
 Greatwood, C., Bose, L., Richardson, T., Mayol-Cuevas, W., Chen, J., Carey,
S. J., & Dudek, P. (2018). Tracking control of a UAV with a parallel visual
processor. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2017): Proceedings of a meeting held 24-28 September
2017, Vancouver, British Columbia, Canada (pp. 4248-4254). [8206286]
(Proceedings of the International Conference on Intelligent Robots and
Systems). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/IROS.2017.8206286

Peer reviewed version

License (if available):
Unspecified

Link to published version (if available):
10.1109/IROS.2017.8206286

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/8206286/ . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/IROS.2017.8206286
https://doi.org/10.1109/IROS.2017.8206286
https://research-information.bris.ac.uk/en/publications/tracking-control-of-a-uav-with-a-parallel-visual-processor(75474e25-228f-40c6-aa8b-32b12d8d8999).html
https://research-information.bris.ac.uk/en/publications/tracking-control-of-a-uav-with-a-parallel-visual-processor(75474e25-228f-40c6-aa8b-32b12d8d8999).html

Tracking control of a UAV with a parallel visual processor

Colin Greatwood1, Laurie Bose1, Thomas Richardson1, Walterio Mayol-Cuevas1

Jianing Chen2, Stephen J. Carey2 and Piotr Dudek2

Abstract— This paper presents a vision-based control strategy
for tracking a ground target using a novel vision sensor
featuring a processor for each pixel element. This enables
computer vision tasks to be carried out directly on the focal
plane in a highly efficient manner rather than using a separate
general purpose computer. The strategy enables a small, agile
quadrotor Unmanned Air Vehicle (UAV) to track the target
from close range using minimal computational effort and with
low power consumption. To evaluate the system we target a
vehicle driven by chaotic dual-pendulum trajectories. Target
proximity and the large, unpredictable accelerations of the
vehicle cause challenges for the UAV in keeping it within the
downward facing camera’s field of view (FoV). A state observer
is used to smooth out predictions of the target’s location
and, importantly, estimate velocity. Experimental results also
demonstrate that it is possible to continue to re-acquire and
follow the target during short periods of loss in target visibility.
The tracking algorithm exploits the parallel nature of the
visual sensor, enabling high rate image processing ahead of
any communication bottleneck with the UAV controller. With
the vision chip carrying out the most intense visual information
processing, it is computationally trivial to compute all of the
controls for tracking onboard. This work is directed toward
visual agile robots that are power efficient and that ferry only
useful data around the information and control pathways.

I. INTRODUCTION

The requirements of agile platforms indicate a need to be
efficient not only in actuation but increasingly in dealing with
visuo-control tasks. In this respect, efforts should be directed
to find architectures for sensing, processing and filtering just
the relevant information. Recent developments with dynamic
vision sensors (DVS), offer some insight into the possibilities
for developing more efficiently perceiving robotic systems.
Examples for UAVs include works such as [1] for evasive
maneuvers, [2] for agile visual odometry and [3] for landing
from optic flow. When using a DVS, however, both basic and
more visually complex tasks such as target tracking and/or
combinations with lower visual competences require separate
and more conventional processing architectures. Tasks such
as semi-dense mapping with a DVS can be achieved using
GPUs [4] but these can consume significant power, up to
hundreds of Watts. The contemporary work of [5] and [6]
use conventional cameras together with onboard processing
to detect a target and estimate agile trajectories for crossing
a window gap at speed.

*This work was supported by the Bristol Robotics Laboratory
1Faculty of Engineering, Aerospace and Computer Science, University of

Bristol, Bristol, England colin.greatwood@bristol.ac.uk
2School of Electrical and Electronic Engineering, The University of

Manchester, Manchester, England p.dudek@manchester.ac.uk

In this work, we explore a sophisticated parallel visual
architecture based on the SCAMP vision chip [7] that allows
for on-sensor agile target tracking, while maintaining high
frame rates (>1000 fps) and low energy consumption (<
1.3W). The vision sensor can perform image computations
directly at source, in parallel, outputting meaningful pro-
cessed information such as the x,y coordinates of a target,
without requiring any other processing hardware.

II. TRACKING FROM A UAV
UAVs have been used in the past to track ground vehicles

with both fixed wing as well as rotary aircraft. Broadly
speaking, this work can be split into two categories, one
that is concerned with following a target from a distance
of 10-100m and another from close range. Tracking ground
vehicles from a distance has applications such as surveillance
and has been considered by many, including [8], [9] and
[10]. At these distances the UAV control often falls into the
category of guidance.

Fig. 1: Quadrotor closely tracking target vehicle and “quadro-
tor’s eye view”.

Developments concerned with tracking targets from close
range typically focus on maintaining a close relative position
and velocity to the target. A popular challenge is to use
the visual target for landing such as in [11], [12] and [13]
where the authors managed to program the UAVs to land
on moving targets. These previous works, however, track
cooperative targets that are either fitted with beacons and or
GPS informed telemetry links to aid the UAV in acquiring
an accurate lock onto the landing zone. Additionally, the
target vehicles are often driven at a constant velocity and/or
a constant turn rate - making the control also cooperative. In
the work presented here we do not yet attempt to command
the UAV to land on the tracked vehicle, but rather focus
on the non-cooperative nature of the target. The target is
non-cooperative in the control; sensing is made possible

by a passive target on the surface of the tracked vehicle;
no active beacons or telemetry link is provided between
UAV and the vehicle. To illustrate both the usability of the
onboard parallel visual processor and to evaluate tracking
under agile conditions the vehicle features a visual pattern
that can be detected and re-detected at very high framerates
with the visual parallel processor. Figure 1 shows the setup
we use. The vision system could be programmed to perform
more generic template matching and track arbitrary patterns,
although this is left to future work.

There have been some very interesting presentations of
small UAVs tracking non-cooperative targets in a similar
manner. Teuliere et al. [14] have demonstrated a system for
commanding a quadrotor to track over a Radio Controlled
(RC) car, including the ability to handle visual occlusions
whilst the car drives underneath a chair. Gomez-Balderas et
al. [15] also demonstrate a method for visually tracking an
RC car from a UAV. The visual identification and tracking
in these methods, however, rely on a ground PC for com-
putation and so the update rate is limited and the controller
must be able to handle communication delays.

Prior work demonstrating visual-based tracking has shown
the potential of solely visual based tracking [16] (this algo-
rithm operates on a restricted number of pixels from a frame
at 10fps) and pose estimation [17] (designed to operate at
15fps). Related visual based UAV cueing has shown that
visual odometry has been achieved at 25fps on a two-camera
setup with a 1.5GHz Core 2 Duo processor [18].

The purpose of utilizing a parallel vision sensor is to
enable increased control loop speeds by virtue of latency
reduction and frame rate increase; the work described here
is a step in that direction.

III. FLIGHT HARDWARE

A ‘Tarot FY650 (TL65B01)’ quadrotor UAV, shown in
Figure 2, was used for tracking a ground rover. The quadrotor
was controlled by the flight hardware shown in Figure 3.
The vision chip controller streams program instructions to
the SCAMP vision chip which acquires and processes the
visual information internally - the end result being the image
coordinates that represent the bounding box of the target.
Only the resulting 4-byte data is read-out from the vision
chip and transferred to the ODROID single board Linux
computer, which maintains the target state estimation. On the
basis of this estimation, instructions are sent to the Pixhawk
flight controller to change vehicle x-y position. The height
of the quadrotor is controlled via a Vicon motion capture
system; the Vicon system additionally permits safe operation
of the quadrotor during development of control systems,
constraining flight to within a pre-determined space. The
SCAMP vision system is fitted directly to the underside
of the aircraft pointing downwards. Given the SCAMP-
sourced data, the onboard controller is tasked with moving
the quadrotor directly above the target. The addition of a
gimbal would add mass and physical complexity that is
not desired. Indeed, given the capability of the SCAMP it
is easily capable of visual tracking during high pitch rates

without stabilisation. The lack of gimbal does however, make
the controller’s task of tracking a target from close range
more challenging.

Fig. 2: Photograph of quadrotor used in experiments. Note:
The ODROID interfaces the visual processor with the flight
controller and does no further visual processing.

Fig. 3: Block diagram of flight control hardware. Note:
The ODROID interfaces the visual processor with the flight
controller and does no further visual processing.

As the rover moves away, the quadrotor is forced to tilt in
order to catch up. This tilt changes the direction in which the
camera is facing and in turn causes the location of the target
to move across the image plane. For example, if the rover
moves forwards then the target would travel up in the image;
then, as the quadrotor pitches forwards to catch up the target,
the target will move even further up in the image. If the target
moves quickly and the quadrotor reacts too quickly, then the
target could even leave the image frame. The combination
of the non-cooperative movement of the rover and the hard
mounting of the camera lead to a difficult control problem.

The rover being tracked was a traditional RC truck mea-
suring about 60cm in length, carrying a 20cm diameter visual
target on top. The target and visual tracking are described in
Section IV-B. In addition, while tracking markers for a Vicon
motion tracking system were attached to enable automated
control of height above the rover, this motion tracking system
was not used to help the visual target tracking. The rover
controller that was developed for this work made it possible
to command the rover to drive predefined paths automatically

for quantifying and testing the repeatability of the tracking.
A chaotic (double-pendulum) trajectory was also encoded to
demonstrate the tracking during unpredictable manoeuvres.

A. The SCAMP and interfacing hardware

Identifying and tracking the target visually is achieved
by using the SCAMP vision system; this enables fully
onboard information processing rather than via uplinking
to a remote workstation. The SCAMP-5 vision chip is a
general purpose vision sensor and processor capable of being
programmed for a diverse range of tasks [7], [19], [20]. The
chip comprises an array of 65,536 processor elements (PEs)
- each processor element incorporating a photosensor, local
memories and ALU. It is programmed as a single instruction
multiple data (SIMD) computer. The processors can carry
out basic computational tasks in a parallel manner enabling
sophisticated computer vision algorithms to be carried out
on chip. Due to the co-location of processors and sensors,
these algorithms may be run at extremely high rates, such as
100,000 fps [7].

An ODROID XU4 computer was fitted to the UAV as a
development tool. The ODROID is capable of running Robot
Operating System (ROS), which enables rapid prototyping of
control algorithms and ease of integration with the Pixhawk
autopilot. Due to the computer vision algorithms all being
executed by the SCAMP, the computational effort actually
utilized on the ODROID was trivially minimal. With further
work on integration it would be possible to run the control
algorithms presented here directly on the Pixhawk and re-
move the ODROID entirely.

The SCAMP system locates the target in the image frame
as described later in Section IV-B and then returns the loca-
tion, height and width of the target over a Serial Periphery
Interface (SPI) link. This Region Of Interest (ROI) data
describing the target in the image plane is received by the
onboard ODROID computer, which was used to prototype
the algorithms described here. Control inputs are computed
on the ODROID and sent to the Pixhawk autopilot over a
serial link. Data from the autopilot, such as from the Inertial
Measurement Unit (IMU) is also retrieved over this serial
link.

IV. METHOD

A. Control Architecture

Figure 4 gives an overview of the control structure used
by the quadrotor to maintain station over the moving target.
First, the ROI data provided by the SCAMP is combined with
IMU data from the Pixhawk to compute a relative position
between the quadrotor and the rover - as described in Sec-
tion IV-C. Then the state observer described in Section IV-
D is used to estimate the relative position and velocity of
the rover before control inputs may be generated using the
controller presented in Section IV-E. Finally, these control
inputs are sent from the ODROID to the Pixhawk.

PID Controller Pixhawk Quadrotor

SCAMP

u(k)

State Observer
Coordinate

Frame Transform

uψ(k), uz(k)

IMU Data

Target ROI

x̂(k)

1

Fig. 4: Control Architecture. Nodes on ODROID shaded blue

(a) (b) (c)

Fig. 5: Flood fill and inversion of a binary image. (a) shows
an original image; (b) shows the result after performing a
flooding operation from the image boundaries; (c) shows the
inversion of (b), making it ready for further flooding.

B. Vision Algorithm

The parallel nature of the SCAMP vision sensor allows
various basic image processing tasks to be conducted with
minimal computational overhead1. Efficient asynchronous
flood fill of a binary black and white image is one such task,
and it is this capability which is exploited in the target track-
ing algorithm implemented for this work. Figure 5 illustrates
the result of flooding such an image from its boundaries and
then inverting the resulting image. It can be seen that this
results in the removal of both any solid black shapes and
black outer boundaries within the image. Effectively this
process eliminates any shapes within the image which are
not fully enclosed by the boundary of some larger shape.
This process can be repeated iteratively to eliminate any
image content which is not fully enclosed within a given
number of boundaries. Thus by using a visual target such as
shown in Figure 1, consisting of a given number of enclosed
shapes, this process of iteratively flooding and inverting can
be employed to eliminate all image content but the inner
content of the given target itself. This is further illustrated
in Figure 6. Once all image content but the target has been
eliminated by this process the bounding box of the target,
consisting of four bytes, is output from the image plane and
communicated to the ODROID using SPI.

Pseudo code for this process is listed in Algorithm 1, in
which the latest camera image I is thresholded to a binary
image B after which N flood fill and inversion iterations are
performed to ensure all image content is removed but the
visual target. The target used in this work as shown in Figure
1 required four such flood and invert iterations. Finally the
bounding box (described by the left, top, right and bottom

1A simulator for the SCAMP architecture is available at
http://personalpages.manchester.ac.uk/staff/p.dudek/scamp-sim/

Fig. 6: Tracking Algorithm Stages, showing the result of performing 4 “flood and invert” operations starting from an initial
image on the left.

pixel boundaries) of any remaining content is extracted from
B and returned over SPI to the ODROID.

Each of these steps can be implemented in a simple and
efficient manner on the parallel architecture of the SCAMP
hardware. It should be noted that it is possible that the
visual target is not the only shape within the camera image
contained within N distinct boundaries, which would cause
the algorithm to return an invalid bounding box location
for the visual target. In most scenarios however this is an
unlikely prospect, further the number of boundaries in the
visual target used can be increased to increase robustness.

The proposed algorithm requires no prior estimation of the
target’s location within the image, and will instantly acquire
the target given it is fully within the camera image.

This algorithm can be computed efficiently on the parallel
visual processor while using <1.3 Watts and at rates of
>1000 FPS under 4000 Lumens (a slightly brighter overcast
day at mid-day). In the lower light levels found indoors
good performance was found at frame rates of 286 FPS,
although this could be increased if desired though gain or
using different lenses. The latency was measured, finding that
after the end of light integration image processing time to
isolate the centre of the target takes 82µs, followed by 6.4µs
to extract the target position and place the data packet in the
vision system SPI buffer. The ODROID (as SPI master) then
requires an average of 333µs to transfer the data.

Algorithm 1 Get Target(I, T,N)
Extract Visual Target Location From Camera Image

INPUT: I // Camera Image
T // Threshold Value
N // Flood and Invert Iterations

OUTPUT: (plx, p
t
y, p

r
x, p

b
y) // Bounding Box Of Visual

Target

B = Threshold Image(I, T)
for n = 0 to N do

Flood From Boundaries(B)
Invert Image(B)

end for
(plx, p

t
y, p

r
x, p

b
y) = Scan Bounding Box(B)

return (plx, p
t
y, p

r
x, p

b
y)

C. Coordinate Frames

The quadrotor must be able to estimate the location of the
rover in order to track it. The location is estimated relative to
the UAV, i.e. in the UAV’s body frame. It is assumed that the
location of the quadrotor is not known and no input is taken
from GPS or motion tracking - the camera’s output alone is
used for measuring horizontal displacements. The height and
yaw of the quadrotor weren’t considered in this work and so
were stabilised independently in a separate controller to the
tracking.

Figure 7 shows the pertinent angles of the tracking prob-
lem. It would not be sufficient to form a controller around
the pixel error in the image plane alone as a non-minimum
phase problem would result. Any pitching during the initial
forward acceleration, for example, would increase the error
in the forward direction. Instead one must use the measured
angle of the quadrotor in resolving the distance error.

θ

Target

Quad

Targθ

h

dx

Fig. 7: 2D depiction of quadrotor bank angle and angle to
target

The onboard Pixhawk autopilot estimates the quadrotor’s
roll and pitch angle as part of its stabilisation loop. This
angle data is easily accessible via the mavros ROS node.
The angles to the target are considered for both the aircraft’s
x and y axes, but for simplicity just one of those dimensions
is described here. If the centre of the target bounding box is
reported to be px pixels out of the full 255 pixels from the
left of the image then the angle to the target (θtarg) may be
calculated by

θtarg =
(
2× px

255
− 1
)
× FoV

2
(1)

given a horizontal field of view FoV . If the quadrotor banks
by θquad then the horizontal distance to the target (δx) can

be calculated by

δx = h tan(θquad − θtarg) (2)

D. Target State Estimation

As confirmed in previous work [11] about landing on a
moving platform, maintaining position over the target being
tracked benefits significantly from measuring the velocity of
the target. As the target’s velocity cannot be directly observed
in the problem described here it must be estimated. A state
observer is used to generate velocity estimates, which also
has the benefit of providing a filtered position estimate.

The state observer assumes a constant velocity model
of the target’s dynamics relative to the quadrotor, where
the state vector describes the distance and velocity in the
horizontal plane at time step k, i.e.

x(k) =


δx
δy
˙δx

δ̇y

 (3)

The dynamics of the tracking can therefore be described by

x(k + 1) = Ax(k) +Bu(k) (4)
y(k) = Cx(k) (5)

A =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 (6)

B = [0] (7)

C =

[
1 0 0 0
0 1 0 0

]
(8)

The rover’s control input is unknown and ignored, simply
the observations y(k) of position from the camera are used.
The state observer is then constructed from

x̂(k + 1) = Ax̂(k) + L(y(k)− ŷ(k)) (9)
ŷ(k) = Cx̂(k) (10)

where the observer gain L is tuned using MATLAB’s dqle
command and x̂(k) represents the estimated state at time step
k.

E. Feedback Control

The quadrotor is driven to maintain position above the
target using a standard PID controller. The controller takes
advantage of the existing attitude control mode built into the
Pixhawk autopilot software, which enables attitude setpoints
to be commanded whilst internally stabilising the vehicle
from IMU data.

In tuning the controller it was important to find a balance
of having a controller that is aggressive enough to keep
up with the target, but not so aggressive that the target
repeatedly leaves the FoV due to sharp control corrections.
The preferred solution found was a fairly aggressive con-
troller with attitude setpoint input saturations of just under

fifteen degrees. If the units of error are measured in metres
and the output in degrees then the continuous time PID
control gains were [P, I,D] = [18, 4.5, 13.5]. Whilst it
would be possible to design a more sophisticated tracking
controller, the immediate motivation here is to demonstrate
the effectiveness of integrating a parallel visual processor.

F. Rover Control

The rover was driven using a typical RC remote control
connected to a desktop computer. An Arduino connected to
the trainer port on the remote control enabled a ROS node to
command rover’s motor speed, motor direction and steering
angle. Waypoint following was achieved by implementing
the nonlinear guidance control law presented by Park et
al. [21].

V. RESULTS
A. Straight Line Performance

Experiments were carried out to test how well the quadro-
tor would track the target from a standing start. The quadro-
tor was commanded to track the rover from stationary up to
a constant forward velocity. Upon the quadrotor settling to
a steady hover above the target, the rover was given a step
input to motor speed and accelerated to a constant speed.
Figure 8 shows the resulting time history of the tracking
during the experiment.

0 2 4 6 8 10 12
0

2

4

6

P
os

iti
on

 (
m

)

Rover
Quadrotor
Estimated error

0 2 4 6 8 10 12
0

0.5

1

V
el

oc
ity

(m
/s

)

0 2 4 6 8 10 12

Time (s)

-10

0

10

P
itc

h
(d

eg
re

es
)

Fig. 8: Straight line tracking performance, step input applied
to rover’s motor speed

The first subplot compares the rover’s position along the
path against the quadrotor’s; additionally the onboard esti-
mated position error between the two is plotted in blue. The
second subplot shows the velocity time history along with
the onboard estimated velocity difference. There is a short
delay between the rover moving forward and the quadrotor
moving forward whilst the errors build up, but also due to the
way in which the quadrotor is able to accelerate forward. The
third subplot shows the pitch angle of the quadrotor, which
must increase first before it can start accelerating.

The quadrotor’s control input was limited to reduce the
likelihood of the target leaving the camera’s FoV during
sharp accelerations; this control saturation in turn limits the

maximum lateral acceleration. Figure 9 shows a similar time
history of the quadrotor tracking the rover, but at a higher
rover motor speed setting during which both the quadrotor’s
control saturates and the target leaves the FoV. Figure 10
shows snapshots from a computer visualization using ROS’s
rviz, which illustrates the FoV during the experiment. Once
the quadrotor catches up with the rover by frame 3, the target
re-enters the FoV the quadrotor snaps to the reverse pitch
angle (frame 4) and starts decelerating. Shortly, the target
leaves the camera’s FoV again. Ultimately, the quadrotor
settles above the target (frame 5); a wider field of view lens
and further adjustment of the maximum pitch angles could
result in uninterrupted tracking of the target.

0 2 4 6 8 10
0

2

4

6

8

P
o
s
it
io

n
 (

m
)

Rover

Quadrotor

Estimated error

Screenshot times

0 2 4 6 8 10
0

2

4

V
e
lo

c
it
y

(m
/s

)

0 2 4 6 8 10

Time (s)

-20

0

20

P
it
c
h

(d
e
g
re

e
s
)

Fig. 9: Straight line tracking performance, step input applied
to rover’s motor speed

Fig. 10: Visualization of tracking state in Figure 9. Starting
at t=0, corresponding frame timings denoted by vertical lines
in Fig. 9

B. Tracking Performance
For the tracking demonstration, the quadrotor was com-

manded to follow the non-cooperative rover, which was
in turn automatically following a set of waypoints. Two
different waypoint paths were evaluated and the quadrotor
was programmed to maintain an altitude of just one metre
above the target. The first path was constructed of six
repeating waypoints that caused the rover to track an oval
like shape. The second path was constructed from sampling
a simulation of a double pendulum, resulting in a chaotic
path. Whilst tracking the double pendulum path, the rover
was commanded to change direction if the next waypoint
(sampled point) of the path required a turn of more than
90◦. The changing of direction meant that the quadrotor had
an even harder time tracking due to the starting and stopping
of the rover.

Figure 11 shows the paths followed by both the rover and
the quadrotor on the oval path. The rover was commanded
to pass through six waypoints that caused it to drive under
a tunnel that was constructed to occlude the rover from the
quadrotor’s viewpoint for around half a second. Occlusion
from the motion tracking system during the experiment also
shows up on the figure as glitches in the reported path taken
by the rover. The path taken by the quadrotor does diverge
from the rover’s during the occlusion due to no further
information being available, but at the end of the tunnel
tracking resumes and the quadrotor snaps back over the
target. This data shows excellent consistency in the tracking
around the path for the five laps along with the ability to
quickly re-aquire the target after brief moments of occlusion.

Fig. 11: Tracking performance following rover around an
oval pattern. Rover is occluded when it drives through tunnel.

The second trajectory used was evaluated in order to
fully demonstrate the non-cooperative tracking concept. By
simulating a chaotic system, the path taken by the rover could
not be predicted and so the quadrotor’s ability to track is
clearly just from observations of the target. Figure 12 shows
the path taken by both the rover and the quadrotor. Due to the
dynamics of the rover it would be impossible for it to follow
the double pendulum path exactly, but the chaotic effect is
represented well. The tracking control only sees the target

as a point target and does not take into consideration that
it could not drive sideways for example. The track shown
represents a two minute experiment. The key feature here is
that during some of the forward and reversal transitions that
take place at around [0,−1] the quadrotor is able to keep up
with the rover despite the FoV limitations.

-3 -2 -1 0 1 2 3

x-axis (m)

-2

-1

0

1

2

3

y
-a

x
is

 (
m

)

Rover trajectory

Quadrotor trajectory

Fig. 12: Tracking performance following rover around a
chaotic pattern constructed from simulating a double pen-
dulum

VI. CONCLUSIONS
This work has demonstrated a novel visual parallel proces-

sor device applied to agile control of a UAV. Vision sensors
are promising for moving agents due to their low energy
consumption and ability to compute and forward high level
information. This reduces the clogging of the control and
information pathways in the rest of the system. We develop
a method for tight target tracking on a visuo-control task.
The SCAMP vision sensor system gives fast, low latency
tracking without further onboard computer vision processing.
Our trials suggest that visual targets can be tracked at over
1000 FPS.

The flight hardware framework has been shown to be
capable of controlling the UAV’s flight through tracking the
land target. The UAV - with strapped-down image processing
system, allows for a migration path to smaller, more agile
air systems. The gimbal-less system showcases platform
agility but presents challenges for the control requiring
fast reactions to maintain the target in view. The parallel
visual processor can be reprogrammed to perform many
sophisticated algorithms and we are exploring further visual
competencies. Considerable excess processing power exists
within the existing framework allowing an expansion in
capability in the future.

REFERENCES

[1] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza, “Towards
evasive maneuvers with quadrotors using dynamic vision sensors,”
European Conference on Mobile Robots (ECMR), 2015.

[2] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-
latency visual odometry using event-based feature tracks,” IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2016.

[3] B. J. Pijnacker Hordijk, K. Y. W. Scheper, and G. C. H. E. de Croon,
“Vertical Landing for Micro Air Vehicles using Event-Based Optical
Flow,” ArXiv e-prints, 2017.

[4] H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3d reconstruc-
tion and 6-dof tracking with an event camera,” in European Conference
on Computer Vision. Springer International Publishing, 2016, pp.
349–364.

[5] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing using active vision,” in IEEE International Conference on
Robotics and Automation, 2017.

[6] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, 2017.

[7] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A 100,000
fps vision sensor with embedded 535gops/w 256× 256 simd processor
array,” in VLSI Circuits (VLSIC), 2013 Symposium on. IEEE, 2013,
pp. C182–C183.

[8] M. Zhang and H. H. Liu, “Vision-based tracking and estimation of
ground moving target using unmanned aerial vehicle,” in American
Control Conference (ACC), 2010. IEEE, 2010, pp. 6968–6973.

[9] P. Theodorakopoulos and S. Lacroix, “A strategy for tracking a ground
target with a uav,” in Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. IEEE, 2008, pp. 1254–1259.

[10] K. B. Ariyur and K. O. Fregene, “Autonomous tracking of a ground
vehicle by a uav,” in 2008 American Control Conference, June 2008,
pp. 669–671.

[11] T. S. Richardson, C. G. Jones, A. Likhoded, E. Sparks, A. Jordan,
I. Cowling, and S. Willcox, “Automated vision-based recovery of a
rotary wing unmanned aerial vehicle onto a moving platform,” Journal
of Field Robotics, vol. 30, no. 5, pp. 667–684, 2013.

[12] K. E. Wenzel, A. Masselli, and A. Zell, “Automatic take off, tracking
and landing of a miniature uav on a moving carrier vehicle,” Journal
of Intelligent & Robotic Systems, vol. 61, no. 1, pp. 221–238, 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10846-010-9473-0

[13] C. Hui, C. Yousheng, L. Xiaokun, and W. W. Shing, “Autonomous
takeoff, tracking and landing of a uav on a moving ugv using onboard
monocular vision,” in Control Conference (CCC), 2013 32nd Chinese.
IEEE, 2013, pp. 5895–5901.

[14] C. Teuliere, L. Eck, and E. Marchand, “Chasing a moving target from a
flying uav,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. IEEE, 2011, pp. 4929–4934.

[15] J. E. Gomez-Balderas, G. Flores, L. R. Garcı́a Carrillo, and
R. Lozano, “Tracking a ground moving target with a quadrotor
using switching control,” Journal of Intelligent & Robotic Systems,
vol. 70, no. 1, pp. 65–78, 2013. [Online]. Available: http:
//dx.doi.org/10.1007/s10846-012-9747-9

[16] G. R. Rodrı́guez-Canosa, S. Thomas, J. del Cerro, A. Barrientos, and
B. MacDonald, “A real-time method to detect and track moving objects
(datmo) from unmanned aerial vehicles (uavs) using a single camera,”
Remote Sensing, vol. 4, no. 4, pp. 1090–1111, 2012.

[17] I. F. Mondragón, M. A. Olivares-Méndez, P. Campoy, C. Martı́nez,
and L. Mejias, “Unmanned aerial vehicles uavs attitude, height,
motion estimation and control using visual systems,” Autonomous
Robots, vol. 29, no. 1, pp. 17–34, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10514-010-9183-2

[18] R. Strydom, S. Thurrowgood, and M. Srinivasan, “Visual odometry:
autonomous uav navigation using optic flow and stereo,” in Proceed-
ings of Australasian Conference on Robotics and Automation, 2014.

[19] J. N. Martel, L. K. Müller, S. J. Carey, and P. Dudek, “Parallel hdr tone
mapping and auto-focus on a cellular processor array vision chip,” in
Circuits and Systems (ISCAS), 2016 IEEE International Symposium
on. IEEE, 2016, pp. 1430–1433.

[20] J. N. Martel, L. K. Mueller, S. J. Carey, and P. Dudek, “A real-time
high dynamic range vision system with tone mapping for automotive
applications,” CNNA 2016, 2016.

[21] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic
for trajectory tracking,” in AIAA guidance, navigation, and control
conference and exhibit, 2004, p. 4900.

