenon is general tomany lattice configurations [34]. Nevertheless, it remains to identify the specific
impact of deviations from the standard percolationmodel as such latticesmust also permit resource-efficient
LLP in order to be utilizedwithin an LOQCarchitecture.

7. Conclusions and outlook

Realistic architectures for LOQCmust consider the physical constraints of a large-scale device, such as afinite
andfixed depth. As such, this work has considered the effect of afinitefixed depth on the creation of a single-
qubit channel from a percolated cluster state lattice.We have shown that within thismodel, a limited-lookahead
pathfinding algorithm can be applied to successfully create such a channel and identified resources requirements
for successful pathfinding. This suggests that an LOQCarchitecturewith a computational windowof 10( )
layers (i.e. clock-cycles of photon production) is sufficient to produce the almost indefinitely large states
required for universal quantum computation.However, we alsofind that these constraintsmany require
percolation-based LOQCarchitectures to operate above previously-identifiedminimum resource estimates.

12
This can be understood by consideration offigure 6.Herewe can observe that an increase of Ppf from0.95 to 0.99 only provides a small

contraction of the space outlined by the highlighted contour, a difference which clearly decreases as P 1pf  .
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Notably, we find that resource requirements become significant as the cluster state lattice’s edge probability
approaches it is critical threshold. However, this equally implies that even small increases in edge probability
(close above the percolation threshold) can provide significant resource savings and allow an LOQCdevice to
operate with surprisingly lowfixed depth.

An additional key result of this work is a significant step towards bridging the gap between high- and low-
level architectural requirements.When applied to a specific LOQCarchitectural schema, themodel presented
here allows directmapping of high-level architectural resource requirements (such as a qubit channel loss rates)
onto low-level device requirements (such as device depth and ancillae resource counts). Once identified, this
mapping allows the device’sfixedfinite depth to be effectively ignored allowing the high-level abstractions
required for studying the high-level architecture, such asQECprotocols. Furthermore, by identifying LLP
simulation heuristics, the performance of novel candidate lattices for LOQCcan be quickly and easily analysed
without extensive LLP simulations—a key advantage as architecturalmodels become increasingly sophisticated.
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