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ABSTRACT

Background and aims Studying the consequences of addictive behaviours is challenging, with understanding causal
relationships from observational data being particularly difficult. For example, people who smoke or drink excessively
are often systematically different from those who do not, are less likely to participate in research and may misreport their
behaviours when they do. Furthermore, the direction of causation between an addictive behaviour and outcome may be
unclear. Mendelian randomization (MR) offers potential solutions to these problems.Methods We describe MR’s princi-
ples and the criteria under which it is valid. We identify challenges and potential solutions in its application (illustrated
using two applied examples) and describe methodological extensions in its application. Results MR is subject to certain
assumptions, and requires the availability of appropriate genetic data, large sample sizes and careful design and conduct.
However, it has already been applied successfully to the addiction literature. The relationship between alcohol consump-
tion (proxied by a variant in the ADH1B gene) and cardiovascular risk has been investigated, finding that alcohol con-
sumption increases risk, with no evidence of a cardioprotective effect at moderate consumption levels. In addition,
heaviness of smoking (proxied by a variant in the CHRNA5-A3-B4 gene cluster) and risk of depression and schizophrenia
have been investigated, with no evidence of a causal effect of smoking on depression but some evidence of a causal effect on
schizophrenia. Conclusions Mendelian randomization analyses are already producing robust evidence for addiction-
related practice and policy. As genetic variants associated with addictive behaviours are identified, the potential for
Mendelian randomization analyses will grow. Methodological developments are also increasing its applicability.
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INTRODUCTION

Determining whether associations are causal is central
to much addiction research but is challenging, with
many observational associations unlikely to reflect
causal relationships [1]. Randomized controlled trials
(RCTs), which support stronger causal inference, are
not suited to all research questions—particularly as their
external validity may be limited [2–4]. Randomizing
long-term behaviours or environmental exposures in
humans is unethical and impractical. Many causal ques-
tions, such as the long-term consequences of consuming
potentially harmful, addictive substances, cannot be an-
swered with RCTs.

Mendelian randomization (MR) provides a tool for
assessing the causal effects of behaviours on outcomes, al-
though only when genetic variants associated with behav-
iours are known [5–8]. While previous reviews of MR exist
[9], here we provide an up-to-date general introduction
targeted specifically at addiction researchers. We note that
other approaches to causal inference using observational
data exist (including natural experiment approaches and
statistical techniques such as propensity score-matching,
time–series analysis and structural equation modelling)
[10,11]. We start by revisiting challenges to causal infer-
ence in traditional observational studies, explain how MR
studies potentially overcome them and outline challenges
and possible solutions when applying MR. Throughout,
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we illustrate MR’s principles with two case studies: tobacco
smoking as a possible cause of mental health problems
(Box 2) and alcohol consumption as a possible cause of
cardiovascular disease (Box 3). We conclude with some
emerging methodological developments.

CHALLENGES TO CAUSAL INFERENCE

Traditional observational studies face three major
threats to establishing whether or not an association is
causal [12].

First, characteristics of people with addictive behav-
iours (e.g. those who smoke or drink excessively) may differ
systematically from other people. In naive comparisons of
exposed and unexposed groups, these confounding factors
are often responsible for observed differences in outcomes.
Theoretically, if all confounding factors were measured
and accounted for perfectly, an observational study could
establish the effect of a behaviour accurately (provided
other biases did not exist) [13]. However, in practice it is dif-
ficult or impossible to identify all potential confounders.
Furthermore, adequate control of confounding during sta-
tistical analysis requires accurate measurement of con-
founders, with even modest measurement error resulting
in bias [14].

Secondly, it can be difficult to establish the direc-
tion of causation (i.e. whether reverse causation ex-
ists). While longitudinal studies may help (and are
therefore more useful in causal inference), this is not
always the case; the timing of the outcome in relation
to behaviour may be uncertain. For example, when

examining alcohol consumption and heart disease
(Box 2) it is possible that behaviour change occurred
before the early stages of disease were detected and
diagnosed.

Thirdly, collider bias may occur, whereby stratifica-
tion on a common effect can result in a spurious corre-
lation between otherwise independent variables [12].
Figure 1a illustrates this principle (Fig. 1b–1d illustrates
collider bias in the context of MR, and is discussed later).
This threat to causal inference is perhaps less intuitive
than either of the above, but can impact upon the
strength and direction of associations observed
[12,15,16]. For example, moderate alcohol drinkers are
more likely to participate in research [17–19]. If those
without cardiovascular disease (CVD) are also more
likely to participate, estimates of association between al-
cohol consumption and CVD in observed populations
will be biased. Figure 2 demonstrates this with simple,
hypothetical data. Limiting the analysis to those who
participate constitutes conditioning on a common effect
and may induce bias [20]: if an individual in the study
sample is a heavy drinker, then they will be less likely
to have CVD. Conditioning on other variables (e.g. as a
result of stratification or statistical adjustment) can, sim-
ilarly, result in bias.

PRINCIPLES OF MENDELIAN
RANDOMIZATION

InMR, genetic variants are used as proxies for the exposure
of interest, which helps to avoid some of the problems

Figure 1 Directed acyclic graphs illustrating collider bias. (a) Collider bias within a traditional observational study arising from sample selection. The
box around study participation indicates stratification on this variable. As study participation is influenced by both alcohol consumption and cardiovas-
cular disease (CVD), stratification induces an association between these variables, indicated by the dashed line. (b) Mendelian randomization study
which is still subject to collider bias. (c) Abstention is influenced by the genetic variant and the health outcome, inducing collider bias when stratifying
by abstention. (d) The genetic variant is not associated with whether someone ever becomes a smoker, so there is no collider bias when stratifying on
smoking status
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described above. MR is an example of instrumental variable
(IV) analysis that has long been used by economists to
study causal effects [21]. Randomization in an experimen-
tal study might be considered the purest form of instru-
mental variable [22]. An instrumental variable is a proxy
for the exposure of interest. While the correlation between
instrument and proxy does not need to be strong, a poor
correlation can be problematic and is referred to as a weak
instrument (discussed later). The instrument should be un-
related to confounders and should impact the outcome
only through its effect on the exposure. In an unbiased
RCT, allocation by randomization is associated with the ex-
posure group and is independent of confounders, so that
the only pathway between allocation group and the out-
come is through the exposure (treatment). An example of
instrumental variable analysis using observational data
from the economics literature is the use of minimum legal
drinking agewithin US states as an instrument to study the
effect of youth drinking on health and social outcomes
[23]. Assumptions underpinning this approach include ob-
served and unobserved state characteristics that influence
youth drinking being uncorrelated with their minimum le-
gal drinking age policy, and that associations between the
policy and outcomes operate only via youth drinking. Both
these assumptions can be questioned (e.g. the assumption
of the instrument being independent of confounders may
be invalid if states that reduced legal drinking ages earlier
experienced greater alcohol-related harm previously).

In MR, genetic variants can be used as IVs to either as-
sess whether a causal effect between exposure and out-
come exists at all, or to measure the magnitude of the
causal effect of the exposure on the outcome. Box 1 pro-
vides an overview of the principles for conducting a MR

analysis. For a genetic variant to be a valid IV, it must sat-
isfy three conditions:
1 The genetic variant must be associated with the expo-

sure of interest (i.e. the behaviour being studied),
2 The genetic variant must be independent of any con-

founders of the exposure–outcome relationship being
studied; and

3 The genetic variant should only affect the outcome
through the exposure of interest.

Box 1: Conducting a Mendelian randomization
analysis

The following is intended as a general guide to the
principal stages of an MR analysis, acknowledging that
this (and particularly step 7) may evolve as newer tech-
niques emerge. Interested readersmaywish to consider
three other reviews [24–26]. We present the examples
in Boxes 2 and 3 structured around these steps so that
the reader can see how the techniques are applied in
practice.
1 Define the research question, objectives and protocol:

define exposure(s) and outcome(s), data analysis
methods, variables to be used, statistical power
calculations [27], etc. This would typically include
identification of a genetic variant that is known to
be robustly associated with the exposure (or behav-
iour) of interest.

2 Identify data source(s): identify potential data sources
[e.g. published reports, summary results from
genome-wide association study (GWAS) consortia
or individual-level data] for the association between

Figure 2 An illustration of collider bias arising from sample selection in a hypothetical study investigating the effect of alcohol consumption on
cardiovascular disease (CVD). The left-hand side of the figure demonstrates the relationship between a binary measure of drinking status and cardio-
vascular disease (based on fictitious data). Numbers in brackets indicate the probability of being recruited into the observed study population on the
right-hand side. Differences between the relative risks and odds ratios illustrate the collider bias arising from the selection process
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the genetic variant and the exposure, and for the as-
sociation between the genetic variant and outcome.
Two-sample MR (see below) requires data for both
associations to come from the different sources (see
[68] for more details). In one sample MR, the gene
exposure and gene outcome associations are esti-
mated within the same sample.

3 Estimate the gene–exposure association: (i.e. test
condition 1) for example, by regression of the
exposure variable on the effect allele (or genetic risk
score if multiple genetic variants are in use). If
possible, calculate a partial F-statistic, which
provides an indication of the strength of the genetic
instrument [28].

4 Estimate associations between the genetic variant and
measured confounders: (i.e. a falsification test of condi-
tion 2) again, this might take the form of regression
of measured confounders on the effect allele or
genetic risk score. If multiple study populations are
in use, do this for all populations where data on
measured confounders are available.

5 Estimate the gene–outcome association: for example,
by regression of the outcome on the effect allele or
genetic risk score, this is often referred to as the ‘re-
duced form’ [29,30].

6 Estimate the magnitude of the causal effect: this step is
not necessary if the researcher is interested only in
whether a causal effect exists, but if there is interest
in the magnitude of effect this can be estimated as
the ratio of the gene–outcome (reduced form) to
the association between the exposure (or behaviour)
and the genetic variant. Alternatively, one can first
estimate the relationship between the genetic

variant and the behaviour—for example, using con-
ventional regression methods—and then estimate
the relationship between the predicted behaviour
from the first regression model and the outcome.
In practice, rather than estimating two separate
models, a jointly estimated two-stage regression
model may be used to take account of uncertainty
in the predicted values from the first stage. It is
worth noting that themagnitude of the causal effect
should not be calculated for certain genetic
instruments (e.g. CHRNA5-A3-B4 which is used in
Box 2 cannot be used to assess the magnitude of
the causal effect for cigarettes per day on lung can-
cer) [31].

7 Assess theplausibilityof assumptions: considerwhether
in the study setting the results could have been
affected by pleiotropy, canalization, population strati-
fication or unmeasured confounding (see section on
challenges with MR and strategies to overcome
them). These issues should at least be discussed in
reporting results or where possible, formally tested.

These conditions are illustrated graphically in Fig. 3.
Figure 3a illustrates a scenario where all conditions have
been met. Figure 3b–d shows violations of the three
conditions.

Figure 3b shows violation of the first condition, that the
genetic variant is associated with the behaviour of interest.
Genetic variants often do not act as direct proxies. For ex-
ample, the rs1051730 variant in the CHRNA5-A3-B4 nic-
otinic receptor subunit gene cluster is associated with the
heaviness of smoking in smokers, rather than smoking

Figure 3 Directed acyclic graphs illustrating the assumptions underpinning valid Mendelian randomization (MR) studies. (a) All three assumptions for
valid analysis are met. (b) No relationship between genetic variant and exposure, therefore assumption 1 is not met. (c) The genetic variant is not
independent of confounders, therefore assumption 2 is not met. (d) The genetic variant does not exert its effect on the outcome only through
the behaviour of interest, therefore assumption 3 (the ‘exclusion restriction’) is not met. (e) Mediated (or vertical) pleiotropy, where the behaviour
of interest exerts its impact on the outcome via other intermediate factors. MR remains valid in this situation. (f) Biological (or horizontal) pleiotropy,
where the genetic variant exerts effects on the outcome via both the behaviour of interest and via another pleiotropic factor. Note that this is an
example of assumption 3 not being met [Colour figure can be viewed at wileyonlinelibrary.com]
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uptake per se (see Box 2 for an example using this variant
for MR). It is therefore important to consider what specific
aspect of behaviour the genetic variant reflects when
interpreting MR results.

Box 2: Cigarette smoking and mental health

Define the research question, objectives and protocol: preva-
lence of smoking is higher among individuals with psy-
chiatric disease (e.g. depression, schizophrenia) than in
the general population, and individuals with these con-
ditions tend to smoke more heavily [32]. However, it is
unclear whether the relationship between smoking and
mental health is causal and, if so, what the direction of
causality is. Individuals may smoke in order to relieve
the symptoms of psychiatric disease, but it is also possi-
ble that smoking could increase risk of psychiatric dis-
ease. Smoking heaviness was the exposure of interest
and two mental health outcomes were considered:
depression and schizophrenia, measured both
as diagnoses and by medication use. The rs1051730
variant in the CHRNA5-A3-B4 cluster of nicotinic re-
ceptor subunit genes is associated with increased
smoking heaviness (number of cigarettes smoked per
day) among smokers, so was considered a potential in-
strumental variable. Associations were estimated using
traditional regression.

Identify data source: individual-level data from 63296
participants in the Copenhagen General Population
Study (CPGS).

Estimate the gene–exposure association: in the CPGS
study, ever smokers with 0.1 and 2 risk (T) alleles
smoked an average of 13.6, 14.5 and 15.6 cigarettes
per day, respectively (P-value = 1 × 10�47).

Estimate associations between the genetic variant and mea-
sured confounders: there was no clear evidence that the
rs1051730 risk variant was associated with age, sex,
education, marital status, income, alcohol
consumption or physical activity.

Estimate the gene–outcome association: among ever
smokers, the smoking heaviness increasing (T) allele
of rs1051730 was associated with increased odds of
antipsychotic medication use [odds ratio (OR) for TT
homozygote compared to CC homozygote: 1.16 (95%
confidence interval (CI) = 1.02–1.31]. Due to the na-
ture of the allele used for the MR analysis, it is not pos-
sible to estimate a useful causal effect estimate for the
number of cigarettes per day on the outcome. A simi-
lar trend was observed for schizophrenia diagnoses,

although statistical evidence for this association was
weak. There was little evidence that this variant was
associated with depression or antidepressant medica-
tion use among ever smokers.

Assess the plausibility of assumptions: the rs1051730
variant is associated closely with the CHRNA5 nicotinic
receptor subunit gene, which has been shown to alter
response to nicotine and subsequently affects how
much tobacco is consumed among smokers. Therefore,
there is a plausible biological mechanism linking this
variant with smoking behaviour. It is believed not to in-
fluence the likelihood of someone becominga smoker in
the first place (i.e. Fig. 1d), so there is little risk of collider
bias when stratifying by smoking status. Analyses strat-
ified by smoking status showed that among never
smokers the rs1051730 T allele was not associated
with antipsychotic medication use (OR for TT homozy-
gote compared toCChomozygote: 1.07 (95%CI=0.87–
1.31), which provides some evidence against pleiotropy
because rs1051730 cannot be associated with heavi-
ness of smoking in never smoking individuals. However,
this effect estimate was also not clearly different from
the effect estimate among smokers, so the results
should be treated with some caution.

The second condition ensures that the genetic variant
is not related to confounders (violated in Fig. 3c). While
condition 1 can be tested empirically, condition 2 can, at
best, only be tested partially. Researchers may
demonstrate statistical independence of the genetic
variant from measured confounders (for example in Box
2 the rs1051730 variant was not associated with several
measured confounders). However, a theoretically informed
argument for why an instrument should be independent of
other unmeasured confounders is also needed [33]. There
are good reasons to expect this with genetic variants. Ac-
cording to Mendel’s first law, each of the parent’s two cop-
ies of a given section of DNA has an equal chance of being
inherited, with the environment not influencing which
copy produces a viable fertilized egg [34]. The second law
states that the two copies of a gene are inherited approxi-
mately independently from each other and from other ge-
netic variants. The most common version of a specific
genetic variant is referred to as the major allele and the
least common is called the minor allele. These two laws
in combination imply that any specific allele should be
distributed randomly across the population, provided it
has been transmitted stably across several generations
and people’s choice of partner is not influenced by the allele
(i.e. there is no assortative mating).

Within econometrics, condition 3 is referred to as the
‘exclusion restriction’. This means that the causal pathway
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between the genetic instrument and the outcome occurs
only through the behaviour of interest. It would be violated
if the genetic variant had an impact upon the outcome
through factors other than the exposure of interest—i.e.
the genetic variant was acting as a proxy for other
factors as well as the behaviour being studied (see Fig. 3d).
Condition 3 also cannot be tested directly, but
indirect supportive evidence can help in its evaluation
(discussed later).

When a genetic variant is a valid IV [35], MR can over-
come the first two of the three threats to causal inference
outlined above. First, with regard to confounding, genetic
variants are expected to be distributed approximately
randomly across the population, and should therefore be
independent of confounders of exposure–outcome relation-
ships [1]. Secondly, genotype is determined at conception
and germline DNA is not modified thereafter, precluding
reverse causation. With respect to the third threat, it has
been suggested that selection bias may be less problematic
in MR studies than in observational studies; for example,
the distribution of genetic variants was found to be similar
in blood donors (a highly selected group) compared with
the UK general population [36,37]. However, collider bias
may still be induced if both the behaviour and outcome of
interest are related to study participation (see Fig. 1b). Even
weak selection biases may influence outcomes of MR
studies [20], as small biases in estimated gene–outcome
associations can result in large changes to the causal
behavioural–outcome estimates [38,39]. Thus, compared
to conventional observational research, MR overcomes
challenges of confounding and reverse causation, but
selection bias may remain problematic. MR approaches
can also be used to investigate whether behaviours impact
upon prognosis after disease diagnosis—for example, while
smoking causes lung cancer it is not clear whether it also
influences prognosis [40]. MR can therefore be used to
understand the effects of addictive behaviours on disease
prognosis, which may differ from their effects on aetiology,
in turn informing clinical advice given to patients who
have received a diagnosis. However, data sources for
MR of progression are currently more limited than for
studying aetiology.

CHALLENGES WITH MENDELIAN
RANDOMIZATION AND STRATEGIES TO
OVERCOME THEM

We now describe some of the most important challenges
with MR and commonly used strategies for addressing
them. At the outset, we note that the need to have genetic
data available is an important potential limitation—if
DNA has not already been collected it may not be feasible
to do so.

First, the genetic variant should be distributed ran-
domly across the sample being analysed. However, the
variant’s distribution may differ between historically
separate human populations, even though it is distributed
randomly within each population [41]. If outcome risks
also differ between such populations, then the effect
estimate may be confounded—a phenomenon referred to
as ‘population stratification’. Restricting analysis to a single
ethnic group (e.g. analysis of European ancestry individ-
uals only) or statistical adjustment for ancestral informa-
tion can reduce this risk.

Secondly, a crucial challenge is finding an appropriate
genetic instrument, typically from a GWAS of the exposure
of interest [42]. These studies compare the frequency of
genetic variants throughout the human genome in people
who exhibit a behaviour with those who do not [43,44].
GWAS, which typically combine large sample size,
statistical stringency (to account for the large number of
statistical tests) and replication in an independent
sample, have a good track record in identifying genetic
variants reliably (i.e. alleles) associated with behaviours.
The genetic variant need not be related causally to the
behaviour, as long as they are associated reliably, so MR
does not require knowledge about the function of the
genetic variant. Nevertheless, causal inference is
strengthened with understanding of the biological process.
Without understanding how a gene exerts its function, we
can be less certain that any effects are caused genuinely
by the behaviour (i.e. assumption 3; see discussion of
pleiotropy below).

A third challenge is that very large sample sizes are
needed in MR because individual genetic variants typically
exert small influences on behaviour and exposure mea-
surement is often poor [45]. Thus, studies may have low
statistical power, especially for estimating the magnitude
of causal effects, which requires estimation of two associa-
tions. Without large sample sizes, weakly associated
genetic variants may yield estimates biased towards the
naive observational association [46–48]. To counter this,
several genetic variants that are all associated with a
behaviourmay be combined to create a polygenic risk score
[49]. This could simply be a count of genetic variants that
increase the behaviour, but more refined approaches
weight the score so that more predictive genetic variants
are weighted more strongly [50]. While polygenic risk
scores help address the weak instrument problem, the
score must satisfy the three conditions for a valid instru-
ment and may not do so if individual components do not
themselves satisfy the three conditions [32].

An additional approach that makes achieving large
sample sizes easier is two-sample MR [51]. As noted earlier,
two associations are estimated typically when assessing the
magnitude of a causal effect inMR: the association between
genetic variant and behaviour and the association between
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genetic variant and outcome. In two-sample MR these two
associations are estimated from different samples, which is
unproblematic provided that the underlying population
from which the samples are drawn are the same. This re-
duces the need to access individual participant data.

A fourth challenge is especially problematic when
assessing the magnitude (rather than presence) of a causal
effect. As noted earlier, condition 3 (the exclusion restric-
tion) requires no causal pathway between the genetic
variant and the outcome, except through the exposure of
interest. In MR studies, pleiotropy can violate this
assumption [52]. Two forms of pleiotropy can be distin-
guished [53,54]. Mediated (or vertical) pleiotropy occurs
when the genetic variant is associated with a factor on
the pathway between the behaviour and outcome, but only
because of its effect on the behaviour (see Fig. 3e). This does
not violate the exclusion restriction, as it is part of the path-
way through which the behaviour exerts an effect. In con-
trast, biological (or horizontal) pleiotropy occurs when the
genetic variant impacts upon a different biological pathway
unrelated to the behaviour of interest, and therefore vio-
lates condition 3 (Fig. 3f). Methods to investigate, and to
some extent relax, this assumption are described later.

Finally, cautious interpretation is necessary, bearing in
mind the nature of the causal effect being estimated. For ex-
ample, the study in Box 3 provides an estimate of the effect
of the rs1229984 genetic variant on heart disease, indicat-
ing a causal effect of alcohol consumption. However, this
genetic variant was associated both with units of alcohol
consumed per week and with binge drinking. Attempts to
estimate the magnitude of causal effects for specific drink-
ing behaviour patterns, such as units per week, or binge
drinking would be biased due to violation of condition 3
(as the genetic variant affects both behaviour patterns).
Even when a genetic variant meets the three conditions
to be a valid instrument, it may not provide an unbiased es-
timate of the effect of the specific aspect of behaviour that is
of interest or has been measured [55]. Also, as genetic var-
iants are established at conception, the estimated causal ef-
fect is of a life-long tendency towards a certain behaviour
(or susceptibility to its impact) [56,57]. Furthermore,
physiological adaptations may reduce a gene’s effects
(referred to as canalization) [58], while a gene’s effects
may be observed only under specific environments or
exert impacts only at specific points during the life course
(i.e. critical periods).

Box 3: Alcohol consumption and coronary heart
disease

Define the research question, objectives and protocol:
observational studies often report a J-shaped
association between alcohol and cardiovascular

outcomes such as coronary heart disease [59]. Risk is
lowest for light to moderate drinkers, but increases for
non-drinkers and for heavier or more hazardous
drinkers. Increased risk among heavy drinkers and ab-
stainers may be due to reverse causation (e.g. ab-
stainers may not drink because they have poorer
health), selection bias or confounding from other
social, life-style or health factors. Alcohol consumption,
measured in weekly units (where 1 unit = 4 g ethanol),
was the main exposure of interest. The primary
outcome considered was coronary heart disease. The
minor allele at rs1229984 of the alcohol dehydroge-
nase 1b gene (ADH1B) has been identified in previous
research as being associated with lower alcohol con-
sumption and so was identified as a potential genetic
instrument. Associations were estimated with
standard regression techniques in multiple studies
and then pooled using meta-analysis.

Identify data sources: individual participant data on
261991 participants of European ancestry were gath-
ered from across 56 genetic studies.

Estimate the gene–exposure association: carriers of the
risk allele at rs1229984 consumed fewer units of
alcohol per week (17.2% fewer on average; 95%
CI = 18.9–15.6%), had lower odds of heavy drinking
(OR = 0.70; 95% CI = 0.68–0.73) or binge drinking
(OR = 0.78; 95% CI = 0.73–0.84) and higher odds of
abstention (OR = 1.27; 95% CI = 1.21–1.34)
compared to non-carriers.

Estimate associations between the genetic variant and mea-
sured confounders: the rs1229984 risk variant was
not associated with physical activity or with most
measures of smoking, although it was associated
with slightly higher odds of ever smoking (OR = 1.06;
95% CI = 1.02–1.09), which is in the opposite di-
rection to observational studies, and with slightly
more years of education (0.04 standard deviations;
95% CI = 0.01–0.08).

Estimate the gene–outcome association: the rs1229984
risk variant was associated with reduced odds of heart
disease among the whole sample (OR = 0.90; 95%
CI = 0.84–0.96) and among drinkers (OR = 0.86;
95% CI = 0.78–0.94), suggesting that lower consump-
tion is protective. Associations of the risk allele with
heart disease did not differ further across light, moder-
ate and heavy drinkers. This is contrary to the in-
creased risk that would have been expected among
light/moderate drinkers if moderate alcohol consump-
tion had a true, causal protective effect relative to very
low consumption. This suggests a linear, rather than a
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J-shaped relationship between alcohol consumption
and heart disease.

Assess the plausibility of assumptions: the ADH1B gene is
involved in metabolizing alcohol, with the rs1229984
risk variant increasing the likelihood of unpleasant
symptoms after consumption. Thus, there is a plausible
biological mechanism connecting the genetic variant
to alcohol consumption. The weak associations be-
tween the genetic variant and measured confounders
are unlikely to explain any association between the ge-
netic variant and heart disease, but it is possible that
unmeasured confounders could be biasing results if
transmission of the genetic variant across generations
is related to alcohol consumption (i.e. assortative mat-
ing is occurring). Among non-drinkers the
rs1229984 risk variant was not associated with heart
disease (OR = 0.98; 95% CI = 0.88–1.10), suggesting
that it has no effect other than via reductions in alcohol
consumption. This estimate may have been affected by
collider bias because the genetic variant is associated
with both abstention and heaviness of drinking among
drinkers (see Fig. 1c), but there were no associations
with measured confounders in stratified analyses, sug-
gesting that these factors were unlikely to be biasing re-
sults.

Implications for policy and practice: light alcohol
consumption does not protect from ischaemic heart
disease, therefore efforts to reduce alcohol consump-
tion are not likely to have any adverse impact on car-
diovascular risk prevention.

ASSESSING THE ROBUSTNESS OF
MENDELIAN RANDOMIZATION STUDIES

As noted above, biological pleiotrophic effects (violating
assumption 3) threaten the validity of MR. While there
remain no definitive ways of addressing this, several ap-
proaches now exist to explore potential bias. A theory-
informed approach is to make potentially informative
comparisons to check the plausibility of assumption 3.
For example, looking throughout countries with differing
cultural norms for alcohol consumption can help to es-
tablish whether biological pleiotropy exists. In East Asian
countries women tend not to consume alcohol, so genetic
variants related to alcohol consumption would be ex-
pected to be associated with alcohol-related disease out-
comes in men but not in women [60]. Cho and
colleagues confirmed this by fitting a statistical interac-
tion between the genetic variant and sex when carrying
out a MR analysis using a South Korean sample, thereby
providing further evidence that alcohol is related causally

to an adverse cardiovascular risk profile [61]. Similarly, in
Box 3 a lack of an association between the genetic vari-
ant and heart disease among non-drinkers increases con-
fidence that the association among drinkers is due to
drinking. Knowledge about the biological function by
which the genetic variant exerts an effect is very helpful,
as it provides greater confidence that the effect is via the
behaviour rather than another mechanism [62]. Box 2
illustrates how biological understanding can inform
assessments of whether condition 3 is met in the case
of a genetic variant associated with smoking.

Newly developed methods allow empirical investigation
of MRassumptions. The funnel plot is used to identify small
study bias in systematic reviews by looking for an associa-
tion between study precision and effect size [63]. In RCTs,
increasing sample size should result in less variation in ob-
served effect sizes (producing a symmetrical funnel-shaped
plot). The same principle has been applied to MR studies
that make use of multiple genetic variants with differing
strengths of association with the behaviour of interest
[64]. Stronger associations between genetic variants and
the exposure should result in less variation and a symmet-
rical funnel plot. Asymmetry in the funnel plot indicates
that theMRassumptions are notmet (see Fig. 3). MR Egger
regression builds on this to allow for overall biological (hor-
izontal) pleiotropy across multiple genetic instruments to
be estimated and the causal effect to be appropriately ad-
justed for. It can be applied when conducting two-sample
MR [65]. An additional sensitivity analysis is to use a
weighted median estimator, as the median estimate across
several genetic instruments should be less prone to bias
from confounders (i.e. violations of assumption 2), pro-
vided that a majority of the weighted analysis is based on
valid instruments [66]. The assumptions underpinning
each of these techniques differ—therefore a consistent pat-
tern of findings strengthens causal inference. However,
these techniques require multiple genetic instruments act-
ing as proxies for the same behaviour.

EXTENSIONS TO MENDELIAN
RANDOMIZATION

Analytical tools for MR research are developing and
being refined rapidly. Bidirectional MR is an extension
of the traditional design utilizing genetic markers for
different but inter-related outcomes to investigate the
direction and magnitude of the causal effects. For exam-
ple, the causal relationship between cannabis use and
schizophrenia remains controversial. Gage and col-
leagues studied two sets of genetic variants, one related
to cannabis initiation and one related to schizophrenia
risk, to understand more clearly the direction of causa-
tion [67]. They found that schizophrenia-related genetic
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variants were related strongly to cannabis initiation
while genetic variants linked to cannabis initiation were
associated weakly with schizophrenia. The authors
therefore concluded that ‘cannabis initiation increases
the risk of schizophrenia, but the size of the causal effect
is small’ and there is ‘stronger evidence that schizophre-
nia risk predicts cannabis initiation’. The use of multiple
genetic instruments to investigate the direction of cau-
sality can be extended to investigate multiple mediating
factors [68]. In such ‘network’ MR, genetic instruments
for each mediating factor to be investigated are required,
and the genetic instruments must be independent of
each other [69].

Finally, factorial MR allows combinations of multiple
behaviours to be investigated. Factorial MR is akin to a fac-
torial RCT where the population is in effect allocated ran-
domly to receive any combination of the behaviours
under consideration [70]. For example, the combination
of excess alcohol consumption and obesity are known to
result in far greater risk of liver cirrhosis than would be
expected based on their additive effects (i.e. they show
evidence of effect modification) [71,72]. However, observa-
tional studies of effect modification face threats to causal
inference. Factorial MR therefore has similar advantages
to a factorial RCT—allowing multiple behaviours to be
investigated and compared against each other, singly or
in combination. Again, availability of genetic instruments
for the different behaviours and their biological indepen-
dence are important considerations.

CONCLUSIONS

MR adds to the range of study designs available to under-
stand the causal effects of behaviours on outcomes of inter-
est. It helps address key limitations of traditional
observational studies, including confounding and reverse
causation, but selection bias could remain problematic.
MR studies potentially allow researchers to produce more
robust evidence on questions of immense relevance to pol-
icy and practice. They can provide strong evidence of causa-
tion, subject to necessary assumptions which benefit from
an understanding of the underpinning biological processes.
However, two of the three assumptions underpinning MR
cannot be tested definitively. Furthermore, genetic variants
known to be associated with behaviours of interest are re-
quired and genetic data from a large number of people, in-
cluding those exhibiting the behaviour of interest, are
needed. A range of other causal approaches to observa-
tional research are available, with differing underpinning
assumptions; their use in combination can be particularly
powerful [10,73]. We have provided a broad overview of
the topic so that interested readers are able to read critically
and interpret findings from MR studies. The use of genetic
instruments for gaining causal understanding is already

yielding important insights into addiction research and will
probably advance the field substantially in the future.
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