
                          Megardon, G., Ludwig, C., & Sumner, P. (2017). Trajectory curvature in
saccade sequences: spatiotopic influences vs. residual motor activity. Journal
of Neurophysiology, 118(2), 1310-1320.
https://doi.org/10.1152/jn.00110.2017

Peer reviewed version

Link to published version (if available):
10.1152/jn.00110.2017

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via APS at http://jn.physiology.org/content/118/2/1310. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96782516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1152/jn.00110.2017
https://doi.org/10.1152/jn.00110.2017
https://research-information.bris.ac.uk/en/publications/trajectory-curvature-in-saccade-sequences(d8443392-3d0a-4057-9d1c-0a522de0ba1f).html
https://research-information.bris.ac.uk/en/publications/trajectory-curvature-in-saccade-sequences(d8443392-3d0a-4057-9d1c-0a522de0ba1f).html


Trajectory curvature in saccade se-1 
quences: spatiotopic influences vs 2 
residual motor activity. 3 
Authors: 4 
Affiliations: 5 Geoffrey Megardon1,3, Casimir Ludwig2 and Petroc Sumner3  6 1- Cardiff University Brain Research Imagery Centre, School of Psychology, Cardiff 7 University, Maindy Road, Cardiff, CF24 4HQ, UK 8 2- School of Experimental Psychology, University of Bristol, 12a Priory Road, Bris-9 tol BS8 1TU, UK 10 3- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, 11 CF10 3AT, UK 12  13 
Contact Mails: 14 geoffrey.megardon@gmail.com 15 C.Ludwig@bristol.ac.uk 16 sumnerp@cardiff.ac.uk 17  18 
Abbreviated Title: 19 Trajectory curvature in saccade sequences 20  21  22  23  24  25  26 

Articles in PresS. J Neurophysiol (June 7, 2017). doi:10.1152/jn.00110.2017 

 Copyright © 2017 by the American Physiological Society.



Page | 2   

Abstract: 27 
When decisions drive saccadic eye movements, traces of the decision process can be in-28 
ferred from the movement trajectories. For example, saccades can curve away from dis-29 
tractor stimuli, which was thought to reflect cortical inhibition biasing activity in the Su-30 
perior Colliculus. Recent neurophysiological work does not support this theory, and two 31 
recent models have replaced top-down inhibition with lateral interactions in the Superior 32 
Colliculus or neural fatigue in the brainstem Saccadic Burst Generator. All current mod-33 
els operate in retinotopic coordinates and are based on single saccade paradigms. In or-34 
der to extend these models to sequences of saccades, we assessed whether and how sac-35 
cade curvature depends on previously fixated locations and the direction of previous sac-36 
cades. With a two-saccade paradigm, we first demonstrated that second saccades curved 37 
away from the initial fixation stimulus. Furthermore, by varying the time from fixation 38 
offset and the intersaccadic duration, we distinguished the extent of curvature originat-39 
ing from the spatiotopic representation of the previous fixation location or residual mo-40 
tor activity of the previous saccade. Results suggest that both factors drive curvature, and 41 
we discuss how these effects could be implemented in current models. In particular, we 42 
propose that the collicular retinotopic maps receive an excitatory spatiotopic update 43 
from the Lateral Interparial region (LIP). 44 
New & Noteworthy: 45 Saccades curve away from locations of previous fixation 46 Varying stimulus timing demonstrates effects of both 1) spatiotopic representation 47 and 2) motor residual activity from previous saccades.   48 Spatiotopic effect can be explained if current models are augmented with an excitatory 49 top-down spatiotopic signal. 50  51 
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Introduction 52 
Most actions are made in sequence and typically involve the selection of one target, at 53 the expense of irrelevant information. Response trajectories are known to reflect the 54 dynamics of this decision process. For instance, the curvature of arm movements can 55 reveal distractor interference (Howard and Tipper 1997; Tipper et al. 1997; Welsh et 56 al. 1999; Chieffi et al. 2001; Chang and Abrams 2004; Welsh and Elliott 2004) and in-57 decision or preference reversal in multi-alternative tasks (Freeman and Ambady 2010; 58 Koop and Johnson 2011, 2013). Saccadic eye movements—although traditionally con-59 sidered ballistic—may curve towards a distractor item if the target selection has not 60 yet been fully resolved so that a distractor-related activity is still present in the oculo-61 motor areas at saccade onset (McPeek et al. 2003; McPeek 2006). Moreover, saccades 62 may curve away from distractor items and this is correlated with lower neural dis-63 charge at the distractor location in the Superior Colliculus (SC) compared to when the 64 distractor is not present (McPeek et al. 2003; see their Figure 5).This phenomenon was 65 initially thought to reflect the inhibition of distracting information (Howard and Tip-66 per 1997; Tipper et al. 2001; McSorley et al. 2004). Consistent with this explanation, 67 transient deactivation of a locus in SC of monkeys can cause saccade curvature away 68 from the corresponding locus in space (Aizawa and Wurtz 1998; Quaia and Optican 69 1998), and in humans, early saccades were observed to curve toward the distractor, 70 while late saccades curved away from the distractor, reflecting the putative time-71 course of top-down inhibition (McSorley 2006; Walker et al. 2006; Zoest et al. 2012).  72 However recent neurophysiological findings challenge this account (White et al. 2012). 73 In this study, monkeys were required to perform a simple saccadic task whilst ignoring 74 any distractor. In trials when the distractor appeared before the target and for which 75 saccades curve away from the distractor, White et al. (2012) expected to observe the 76 trace of top-down inhibition at the distractor loci while the monkey was waiting for 77 the target to appear. Contrary to these expectations, no trace of inhibition was ob-78 served during that interval in the SC. Note that this surprising finding does not contra-79 dict the earlier observations of McPeek et al. (2003; 2006), in which less activity at dis-80 tractor location was reported during the saccade-related discharge. White et al. (2012) 81 
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did report a similar resultafter target onset. However, there seems to be no clear ana-82 tomical candidate to send precise and spatially-tuned inhibition to the SC. Because of 83 that and the lack of computational model that implement it, some authors have argued 84 that top-down inhibition is essentially a “deus ex machina” which explains the devia-85 tion away using an unexplained mechanism (Kruijne et al. 2014). 86 There are currently two computational models that account for curvature away from a 87 non-target signal without top-down inhibition. Wang and colleagues proposed that the 88 curvature originates from local lateral interactions in the intermediate layer of the SC 89 (SCi) (Wang et al. 2012; Wang and Theeuwes 2014). Alternatively, Kruijne and col-90 leagues proposed an explanation based on a short term depression in the neurons 91 driving the eye muscles—downstream from Superior Colliculus (Kruijne et al. 2014). 92 These models will be described in more detail in the General Discussion. For now, we 93 note two key features that are also shared with the top-down inhibition theory. First 94 these models operate entirely in retinotopic coordinates; hence, they currently do not 95 account for spatiotopic influences (i.e. signals that remain in world coordinates). Sec-96 ondly these models were built to explain single-saccade paradigms, and currently do 97 not account for any deviation influence arising from previous saccades. Our study aims 98 to address the presence of both influences in a two-saccade paradigm in order to direct 99 potential extensions of the current models to account for sequences of saccades. 100 Studies of free viewing or visual search have shown that, in sequences of saccades, 101 previously fixated locations may influence saccadic behavior in a spatiotopic frame 102 and in an automatic way (Klein and MacInnes 1999; Sogo and Takeda 2006; Smith and 103 Henderson 2011, 2011; Bays and Husain 2012). One obvious example is Inhibition of 104 Return (Posner and Cohen 1984; Sumner 2006), where it can take longer to initiate 105 saccades directed back to a previously fixated location compared to other directions  106 (Klein and MacInnes 1999; Hooge and Frens 2000; Hooge et al. 2005; Ludwig et al. 107 2009; Farrell et al. 2010). However, it is currently unclear whether and in what way 108 IoR and saccade curvature are related. Godijn and Theeuwes (2004) suggested that 109 saccadic curvature and (covert) IoR are based on different mechanisms. Importantly, 110 another set of studies, using single-saccade paradigms, have suggested that saccades 111 
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tend to curve away from memorized stimuli either in retinotopic space (Theeuwes et 112 al. 2005) or in object-centered space (Boon et al. 2014). Furthermore, curvature away 113 was found from the representation of the distractor location in previous trials (Van der 114 Stigchel and Theeuwes 2006). This work highlights that past stimuli can influence the 115 trajectory of the current saccade and that this influence is not necessarily coded in ret-116 inotopic space. That naturally paves the way for exploring the effect of memory traces 117 in sequences of saccades.  118 In this regard, the study of saccade trajectories during visual search is relevant (Sogo 119 and Takeda 2006). These authors demonstrated that saccades tend to curve away from 120 the spatiotopic representation of previous fixation zones and suggest an effect of the 3 121 last fixation zones. However, these results could support either spatiotopic representa-122 tions of previous stimuli, or motor residual activity from the direction of previous sac-123 cades. Indeed, it has been suggested that saccades can allow for residual activity to 124 persist in the motor map after their completion—particularly, that motor residual ac-125 tivity would facilitate successive saccades in the same direction (Klein and MacInnes 126 1999; Anderson et al. 2008; Smith and Henderson 2009, 2011; Wang et al. 2011). In 127 other words, in Sogo and Takeda (2006), the current saccade might curve away from 128 the previous fixation because the vector of the previous saccade was, by definition, 129 pointing away from that previous fixation, and this vector remains partially active or 130 facilitated.  131 A more direct test for the effect of automatic spatiotopic representations on saccade 132 curvature was performed recently by Jonikaitis and Belopolsky (2014).  Participants 133 executed two saccades: the first rightward or leftward while the second was upward 134 or downward. Before the initiation of the first saccade, a distractor briefly occurred to 135 the left or to the right of the vector of the second saccade, so that the first saccade dis-136 sociates the retinotopic and spatiotopic locations of that distractor. Curvature in the 137 second saccade appeared to depend on the spatiotopic location—they deviate leftward 138 for the rightward distractor and vice versa—and thus may challenge purely retinotop-139 ic views of saccade trajectory curvatures. However, there is still room for a retinotopic 140 explanation of Jonikaitis and Belopolsky's data. First, both models can produce larger 141 
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deviation with larger inter-stimulus distances (more detailed in Discussion). Second, if 142 there is some residual motor activity caused by the first saccade, this would induce a 143 deviation in the direction of the first saccade (see Figure 2B). Consider how these two 144 factors might interact, with illustration of a “right-then-up” trial. A distractor to the 145 right of the second saccade vector must appear in a more eccentric location from the 146 initial fixation point than a distractor to the left of the second saccade vector. Retino-147 topically, both distractors are rightward, predicting leftward curvature, but the most 148 eccentric stimulus can produce stronger curvature in the models. In parallel, the as-149 sumption of residual motor activity from the first saccade would add an equal tenden-150 cy of rightward curvature to both situations.  It is plausible that for a leftward distrac-151 tor (which has a weak influence), the residual motor activity would be dominant, lead-152 ing to curvature to the right while, for a rightward distractor (which has a strong influ-153 ence), the residual motor activity would not prevail, resulting in curvature to the left. 154 Thus, Jonikaitis and Bolopolsky (2014)’s data could be explained by a particular com-155 bination of these retinotopic effects.  156  In order to extend the work of Jonikaitis and Bolopolsky (2014) and Sogo et al. (2006) 157 and test without ambiguity the influence of spatiotopic representations and motor re-158 sidual activity, we developed a simple two-saccade paradigm without any distractor. 159 First, we established that the second saccade in our sequence curves away from the 160 location of the initial fixation stimulus, consistent with either of these mechanisms. 161 Second, we distinguished these mechanisms through varying the time of the second 162 saccade onset from 1) the fixation offset and 2) the first saccade offset.  163   164 
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Method 165 
Participants 166 
Fourteen observers (25-30 years old, nine male) with normal or corrected vision, par-167 ticipated in this experiment, which was performed with approval from the ethics 168 committee of Cardiff University School of Psychology. All but one (the first author) 169 were naïve to the purpose of the experiment and received payment for their time. 170  171 
Procedure and Stimuli 172 
There were three types of trials: control trials, single stimulus trial, and double stimu-173 lus trials, which will be described below. The control trials were present in case we 174 needed a reference to compute the curvature of saccades. It turned out we did not 175 need such a reference, so these trials are not considered in our analyses and report. 176 The single stimulus trials were used to prevent the participant anticipating a second 177 saccade, and are also not analyzed. A participant would complete two experimental 178 sessions of approximately 1 hour, separated by at least one night. Each session con-179 sisted of setting the chair and chin-rest for the participant to sit comfortably; a 13-180 point calibration of the Eyelink 2000 Eye tracker; 160 control trials; 640 trials mixing 181 randomly single-stimulus and double-stimuli trials. A break was suggested to the par-182 ticipant every 200 trials, and re-calibration was conducted every 400 trials. 183 
Figure 1A and B summarize the spatial and temporal configuration of the stimuli. For 184 single and double stimulus trials, the participant was required to fixate a “+” fixation 185 cross (  in Figure 1) of radius 0.2° on the screen. The fixation cross could appear ei-186 ther on the left or on the right of the screen, along the horizontal axis. The participant 187 pressed the space bar to confirm fixation after which the fixation cross disappeared at 188 a random time drawn from a uniform distribution U(500 ms, 1100 ms). Following an 189 optional gap target S1 was presented: a circular stimulus of radius 0.4°. It could appear 190 either on the top or the bottom of the screen, along the vertical axis. In the double 191 
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stimuli trials, the presentation of S1 was followed by the presentation of  which was 192 the vertical mirror image of S1 with an angular distance of 60° (i.e., using the Fixation 193 as origin, if S1 is at -30° of directional angle, S2 will be at 30°).  and  were always at 194 13.5° of eccentricity from fixation on both single and double step trials. In the control 195 trials, the participants were simply making saccades from S1 to S2 locations and vice 196 versa. 197 As justified in the next section, we manipulated the Gap and S1 durations in a 2x2 de-198 sign (short/long S1 and short/long Gap). For short S1 trials, S1 duration was randomly 199 taken from a uniform distribution between 250 ms and 450 ms, while for long S1 trials 200 it was taken between 550 ms and 750 ms, so that duration could not be anticipated 201 even when the short duration had passed. For short Gap trials, the Gap duration was 202 randomly selected from a uniform distribution between 0 ms to 200 ms while for long 203 Gap trials, the Gap duration was picked between 300 ms to 500 ms. Note that the 204 change in duration between short and long conditions is the same for Gap duration 205 and S1 duration (300 ms). Each condition had an equal number of trials and these 206 were randomly inter-mixed, independently for each participant.  207 All code for running the experiment, the data and analysis scripts can be found on the 208 Open Science Framework at https://osf.io/t96t2. 209  210 
Hypotheses: Predicted effects of spatiotopic representations or residu-211 
al retinotopic motor activity. 212 
Our pilot studies made us confident that the second saccade would observably curve 213 away from the previously fixated stimulus (as will be demonstrated in Results below). 214 However, such curvature could be equally explained by a spatiotopic representation of 215 the previous fixation, or residual motor activity from the first saccade (Figure 2A and 216 B). Our experiment was designed to discriminate between these mechanisms by sepa-217 rately adjusting S1 and Gap durations in a 2x2 design.  218 
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Importantly, we assumed that the curvature of the saccade is proportional to the sum 219 of the effect of both mechanisms. Figure 2C illustrates this point for the case where the 220 effect of the previous fixation (F) and the effect of the residual activity (M) both de-221 crease with time.  222 
Figure 2C shows that the effect of motor residual is affected by the time between Sac-223 cade 2 and Saccade 1, while the effect of the previous fixation depends on the time be-224 tween Saccade 2 and Fixation offset. On the one hand, increasing the Gap duration pro-225 longs the time between Saccade 2 and Fixation offset while keeping the intersaccadic 226 interval (between Saccade 1 and Saccade 2) unchanged (we will test the extent to 227 which this assumption holds below). In other words, Gap duration can be used to test 228 for an effect of the previous fixation (F) only. On the other hand, increasing S1 duration 229 extends both the intersaccadic interval and the time between Saccade 2 and Fixation 230 offset, which affects both the effect of the previous fixation (F) and motor residual ac-231 tivity (M). In other words, S1 duration cannot be used on its own to test an effect of 232 residual motor activity (M).  233  This can be solved by choosing carefully a 2x2 design with short/long S1 durations 234 and short/long Gap durations. Figure 3 illustrates, for each condition, the inter-235 saccadic intervals, the time since Fixation offset and how the time course of the effect 236 of both motor residual activity (M) and previous fixation (F) would affect the curvature 237 of Saccade 2 (last row). We chose the durations of S1 and Gap so that the combinations 238 “long Gap / short S1” and “short Gap / long S1” both give a similar time between Sac-239 cade 2 and Fixation offset (we will assess the extent to which this assumption holds 240 below). Thus, in these conditions, mainly the intersaccadic interval is changed, allow-241 ing us to test for an effect of motor residual activity (see dark gray lines in last row, 242 column 1, Hypothesis 1). An effect of Fixation only (see light gray line in last row, col-243 umn 2, Hypothesis 2) would lead to an effect of Gap and S1 duration, but no difference 244 between the conditions “long Gap / short S1” and “short Gap / long S1”. Finally, an ef-245 fect of both Fixation and motor residual activity would lead to an effect of Gap and S1 246 duration and a difference between the conditions “long Gap / short S1” and “short Gap 247 
/ long S1” (column 3, Hypothesis 3). Importantly, similar effects were predicted with 248 
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linear decays and increase functions while the effect sizes varied with the parameters 249 of the functions (more figures and source code accessible online). 250 It is noteworthy that we do not assume any direction concerning the time course of the 251 effects and our paradigm is tailored to inform us on their direction. In Figure 3, if the 252 motor residual activity increases with time, then the related trend line (dark gray line 253 in last row) will have a positive slope.  Similarly, if the effect of Fixation increases with 254 time, then the related trend lines (light gray line in last row) will have a positive slope.  255 Importantly, if the effect of Fixation and of the motor residual activity progresses in the 256 same direction over time, an alternative way to check for an effect of motor residual 257 activity is to test whether the effect of S1 duration is greater than the effect of Gap du-258 ration (rather than equal, see Figure 3, column 3, last row). That is due to the fact that 259 a change of S1 duration affects both the effects of Fixation and motor residual activity 260 (as seen with Figure 2).   261 To summarize, our paradigm can discriminate between three hypotheses in addition 262 to the null hypothesis. Hypothesis 1: only the residual motor activity of the previous 263 saccade has an effect. Hypothesis 2: only the spatiotopic representation of the previ-264 ous fixation has an effect. Hypothesis 3: both the spatiotopic representation and re-265 sidual motor activity have an effect. It can also differentiate between an increasing and 266 a decreasing time course of each effect. 267 
 268 
Data Analysis 269 
A saccade was marked for analysis if the acceleration was greater than 6,000 °.s-2, the 270 absolute velocity was larger to 10°.s-1 and the amplitude was larger than 5.4°. A trial 271 was rejected if: no saccade was made, or two saccades were made to reach a stimulus, 272 the reaction time or intersaccadic time was shorter than 80 ms, a saccade duration was 273 longer than 150 ms, or a saccade contained eye positions outside the screen or missing 274 data. 275 
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In our experimental design, the selection of one hypothesis (see previous section 0) 276 over another may be based on the absence of an effect (i.e. a null effect). The Bayesian 277 framework provides one way to assess the graded evidence in favor or against the in-278 fluence of some experimental factor (Wagenmakers 2007; Rouder et al. 2009; Morey 279 and Rouder 2011). Thus, we employed the Bayes Factor framework for analysis of our 280 data (Rouder et al. 2012; specifically the R package BayesFactor; Rouder and Morey 281 2012). Furthermore, Bayes Factors are very useful in order to test models against each 282 other and/or select the best model as they penalize complexity (Raftery 1995). 283 The analysis proceeded in three steps. First, we demonstrate that the second saccades 284 curved away from the spatiotopic location of the Fixation stimulus (replicating pilot 285 experiments that showed this on a small sample of participants). We simply selected, 286 based on the Bayes Factor (BF), the best model that explains the initial deviation (see 287 
Figure 4 for the precise measure) among models combining effects of Participant and 288 Fixation side. That analysis used the trial-by-trial initial deviations of the participants 289 (~125 data points per participant per condition).  290 In a second step, we checked that the assumptions we made on the consistency of sac-291 cade latencies and durations across conditions were met. Importantly, we needed to 292 make sure that:  1) the time onset of Saccade 2 since the Fixation offset is similar be-293 tween the conditions shortGap/longS1 and longGap/shortS1; 2) the intersaccadic time 294 is similar between shortGap and longGap conditions.   We used within-subject Bayesi-295 an 2x2 ANOVAs to check these requirements.  296 In a third step, we tested the hypotheses outlined in the previous section to discrimi-297 nate the effect of motor residual activity from the effect of the spatiotopic representa-298 tion of the previous fixation. For simplicity and better readability of the results, we col-299 lapsed the data so that we obtained the mean difference in initial deviation between 300 the conditions Fixation left and Fixation right (abbreviated to IDDLR) for each partici-301 pant and each condition (i.e. Gap/S1 durations). To test an effect of the Fixation, we 302 ran a Bayesian top-down analysis that assesses the importance of Gap and S1 duration 303 in explaining our data. Specifically, a full model that considers all the variables and in-304 teractions is tested against models that omit each of the independent variables (ΔGap, 305 
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ΔS1), random variables (Participant), and their interactions (see Figure 7 and Table 306 
1). Thus, the full model we used was the following general linear model: 307 
 IDDLR ~ S1.Duration + Gap.Duration + Participant + S1.Duration:Gap.Duration + 308 
S1.Duration:Participant + Gap.Duration:Participant + 309 
S1.Duration:Gap.Duration:Participant. 310 Then, to assess an effect of the motor residual activity of the previous saccade, we test-311 ed the effect direction between shortS1/longGap and longS1/shortGap and whether 312 the effect size of S1 duration is greater than the effect size of Gap duration.  313 We matched the BFs with the interpretation tags of Raftery (1995; see also Kass and 314 Raftery 1995). These tags are written in italics. For readers preferring null hypothesis 315 significance tests, these can be found on the OSF repository and support the same con-316 clusion. 317   318 
 319 
Results 320 
The average rejection rate of trials was 27 % (the rejection rules can be found in sec-321 tion 0. We rejected in total 3 participants based on their proportion of rejected trials 322 (greater than 40%; we aimed to get at least 50 data points in each cell of the design to 323 allow for robust estimates of measures of central tendency of latency, duration, and 324 curvature), concluding that the gap was too disruptive to their performance (anticipa-325 tory saccades) or that the eye-tracker was not recording properly (missing data).  326 
Saccade curvature away from the previous fixation point 327 
Figure 4 reveals that the second saccade clearly curves away from the initial fixation 328 position at the participant level (left subplot) and at the participant average level 329 (right subplot). The inset of the right subplot shows the mean saccade deviation at 20 330 ms from saccade onset, averaged over the participants, with 95% confidence intervals. 331 
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Clearly, the deviations are significantly more rightward when the fixation is on the left 332 (brighter bars) and more leftward when the fixation is on the right (darker bars). 333 These impressions of the data were confirmed by the Bayes Factor analysis—the mod-334 el that includes Fixation side and Participant was unambiguously better than the mod-335 el with Participant only (BF > 1000).  The model with an interaction between Partici-336 pant and Fixation side was classed as the best model (BF > 1000 against the main ef-337 fect model) suggesting inter-individual differences in the effect of Fixation side. 338  339 
Intersaccadic intervals and second saccade latency 340 
It is worth recalling that a good data set for testing our hypotheses should show: 341 1. An effect of S1 Duration but no effect of Gap Duration on the intersaccadic inter-342 val, 343 2. A similar distribution of the time interval between Fixation offset and Saccade 2 344 onset when comparing “long S1 / short Gap” with “short S1 / long Gap” conditions.  345 The data broadly met those requirements. Figure 5A shows the latency of the second 346 saccade relative to the first saccade offset.  A Bayesian 2x2 within-subject ANOVA on 347 the intersaccadic intervals, revealed an effect of Gap Duration (BF >1000 against a Gap 348 Duration omission). However, this effect is very small compared to the effect of S1 Du-349 ration— i.e., 9 times smaller (267 ms against 31 ms on average). Figure 5B shows the 350 latency of the second saccade relative to fixation offset. Again, although a Bayesian t-351 test reveals a difference in the time from Fixation Offset when comparing “short Gap / 352 
long S1” with “long Gap / short S1” (BF > 1000 against null slope), this difference is 10 353 times smaller than the main effects of S1 Duration and Gap Duration (301 ms for Gap 354 Duration, 272 ms for S1 Duration against 30 ms for the analyzed slope). 355 
 356  357 
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Testing the Origin of the Fixation Side Effect 358 
Figure 6 presents a summary of the data that can be compared directly to the predic-359 tions presented in Figure 3.  At first glance, there seems to be an effect of Gap and S1 360 duration, which suggests an effect of the previous fixation, while the conditions short 361 S1/long Gap and long S1/short Gap look different, which suggests an effect of the mo-362 tor residual activity of the previous fixation. The general pattern of results support a 363 decreasing time course of both effects. 364  365 
Table 1 shows the results of the Bayesian Top-down analysis. The polarity tag in favor 366 means that to omit the variable is detrimental to the full model— i.e. the evidence is in 367 
favor of an effect of the variable. Matching the BFs with the interpretation tags of Raft-368 ery (1995), we can see that there is positive evidence in favor of an effect of both Gap 369 and S1 durations.  The model is also improved by including some differences between 370 participants in the effect of S1 duration. The best model reported by the analysis is the 371 following: 372 
IDDLR  ~ S1.Duration + Gap.Duration + Participant + Participant:S1.Duration 373 Where IDDLR stands for the difference in initial deviation between the conditions Fixa-374 tion Left and Fixation Right. Thus, our analysis, by suggesting an effect of both Gap and 375 S1 duration, is supportive of an effect of the spatiotopic representation of the previous 376 fixation (see Figure 3, last row). To test the direction of the effect of Gap (longGap – 377 shortGap), we ran a one-sided paired t-test on the distributions for longGap and short 378 Gap conditions. When tested against the null, the BF of the effect of Gap being positive 379 is 0.06 (+-0.1%) while the BF of being negative is of 20.7 (+-0%). Overall, the BF of be-380 ing negative against being positive is very strong (combined BF = 20.7/0.06 = 321). We 381 read the combined BF as very strong evidence of an asymmetry favoring negative val-382 ues; that is supportive of a decrease of the Fixation effect over time.   383  384 
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Now that we have strong evidence for an effect of the spatiotopic representation of the 385 Fixation, we need to discriminate between Hypothesis 2 (Effect of Fixation only) and 386 Hypothesis 3 (Effect of Fixation and motor residual activity). 387 As explained in section 0, more tests are needed to assess the effect of the motor re-388 sidual activity of the previous saccade. One way is to compare the longS1/shortGap 389 and shortS1/longGap conditions (see Figure 3, last row, dark gray lines), so we ran a 390 paired one-sided t-test on their distributions. When tested against the null, the BF of 391 (longS1/shortGap - shortS1/longGap < 0) is 1.26 while the BF of (longS1/shortGap - 392 shortS1/longGap > 0) was 0.14. In other words, our data does not provide enough evi-393 dence to distinguish between no effect and decreasing effect of motor residual activity 394 over time (i.e. the time since fixation being controlled). However, the data contains 395 positive evidence against an increasing effect. That asymmetry between the two t-test 396 leads the combined BF testing for the effect being negative rather than positive to be 397 1.26/0.14 = 9, which is positive evidence in support of a decreasing effect. Hence, alt-398 hough we would need more data to settle unambiguously whether there is a decreas-399 ing effect, the asymmetry between the two t-test is an encouraging result.    400 As there is some evidence that the fixation effect and the motor residual effect go in the 401 same direction over time (or, at least, not in opposite directions), we expect the effect 402 size of S1 to be greater than the effect size of Gap if a motor residual activity is indeed 403 present (see section 0). We computed the distribution of non-standardized effect sizes 404 for S1 (i.e. short S1 – long S1) and for Gap (i.e. short Gap – long Gap) and we ran a one-405 sided paired t-test on them. We are here mostly interested in (S1 effect > Gap effect) 406 against the null (S1 effect = Gap effect), for which the BF is 2.89. That represents weak 407 evidence in favor of an effect of motor residual activity. 408 Finally, Figure 7 illustrates the difference in effect size by sampling these effects from 409 the posterior distribution of the best model. When comparing the two subplots, the 410 effect of S1 duration appears to be greater, but also more variable than the effect of 411 Gap duration. Recall that, under Hypothesis 3, S1 duration effect would be the sum of 412 the effect of Fixation and motor residual activity, while Gap duration effect only de-413 pends on the effect of Fixation. This sum of two effects would lead to a greater effect 414 
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and greater variance for S1 duration.  In other words, the posterior distribution is such 415 as expected under Hypothesis 3. 416 To conclude, the data provide some support for Hypothesis 3 over Hypothesis 2 417 while rejecting Hypothesis 1. In other words, the curvature away that we observed is 418 caused by both a spatiotopic representation of the previously fixated location and a 419 motor residual activity from the previous saccade. Furthermore, the effect of the pre-420 vious fixation and of the motor residual activity decreases with time in the interval un-421 der consideration here. 422  423 
 424 
Discussion 425 
 Analyzing trajectory curvature during a sequence of saccades allowed us to answer 426 whether there is a need to extend recent computational models of saccade curvatures 427 that are based on retinotopic brain regions (Kruijne et al. 2014; Wang and Theeuwes 428 2014). These models that were built to explain trajectory curvatures in single-saccade 429 paradigm and thus could not predict influence of 1) the spatiotopic representation of 430 previous stimuli and/or 2) previous saccades on the current saccade trajectory that 431 may happen during sequence of saccades.  Using a two-saccade paradigm, we demon-432 strated an influence of both these factors and suggested that their influence decreases 433 with time. Such a decreasing time course is expected for a residual motor signal, but it 434 might be surprising for a memorized, spatiotopic representation. Indeed, previous 435 studies that tested the spatiotopic representation of peripheral stimuli at a shorter 436 time scale than ours reported increasing curvature with time (Jonikaitis and Belopol-437 sky 2014). However our results are in agreement with work that tested the represen-438 tation of previous fixations—as in our experiment—at a similar time scale as ours 439 (Sogo and Takeda 2006; see their Figure 8). In the next sections, we will discuss how 440 the current models of saccade curvature can be updated in order to explain our results. 441 
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Prediction of Kruijne et al. (2014)’s model  442 
The model of Kruijne et al. (2014) is based on fatigue (resembling Short Term Depres-443 sion, a decrease in the neuronal sensitivity following sustained input) occurring in the 444 brainstem. They assume one neural population per saccadic direction (left, right, up, 445 down) and a fatigue mechanism in the Long-Lead-Burst neurons (LLBNs). The LLBNs 446 are known not to be inhibited by the omnipause neurons between saccades (Scudder 447 et al. 2002)). In addition a visually evoked signal on the SC can activate the LLBNs 448 (Rodgers et al. 2006). Consequently, the idea of Kruijne et al. (2014) is that a distractor 449 would activate the LLBNs and fatigue specifically the neurons coding for a saccade to 450 the distractor. That fatigue would modify the trajectory of the next saccade: a distrac-451 tor placed on the right of the target would fatigue the right LLBNs: the imbalance 452 would cause a curvature to the left for the next saccade. As the SC connections to 453 LLBNs are stronger for eccentric positions, the fatigue caused to the LLBNs would in-454 crease with distractor eccentricity, resulting in a stronger curvature (in line with Van 455 der Stigchel et al., 2007). With the same logic, the model assumes that a long presenta-456 tion of the distractor would also increase the fatigue of the LLBNs. Their theory is ra-457 ther appealing in the way in which it explains the major phenomena that top-down 458 inhibition control was given credit for. 459 In our experiment, however, such a fatigue mechanism driven by visual stimuli would 460 predict either no curvature or a curvature toward the previous fixation point depend-461 ing on the time scale of the fatigue. For instance, as stimulus S1 is foveal shortly before 462 the second saccade, a short-term fatigue would affect equally all four LLBN popula-463 tions, leading to no curvature. Alternatively,, in trials where S1 appears toward the 464 right, for instance,  a long-term fatigue from S1 could still affect the right LLBNs during 465 the second saccade: the second saccade should curve toward the left, towards the pre-466 vious fixation. In any case, these predictions are opposite to what we observed.  467 
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Prediction of Wang et al. (2012, 2014)’s model 468 
The model of Wang et al. (2012; 2014) is based on hypothetical spatial interactions 469 and winner-take-all selection occurring between stimuli on the Superior Colliculus 470 (SC) map. These spatial interactions assumed that the SC is reducible to a Dynamic 471 Neural Field with a Mexican hat kernel. The Mexican hat (MH) kernel defines three in-472 teraction zones centered around the stimulus input locus: a circular attraction zone, a 473 ring repelling zone and a no-interaction zone (Amari 1977). Because of these, the locus 474 of a peak of activity on the SC map can deviate from the locus of its related stimulus 475 input. Furthermore, it is the locus of one of these peaks that will determine the sac-476 cadic vector through a winner-take-all selection. With this simple attraction/repulsion 477 mechanism between stimulus representations, Wang et al. (2012; 2014) successfully 478 explained the relationship between initial deviations in saccade trajectory and distrac-479 tor-target separation observed in the previous literature, notably based on McSorley et 480 al. (2009)’s data and on a meta-analysis across 12 data sets. Furthermore, considering 481 that a fixated stimulus also evoked a MH activation of the SC, they predicted and 482 demonstrated experimentally that the timing of the fixation stimulus can affect the tra-483 jectory of saccades curving away from a distractor (Wang and Theeuwes 2014). This 484 influence is explained by a Fixation-Target repelling effect interacting with a Target-485 Distractor repelling effect while the timing of the fixation stimulus varies the strength 486 of the former effect.  487 This demonstration of their theory is elegant, however, to place the Mexican hat kernel 488 and the fixation representation specifically in the SC without external updates pre-489 vents their model in its current state from explaining our results. With retinotopic in-490 puts, both S1 and the Fixation stimulus would participate in shaping a MH profile cen-491 tered on the rostral pole (i.e. fixation zone) of the SC (note that S1 is in the fixation 492 zone after saccade 1). This MH profile would vary in strength according to Gap and S1 493 durations, and would result in different deviation of S2’s representation from the ros-494 tral pole. This predicts slight changes (< 0.2° in Wang and Theeuwes 2014) in the am-495 plitude of Saccade 2, but no changes in curvature.  496 
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Proposed model updates 497 
We believe that our work does not disqualify the main mechanisms of the recent mod-498 els, however, it calls to augment them with additional mechanisms. 499 The large dependence of saccadic curvature on the time since the previous saccade, is 500 likely to partly originate from a saccade-related residual activity in the Superior Collic-501 ulus, as assumed by the work of other authors (Soetens et al. 1985; Anderson et al. 502 2008; Wang et al. 2011). The model of Kruijne et al. (2014) and Wang et al. (2012, 503 2014) did not consider motor residual activity from previous saccades because they 504 were both developed to explain results from single-saccade paradigms. Concerning 505 Kruijne et al. (2014), it might be difficult to reconcile the inhibitory effect of a fatigue 506 mechanism with the excitatory effect of a motor residual activity. For instance, motor 507 residual activity in the SC could cause fatigue in the LLBNs and lead to the reverse ef-508 fect of what we observed— i.e. a deviation toward the initial Fixation stimulus. One 509 solution would be to treat saccade-evoked activation of LLBNs differently from stimuli-510 evoked activation of the LLBNs. This could translate to the different types of neurons 511 in the SC, respectively the motor-related and visual-related neurons. In a revised ver-512 sion of the model, the former would produce residual activity without fatigue in the 513 LLBNs, whilst the latter would produce fatigue in the LLBNs by the time the critical 514 saccade occurs.  515 In the model of Wang et al. (2012, 2014), the motor residual activity should not conflict 516 with the current mechanisms. Neural field models—such as in Kruijne et al. and Wang 517 et al. —generate automatically decaying residual activity after input offset because of 518 the decay time constant (10-50 ms) they use. In fact, that kind of residual activity was 519 used to explain several behavioral data sets on overt Inhibition of Return (IoR, Wang et 520 al. 2011).  Nevertheless, if motor residual activity is subject to Mexican Hat spatial in-521 teractions, there will be a similar problem as in the model of Kruijne et al. (2014). 522 While the participant is fixating S1 and preparing to move to S2, the residual activity of 523 Saccade 1 will push the activity related to S2 toward the initial Fixation point and lead 524 to deviation toward the initial Fixation point. To avoid this, the addition of motor re-525 
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sidual activity needs to be independent from spatial interactions, and may, for in-526 stance, take place in the LLBNs or another layer of the SC. 527 Our experiment also provides evidence for a curvature away from the spatiotopic rep-528 resentation of a previous fixation stimulus. A second revision of the models could then 529 add either a satellite structure, which would send spatiotopic signals to the SC/LLBN, 530 or a feedback mechanism, which would automatically shift the SC’s signal when a sac-531 cade occurred (find more discussion in the next section). It is important to note here 532 that the spatiotopic signal would project on the SC/LLBN with excitatory connections. 533 That may at first seem contradictive with the top-down inhibition theory, but it is not. 534 Indeed, in both the models of Wang et al. (2012, 2014) and Kruijne et al. (2014), the 535 curvature away is explained by local suppression (i.e., lateral inhibition or neural fa-536 tigue) generated indirectly by an excitatory signal (i.e. a visual stimulus). In short, only 537 an excitatory signal can activate the inhibitory mechanism that causes the curvature 538 away in these models. To have fixation-related inputs from satellite bodies would echo 539 evidence that there are several mechanisms of fixation-related inhibition, including 540 cortical mechanisms (Sumner et al. 2006). 541 
An Excitatory Spatiotopic Signal from the Lateral Intraparetial Area 542 
One possible source for a top-down spatiotopic excitatory signal is the Posterior Parie-543 tal Cortex (PPC) that connects to the SC mainly through the Lateral Intraparietal area 544 (Paré and Wurtz 1997). Using a double-step paradigm, Heide et al. (1995) have shown 545 that patients with damage to the PPC are impaired in executing their second saccade 546 when the second target is extinguished before the first saccade is initiated. In that situ-547 ation, the second target has to be memorized and its retinal representation on the SC 548 needs to be shifted in accordance with the first saccade vector (that is the spatiotopic 549 update). Interestingly, patients with damage to the dorsolateral prefrontal cortex 550 (DPFC) or to the Frontal Eye Field (FEF) did not show such impairment (see also 551 (Rivaud et al. 1994; Schiller and Chou 1998).  Finally, predictive remapping of a target 552 has been shown to occur in LIP (as well as the FEF), so that neurons respond to a tar-553 get that will be in their receptive field after a saccade is completed (Goldberg and 554 
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Bruce 1990; Goldberg et al. 1990; Duhamel et al. 1992; Umeno and Goldberg 1997; 555 Kusunoki and Goldberg 2003). Neurophysiological work has demonstrated that such 556 predictive activations also occur in specific cells of the SCi, i.e., the quasivisual cells 557 (Mays and Sparks 1980; Walker et al. 1995). These findings support the possibility of a 558 spatiotopic excitatory update of the SCi: notably the LIP/FEF would be projecting pref-559 erentially to the quasivisual neurons that, in turn, would reflect the activity of the 560 LIP/FEF.   561  562 
Conclusion 563 
We conclude that both residual activity from previous saccades and spatiotopic repre-564 sentation of previously fixated stimuli can influence the trajectory of the current sac-565 cade. This influence is translated into a trajectory curvature away from the previously 566 fixated stimulus. These findings call for current retinotopic models of curvature to up-567 date and take into account spatiotopic representations and the motor history. We sug-568 gest that the Lateral Intraparietal area would be a good candidate to provide excitatory 569 spatiotopic signal to the SC. 570  571 
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Figure Captions 725 
Figure 1: Description of the Stimulus Presentation. The expressions ,  and  refer 726 
to the Fixation Cross, stimulus 1 and stimulus 2, respectively. The expression ΔGap refers 727 
to the duration of the gap between  and  while ΔS1 refers to the duration of S1 728 
presentation. In A, only one of the Fixation stimuli — F(left) or F(right) — is shown dur-729 
ing a trial. The lines in gray and dashed gray are used to highlight the relative positions 730 
between stimuli and were not presented to the participant. 731  732 
Figure 2: Predicted Effect of the Spatiotopic Representation of the Previous Fixa-733 
tion (F) and of the Motor Residual Activity from Saccade 1 (M) on Saccade 2’s cur-734 
vature. Although both mechanisms are expected to curve the second saccade (dashed 735 
black line, in A and B) away from the previously fixated location, their time courses can 736 
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be used to distinguish between them (C). In A, the saccade curvature would be caused by 737 
the memorized representation of F(left) (depicted as a black Gaussian gradient) while in 738 
B, the saccade curvature would be caused by a residual trace of the Saccade 1 vector 739 
(thick black arrow; the dotted gray curve is Saccade 1) during the execution of Saccade 2 740 
(dotted black line). In C, we highlight that the time course of each mechanism is attached 741 
to a different event in the trial. The time course of the effect of F (bright gray curve) is 742 
linked to the Fixation offset (bright gray dashed vertical line). The time course of the ef-743 
fect of M (dark gray curve) is linked to Saccade 1 offset (dark dashed vertical line). Final-744 
ly, the curvature of Saccade 2 depends on the sum of the effect of F and M (white dots f 745 
and m) at the time of Saccade 2 onset (thick black vertical line). In Figure 3, we will see 746 
that varying Gap and S1 duration can allow us to distinguish between the two mecha-747 
nisms. 748  749 
Figure 3: How our Paradigm Distinguishes the Effects of Motor Residual Activity 750 
(M) and of the Spatiotopic Representation of the Previous Fixation (F). The para-751 
digm design can differentiate between an effect of F and M, and also between increasing 752 
and decreasing time courses. Row 1-4: Each row represents a condition of our paradigm 753 
while Columns 1 consider a time dependent effect of M with no effect of F and Columns 2 754 
consider a time dependent effect of F with no effect of M. Column 3 considers an effect of 755 
both F and M. The subplots used a similar representation as seen in Figure 2C. The effect 756 
of M and F are represented, respectively by dark and bright gray curves (exponential 757 
based in this example). The small gray boxes at the bottom represent the stimuli timing. 758 
The bright dashed line, the dark dashed line and the solid thick line represents, respec-759 
tively the Fixation offset, the Saccade 1 offset and the Saccade 2 onset. The white dot is 760 
particularly important as it represents the effect of M and F at Saccade 2 onset. Row 5 761 
summarizes the height of the white dot in row 1-4 (i.e. the effect of M and F on Saccade 762 
2’s curvature at Saccade 2 onset) for each condition. A positive number denotes a curva-763 
ture away from previous fixation. It is important to note that the trend in condition 764 
shortS1/longGap and longS1/shortGap (depicted with two dots linked by a black line) is 765 
a good marker of an effect of M. This marker of M will not be affected if there is an effect 766 
of F in any direction (i.e. if we sum the bars in Column 1 and 2 with the bars of Columns 3 767 
or 4). Similarly, an effect of Gap duration (depicted with two dots linked by bright line) is 768 
a good marker of an effect of F. Finally, if there is an effect of both M and F that goes in 769 
the same direction (e.g. decreasing), the effect size of S1 duration should be greater than 770 
the effect size of Gap duration. 771  772 
Figure 4: Effect of fixation side on the second saccade curvature. The dark solid 773 
curves and bars are associated with the condition where the Fixation was on the right, 774 
while the brighter ones are associated with the left condition. Left Panel: the plot is 775 
made from the data of one participant. The thin curves represent the distance from the 776 
straight line (i.e. deviation) of the second saccade over time for each trial, per condition. 777 
The thick and solid curves represent the average deviation across trials, per condition. 778 
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The thick dashed line is the mean deviation across both left and right conditions. Nega-779 
tive values are on the left of the straight line while positive values correspond to the right. 780 
The initial deviation reported in this paper corresponds to the deviation measured at 20 781 
ms from the saccade onset (indicated by the horizontal dash line). From the histograms 782 
of the initial deviation (bottom), it can be observed that the saccade in the right condi-783 
tion (dark bars) are deviating more leftward than the bright curves (bright bars). Right 784 
Panel: the solid dark and solid bright curves represent the average deviation from the 785 
participant mean across all participants, when, respectively, the Fixation was presented 786 
on the right and on the left. The vertical thick dashed lines in the left and right panels 787 
represent the same thing; that is the participant average across left and right conditions.  788  789 
Figure 5: Interaction Boxplots for the Inter-saccadic time between Saccade 1 and 790 
Saccade 2 and for the time interval between Saccade 2 onset and Fixation offset. 791 
Note that a within-subject correction (Cousineau 2005) was applied to the data to illus-792 
trate that the analysis treated the participant as a random effect. In both A and B, the 793 
lower and upper hinges correspond to the first and third quartiles. The lower and upper 794 
whisker extend from the hinge to the lowest/highest value within 1.5 times the inter-795 
quartile range, so that the trials beyond these whiskers—plotted as points—can be con-796 
sidered as outliers of a normal distribution. The lines are connecting the mean of the dis-797 
tributions. 798 
 799 
Figure 6: Summary of the Analyzed Data. Error bars display the within-subject 95% 800 
confidence intervals. Note that IDDLR stands for the difference in initial deviation between 801 
the conditions Fixation Left and Fixation Right. 802  803 
Figure 7: Estimation of the non-standardized effect size of Gap and S1 duration on 804 
IDDLR (i.e. the difference in initial deviation between Left and Right Fixation conditions). 805 
We plotted the distribution of the non-standardized effect size of S1 and Gap duration 806 
from sampling 10,000 points from the posterior distribution of the best model (see main 807 
text). Two observations can be made: 1) both S1 and Gap duration have a negative effect 808 
on IDDLR (i.e. as we increase Gap or S1 duration, the distribution shift leftward), and 2) 809 
the effect of Gap duration on IDDLR seems smaller than the effect of S1 duration. Top: 810 
Kernel density bandwidth of 3.816e-03. Bottom: kernel density bandwidth of 1.533e-03. 811  812 
Tables 813 
Table 1: Bayes factor top-down analysis on Initial Difference in Deviation (Left-Right). 814 
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Effect of Omission BF or 1/BF Polarity Interpretation Tag 
[1] ΔGap:ΔS1:Participant 1.02 ±5.26% none weak 
[2] ΔGap:Participant 3.88 ±4.26% against positive 
[3] ΔS1:Participant >1000 ±4.65% in favor very strong 
[4] ΔGap:ΔS1 2.37 ±5.96% against weak 
[5] Participant >1000 ±5.19% in favor very strong 
[6] ΔGap 5.1 ±6.07% in favor positive 
[7] ΔS1 4 ±4.46% in favor positive 

Note. We inversed (1/BF) the BFs less than 1 for easier reading. We add a Polarity col-815 
umn that tells if the evidence is against or in favor of an effect of the omitted variable. BF 816 
against the full model:   ~ ΔS1 + ΔGap + Participant + ΔS1:ΔGap + ΔS1:Participant 817 
+ ΔGap:Participant + ΔS1:ΔGap:Participant. Where IDDLR stands for the difference in ini-818 
tial deviation between the conditions Fixation Left and Fixation Right. 819  820  821  822  823 
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