
 Deakin, T., Price, J., & McIntosh-Smith, S. (2017). Portable methods for
measuring cache hierarchy performance. Poster session presented at SC17,
Denver, United States.

Peer reviewed version

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/portable-methods-for-measuring-cache-hierarchy-performance(28c056a8-837c-45e5-acff-4eb6358b3c59).html
https://research-information.bris.ac.uk/en/publications/portable-methods-for-measuring-cache-hierarchy-performance(28c056a8-837c-45e5-acff-4eb6358b3c59).html

Aggregate cache bandwidth

• Shows aggregate bandwidth from a dual-socket node in all cache
levels

• KNL single socket only
• Assuming a future dual-socket ThunderX2

• Multiply core count by single core bandwidth measurement to get
aggregate

• Single core bandwidth measured but ran on all cores
• Higher core count results in larger aggregate

bandwidth, e.g. KNL
• Little difference in bandwidth between L1 and L2 on Power 8
• KNL and Broadwell show similar L1 aggregate bandwidth despite

disparity in clock speed
• Skylake has same vector width as KNL but faster

clock
• Far RHS would be main memory bandwidth

• As non-temporal stores disabled results would
misrepresent expected figures

• Bar chart above gives the true main memory
bandwidth

Tom Deakin, James Price and Simon McIntosh-Smith
tom.deakin@bristol.ac.ukDepartment of Computer Science

Portable methods for measuring cache hierarchy performance

BabelStream

• Portable version of the STREAM benchmark
• Designed to work across different multi- and many-core

devices
• Code and results are open source:

http://uob-hpc.github.io/BabelStream/

Micro-architecture effect on cache bandwidth

• Load/store units
• The number and width of load/store units effects the theoretical cache bandwidth
• Xeon: 2 loads + 1 store per core
• Power 8: 2 loads + 2 load/stores per core, but only half per thread in SMT modes
• More load/store units implies higher potential cache bandwidth

• Clock speed
• With faster clock speeds, load/store units and caches run faster
• Therefore higher clocks imply more cache bandwidth

• Cache capacity
• Larger arrays stay in cache longer with bigger caches
• Higher bandwidth measured for a fixed size
• For example, when the three arrays are each of size 211, they are still in L1 on Power 8, but fall

out to L2 on the other devices

Methodology and challenges

• There are lots of cache bandwidth benchmarks, but mostly written in
platform-specific assembly code – these are no good for cross-
platform comparisons

• Want bandwidth from all cores, but OpenMP parallel overheads are
too large during fine measurements

• No way to explicitly pin data in a specific level of cache
• Validation of measurement – base on theoretical limits

• We run the STREAM Triad kernel in a tight loop to ensure cache
residency:

start_timer();
for (int t = 0; t < ntimes; t++)

for (int i = 0; i < n; i++)
a[i] = b[i] + scalar * c[i];

end_timer();

• We adapt BabelStream to this end:
• Base on original C++ and OpenMP version
• Use 2MB aligned arrays
• Remove OpenMP, as overheads too large
• Instead run simultaneously on each physical core (via mpirun) –

needed to prevent Turbo clock speeds
• Do not use hardware threads
• Avoid streaming-stores so that writes to cache remain resident

at the correct level
• Collect result from one core (from all running)

• Run on a variety of problem sizes to capture performance of each
cache level

Allows for an identical code base for cross-platform, cross-
architecture, reproducible, cache bandwidth benchmarking

Effect of vector widths

• Use compiler auto-vectorisation to target different
instruction sets

• AVX-512: 512 bit (8 doubles)
• AVX2: 256 bit (4 doubles), plus FMA
• AVX: 256 bit (4 doubles), no FMA
• SSE4.2: 128 bit (2 doubles)
• No vectorisation

• One AVX-512 load instruction loads an entire
cache line

• Measured L1 bandwidth highly dependent on
vector width

• Less difference in L2, as long as we’re vectorising

• The FMA instruction in AVX2 helps improve
bandwidth to L1 as only one floating point
instruction between each load instruction instead
of two

Hardware
• Intel Xeon Skylake (dual-socket)

• 20-core Gold 6148 @ 2.4 GHz
• 512 bit vectors

• IBM Power 8 (dual-socket)
• 10 core @ 3.7 GHz
• 128 bit vectors

• Intel Xeon Broadwell (dual-socket)
• 18 core E5-2695 v4 @ 2.1 GHz
• 256 bit vectors

• Intel Xeon Phi Knights Landing (single socket)
• 64 core 7210 @ 1.3 GHz
• 512 bit vectors

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

Ba
nd
w
id
th
(T
B/
s)

Array Size (2x doubles)

Aggregate bandwidth for a single node

Broadwell
Skylake

KNL
Power 8

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18

Ba
nd
w
id
th
(G
B/
s)

Array Size (2x doubles)

Bandwidth as measured from a single core (all cores used simultaneously)

Broadwell
Skylake

KNL
Power 8

0

100

200

300

400

500

600

Broadwell Skylake KNL Power 8

Ba
nd
w
id
th
(G
B/
s)

Peak memory bandwidth

Triad
Peak

128

191

448

299

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Ba
nd
w
id
th
(G
B/
s)

Array Size (2x doubles)

Single core cache bandwidth as measured from a single core - Skylake

novec: 64 bit
sse4.2

avx
avx2

avx512

Processor L1 L2 L3	(shared) L4 DDR

Skylake 32	KiB 1024	KiB 27.5	MiB - 96	GiB

Power	8 64 KiB 512	KiB 16	MiB 128	MiB 256	GiB

Broadwell 32	KiB 256	KiB 45	MiB - 64	GiB

Knights Landing 32	KiB 1024	KiB
(shared	per	tile)

16	GiB
(MCDRAM)

- 96	GiB

