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Aggregate cache bandwidth

• Shows aggregate bandwidth from a dual-socket node in all cache 
levels

• KNL single socket only
• Assuming a future dual-socket ThunderX2 

• Multiply core count by single core bandwidth measurement to get 
aggregate

• Single core bandwidth measured but ran on all cores
• Higher core count results in larger aggregate 

bandwidth, e.g. KNL
• Little difference in bandwidth between L1 and L2 on Power 8
• KNL and Broadwell show similar L1 aggregate bandwidth despite 

disparity in clock speed
• Skylake has same vector width as KNL but faster 

clock
• Far RHS would be main memory bandwidth

• As non-temporal stores disabled results would 
misrepresent expected figures

• Bar chart above gives the true main memory 
bandwidth

Tom Deakin, James Price and Simon McIntosh-Smith
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Portable methods for measuring cache hierarchy performance

BabelStream

• Portable version of the STREAM benchmark
• Designed to work across different multi- and many-core 

devices
• Code and results are open source:

http://uob-hpc.github.io/BabelStream/

Micro-architecture effect on cache bandwidth

• Load/store units
• The number and width of load/store units effects the theoretical cache bandwidth
• Xeon: 2 loads + 1 store per core
• Power 8: 2 loads + 2 load/stores per core, but only half per thread in SMT modes
• More load/store units implies higher potential cache bandwidth

• Clock speed
• With faster clock speeds, load/store units and caches run faster
• Therefore higher clocks imply more cache bandwidth

• Cache capacity
• Larger arrays stay in cache longer with bigger caches
• Higher bandwidth measured for a fixed size
• For example, when the three arrays are each of size 211, they are still in L1 on Power 8, but fall 

out to L2 on the other devices

Methodology and challenges

• There are lots of cache bandwidth benchmarks, but mostly written in 
platform-specific assembly code – these are no good for cross-
platform comparisons

• Want bandwidth from all cores, but OpenMP parallel overheads are 
too large during fine measurements

• No way to explicitly pin data in a specific level of cache
• Validation of measurement – base on theoretical limits

• We run the STREAM Triad kernel in a tight loop to ensure cache 
residency:

start_timer();
for (int t = 0; t < ntimes; t++)

for (int i = 0; i < n; i++)
a[i] = b[i] + scalar * c[i];

end_timer();

• We adapt BabelStream to this end:
• Base on original C++ and OpenMP version
• Use 2MB aligned arrays
• Remove OpenMP, as overheads too large
• Instead run simultaneously on each physical core (via mpirun) –

needed to prevent Turbo clock speeds
• Do not use hardware threads
• Avoid streaming-stores so that writes to cache remain resident 

at the correct level
• Collect result from one core (from all running)

• Run on a variety of problem sizes to capture performance of each 
cache level

Allows for an identical code base for cross-platform, cross-
architecture, reproducible, cache bandwidth benchmarking

Effect of vector widths

• Use compiler auto-vectorisation to target different 
instruction sets

• AVX-512: 512 bit (8 doubles)
• AVX2: 256 bit (4 doubles), plus FMA
• AVX: 256 bit (4 doubles), no FMA
• SSE4.2: 128 bit (2 doubles)
• No vectorisation

• One AVX-512 load instruction loads an entire 
cache line

• Measured L1 bandwidth highly dependent on 
vector width

• Less difference in L2, as long as we’re vectorising

• The FMA instruction in AVX2 helps improve 
bandwidth to L1 as only one floating point 
instruction between each load instruction instead 
of two

Hardware
• Intel Xeon Skylake (dual-socket)

• 20-core Gold 6148 @ 2.4 GHz
• 512 bit vectors

• IBM Power 8 (dual-socket)
• 10 core @ 3.7 GHz
• 128 bit vectors

• Intel Xeon Broadwell (dual-socket)
• 18 core E5-2695 v4 @ 2.1 GHz
• 256 bit vectors

• Intel Xeon Phi Knights Landing (single socket)
• 64 core 7210 @ 1.3 GHz
• 512 bit vectors
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Single core cache bandwidth as measured from a single core - Skylake

novec: 64 bit
sse4.2

avx
avx2

avx512

Processor L1 L2 L3	(shared) L4 DDR

Skylake 32	KiB 1024	KiB 27.5	MiB - 96	GiB

Power	8 64 KiB 512	KiB 16	MiB 128	MiB 256	GiB

Broadwell 32	KiB 256	KiB 45	MiB - 64	GiB

Knights Landing 32	KiB 1024	KiB
(shared	per	tile)

16	GiB
(MCDRAM)

- 96	GiB


