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Abstract

Most leading proposals for linear-optical quantum computing (LOQC) use cluster states, which act as
auniversal resource for measurement-based (one-way) quantum computation. In ballistic approaches
to LOQG, cluster states are generated passively from small entangled resource states using so-called
fusion operations. Results from percolation theory have previously been used to argue that universal
cluster states can be generated in the ballistic approach using schemes which exceed the critical
threshold for percolation, but these results consider cluster states with unbounded size. Here we
consider how successful percolation can be maintained using a physical architecture with fixed
physical depth, assuming that the cluster state is continuously generated and measured, and therefore
that only a finite portion of it is visible at any one point in time. We show that universal LOQC can be
implemented using a constant-size device with modest physical depth, and that percolation can be
exploited using simple pathfinding strategies without the need for high-complexity algorithms.

1. Introduction

Within the last decade, great progress has been made in the theoretical field of quantum computer architectures.
Modern fault-tolerant schemes rely on the use of many error-prone physical qubits to create individual logical qubits
with fewer errors. Whilst we understand these methods of abstraction theoretically, implementing them in reality is
not a trivial task when experimental constraints are applied. The study of quantum computation architectures must
therefore incorporate both an understanding of high-level theoretical models and experimental limitations.

While there are many attractive aspects of photonic qubits, utilizing them for linear-optical quantum
computation (LOQC) presents some unique architectural challenges [1]. Most significantly, LOQC suffers from
alack of deterministic entangling gates, with initial proposals requiring large resource overheads to compensate
[2, 3]. However, the main challenge for modern LOQC architectures [4—14] remains the generation and
utilization of highly-entangled resource states. This is now generally addressed within the paradigm of cluster
states [ 15, 16] applied to LOQC [4] and the use of entangling fusion gates [5, 17, 18].

One particularly appealing approach to LOQC uses ideas from percolation theory as first proposed in [8].
The main idea is to passively entangle small resource states (also called microclusters), using fusion gates, to
generate a large cluster state which can enable universal quantum computing. The cluster state which is
generated corresponds to a random graph on a geometric lattice with missing sites and bonds. By using schemes
which exceed the critical threshold for percolation on the lattice [8—10, 19], a cluster state which supports

©2017 IOP Publishing Ltd


https://doi.org/10.1088/2058-9565/aa913b
https://orcid.org/0000-0002-4445-734X
https://orcid.org/0000-0002-4445-734X
mailto:sam.morley-short@bristol.ac.uk
mailto:hugo.cable@bristol.ac.uk
https://doi.org/10.1088/2058-9565/aa913b
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aa913b&domain=pdf&date_stamp=2017-11-15
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aa913b&domain=pdf&date_stamp=2017-11-15
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

Quantum Sci. Technol. 3(2018) 015005 S Morley-Short et al

universal quantum computation can be guaranteed. A lattice of logical qubits can then be identified using
methods such as renormalization as given in [8], or the lattice concentration algorithm of [20]. The main virtue
of using the percolation approach to LOQC is that it enables ballistic architectures that sidestep requirements for
extensive adaptive switching networks, which are technologically very challenging [21].

In this work, we address a vital question that must be addressed for any high-level LOQC architecture based
on percolation: can successful percolation be sustained using a physical device of fixed finite size, and what size
(cross-section and depth) of percolating cluster state must be kept online at any point in time to do so? The
methods we use to answer this question differ from conventional treatments of percolation, and are based on
pathfinding algorithms which must exploit information in real-time about the outcomes of recent fusion
operations. We assume that photons making up the percolating cluster state can only be kept online for modest
periods using optical delays, which provide limited lookahead capability before measurements must be
performed on the photons. Our analysis can have implications for all aspects of LOQC architecture by impacting
hardware specifications at the component level. Specifically, this work presents three key results: (i) spanning
paths can exist on extremely elongated blocks of edge-percolated cluster state lattice, but only when the cross-
sectional side length exceeds some minimum length set by the lattice edge probability; (if) an LOQC device with
a physical-depth of only 10-20 layers is sufficient to produce measurement-based quantum computation
(MBQC) qubit channels (within aloss- and error-less LOQC architecture model); (iii) long-range limited-
lookahead pathfinding can be achieved with algorithms with minimal complexity, thereby reducing associated
classical co-processing requirements for LOQC.

The structure of this work is as follows: in section 2 we briefly review recent work on percolation-based
architectures for LOQC. In section 3 we consider the minimum resource requirements of percolated cluster
state lattices for producing long-range single-qubit channels. In section 4 we present the main results of our
work, where we define the Random-node pathfinding process, conjecture a condition of pathfinding success
and present results from numerical pathfinding simulations. Section 5 considers implications of the results
presented for LOQC architectures, identifying key architectural trade-offs and specifications. Finally, a selection
of open questions for future work are presented in section 6.

2. Percolation-based architectures for LOQC

The fundamental challenge of LOQC is the construction of large graph states. Graph states are a subset of
stabilizer states [22] that can be uniquely described by simple graphs (for a review of graph states see [23]). In this
formalism, a graph G (V, E) containing vertices (or nodes) V and edges (or bonds) E, uniquely represents the state

o) = [ CZij @ I+, e))
(i,j) € E vev
where CZ; ; = |00) (00];; 4 [01) (01];; + [10) (10[;; — [11)(11];jand [+) = %(|O> + |1)). We specifically

refer to graph states represented by regular lattices as cluster states. In LOQC, cluster states can be probabilistically
built using two types of fusion gate [5]. Known as type-1 and -1I fusion gates, these gates destructively consume 1
and 2 photonic qubits respectively and on success produce entanglement between the remaining qubits in the
clusters (and on failure the input qubits are subjected to single-qubit measurements). Whilst type-I fusion
consumes fewer qubits, it cannot herald photon loss, whereas type-1I can herald such loss, but at the cost of
consuming an extra qubit. In standard operation, both gates operate with a 50% success rate. However, Type-11
fusion can be boosted to increase the success rate above 50% through the consumption of additional auxiliary
resources [17, 18]. For example, a success rate of 75% can be achieved through either the consumption of a Bell
pair or 4 single photons.

To overcome nondeterministic entangling gates, renormalization is used to produce an idealized lattice £*
from a coarse graining of some percolated lattice £. For example, in one common strategy, microcluster states
are placed on the sites of a lattice and fusion gates of success probability prare applied to produce entanglement
between the centre qubits of adjacent microclusters. Once L is constructed, a single central qubit is identified on
each renormalization block that is path-connected to central qubits of adjacent blocks by sets of path qubits°. As
in MBQC protocols [15, 16], all other qubits in the lattice are then removed by adaptive single-qubit
measurements, thereby producing £*. An example of this is depicted in figure 3, where a single-qubit MBQC
channel is produced from the renormalization of a 2D lattice.

The size of blocks on L required for renormalization to a fixed £* depends only on the percolation
threshold p. of £, as produced by the lattice’s structure. Reducing the overall resource requirements fora LOQC
device therefore relies on producing a lattice with low p. without the need for high-degree and therefore costly

6 For the renormalization of 2D lattices, a different method based on the identification of topological minors is also know [20], however this
has yet to be extended to higher dimensional lattices.
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Figure 1. Percolation phenomena in the sub- and super-critical regime for p < p.and p > p, respectively, here produced by
simulation of percolation on L x L square lattices with edge probability p. (a) The size of the largest connected component \/If asa
function of percolated lattice size L (where |C| is the number of nodes in the connected component C). For sub-critical percolation
when p < p,thesize of the largest connected component scales sub-linearly \/ﬁ ~ 0(L), whereas for super-critical percolation
when p > p,thesize of the largest component is proportional to the lattice size \/ﬁ o< L. (b) The probability of percolation Pas a
function of edge probability p depicted for small, medium and large lattices (L = 10, 20 and 100 respectively), depicting the phase
transition between sub- and super-critical percolation at the percolation threshold p..

microcluster resource states. Initial work on renormalization identified cubic, diamond and pyrochlore lattices
as potential candidates, requiring 7-, 5- and 4-qubit microcluster resources respectively [8]. By extending a
percolation approach to the generation of resource states, it was shown that both microcluster creation and
fusion could be achieved from boosted fusion [17, 18] of 3-photon GHZ states to produce a ‘brickwork’
diamond lattice with p. < p; [10]and pyrochlore [9]. Recently, this scheme was further generalized for higher-
dimensional lattices and n-qubit microclusters [19]. After £ has been constructed, renormalization can be
abstracted to the graph-theoretical problem of finding crossing clusters on percolated lattices, which can be
solved efficiently [24].

Commonly, schemes for generating £ correspond to a bond-percolation, where successful bonds
correspond to open edges [25, 26]. On percolated lattices with bond probability p, the existence of an infinite
open cluster exhibits threshold behaviour. In the limit of an infinite lattice £, the probability P, (p, L) that
an infinite open cluster C, undergoes a phase transition (from 0 to 1) at p = p.. This threshold represents the
division between two distinct percolation regimes for p < p.and p > p.,, known respectively as the sub- and
super-critical regime. The degree of connectivity within the lattice is fundamentally different between these
regimes; for example, the scaling in size of the largest connected component transitions from sub-linear to linear
across the threshold, as depicted in figure 1(a). For finite lattices £, the finite-sized analogue to P, is probability
P.(p, £)thataspanning cluster C exists along the i direction, thereby containing a path connecting opposite
faces of the lattice block along axis i. Thresholds for P,(p, £) correspond to continuous functions, becoming
sharper for larger lattices and converge to P, (p, L), as depicted by figure 1(b). In practise, percolation
thresholds can be found by identifying the crossing point of functions P,(p, £) for various sizes of £ [26], or
numerically using the Newman-Ziff algorithm [27].

In order to exploit percolation phenomena within a scheme for quantum computation, [10] also considered
percolation on a subregion of the lattice with a small cross section which is to be used as a single-qubit channel
for MBQC. By simulating F (p; = 0.75, £) for L, x L x L brickwork diamond lattices over a range of L (for
L, > L), itwas shown that long-range percolation, and hence a single-qubit channel, was produced above some
minimum L. This result can also be applied to finding long-range renormalization.

3. Long-range percolation for single-qubit channels

Our first set of new results extends the study of lattice percolation for single-qubit channels presented in [10],
which was limited to the generation of the partially amorphous” and anisotropic brickwork diamond lattice,
built specifically with p; = 0.75 fusion gates. To do so, we present a generalized model of percolation on
elongated bond-percolated cubic lattices and establish a relationship between the minimum side-length L;,
required for consistent long-range percolation and edge probability p.

7 . . . . . .

Here partially amorphous describes alattice that may contain bonds other than those defined by the lattice structure, such as diagonal edges
or edges between non-adjacent nodes. When constructing a brickwork diamond lattice by the scheme presented in [10], this occurs for
certain choices of fusion gate bases.
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Figure 2. Minimum sidelength L = L, required for successful long-range block percolation (B, (p, £;) > 0.95 for L,= 1000) as a
function edge probability p for cubic lattice. For a given edge probability, L i, represents not only the smallest L required for
pathfinding, but also the smallest renormalization block size achievable. Inset: an illustrative example of a block of percolated cubic
lattice with a valid percolated path highlighted in red.

The model we use is as follows: consider a block of percolated L; x L x L cubiclattice £, with edge
probability p, where L, > L, depicted in the inset of figure 2. On L,, we examine the existence of an end-to-end
spanning cluster, occurring with probability B (p, L,). To produce a reliable single-qubit channel, we
specifically consider probabilities of percolation near unity, B (p, £;) ~ 1. We therefore generally consider
successful outcomes (for percolation and, in later sections, pathfinding) as having probability of at least 0.95, and
long-range as referring to L, > 1000. These definitions are chosen such that if the above conditions are satisfied,
arenormalized qubit loss rate below 10~ can be achieved (given reasonable assumptions of renormalization
blocks with side-length O(10) in the scheme of Kieling et al [8])". Given the known trade-off between
correctability of qubit error and qubit loss for topological codes [28], minimizing loss rates is essential for
maximizing tolerance for unavoidable computational errors. Such a low rate is also expected be a negligible
contribution to renormalized qubit loss in the face of other potential sources of error within the architecture
(such as photonic qubit loss, detector inefficiencies, distinguishability, etc).

However, within this model, percolation phenomena are less-well studied than in the standard regime.
When considering finite-sized, elongated lattices such as L,, it is challenging to make analytic statements about
the existence of spanning clusters, as can often be done for the limit of infinite lattices. For example, while for a
lattice £,, one can find some p < 1suchthat B(p, £,) ~ 1,itis necessarily true’ thatas L, — oo,

B(p, L;) — 0.Assuch, we highlight that all results presented in this work are expected to have some minor
functional dependence on our specific definition of successful and long-range given above. Therefore, we apply a
more phenomenological and empirical approach to the relevant percolation effects, and within the context of
LOQC such results provide important information for designing an architecture.

We now consider the following question: what is the minimum side length L ;, required to successfully
produce along-range spanning cluster C on L, as a function of edge probability p? To answer this question
numerically, we have generated instances of 1000 x L x L sized L, for a given p, and identified the minimum
value L = Ly, for which B(p, £;) > 0.95.Infigure 2 we show values of Ly, overarangeof p > p.We
observe that for edge probabilities well above p. = 0.248 (the percolation threshold for a simple cubic lattice
[29]), small L,,;, can be achieved (suchas Ly, = 5 for p=0.5), with small increases in L;, providing large
reductions in p. However, as p approaches p,, the scaling in Ly, is less favourable, requiring progressively
greater increases in L, for incremental reductions in p. This scaling region suffers from particularly punitive
resource costs if used for MBQC, as the number of qubits in £, = 1000L? scales quadratically in L. We also note
that such a relationship for L, (p) can be inverted to define p, . (L), such that for a given L, long-range
percolation can only be achieved for some p > p,_. .

Furthermore, we can consider the implications of these results for a renormalization-based LOQC scheme.
In this context, Ly, provides alower bound on the side length for renormalization blocks. Whether or not this
bound can be reached depends on finding intersections between spanning clusters connecting pairs of opposing
faces within a single block as well as between adjacent blocks. This is especially problematic for p close to p. as
inter- and intra-block connectivity is sparse; however for p well above p, the increased connectivity also
increases the likelihood such intersections occur.

8 This can be seen by noting that if the probability of creating 100 renormalized 1qubits is greater than 0.95, then the probability of a creating a
single renormalized qubit is (to a reasonable approximation) greater than 0.9510 =~ 0.9995, and thus the loss rate for said qubit is less than
1077

? This can be seen by considering that the probability of no open edges occurring between two layers spanning the cross-section of the block
is(1 — p)Lz, and hence the probability that this never occurs over L,layersis I' = (1 — (1 — p)Lz)Lt < 1. Since a spanning cluster is
contingent on this never occurring then B (£) < I',butfor p < 1, L, — oo = I" — 0, and therefore in the limit of infinite length,
percolation never occurs.
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Figure 3. Renormalization process applied to a 2D lattice (existing in one time and one spatial dimension) with limited-lookahead to
create a MBQC single-qubit channel. The lattice block can be divided into three regions in time: past, active and future. Past qubits
exist in the past, before time t, having already been created and destructively measured by the device. Active qubits exist in the present
between time tand t + W, having been created by the device, but not yet measured. Future qubits exist in the future, after time t + W,
and are yet to be created. Here the red, dashed lines and highlighted edges correspond to the allocation of renormalization blocks and
renormalization paths respectively.

4. Limited-lookahead pathfinding

In a physical LOQC device, £ exists in one time and two spatial dimensions with Z> node coordinates (z, y, z)
andsize L; x L, X L,.To construct £,ateachtimetfromt = 0tot = L;,a L, x L,layer of £ is created and
entangled to the previous layer at t — 1, where L, and L, are fixed by the renormalization protocol. However, all-
optical storage of L, lattice layers in time would require lengthy delay lines, producing a physical qubit loss rate
that scales with computation length (for some applications L, is effectively unbounded); under such conditions,
itis unlikely such a scheme could succeed.

Itis therefore expected that an LOQC device will have a finite fixed depth, storing only a finite-depth window
W of the lattice at any time #. In this model, depicted in figure 3, any classical co-processing algorithms applied to
L suffer from a limited-lookahead, preventing analysis of a complete £ (as previously assumed by algorithms for
MBQC and renormalization). Under this limitation, previously-considered algorithms no longer apply, or their
optimality proofs and scaling efficiencies are no longer guaranteed. To address this, new non-trivial dynamic
algorithms must be designed.

However, finding optimality proofs for graph algorithms that only ever have partial knowledge of a problem
is highly non-trivial, and different input scenarios may require different algorithm strategies for optimal
performance. To study the limitations of the necessary dynamic algorithms, we consider the aforementioned
task of identifying single-qubit channels on percolated lattices. Specifically, we extend the task of finding a
spanning cluster presented in section 3 to the identification of a single end-to-end path, given alimited-
lookahead. To do so, we next construct a basic limited lookahead pathfinding (LLP) algorithm.

4.1.Random-node pathfinding

We now introduce some notation needed for describing the LLP algorithm. Consider again the lattice £, as defined in
section 3, with nodes labelled by their coordinates (¢, y, z). We define a layer I, as the subgraph of £, induced by the
2D L x L layer of nodes at time t, thatis [, = L[{v = (t, ¥, 2), V y, z =1, ..., L}],where G’ = G[V]denotes
the induced subgraph G’ of Gby the node set V. We define a block BB, ;, as the subgraph of £, induced by the 3D block
of nodes within layers a to b (inclusive), thatis B, , = L[{v = (t, ¥, 2),V t =a, ..., b, y,z=1, ..., L}]. Note
that under this definition £, = Bj r,. The nodes within B, j, that are also part of spanning cluster C of L, are
denoted C,, = C N B, and represent nodes that are potentially usable for pathfinding. Similarly, C, = CN ;. In
some B, j, C, ;, may contain more than one connected component. Therefore, we also define C, ,(v) =

LI{v' € Cpp: (v < v')}]asthe connected component of C, , containing node v, where (v < v') indicates that
there exists an open path connecting vand v’. Hence, if two nodes u and v are not path-wise connected within C,, ,
then they must exist in disjoint connected components and C, ,(u)N C, 5(v) = @. Lastly, the superscript E-E
denotes components that extend end-to-end across the layers indicated, e.g. Ci *F are the components in C, j, that have
nodes in both I, and I, with the number of separate end-to-end components given by n (Cff .

To represent alimited lookahead, we consider the restriction that at a given time ¢, we can only have
knowledge of the lattice structure within the finite block B; ;. w of fixed window-length W. This “visible’ block of
lattice is known as the active block. At the end of every time-step, the next far layer of lattice I;; 1 4w is revealed
and nearest layer layer I, is removed, the active block now becoming B, 1 ;1w for time ¢t + 1.
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Figure 4. Single iteration of the Random-node LLP strategy with window length W applied to a percolated 2D cubic lattice.

This limitation requires us to consider an iterative approach to finding spanning paths, which we shall call
limited-lookahead pathfinding, where each time-step the algorithm must choose a path inside the lattice based on
only partial information of the lattice. Specifically, we shall consider a low-complexity instance of pathfinding,
which we call Random-node pathfinding. We consider a naive algorithm such as this to both identify a lower
bound on the success rates of general pathfinding strategies as well as their computational complexities. To find a
path P the following pathfinding algorithm is applied (depicted visually in figure 4), starting at t = 0, (with
P = vy forsome vy € Cy) and is repeated until success or failure occurs:

Random-node pathfinding:

1) Find far nodes. From the current path node v, in the nearest layer /,, find the set of all nodes
F={v € lLyw: ¥ < v}inthefarthestactive blocklayer I, 1 to which a path exists (only considering nodes
and edges within the active block). If 7 = &, pathfinding fails.

2) Find path to far node. Randomly pick a far node f; from F;, and find the shortest path B = (v, ..., f,) within
the window to it.

3) Find next layer node. Find the node in layer [, | that occurs furthest along 7 and assign it to the next time-
step path node v;;,. Append the (v, ..., v,11) section of T, to P. If the final node f,in P is a member of [ ,
pathfinding succeeds.

4) Advance one layer. Remove layer /;and reveal layer /; 1 .

The first thing to note is that this algorithm is far from optimal, and in fact is almost the worst strategy one
could apply (other than making deliberately bad path choices). The only non-trivial analysis of structure occurs
at step 3, where the action of finding the furthest [, layer node allows the inclusion of paths that double-back on
themselves, advancing forwards and then back to layer /, before eventually reaching the final layer, an example of
which is shown in step 3 of figure 4. The most computationally expensive operation in the algorithm occurs in
step 1, when finding ;. This operation consists of running Dijkstra’s algorithm (for finding shortest paths on
arbitrary graphs) from v, thus providing Random-node pathfinding with an overall worst-case performance of
O(E| + |VIlogV]) [30].

Finding optimal pathfinding strategies which demand only minimal values for Wis very challenging in
general and the Random-node strategy can be used to explore the worst-case scenario, from which
improvement may be made. Inevitably, more complex strategies that require detailed analysis of the active

6
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block’s configuration are computationally expensive, which is a major concern for real-time implementation in
hardware devices. A secondary aim of our work is therefore also to minimize the computational overhead
required for pathfinding, and the Random-node strategy also adheres to this goal.

4.2. Successful long-range pathfinding

We now consider the conditions required for successful long-range LLP and show that these can be framed in
terms of standard block percolation. This aims to reduce the complexity of analysing a dynamic pathfinding
algorithm to the simpler problem of calculating percolation statistics on small lattices.

First and foremost, pathfinding fails if no spanning cluster exists. To ensure that a path does exist (with
probability B > 0.95 for a given pathfinding distance L,), we immediately require two conditions: p > p and
L > Ly (p). Having satisfied these, we then seek to identify the conditions such that pathfinding almost
certainly succeeds. In this section, we prove that pathfinding always succeeds if the number of end-to-end
components in each active block never exceeds one, and subsequently conjecture that successful pathfinding is
only achieved if the probability of this number exceeding one is less than some small e.

Before outlining our argument we assert two key assumptions made. Firstly, we assume a unique spanning
cluster always exists across £ (where unique specifies that only one ever exists), and hence exclude any cases
where long-range block percolation does not exist (e.g. by assuming L > L, (p)). The validity of this
assumption is provided by recalling that for p > p. the mean size of a finite cluster decreases exponentially in
P [25], thereby preventing more than one cluster from spanning the lattice. Given this assumption, failure
therefore only occurs from incorrect choices made during pathfinding. Secondly, we assume that at any given
time, the pathfinding algorithm may only have access to information of the lattice’s structure within the active
block, i.e. it cannot store in memory any information about past lattice structure, nor gain preemptive
knowledge of any future lattice structure. This allows us to consider each individual active block as a single
instance of block percolation on a small lattice, and hence percolation statistics are constant across all active
blocks.

Under these assumptions, the probability Pr(£;, W) of pathfinding across £, with window length W, is
given by the product of the probabilities Plif (B,t+w) that, at each time-step ¢, a path node v, 1 in By ;1 is
chosen that still allows for successful pathfinding to distance L,, that is

L—w
Py (L W) = [ Ppr(Brsyws s 2
t=

such thatfor W = L, Pyr(p, W) = ng (Bo,1,) = 1(from our first assumption). However, for W < L,, the
values of P;f are less easily computed.

We can easily see that the probability of successful pathfinding given next node choice ;1 depends on the
probability that v, existsina component extending to the farthest layer, that is

pf Briswlviy) = Py, € CEL 11,.,) (Where we recall that ciL 11,1, are the end-to-end connected components

contained within B, 1, that have one or more nodes in both ;. and I, ). However, at any given time step, we
cannot know whether v, ; € C5£ +1,r, ornotwhent < L, — W (by our second assumption). Instead, we desire
some active block proxy condition for P(v,, | € C55 1,.,) based only on block percolation statistics.

Specifically, we are interested here in the case of Py; (£, W) ~ land hence P; of Brevw) = 1 — € (where
€ < 1) forall . Ideally, we therefore desire some feature function of active blocks F: B, ;. w +— {0, 1}, such that
if F(B;;+w) = 1, then P f(Bt r+w) = lsurely, butif F(B,,, ) = 0then P f(Bt ++w) < L. From this, we then
conjecture that if lattice parameters can be found such that P(F (B, ;. w) = 1)) > 1 — € V t,successful long-
range pathfinding will be achieved. We now prove one such feature function to be the number of end-to-end
connected components within an active block, and thereby define a condition for W such
that P(F(Brryw) = 1) > 1 — €.

We find that one such feature function can be defined from the uniqueness of end-to-end connected
components, such that

1 if nChy) =1

FBrirw) = 0 if n(CEEy) > T

3

To see that this satisfies our feature function requirements, consider two possible structures of B; ;. v, either

n (C’t w) = Lorn (Ct = w) > LInthecaseof n(Cr, iyl Ev) = 1,the previous choice of path node was essentially
irrelevant, since all connected nodes in the far layer C ++w canbereached fromany v, € C,.Ifthis condition is
satisfied for every active block, then at each time-step all choices of path node (using our pathfinding process) are
practically equivalent, and thus Py (L;, W) = L. Alternatively, one can understand this by saying that if

n(C ;% ) = 1, the current connected component C; ;% () must be part of the spanning component C, 1,
extending to the final layer, or
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Figure 5. Comparison between P (1n(Ch{) = 1) oninstances of W x 20 x 20 edge percolated cubic lattice and the success probability
of pathfinding across a lattice of size 1000 x 20 x 20 with window-length W (with p = 0.3 in both cases). Note that the large cross-
section (L =20) is necessary due to p close to p. ~ 0.248, such that L > L, (p) (see figure 2). This supports the conjecture that

P(n (Cg)‘v{s,) = 1) > 1 — ¢ isanecessary and sufficient condition for successful pathfinding, achieved for some minimum window
length. Here we find that successful pathfinding P,r > 95% occurs for Wi, > 16 and is achieved for ¢ < 0.01, with both thresholds
respectively depicted by coloured lines.

Criwn N CfL = g, 4)

assuming that n(Cj; 5, L ) = 1(whichholds for t + W < L;, from the uniqueness of C ).

Conversely, if n (Ct +w) > 1,nochoiceof ; € C; can possibly allow for all nodes in C; , y to be reached,
and hence presents a possibility that v,is not in a component that extends forward to the final layer, v, ¢ Ct L
such a scenario, two possibilities exist: either, equation (4) is ultimately satisfied, indicating that a path passing
through C; ;+ w(v;) canreach layer L,, and therefore allows successful pathfinding, or

CEE () N CEE = o, (5)

indicating that structure within C, ;. w(1;) cannot contribute to pathfinding, and therefore represents a dead-
end, which causes pathfinding to fail. Note, due to effect of finite block side lengths L, there is always some non-
zero probability that equation (5) is satisfied (such as no open edges existing between nodes in C, (1) and
Ciywo1)and thus By (£;, W) < 1. This proves that the condition (Cf }ﬁ w) = lsatisfies our desired feature
function requirements.

We now consider the lattice requirements such that P(n(CL ;%) = 1) > 1 — € V t. Tosatisfy this
requlrement, we define (for a given p and L) the minimum window length Wi, (L, p) as the smallest W such that
P(nCiEy) =1) > 1 — € V t.Notethatfor L > Ly, suchaminimum window length must exist; for any
L, clearly P(n (CE'E = 1) = 1when W = L, (from the uniqueness of Cg,'vlf,), but as Wis decreased from L,,
either W, is found when P (n (C’t ww) = 1) < 1 — € occurs, or else no lookahead is required (and Wi, = 2).
We further define Wyyax (L, p,;,) as the maximum window length required by LLP occurring for a given L at
Prin» above which any further increase in W provides no advantage.

We have shown that for a given £, with lattice parameters pand L, n (Cf’i w) = lisasufficient feature
function. We hence conjecture that P (n (Cg,'f,) = 1) > 1 — e isanecessary and sufficient condition for
successful long-range LLP. That is, if this condition is not satisfied then no strategy (regardless of complexity)
can ever produce successful long-range LLP, and that this condition is always satisfied for W > W, as e — 0.

4.3. Numerical simulation
We now consider numerical simulation of LLP applying a Random-node strategy.

Firstly, we address the conjecture that P(n(Cfjy) = 1) > 1 — ¢ isanecessary and sufficient condition for
successful pathfinding. Figure 5 depicts simulation of both LLP and 5, 1 block percolation over a range of W for
a cubic lattice. We observe that successful pathfinding occurs for minimum window length W,;;,(20, 0.3) = 16,
where By (p, W) = 0.983and P(n(COE,'VIf, = 1) = 0.991, such that e = 1072 Wealso note that Py (p, W)
drops significantlyas P (n (COE,'&, = 1) decreasesbelow 1 — ¢, further validating our choice of feature function.
In conjunction with the proofs of our feature function presented in section 4.2, these results support our
conjecture that P(n(Cfyy) = 1) > 1 — e isanecessaryand sufficient condition for successful pathfinding.

We now consider the interdependence of pathfinding parameter W,,;, and lattice parameters L and p. To do
so, we consider the probability of successful pathfinding B,r(p, W) oninstances of cubic lattice £, with
dimensions 1000 x L x L over arange of p and W. Figure 6 depicts such a simulation for L = 7.

8
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Figure 6. Limited-lookahead pathfinding success probability P,s(p, W) for 1000 X 7 X 7 cubic lattices found over a range of window
sizes W and edge probabilities p. These results clearly depict the combination of both long-range block percolation phenomena and
the effect of alimited lookahead on pathfinding. Firstly, a clear percolation threshold is observed at p, . =~ 0.4, as predicted (by
numeric simulations for L, in figure 2). Secondly, the detrimental effect of alimited lookahead on pathfinding for window sizes

W < 10isalso observed. This shows that for p = p, . ,a maximum window length W}, (L, p,;,) exists, below which pathfinding
can only be achieved by a complementary increase in p. The region of successful long-range pathfinding (Pys(p, W) > 0.95) is found
above the highlighted blue contour.

P p. f\P t
1.0 s
o I
2
=3 0.8 Method
§ > Limited—lookahead
5
ES = 0.6 pathfinding
£ 3
ED B Long-range
B 8 04 block percolation
g &
=) Stacked—block
= 2 heuristic
<
[a W
0.0 =
0.0 0.4 0.6

Edge probability

Figure 7. Comparison between the thresholds in LLP success rates P, and block percolation P, on instances 1000 x L x L cubiclattices
over arange of L. For pathfinding, depicted by solids lines, a large window size (of W = 15 > W, (L)) was chosen to ensure the thresholds
found were due to percolation effects, rather than pathfinding’s limited lookahead. By comparison with long-range block percolation,
depicted by dashed lines, we can see that P,y ~ B}, confirming that for sufficiently large window lengths, LLP is equivalent to long-range
block percolation. Furthermore, we find that within this regime both long-range block percolation and LLP can be approximated as multiple
stacked instances of (15 x L X L)active block percolation, such that P (p, L, 15) = B(p, L;) = B(p, Bo,15) St , as depicted by the
dotted lines. Given that simulating LLP is computationally expensive, this stacked-block heuristic provides a quick and inexpensive
approximation for investigating the performance of LLP on other percolated lattices for LOQC.

The first and most striking feature of these results is the sharp threshold at p ~ 0.4 for large W. This clearly
identifies the minimum edge probability p_. (L = 7) below which nolong-range percolation occurs, and agrees
with numerical L, results depicted in figure 2, showing that p_. (L = 7) ~ 0.4. From the argument made in
section 4.2, we expect this pathfinding threshold to recreate the standard block percolation threshold of a
1000 x L x L cubic lattice. We confirm this numerically with figure 7, which depicts LLP and block percolation
thresholds found over a range of L, showing LLP reproducing long-range block percolation statistics.
Furthermore, we find that percolation statistics found for active blocks can be used to estimate pathfinding
performance over long distances. In this simplified stacked-block heuristic, we model long-range LLP as 1000/ W
consecutive instances of block percolation, as if adjacently stacked face-to-face in ¢ to form the full block £,
(without requiring two adjacent blocks’ percolation paths are connected at adjacent faces), such that
By (p, W) = B(p, BO,W)%. Figure 7 shows that even for large L, this heuristic provides a good estimate for
Byr(p, W)and P(p) (when W > W,,,).

The second feature we observe is the effect of small window lengths upon pathfinding. For p = p,_. ,we
observe a maximum window length Wy, (L, p, . ) = 10. As conjectured, W > Wy, provides no additional

9
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Figure 8. Contours of successful pathfinding (P,s (p, W) = 0.95 for £; with dimension 1000 x L x L) for arange of side lengths L.
From this, we can fully understand the various resource trade-offs one can make in order to achieve successful pathfinding.

benefit to pathfinding, whereas for W < W, the probability of successful LLP is significantly reduced (for
fixed p). While it is possible to realize successful pathfinding for W < Wi,.x (L, p, ), this can only be achieved
by a complementary increase in p.

To fully understand the parameter space for successful pathfinding, we consider contours of P,y = 0.95in
pand Wfor L = 2, 3, 4, 5, 10 and 15, depicted in figure 8. From these results we can also incorporate the effects
of Linto our previous analysis. As identified by the results of figure 2, an increase in L reduces the minimum edge
probability p,_. atwhich long-range percolation occurs, and hence the value of p_. which LLP can succeed.
However, whilst an increase in L (for a fixed W) always decreases the required p for successful pathfinding, these
gains are most significant when Wis also increased, allowing the new p,_. (L) to be achieved. Such insights
provide us with far greater clarity into the inherent resource trade-offs in a LOQC device.

Finally, we note that even for the largest active blocks considered, p_ . (L = W = 15) had yet to approach p..
This indicates that successful pathfinding is likely to require a lattice with edge probability greater than p. by some
non-insignificant amount. Furthermore, when more sophisticated and computationally expensive pathfinding
strategies were simulated, they did not reduce Wiyax(L, p, ), only improving pathfinding in the regionof p > p_..
and W < Wiax(L, p,;,,)- For further details on the performance of such strategies, see the Supplementary Materials.

5. Implications for LOQC architectures

Using the results presented in section 4.3 additional clarity can now be given to the resource trade-offs inherent
to a realistic LOQC device.
Firstly, generating a lattice with p > p. is necessary for the reduction of active block size. For p close to p,, small
increases in p will lead to significant resource savings in block size. The success rate of LOQC’s boosted fusion gates'”
Pr can be increased from 50% to 75% through the consumption of either a Bell state or four single photons per gate
[17, 18]. However, above this first level of boosting, gains in p; become more marginal at the expense of increasingly
costly resource states (which cannot be produced deterministically using linear optics without significant resource
overheads). This leads us to believe that it is likely that LOQC will utilize boosted fusion of atleast p, = 75%, from
which a choice of active block dimensions, Wand L, can be made accordingly. We note that in [10], it was shown that
P =75% greatly exceeds the percolation threshold of p. = 62.5%. In practise, experimental fusion gate success rates
will be reduced by error mechanisms, such as photon loss. However, if this reduction can be sufficiently minimized, our
results indicate that small active block sizes can be achieved, thereby reducing overall resource requirements for LOQC.
Secondly, the probability of successful pathfinding affects the accommodation of bond /qubit' ' loss for a
renormalized lattice. From the perspective of the lattice renormalization, a failure in pathfinding simply
represents a missing bond/qubit along the time axis. Thus the quantum error correction (QEC) protocol’s
ability to deal with bond/qubit loss on the renormalized lattice explicitly determines the required P, (which
adds to all other loss mechanisms). For example, consider the pathfinding requirements for a linear cluster of

10 . . . . . . .

Note p = pr, asin current proposals multiple fusion operations must succeed for a given edge to be created in the target lattice.
Furthermore, failure modes of boosted fusion gates can also maintain connectivity, producing additional connectivity outside the standard
percolation model.

11 .. . Lo P
Ifa block lacks connectivity to be successfully renormalized, one can choose to represent this either as the loss of individual bonds or an
entire qubit.
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100 renormalized qubits, with each renormalized block being 10 layers long, such that the dimensions of £, are
1000 x L x L.Ifless that one bond/qubit must be lost per string of 100 renormalized qubits, then we require
Py (L, W) > 0.99. However, if more bond/qubit loss can be accommodated, this reduces the required
pathfinding probability, thus allowing for a further reduction in L or W.

Finally, we expect the identified resource costs and trade-offs to be somewhat sensitive to our chosen value
of P,r, and would expect a reduction in size of the successful long-range pathfinding parameter space (L, W, p) if
it were increased (say to 0.99). However, we further expect that the effect of such a difference would be very small
and furthermore would decrease'” as Py — 1,and therefore our presented results provide an accurate
description of the relevant limited-lookahead phenomenon.

6. Open questions

There are other architectural necessities that must be incorporated to produce a complete model. In this work
pathfinding is only considered within the context of producing a single-qubit channel, but in order to produce a
renormalized lattice for QEC percolated paths must also be found in y and z. While an renormalization
algorithm with optimal scaling is known for 2D [20], none are known for higher-dimension lattices.
Additionally, for a realistic device, local pathfinding algorithms must also be designed to reduce the associated
computational overheads for finding percolated paths in both y and z (for example, similar to recently proposed
cellular automata decoders for QEC[31]).

Also, we do not consider the effects of experimental errors on our pathfinding strategy. It is known that one
of the most significant challenges for LOQC is photon loss. The teleportation of quantum information via
MBQC in our model assumes that each photon is measured successfully. However, in a physical device some
degree of both heralded and unheralded photon loss will undoubtably occur from active components and
memory delay lines. For heralded qubit loss occurring in the lattice generation stage, it is known that the affected
qubit’s neighbours can be removed from the lattice. With this approach, it was shown in [10] that a loss rate up to
1.5% could be tolerated by the diamond brickwork lattice (with P = 75%). Given thatfor W > W, (L, p) we
recover standard percolation statistics, we therefore expect a similar loss tolerance for our pathfinding model.
But for an unheralded qubit loss it is not yet known whether it is possible to perform MBQC without an explicit
loss-tolerant encoding (such as presented in [32]), especially under the realistic restriction of a fixed order of
qubit measurement.

We additionally note that in the context of a LOQC architecture, our approach here is far from optimal. For
example, our pathfinding algorithm only considers a single path per qubit channel at anyone time. However, for
p > p.the number of percolation paths spanning one axis ofa L x L x L block scales as O(L), compared to
O(1) for p > p. close to p. [33]. It may therefore be possible to utilize these extra paths as backup paths to insure
against both unheralded photon loss and unforeseen dead ends. This may have the combined effect of both
reducing Wy, (L, p) and providing loss tolerance, without resulting in an increased susceptibility to accrued
Pauli errors (from increased MBQC measurements per single-qubit channel).

Lastly, it remains to extend such pathfinding simulations to candidate lattices for percolated LOQC cluster
states. Due to the amorphism, anisotropy and correlations of bond percolation applied to the brickwork
diamond lattice presented in [10], a direct mapping of resource costs cannot be made from our results. However,
preliminary simulations have shown comparable effects as presented here, suggesting that the presented LLP
phenomenon is general to many lattice configurations [34]. Nevertheless, it remains to identify the specific
impact of deviations from the standard percolation model as such lattices must also permit resource-efficient
LLP in order to be utilized within an LOQC architecture.

7. Conclusions and outlook

Realistic architectures for LOQC must consider the physical constraints of a large-scale device, such as a finite
and fixed depth. As such, this work has considered the effect of a finite fixed depth on the creation of a single-
qubit channel from a percolated cluster state lattice. We have shown that within this model, alimited-lookahead
pathfinding algorithm can be applied to successfully create such a channel and identified resources requirements
for successful pathfinding. This suggests that an LOQC architecture with a computational window of O(10)
layers (i.e. clock-cycles of photon production) is sufficient to produce the almost indefinitely large states
required for universal quantum computation. However, we also find that these constraints many require
percolation-based LOQC architectures to operate above previously-identified minimum resource estimates.

'2 This can be understood by consideration of figure 6. Here we can observe that an increase of P, from 0.95 to 0.99 only provides a small
contraction of the space outlined by the highlighted contour, a difference which clearly decreases as By — 1.
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Notably, we find that resource requirements become significant as the cluster state lattice’s edge probability
approaches it is critical threshold. However, this equally implies that even small increases in edge probability
(close above the percolation threshold) can provide significant resource savings and allow an LOQC device to
operate with surprisingly low fixed depth.

An additional key result of this work is a significant step towards bridging the gap between high- and low-
level architectural requirements. When applied to a specific LOQC architectural schema, the model presented
here allows direct mapping of high-level architectural resource requirements (such as a qubit channel loss rates)
onto low-level device requirements (such as device depth and ancillae resource counts). Once identified, this
mapping allows the device’s fixed finite depth to be effectively ignored allowing the high-level abstractions
required for studying the high-level architecture, such as QEC protocols. Furthermore, by identifying LLP
simulation heuristics, the performance of novel candidate lattices for LOQC can be quickly and easily analysed
without extensive LLP simulations—a key advantage as architectural models become increasingly sophisticated.
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