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Abstract 
Motivation: Efforts to model how signaling and regulatory networks work in cells have largely either 

not considered spatial organization or have used compartmental models with minimal spatial resolu-

tion. Fluorescence microscopy provides the ability to monitor the spatiotemporal distribution of many 

molecules during signaling events, but as of yet no methods have been described for large scale im-

age analysis to learn a complex protein regulatory network.  Here we present and evaluate methods 

for identifying how changes in concentration in one cell region influence concentration of other pro-

teins in other regions.  

Results: Using 3D confocal microscope movies of GFP-tagged T cells undergoing costimulation, we 

learned models containing putative causal relationships among 12 proteins involved in T cell signal-

ing.  The models included both relationships consistent with current knowledge and novel predictions 

deserving further exploration. Further, when these models were applied to the initial frames of movies 

of T cells that had been only partially stimulated, they predicted the localization of proteins at later 

times with statistically significant accuracy. The methods, consisting of spatiotemporal alignment, 

automated region identification, and causal inference, are anticipated to be applicable to a number of 

biological systems.  

Contact: murphy@cmu.edu 

 

 

 

1 Introduction  

Identifying the signaling pathways that control cellular processes is a 

critical goal of biomedical research. Current approaches emphasize high-

throughput experimentation and computational analysis to identify pro-

teome-scale interaction networks and regulatory relationships. Among 

various computational analysis frameworks, causality inference has been 

recently applied to analysis of biological systems, (Chang, et al., 2015; 

Chindelevitch, et al., 2012; Welf and Danuser, 2014). There are two 

predominant characteristics of causal relationships: 1. Cause always 

precedes effect; 2. Performing an action (at least one example is known 

to exist) on the cause would change the effect (Eichler, 2012). For tem-

poral causal modeling, the Granger causality test (Granger, 1969) has 

been an important tool. The idea of Granger causality is that if we can 

learn a better linear model for one variable by including information 

about another variable than by not including that variable, then we sup-

pose there to be a causal relationship between them. Various variants and 

generalizations of Granger causality and applications for biological 

problems have been described (Fujita, et al., 2010; Shojaie and 

Michailidis, 2010). However, Granger causality is a pairwise test, which 

limits its application to build large scale networks where the interactions 
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are much more complicated than pairwise relationships. Another popular 

framework for temporal causal inference is the dynamic Bayesian model, 

a framework for statistical machine learning. Dynamic Bayesian models 

can be used to treat the protein network as a probabilistic graphical mod-

el, and can learn the structure and parameters from the data; however, it 

is controversial to treat the relationships in probabilistic graphs as causal 

relationships (Pearl, 2009). Compared to the Granger causality test 

method, dynamic Bayesian models perform better for short time series 

(Zou and Feng, 2009). However, when the structure of the network is 

unknown, it is not trivial to learn it; this is especially true when there are 

a lot of variables (e.g., proteins), as is usually the case for biological 

problems.  

 

In biological systems, many researchers resort to the second characteris-

tic of causality, that is, to intentionally change (or perturb) the amount of 

a gene or protein suspected to play a regulatory role (e.g., through muta-

tion, gene knockout or knockdown) and observe the effect on the sus-

pected target or behavior. This approach has been used for analysis of 

single targets (e.g., genetic screens, high throughput or high content drug 

screens) and for inferring static or dynamic regulatory networks from 

measurements of the expression of many genes under perturbed and 

unperturbed conditions (Segal, et al., 2003). While the perturbation ap-

proach has yielded many important results, the complexity of many 

cellular pathways has led to a growing sense that causal relationships 

may be better addressed through analysis of kinetics and heterogeneity 

without explicit perturbation (Welf and Danuser, 2014). In this case, the 

various learning frameworks mentioned above could be applied.  

 

Fluorescence microscopy is particularly suited for seeking causal rela-

tionships without relying on perturbation (of course, labeling with fluo-

rescent probes may itself cause a different type of perturbation, but this 

is constant over the course of imaging experiments). Fluorescent tags can 

be used to identify particular molecules (which may represent causes or 

effects) and follow them in time and space in many living cells. Fluctua-

tion analysis can then be used to look for correlations in the dynamics of 

two events (Vilela, et al., 2013). For example, Alon and colleagues 

(Farkash-Amar, et al., 2014) identified specific proteins whose expres-

sion level and/or localization is correlated with differences in cell motili-

ty by taking advantage of natural variation. Danuser and colleagues 

(Machacek, et al., 2009) have used fluctuation analysis to learn the rela-

tionship between myosin II localization and various aspects of cell shape 

and motility. These approaches have largely focused on identifying 

individual factors that influence one particular process, rather than con-

structing a model that identifies key steps that influence different pro-

teins at various times and places. They have also required the ability to 

image both the putative cause (e.g., tagged protein) and the putative 

effect (e.g., cell shape) in the same cell; this permits the identification of 

correlated fluctuations. 

 

Here we present machine learning pipelines for inferring putative causal 

relationships in regulatory or signaling networks. We note a number of 

differences from previous related work. First, our method does not re-

quire that pairs of proteins be observed in the same cells; relaxing this 

requirement is very useful when increasingly large numbers of proteins 

are addressed in the same system. Second, the method does not require 

manual specification of regions of the cell in which effects may occur; it 

allows for unbiased discovery. Lastly, it yields a graph of potentially 

interconnected influences rather than a list of individual factors. 

 

Building on recent work (Roybal, et al., 2016), we applied these causal 

inference methods to study the dynamics of proteins involved in T cell 

signaling. This is an interesting and important system for studying a 

complex spatiotemporal process. T cells become activated through inter-

action with antigen presenting cells. This is primarily accomplished by 

the T cell receptor (TCR) recognizing antigen-derived peptide presented 

on the APC surface. However, engagement of costimulatory receptors 

that interact with ligand on the APC is required for efficient T cell acti-

vation. The most potent costimulatory receptor is CD28, which binds to 

the B7 family ligands (CD80 and CD86). T cell activation produces 

rapid and transient accumulation of actin at the T cell/APC interface 

(also called an immunological synapse). Since T cells express many 

signaling proteins that can interact in complex manners, the mechanism 

of signal transduction is not well understood, particularly with respect to 

the contributions of costimulation. It therefore represents a good test 

system for seeking causal relationships. We constructed models learned 

from movies of cells exposed to full stimulation and found a number of 

interesting relationships consistent with prior knowledge. Furthermore, 

applying the model to data for cells in which stimulation was partially 

blocked revealed that the model could make predictions about protein 

dynamics with statistically-significant accuracy. 

 

During initial analysis of the T cell movies, we found that several pro-

teins displayed quite similar spatiotemporal patterns; this is probably due 

to the binding of these with each other and formation of persistent com-

plexes. The spatiotemporal patterns of these proteins are therefore highly 

correlated, and thus the pattern of one can easily be predicted from the 

pattern of another. This is a common complication in causal analysis: the 

inability to distinguish correlation from causation.  To deal with this 

situation, we eliminated correlated proteins using clustering when con-

structing our models. 

 

It is important to note that the causal relationships mentioned below are 

the result of statistical inference and are intended to be read as putative 

causal relationships even when this is not explicitly stated. 

2 Methods 

2.1 Data 

We used the data and methods previously described (Roybal, et al., 

2016) for creating maps of the spatial distribution of ten different sensors 

under two conditions. The maps consist of the probability that a mole-

cule of a given protein would be found in each of 6628 voxels in a stand-

ardized half-ellipsoid template; the flat surface of the template corre-

sponds to the synapse. The values thus reflect relative, not absolute, 

concentrations. Maps were originally created for twelve time points 

relative to synapse formation, but we used only the first ten: -40, -20, 0, 

20, 40, 60, 80, 100, 120, and 180 seconds for causal inference. We creat-

ed maps for two new proteins: Ezrin and PIP2, using the same methods, 

and also slightly improved the alignment algorithm. Both the original 
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and refined maps are available from 

http://murphylab.web.cmu.edu/data/TcellModels. 

 

2.2 Region Definition 

Each voxel in the template was represented by a vector of length 120 

containing the amounts of each of twelve sensors at ten time points. 

These vectors were grouped into voxel types by k-means clustering. 

Each connected component (using 26-connectedness) with the same 

cluster type and containing more than 4 voxels was defined as a region.  

 

2.3 Causal graphical process model 

2.3.1 Graph representation 

A graph was created with a node for each region for each sensor; the 

node values are the concentration of all voxels in the region for that 

sensor. We consider that observing the graph yields a set of node values 

𝒙 = (𝑥1, … , 𝑥𝑛) 

where n is the number of nodes. 

For observation of a time series graph, we represent the nodes at time 

point k as 

𝒙[𝒌] = (𝑥1
(𝑘)

, … , 𝑥𝑛
(𝑘)

) 

2.3.2 Causal Graph process model (CGP) 

Given these values, we wish to construct an adjacency matrix A that 

captures the relationships between nodes, as well as to find a function 

that describes how the node values change over time. As one approach, 

we chose to use Causal Graph Process (CGP) modeling (Mei and Moura, 

2016) to do this. In the CGP, the function is defined as a polynomial in 

A, and the order depends on the lag M: 

𝒙[𝑡] = 𝑤[𝑡] + ∑ 𝑃𝑖(𝐀)𝒙[𝑡 − 𝑖]

𝑀

𝑖=1

= 𝑤[𝑡] + (𝑐10𝐈 + 𝑐11𝐀)𝒙[𝑡 − 1]   

+  (𝑐20𝐈 + 𝑐21𝐀 + 𝑐22𝐀2)𝒙[𝑡 − 2] + ⋯     

+  (𝑐𝑀0𝐈 + 𝑐𝑀1𝐀 + ⋯ + 𝑐𝑀𝑀𝐀𝑀)𝒙[𝑡 − 𝑀]   

 

where 𝑤[𝑡] is the residual for 𝒙[𝑡] (the amount of 𝒙[𝑡]) not accounted 

for by the model), and 𝑐𝑖𝑗 is the coefficient term for the j-th order for the 

polynomial 𝑃𝑖(𝐀). We can write 𝑐𝑖𝑗 more compactly as  

𝒄 = (𝑐10, 𝑐11, 𝑐20, 𝑐21, 𝑐22, … , 𝑐𝑀𝑀) 

Given this formulation, the goal is to find 𝐀  and 𝑐𝑖𝑗  (𝑖 = 1, … , 𝑀, 𝑗 =

0, … , 𝑀). This is done by solving the optimization problem 

 

min
𝐀,𝐜

 
1

2
∑ ‖𝒙[𝑘] − ∑ 𝑃𝑖(𝐀)𝒙[𝑘 − 𝑖]

𝑀

𝑖=1

‖

2

2𝐾

𝑘=𝑀+1

+ 𝜆1‖𝑣𝑒𝑐(𝐀)‖1 + 𝜆2‖𝑐‖1 

 

Where 𝜆1 and 𝜆2 are regularization parameters. 𝑣𝑒𝑐(𝐀) means reshaping 

matrix A as a vector, and K is the number of time points.  

The problem is non-convex. As described previously (Mei and Moura, 

2016), we first solve 𝑃𝑖 (𝐀), then estimate A from 𝑃𝑖 (𝐀), and then esti-

mate c from 𝑃𝑖 (𝐀) and A. Projected gradient descent (Figueiredo, et al., 

2007) is applied for each step. In order to prevent self-prediction, we add 

a constraint that the block of connections between nodes of the same 

protein are set to zero. This is easy to implement by setting these values 

to zeros in each iteration.  

 

2.4 Constrained elastic net regression 

2.4.1 Granger causality test 

Pairwise Granger causality tests were performed for each pair of nodes. 

After calculation of the p-values, Bonferroni-Holm correction for multi-

ple hypothesis tests was performed. A threshold α on the corrected p-

values was used to identify significant pairs for constraining below.  In 

this step, we also considered at which lag time the prediction is strongest 

by comparing the cross correlation with different lag times. The sign of 

the relationship (slope) from the linear models was also recorded to form 

the constraints in the next step. 

2.4.2 Constrained elastic net regression (CENR) 

For identified pairs, if they have a positive linear relationship, then we 

forced the element in the adjacency matrix to be greater than b (b> 0), 

otherwise it is forced to be less than -b. The basic optimization problem 

is 

min
𝐀1,…,𝐀𝐌

 
1

2
∑ ‖𝒙[𝑘] −  ∑ 𝐀𝑖𝒙[𝑘 − 𝑖]

𝑀

𝑖=1

‖

2

2𝐾

𝑘=𝑀+1

+ 𝜆1 ∑‖𝑣𝑒𝑐(𝐀𝑖)‖1

𝑀

𝑖=1

+ 𝜆2 ∑‖𝐀𝑖‖𝐹
2

𝑀

𝑖=1

 

Subject to   

𝐀𝑖(𝑘, 𝑙) ≥ 𝑏, 𝐀𝑗(𝑚, 𝑛) ≤ −𝑏 

where nodes k, l are identified positive causal relationships at a particular 

lag i, and nodes m, n are identified negative causal relationships at lag j, 

and 𝜆1  and 𝜆2  are regularization parameters. ‖∙‖𝐹
2  means the Frobenius 

norm of a matrix.  

 

We used the alternating direction method of multipliers (ADMM) algo-

rithm (Boyd, et al., 2011) to determine the adjacency matrices. One 

difference from CGP is that CENR learns separate adjacency matrices 

for each time lag rather than a single adjacency matrix.  Here we pre-

vented self-prediction by setting the diagonal values to zeros after each 

iteration.  

 

2.5 Grouping proteins 

To avoid effects of correlations in spatiotemporal patterns that would 

interfere with the causal inference process, proteins were grouped based 

on hierarchical clustering.  To do this, each protein was represented by 

the amount of that protein in each cell region at all time points. Three 

similarity measures were used to construct dendrograms and decide the 

number of clusters: city block distance, Euclidean distance, and correla-

tion coefficient. The mean kinetics of all proteins in a cluster were used 

to represent that cluster for causal model construction (for display, the 

cluster was given the name of the alphabetically first protein in it).  

 

2.6 Parameter estimation 

http://murphylab.web.cmu.edu/data/TcellModels
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The best free parameter combinations for each method (𝜆1  and 𝜆2  for 

CGP, α, b,  𝜆1  and 𝜆2 for CENR) were chosen using 5-fold cross valida-

tion over the kinetics for single cells (using . For construction of each 

training and test set, the mean kinetics of each region for each protein 

were calculated.  The parameter combination giving the lowest average 

root mean normalized squared error (RMSE) over all proteins was cho-

sen. 

2.7 Timing of important events 

To aid in interpretation of the model, we sought to identify specific time 

points at which effects captured by causal models were maximally ob-

served. To do this (for lag M), we calculated for each time t the cross 

correlation between the concentrations of cause X for time points t-M, 

…, t and the concentrations of effect Y for time points t, …, t+M. If the 

value of 𝐀 was positive for this effect, we found the t that maximized 

this cross correlation, and when the value of 𝐀 was negative we found 

the t that minimized it (largest negative value).  

 

After defining the time point t of important event, the trend for cause and 

effect was defined as the slope of the linear model of cause X for time 

points t-M, …, t and of effect Y for time points t, …, t+M, respectively. 

 

2.8 Permutation tests 

To examine the generalizability of the models, we applied them to pre-

dict kinetics for the B7 blockade condition not used for training the 

models.  In the test, in each iteration, we permutate on the order of kinet-

ics for each protein and each region (on Full stimulus condition) in order 

to disrupt the association between different proteins and regions. Then 

We used the node values from the B7 blockade maps for time points t - 

1, ..., t-M to predict values for t (t = M + 1, ..., K) using the models 

trained with the full stimulus maps. As a measure of error of these pre-

dictions, the normalized RMSEs were computed between the predicted 

time series and the actual one, for all three regions for each sensor,. To 

estimate the significance of obtaining a given RMSE for a given protein, 

permutation tests were performed in which predictions for a given pro-

tein in each of the three regions were randomly drawn from the values at 

all time points in all regions for that protein.  This process was repeated 

50,000 times to obtain a background distribution of the prediction errors. 

The p-values for the predictions were corrected using the Bonferroni-

Holm method and the corrected p-values below 0.05 were considered 

significant. 

3 Results 

3.1 Creating graphs of protein spatiotemporal interactions 

3.1.1 Defining regions 

We begin with maps of the relative concentration of twelve different 

proteins in each voxel of a standardized T cell template at various times 

before and after synapse formation (Roybal, et al., 2016). These maps 

were generated from many movies of many sets of cells, each set ex-

pressing (at near the endogenous level) a different fluorescently-tagged 

protein. Each movie showed an individual T cell forming a synapse with 

an antigen-presenting cell. The position and time of synapse formation 

was identified, the T cell boundary was found in each frame, and the 

fluorescence distribution was morphed to a standardized template. The 

amount of protein in each voxel of the standardized template was then 

averaged across many cells to provide a “map” of the concentration.  

 

If we consider the amount of each sensor in each position of the cell to 

form a fully-connected graph, we can consider how the sensors change 

over time to be dictated by some process operating on that graph. This is 

the framework of the two methods: CGP and constrained elastic net 

regression method. However, if we treat each voxel separately, that is, as 

a node in the graph, then there will be 79,536 nodes (6628 voxels X 12  

proteins); learning the model would require estimating an adjacency 

matrix of over 6 billion values for CGP and 12 billion for CENR. Con-

sidering that nearby voxels have similar spatiotemporal patterns in the 

same process, we therefore chose to consider a smaller number of multi-

voxel regions and defined these as sets of connected voxels that behaved 

similarly: that is, those voxels that had similar kinetics of all sensors at 

all time points. Note that this does not mean that all sensors were equal 

or that the amounts do not change, but rather only that if a sensor chang-

es, it changes similarly among all voxels in a region. Possible regions 

were found using clustering of voxels into various numbers of clusters 

(see Methods). Three clusters were observed to give the highest score by 

silhouette analysis, and therefore three voxel types (which happened to 

yield three regions) were used; the regions are shown in Figure 1. 

 

3.1.2 Hierarchical clustering 

 

As discussed above, we used clustering to eliminate spurious causal  

relationships due to high correlations among protein patterns.  However, 

different similarity measures yielded different apparent numbers of clus-

ters.  For example, using city block distance, the clustering results shown 

in Figure 2 were obtained. Based on the figure, we created one group 

consisting of ARP3 and HS1 and a second group consisting of CPα1, 

Coronin1A, WASP, WAVE2.  As discussed in the methods, these groups 

were represented by the average across all proteins in the group. 

 

3.1.3 Building models 

  

We next considered what temporal resolution we should attempt to cap-

ture within the graph process. Since changes in actin and its regulators 

happen rapidly (on the time frame of seconds to tens of seconds), and 

 

 

 

 

Figure 1. Region definitions. Regions within the standardized template found by voxel clustering and connected component analysis; different 

colors represent different regions, and magenta outside the cell indicates the background.  
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since we used only ten time points, we chose to learn models that for 

each time point depended on only the two prior time points (M=2). 

 

1) CGP model 

Given the kinetics for each protein or group, we constructed CGP models 

and optimized parameters as discussed in the Methods. The resulting 

model consists of an adjacency matrix A, which provides the overall 

estimate of the effect of each node on each other, and the coefficients of 

the polynomials P that operate on it. The adjacency matrix is shown in 

Figure 3.  The data (through the parameter optimization process) does 

not yield a very sparse model, suggesting there may be a complicated 

network among the proteins. 

 

2) CENR model 

Based on the threshold on corrected p-values, we identified 8 pairs of 

strong potential causal relationships. Based on the constraints, we trained 

the model with the regularization parameters. Again, we also suppressed 

self-prediction by setting the diagonal elements to zero. For this model, 

we learned one adjacency matrices for each lag time. These are shown in 

Figure 4.  Despite our attempt to focus the model on strong effects (and 

similar to the case for the CGP model), the adjacency matrices are not 

very sparse. 

 

3.2 Major findings 

3.2.1 Major causal relationships 

First, by hierarchical clustering, we identified proteins that have similar 

kinetics across all regions, suggesting that they are largely present in 

persistent complexes. There is prior evidence to suggest that this may be 

the case.  Uruno et al. (Uruno, et al., 2003) has shown that HS1 is the 

upstream regulator for the activation of APR3, and activated ARP3 will 

bind to Actin and stabilize the nuclearization of Actin. WASP and 

WAVE2 are also upstream regulators of ARP3 (Burkhardt, et al., 2008). 

Coronin1A is known as an Actin binding protein that regulates actin 

through the coordination with ARP2/3 complex and cofilin (Gandhi, et 

al., 2009). Therefore, our clustering results are consistent with prior 

studies. 

A comparison of the kinetics of cause and effect are shown for some of 

the largest relationships in Figure 5. 

 

3.2.2 Region 1 as the most important region 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Adjacency matrix from the CGP. The X axis shows the 

cause and the Y axis shows the effect. The color of each element 

represents the estimated strength of the cause and effect relationship 

between a pair. ARP3 and CPalpha1 each represent groups with 

multiple proteins.  

 

 

 

 

 

 

 

 

 

 

Figure 2 Hierarchical clustering using city block metric. Left: 

The dendrogram shows the clustering of the proteins using the 

city block metric as described in the text. Right: the image shows 

the pairwise distance between each pair of proteins. The cophenet-

ic coefficient of the dendrogram is 0.8866. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Adjacency matrices from CENR. A) lag time -1. B) 

lag time -2. For both panels, the X axis shows the cause and the Y 

axis shows the effect. The color of each element in the matrix 

represent the strength of the cause and effect relationship between 

a pair at that lag time. ARP3 and CPα1 each represent groups with 

multiple proteins. 
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In the adjacency matrices, we can see that the strongest relationships are 

mostly between proteins in region 1, the synapse region. This is the 

major region into which actin and its regulators are recruited and activat-

ed. This makes sense: this region is relatively small compare to other 

regions, and most proteins are accumulated in certain times, i.e. 0 – 40 

seconds, that is, the variation of the proteins are largest among the three 

regions. So clearly, these interesting patterns are consistent with what is 

known about actin dynamics in T cell synapse formation. However, we 

can also find some other pairs that are not in region 1, MRLC in the 

cortex (region 3) can predict the ARP3 group in both the synapse and the 

cortex. The dominant pair is that enrichment of myosin at the cell cortex 

drives accumulation of the core actin turnover machinery at the cellular 

interface. This suggests mechanical coupling between the cell body and 

the interface, an intriguing hypothesis that should and can be tested. 

 

3.2.3 Critical time points 

 

We can further explore these effects by identifying at which time the 

effect is maximally seen. This was done by finding, for positive and 

negative effects, respectively, the time point that had the largest or 

smallest (most negative) value in the cross-correlation function of the 

cause and effect proteins/regions. Using these, we can begin to link 

events into a network by examining whether the protein and regions that 

are the effect of an event at one time are the cause of an event at a later 

time. This is shown in Figure 6 for a larger number of relationships (a 

lower threshold on the adjacency matrix). 

 

Inspecting this figure yields a number of interesting confirmatory and 

speculative conclusions. There are two major stages. First, most of the 

relations to actin in the synapse are observed to be maximal at the earli-

est two time points, i.e. an increase in cofilin and the ARP3 group in the 

synapse predicts the increase of actin and CPα1 in the synapse. This is 

consistent with the rapid spreading of interface actin at these time points 

when the actin regulators would be expected to be most dynamic. Sec-

ond, in the later stage, there is a reverse causal relationship for actin and 

its regulators such that a decrease of actin in synapse predicts a decrease 

of cofilin and the ARP3 group there. This is again consistent with the 

disassembly of actin after synapse formation. Moreover, proteins in-

volved in immediate actin turnover, i.e. actin nucleation, capping and 

severing, are well interconnected yet mostly separated from three further 

upstream signaling regulators included in this analysis, LAT, Ezrin and 

myosin. This is to be expected. Surprisingly, the analysis identifies myo-

sin as the key causal connector between upstream signaling and actin 

turnover. While this observation needs to be confirmed by inclusion of a 

larger number of upstream signaling intermediates, a central role of 

 

 

 

 

 

 

Figure 5.  Example kinetics for putative cause and effect relationships identified by CENR. The four pairs with the largest absolute values in 

the adjacency matrix are show. In each panel, the x-axis shows time relative to synapse formation (seconds) and y-axis shows relative concentra-

tion. The cause protein and region are shown above each panel, followed by “Pos” or “Neg” to indicate the direction of the regulation and then the 

effect protein and region. The kinetics for the cause proteins are shown in solid black lines and the kinetics for the effect are shown in dotted red 

lines. Note the lag between changes in the cause and changes in the effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Critical time points identified by the CGP. The time on the left when a putative causal relationship is maximally observed between a pair 

of proteins. Arrows indicate events and are colored by the sign of the change in the cause and effect: black correspond to both cause and effect in-

creasing, red to both decreasing, green to cause increasing and effect decreasing, and blue to cause decreasing and effect increasing.   
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myosin in coupling signaling to actin turnover is intriguing and testable. 

 

3.2.4 Common pairs 

To see how robust the relationships are across different methods, we 

compared the networks from the two methods (Figure 7A). It is interest-

ing that most relationships are found by both methods, especially the 

ones that are closely related to actin, such as those with the ARP3 group 

and cofilin. This suggests that these relationships are dominant in the 

actin dynamics in synapse formation, which is consistent with what we 

already know about actin dynamics. And on the other hand, it suggests 

both methods are reliable at finding the major relationships.  

 

3.3 Performance of methods 

 

As further evaluation of the ability of the methods to find potential caus-

al relationships, we evaluated how well they found known relationships 

using Receiver-Operating Curve analysis. Based on database and litera-

ture searches, we identified potential relationships between these 12 

proteins; however, since these sources often do not specify the direction-

ality of relationships, we expressed them as an undirected graph (Figure 

7A). Since the strongest relationships occur in region 1, we considered 

whether those relationships could be found in region 1. The AUC values 

for recovery of the known relationships are shown in Table 1.  Interest-

ingly, both methods perform quite well; the AUC values of 0.708 and 

0.644 (Case 1) are both much better than random.  

 

3.4 Prediction for B7 data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Network comparison. A) (partial) ground truth, B) 

Combined network. In B), the edges are colored by which method 

identified a relationship: blue indicates the edge occurs in both two 

methods, green indicates the edge only was found by CENR. The 

numbers on the edges are the maximum absolute weight between the 

two methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. B7 prediction using CGP. For each figure, the x-axis 

show time after synapse formation, and the y-axis shows relative 

concentration of a protein. The actual kinetics are shown in black, 

and the predictions in red. 
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The studies (Roybal, et al., 2016) upon which this work is based also 

examined the effect of partial inhibition of T cell signaling upon sensor 

distributions. This inhibition was accomplished by blocking a secondary 

stimulation pathway and is referred to as B7 blockade. Maps of the same 

sensors were also generated under this condition. To explore how well 

the models learned from the full stimulus conditions would be predictive 

of other conditions, we used the node values from the B7 blockade maps 

for time points t − 2, and t − 1 to predict values for t. Comparison of the 

actual and predicted kinetics are shown Figure 8. We then computed the 

normalized mean squared errors between the predicted time series and 

the actual one, for each sensor, as a measure of error of the predictions. 

To test if the errors of these predictions were significantly less than 

expected at random, we performed permutation tests as described in the 

Methods. All predictions passed this test at the p=0.05 level, indicating 

that at least the relationships between sensors and regions are conserved 

between the full stimulus and the B7 blockade conditions. The results 

suggest that the method can predict the turnover of actin and its regula-

tors in the critical region even after perturbation.  

 

3.5 Comparison of performance of different methods 

 

Finally, we repeated the ROC curve analysis and the B7 prediction anal-

ysis for models constructed by both CGP and CENR either using all 

twelve proteins or using with various numbers of clusters found by the 

different clustering methods.  The results are shown in Table 1.  We 

conclude that the grouping method using city block metrics has the best 

performance among all conditions for both CGP and CENR in terms of 

AUC. While CGP generally has better performance for identifying pre-

viously known relationships, it does not performs as well as CENR in 

terms of accuracy of the model for full stimulation or prediction for B7 

data. This may be due to the fact that CGP has few parameters and thus 

the generalization ability is not as good as CENR.  

4 Discussion 

There has been extensive modeling of signaling processes in systems 

such as the T cell (for overview see (Chylek, et al., 2014)), including 

modeling that considers spatial organization (Angermann, et al., 2012). 

These have been based on known biochemical reactions and thus the 

need for causal inference is minimal. We have described here a novel 

approach to understanding the potential causative relationships between 

the spatiotemporal distributions of proteins involved in signaling or other 

regulatory networks. We have demonstrated that the approach yields a 

number of conclusions that are consistent with current knowledge of 

actin regulators, and also relationships that deserve further exploration.  

 

An important issue is how these methods would scale for larger sets of 

proteins or more extensive kinetics.  For optimizing the CGP, the worst-

case time complexity is O(M2N3+KMN) for M blocks in each iteration, 

where M is the lag time, K is the total number of time points, and N is 

the number of nodes (Mei and Moura, 2016). In our case, N=PR, where 

P and R are the numbers of proteins and regions. Therefore the time 

complexity is O(M2P3R3+KMPR). For CENR, the worst-case time com-

plexity is O(M2N3) if we can precompute some quantities in order to get 

rid of K for each iteration. Therefore for our problem, the complexity is 

O(M2P3R3) in each iteration. Though the time complexities are high, we 

were able to solve them in reasonable time since the numbers of proteins 

and regions were small.  On a single 2.4 GHz Intel node, inference took 

less than 10 s for  CGP and less than 1 s for CENR. The full process 

including cross-validation for parameter estimation and permutation tests 

for significance took 200 and 25 CPU hours, respectively. 

 

While the analysis can provide some promising perspective for image-

based causal inference for protein networks, we must point out that this 

analysis is still preliminary and has some limitations. First, the number 

of proteins is relatively small  (12 proteins), due to limited available data. 

Second, the proteins were not randomly chosen and they therefore may 

have more relationships than expected. Third, we attempted to remove 

confounding effects through clustering but this is a complex subject that 

will require further exploration. 

 

Despite these limitations, we believe that the consistency of the results 

with prior knowledge, and the fact that the model learned under one 

condition could make statistically significant predictions of concentra-

tions under another condition not used in the model learning, to be high-

ly encouraging. In the future, we plan to expand the number of proteins 

analyzed, which will give a clearer picture of the whole network and 

may identify both additional putative relationships and resolve potential-

ly confounding relationships. 
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 Ungrouped Case 1 Case 2 (7) Case 3 (25) 

 CGP CENR CGP CENR CGP CENR CGP CENR 

CV error 0.092 0.062 0.086 0.069 0.096 0.074 0.107 0.070 

B7 error 0.119 0.080 0.120 0.085 0.117 0.081 0.123 0.082 

AUC 0.629 0.565 0.709 0.644 0.589 0.580 0.614 0.589 

Table 1. Comparison of different methods for different groups of proteins. Results are shown for the two methods for four different groupings 

of the seven similar proteins: ungrouped; (CPα1,WASP,Coronin1A,WAVE2), actin, (ARP3,HS1); all grouped; and  

(CPα1,WASP,Coronin1A,WAVE2, actin), (ARP3,HS1). CV error shows the mean testing error in 5 fold cross validation for the best parameter 

combination. The B7 prediction error was calculated after averaging any grouped proteins. The AUC values are for recovery of previously docu-

mented relationships in region 1. 
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