
 Martineau, M., & McIntosh-Smith, S. (2017). Exploring On-Node
Parallelism with Neutral, a Monte Carlo Neutral Particle Transport Mini-
App. In 2017 IEEE International Conference on Cluster Computing
(CLUSTER 2017): Proceedings of a meeting held 5-8 September 2017,
Honolulu, Hawaii, USA (pp. 498-508). [8048962] Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.1109/CLUSTER.2017.83

Peer reviewed version

Link to published version (if available):
10.1109/CLUSTER.2017.83

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE AT http://ieeexplore.ieee.org/document/8048962/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Explore Bristol Research

https://core.ac.uk/display/96782362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research-information.bris.ac.uk/en/persons/simon-n-mcintoshsmith(73f4a083-2673-41b2-a10d-3350e16e9780).html
https://research-information.bris.ac.uk/en/publications/exploring-onnode-parallelism-with-neutral-a-monte-carlo-neutral-particle-transport-miniapp(da230fc5-a4a7-4695-9de0-742bee634667).html
https://research-information.bris.ac.uk/en/publications/exploring-onnode-parallelism-with-neutral-a-monte-carlo-neutral-particle-transport-miniapp(da230fc5-a4a7-4695-9de0-742bee634667).html
https://research-information.bris.ac.uk/en/publications/exploring-onnode-parallelism-with-neutral-a-monte-carlo-neutral-particle-transport-miniapp(da230fc5-a4a7-4695-9de0-742bee634667).html
https://doi.org/10.1109/CLUSTER.2017.83
https://doi.org/10.1109/CLUSTER.2017.83
https://research-information.bris.ac.uk/en/publications/exploring-onnode-parallelism-with-neutral-a-monte-carlo-neutral-particle-transport-miniapp(da230fc5-a4a7-4695-9de0-742bee634667).html
https://research-information.bris.ac.uk/en/publications/exploring-onnode-parallelism-with-neutral-a-monte-carlo-neutral-particle-transport-miniapp(da230fc5-a4a7-4695-9de0-742bee634667).html

Exploring on-node parallelism with neutral,
a Monte Carlo neutral particle transport mini-app

Matt Martineau
HPC Group

University of Bristol
Bristol, United Kingdom

m.martineau@bristol.ac.uk

Simon McIntosh-Smith
HPC Group

University of Bristol
Bristol, United Kingdom

cssnmis@bristol.ac.uk

Abstract—In this research we describe the development and
optimisation of a new Monte Carlo neutral particle transport
mini-app, neutral. In spite of the success of previous research
efforts to load balance the algorithm at scale, it is not clear how
to take advantage of the diverse architectures being installed
in the newest supercomputers. We explore different algorithmic
approaches, and perform extensive investigations into the per-
formance of the application on modern hardware including Intel
Xeon and Xeon Phi CPUs, POWER8 CPUs, and NVIDIA GPUs.

When applied to particle transport the Monte Carlo method
is not embarrassingly parallel, as might be expected, due to
dependencies on the computational mesh that expose random
memory access patterns. The algorithm requires the use of atomic
operations, and exhibits load imbalance at the node-level due
to the random branching of particle histories. The algorithmic
characteristics make it challenging to exploit the high memory
bandwidth and FLOPS of modern HPC architectures.

Both of the parallelisation schemes discussed in this paper are
dominated latency issues caused by poor data locality, and are
restricted by the use of atomic operations for tallying calculations.
We saw a significant improvement in performance through the
use of hyperthreading on all CPUs and best performance on
the NVIDIA P100 GPU. A key observation is that architectures
that are tolerant to latencies may be able to hide the negative
characteristics of the algorithms.

I. INTRODUCTION

The DoE is preparing for their next-generation supercom-
puters: Trinity, Sierra and Summit. Trinity will be comprised
of more than 19,000 nodes, half of which will be Intel Xeon
CPUs, and the other half Intel Xeon Phi processors codenamed
Knights Landing (KNL) [1]. Sierra and Summit will consist of
between 3,000 and 4,000 nodes, each containing dual socketed
POWER 9 CPUs, and several NVIDIA Volta GPUs [2], [3].

The implication of this architectural diversity is that a
number of critical applications will need major alterations to
take advantage of the resources. Many of those applications
will already have highly optimised MPI implementations,
and some will use OpenMP to take advantage of node-level
threading. We have observed cases where achieving on-node
performance is more challenging when targeting Intel Xeon
Phi processors and NVIDIA GPUs [4], [5], [6].

A significant amount of research is being conducted into
the improvements required at the programming environment
level, and application level, to exploit the modern architecture
stack. This paper aims to contribute to this effort through

an investigation of the performance of Monte Carlo neutral
particle transport.

Neutral particle transport plays a major role in simulations
for domains such as astrophysics, and medical and nuclear
sciences, and is commonly solved using either deterministic
or stochastic methods [7], [8]. In this paper we present a new
Monte Carlo neutral particle transport mini-app, neutral1,
and discuss how we optimised it for modern processors.

There are several challenges involved in parallelising Monte
Carlo neutral particle transport, including load-balancing,
optimal threading strategies, and managing cross-sectional
lookups. While we will acknowledge each of these issues,
there is already a wealth of research that focusses upon the
load balancing in the context of Monte Carlo particle transport,
for example [9]. The primary focus of this paper is achieving
the optimal on-node performance on modern architectures.

II. CONTRIBUTIONS

In this paper we present several contributions:
• A new mini-app, neutral, which is a small, but repre-

sentative, Monte Carlo neutral particle transport solver.
• Analysis of the limiting features of the application on

modern HPC hardware: Intel Xeon and Xeon Phi CPUs,
POWER8 CPUs, and NVIDIA GPUs.

• Suggestions for optimisations and algorithmic approaches
that should be used for best performance when parallelis-
ing a Monte Carlo particle transport application.

III. BACKGROUND

The Monte Carlo method can be used to solve a number of
important classes of algorithms. In many cases, the approach
is considered to be embarrassingly parallel, as the workloads
can be partitioned without any explicit dependencies [10].
When applied to neutral particle transport, the Monte Carlo
approach tracks individual particles, which are independent in
principal, but those particles interact with a mesh, introducing
a dependency. In our mini-app, tallies are stored of the energy
deposited by particles moving through the mesh, and it is this
mesh dependence that represents one of the most significant
challenges in efficiently parallelising the algorithm on modern
architectures.

1https://github.com/uob-hpc/neutral

A. Transport

Particle transport algorithms seek to trace the movement of
particle densities through some geometry. As those particles
move, they interact with the materials they pass through,
potentially depositing energy. In reactor simulations, particle
transport is essential for shielding and criticality calculations,
while for medical sciences the algorithms can be used to
determine radiation dosages [11], [8].

Particle transport calculations generally require solving
some form of the Boltzmann particle transport equation. The
deterministic approach implicitly solves the equation through
considering the average behaviour of particles in a discreti-
sation of the problem. The Monte Carlo method statistically
determines the solution by considering the individual physical
phenomena occurring during a large number of particle his-
tories, and can be considered a numerical integration of the
transport equation and tally response function.

The core method relies heavily upon the central limit
theorem, expecting that simulating enough particles will lead
to an accurate observation of the mean behaviour of those
particles, converging upon a close approximation to the real
solution. Readers interested in additional information about the
Monte Carlo and deterministic transport methods can refer to
the sources used in the development of the mini-app [7], [12].

IV. NEUTRAL MINI-APP DESIGN

The neutral mini-app is a member of the arch project2

developed at the University of Bristol, which is a suite of
mini-apps that act as proxies for key application classes. The
mini-app is intended to represent the performance profile of
larger applications, and the initial design is such that important
performance bottlenecks such as cross-sectional lookups and
mesh tallying are treated in a representative manner.

A. Particle Event Tracking

The particle event tracking procedure for Monte Carlo
neutral particle transport considers several major events, that
are depicted in Figure 1.

• collision events - As particles move through space, they
will interact with the nuclei of the material that they are
being transported through. There are several interactions
that can occur, of which we consider absorption, and
elastic scattering.

• facets events - The particles move through continuous
space, but are dependent upon the material properties
stored at their position in the decomposed computational
mesh. As particles reach the facets of their containing
mesh cell, a tally of any deposited energy must be stored,
and the density of the destination cell can be loaded.
During multi-node execution, a facet encounter can result
in the particle moving between processes.

• census events - The terminal event that occurs once the
particle has reached the end of the timestep.

2https://github.com/uob-hpc/arch

Fig. 1. Four single-event particle tracks are shown inside the computational
mesh. The First Encountered Event for the particle in the bottom right is the
collision event.

In order to determine which events will be encountered
by the particle along its track, it is necessary to maintain
individual timers for each event. Each time an event is en-
countered and handled, the timers for the other events must
be updated accordingly to account for the distance travelled
by the particle. While testing the mini-app, the time to census
was set to a small fixed size in order to control the number of
events that occurred per timestep.

We consider two types of collision event: elastic scattering,
and absorption. Elastic scattering occurs when a neutral par-
ticle collides with a nucleus and scatters in some direction,
conserving kinetic energy. The absorption event is where the
collision leads to the particle, and therefore it’s energy, being
completely absorbed by the encountered nucleus.

B. Test Problems

We will later demonstrate that many aspects of the per-
formance profile are problem dependent, and so the selection
of appropriate test problems is critical to uncovering the key
characteristics of this particular application. Throughout the
paper we will present results for the mini-app using three
distinct test cases (Figure 2). Each has been chosen to expose
the limiting behaviour, or represent a realistic problem setup.

Fig. 2. Plots of the energy deposition for the three test problems used in this
research, after a single timestep.

• The stream problem (left), where particles start in the
center of the space and move rapidly across a mesh of
homogeneously low mass density (1.0× 10−30Kg/m3).
Due to reflective boundaries, a particle may travel mul-
tiple times across the whole width of the mesh. Around
7000 facets are encountered per simulated particle.

• The scatter problem (middle), where the mass density
of the mesh is homogeneously high (1.0× 103Kg/m3).
Many of the particles will not leave the cell that they
were born in, rather they will deposit energy until their
energy falls below the fixed value of interest.

• The center square problem, csp, (right), where particles
start in the bottom left of the mesh and stream across
the space. The mesh is low density everywhere except a
square in the center of the space, which is high density.

In all test cases we have chosen a timestep of 10−7s, and
mesh dimensions of 40002. The timestep is set in order to
make runtimes acceptable, and different domains will have
different timestep requirements, while the mesh dimensions
have been chosen to represent a large but realistic test problem.
For the stream and csp test cases we simulate 106 particles,
and for the scatter test we simulate 107 particles.

Throughout the paper we will generally present the results
of all test cases; however, the csp problem is the most realistic,
making the results more relevant to real computational work-
loads. We expect that the scatter and stream problems will
instead assist in discovering the root causes of performance
differences on the target architectures.

C. Intersection Checking

To perform facet intersection checking, we are able to
leverage the simple geometry of the mesh to calculate the
new direction. The problem is essentially solved as a simple
intersection in Cartesian space.

One of the key benefits to using the Monte Carlo approach,
when compared to deterministic transport, is that the algorithm
is able to handle complex geometric constructions [13]. While
this is an important feature from a scientific perspective, we
hypothesise that it is less important from a computational
perspective. In our application we have chosen to use a two-
dimensional structured grid in order to expose those issues that
are independent of the geometry. We will extend the applica-
tion in the future to support three-dimensional unstructured
geometry, to validate our current assumptions.

We currently enforce reflective boundary conditions, in-
creasing the particle lifetime and making it straightforward
to track the conservation of the particle population.

D. Cross-Sectional Data

In order to determine if a collision event has occurred, we
have to perform a lookup of cross sectional data. We currently
consider a homogeneous non-multiplying media, and as such
do not have to deal with the emission of secondary particles
through any processes such as fission. Two dummy data tables
have been generated that mimic the capture and scatter cross
sections for a single material, each of which is loaded into
memory at the beginning of a given simulation.

We have attempted to make the size of the tables repre-
sentative of the nuclear data lookup tables that might be used
in a real application. It is well known that the lookup tables
can be large and cause a bottleneck in real applications [14].
Although not the focus of this research, in the future we plan to

investigate the impact of managing multiple diverse materials
in a single simulation.

There are two forms of neutron cross section that are needed
in neutral:

1) Microscopic Cross Sections: To calculate the time until
the next collision event, a search is performed to find the
energy bin for the particle’s continuous energy, and a linear
interpolation gives an accurate approximation to the true
microscopic cross section.

2) Macroscopic Cross Sections: Are calculated by scaling
the microscopic cross sections by the mass density of the
cell that a particle resides within. As such, a dependency is
introduced between each particle and the computational mesh
containing cell centered densities.

E. Variance Reduction Techniques

There are a number of variance reduction techniques dis-
cussed in the Monte Carlo particle transport literature, and we
implement several of them to improve the overall accuracy of
our results [7], [15].

In a typical analogue calculation, particles stream until they
are absorbed, where their contribution is immediately tallied
and their life ends. We instead artificially extend the lifetime
of the particles by giving them each a weight, allowing each
particle to represent a group of particles. Upon absorption, the
individual particle weights are reduced, rather than declaring
them as dead particles. Only once the weight has reduced past
a fixed point, or the particle has reached a low enough energy,
do we terminate the particle history.

F. Random Number Generation

Random number generation is the foundation of Monte
Carlo based applications. When selecting a random number
generator (RNG), there are a number of considerations, in-
cluding parallelisability, statistical robustness, reproducibility
and period. While we do not intend for the mini-app to
solve real scientific problems, it was important to select a
random number generator that would be suitable for use in
real applications. This would ensure that we could accurately
factor in the cost of random number generation on diverse
architectures.

We decided to use Random123, which is a suite of counter-
based RNGs (CBRNGs), in particular using the Threefry
method [16]. CBRNGs are stateless and deterministically
respond with a random number when given a key-counter
pair. This allows us to store a key-value pair per particle, and
achieve reproducibility between runs for the purpose of testing
during debugging. Also, Random123 provides interfaces that
are suitable for parallel generation with OpenMP and CUDA,
which met our requirements for all architectures.

In neutral, random numbers determine the initial particle
locations and directions within a bounded source region. Also,
when a collision event occurs and a particle scatters, random
numbers are generated to determine the angle of scattering, the
level of energy dampening that occurs, and the new number
of mean-free-paths until the next collision.

V. PARALLELISATION

The parallelisation strategy adopted for the algorithm has
major consequences for the performance on different architec-
tures, and there were several different approaches that could
be taken in order to achieve parallel execution.

A. Over Particles

As the particle histories are independent, it is natural to
parallelise over those individual particles, allowing a thread to
follow a particle from birth to census. In Listing 1 we show
a simple top-level view of the parallelisation strategy, where
the foreach call can be threaded.

Listing 1. Pseudo-code for parallelising over particles.

foreach(particle) {
loop until(reached_census) {

calculate_time_to_events()

if nearest(time_to_collision)
handle_collision()

else if nearest(time_to_facet)
handle_facet()

else if nearest(time_to_census)
handle_census()
reached_census = true

}
}

There are many consequences of traversing the problem
by particles, that may improve or inhibit performance on
particular architectures:

• Data is cached in registers between events - For instance,
the microscopic cross sections only need to be looked
up when the energy of the particle changes, which only
happens upon a collision event. By caching the values,
consecutive facet encounters don’t need to access the
lookup tables.

• Thread synchronisation is minimised, but a load im-
balance is possible - A single synchronisation point is
present at the end of the foreach statement; however,
the length of each particle history can vary significantly,
potentially leading to a load imbalance between threads.

• The code contains deep branches - Threads acting upon
the particles will often be divergent, as there are multiple
branches that extend two to three levels deep. Divergence
may be an issue for architectures such as the GPU.

• Reading from the density mesh may exhibit locality ben-
efits - A particle will move from its cell to an immediate
neighbour, so there is opportunity for data locality of
reads from the density mesh following a single particle
history.

B. Over Events

Looking at the problem from a breadth first perspective,
progressing all particle histories by a single event, it is possible
to parallelise over the facet, collision, and census events.

Listing 2. Pseudo-code for parallelising over events.

loop until(all_particles_reach_census) {
foreach(particle)

calculate_time_to_events()
determine_next_event()

foreach(colliding_particle)
handle_collision()

foreach(particle_encountering_facet)
handle_facet()

}

foreach(particle)
handle_census()

This approach exposes increased data parallelism, and has
different properties to parallelising Over Particles.

• The algorithm forms tight vectorisable loops
• Data can no longer be cached in registers - Any time

data is to be cached, it must be stored per particle.
• Particles are gathered from memory - Each kernel visits

the entire list of particles checking if they are to be
processed. Although the particles are contiguous, the data
is gathered from memory as not all particles encounter
the same event.

• Branching is decreased - As the events are collected
together, the top level branches of the Over Particles
algorithm are negated.

• The load imbalance is removed, but synchronisation is
increased - Each of the foreach statements can result
in a synchronisation, but the amount of work is known
before the loop, allowing a static schedule.

C. Energy Deposition

In the neutral mini-app, we are interested in tracking
the average energy deposition per cell of a computational
mesh, as particles travel through it. The tally is calculated
by tracking the path lengths of each particle through each cell
and scaling this by an expected heating response. This creates
a write dependency upon the tally mesh, which is essentially
a reduction into the mesh that must be performed atomically
to avoid race conditions. The energy is tallied for a particle
every time it encounters a facet encounter, or once census is
reached for the particle history.

VI. ANALYSIS AND OPTIMISATION

As the mini-app was written from scratch, with no optimal
design template, it was necessary to analyse and optimise
every aspect of the code for each target architecture.

A. Code Analysis

There are several performance affecting steps taken by the
main computational loop: (1) calculating the time until the next
event and energy deposition from the path length, (2) handling
the collision and facet events, and (3) updating the energy
deposition tally.

Fig. 3. The parallel efficiency of the csp test case as thread count is increased on the two sockets of Intel Xeon E5-2699 v4 (Broadwell) 22 core CPU, and
two sockets of POWER8 10 core CPU (right).

The time calculations are essentially a Cartesian intersection
check, and the energy deposition is calculated with a small
closed form equation. Both amount to a limited number of
FLOPS and primarily work on data present in registers.

The collision event contains two main branches, both com-
prised of little computational work, but the elastic scatter-
ing includes three calls to sqrt. Whenever a collision is
encountered, the microscopic cross sectional tables need to
be checked using the new energy. The index of the previous
lookup is cached so that a fast linear search can be used
to take advantage of cache locality, instead of performing a
more expensive binary search at each step. This particular
optimisation improved the performance of the csp problem
by 1.3x, but might suffer issues when larger jumps in energy
are observed due to physical phenomena.

The facet event contains many nested branches, up to four
levels deep, which handle reflective boundary conditions, and
updating mesh locations. Although the branching is unpre-
dictable, the work at each branch amounts to only one or
two FLOPs. Whenever a facet is encountered, the cached
local density needs to be updated, requiring a read from the
cell centered density mesh. Whenever a collision occurs, the
energy deposition increments a register, but at the end of
a facet encounter the value is flushed onto the tally mesh,
which means every facet encounter results in an atomic read-
modify-write operation.

Using the Over Particles parallelisation scheme, it is chal-
lenging to gain accurate profiling data about the individual
methods, given their fine granularity. We used the scatter
problem to calculate an average runtime of 18ns for collision
events, and the stream problem to calculate an average runtime
of 3ns for facet events. We determined with sample-based
profiling on the Intel Xeon CPU that the tallying of energy
deposition accounts for around 50% of the total runtime, while
for the Over Events scheme it only accounts for 22% of the
runtime. We believe this is due to the increased workload of

other methods affecting the proportion of time spent tallying.
We essentially ignore the census event, as it is executed so

infrequently, compared to the other events, that it does not
affect the performance. It is impossible to accurately predict
what the balance of events will look like for a general test
problem, which is why we present results for test cases that
show both extreme cases and a balanced case.

B. Thread Scaling

Given that the mini-app is new, it was an important first step
to analyse the parallel scaling efficiency of the algorithms.
We thought it would be insightful to consider the parallel
efficiency of the algorithm compared to two applications from
the arch project, flow3 and hot4. The flow mini-app is
a highly optimised hydrodynamics application, while hot is
a conjugate gradient based heat conduction linear solver, both
of which serve as an interesting point of comparison.

Figure 3 shows the parallel efficiency of both parallelisation
schemes for neutral compared to flow as the thread count
is increased on the Intel Xeon Broadwell and POWER8 CPUs.
The parallel efficiency of hot and flow is limited by the
fact that the algorithms are memory bandwidth bound. On
the Intel Xeon CPU, we can see for both applications that
the parallel efficiency drops and normalises when the second
socket is consumed, if you instead interleaved the threads on
NUMA nodes, the scaling drops slower, as the threads can
take advantage of the second socket’s memory controllers. The
parallel efficiency of neutral is comparatively higher on
a single socket. We later show that neutral is not bound
by memory bandwidth or the available FLOPS on the CPU,
and the scalability issues suggest the application is limited
instead by another concern, such as instruction or memory
latency. On Broadwell a key feature of the neutral scaling
is the rapid drop in parallel efficiency that occurs as the

3https://github.com/uob-hpc/flow
4https://github.com/uob-hpc/hot

threads cross the NUMA domain onto the second socket.
We would have expected that the additional cache would
help performance, but this result potentially shows the latency
impact of data being stored and randomly accessed across
sockets. An MPI decomposition over NUMA domains could
improve performance, which will make an important future
research direction.

The POWER8 results for both schemes demonstrates un-
usual features that the authors had not encountered before. The
step functions at the 6th and 11th threads are possibly caused
each time the distance to cache is increased, firstly as data is
forced across the on-chip interconnect between the two groups
of 5 cores, and subsequently when threads are scheduled on
the second socket. We can see that flow achieves near perfect
parallel efficiency on the POWER8 CPU, as there are many
memory controllers, 8 per CPU, meaning that many threads
are required to saturate the memory bandwidth.

While the parallel efficiency of the Over Events scheme on
the Intel Xeon CPU appears to contain timing errors, where
the line is not smooth, the results are precisely reproducible.
We have not yet been able to understand why the small peaks
are seen at unexpected intervals.

C. Thread Scheduling

The independent nature of the particle histories in the
application means that each particle will execute a different
number of instructions. Profiling with VTune suggested that
there might be a load imbalance, and we had originally
hypothesised that the varying lengths of particle histories could
lead to certain threads executing significantly more work than
other threads. In order to test this, we experimented with the
schedule clause in OpenMP across the test processors.

Fig. 4. The csp problem run on the Intel Xeon, Intel Xeon Phi, and POWER8
CPUs, respectively, with different OpenMP parallel for scheduling
options.

Figure 4 shows different scheduling strategies for the csp
problem, which exhibited the greatest load imbalance of the
three test cases. The scheduling strategies at most improved
performance by 1.07x on the KNL, suggesting the load imbal-
ance is smaller than we had expected for our test problems. In
the case of production test problems it may be that this issue
is more pronounced.

D. Data Structure

An important factor in the performance of the application
is the data structure used to describe particles. The most
intuitive approach was to make it such that a single particle

is represented by a data structure that contains the particle’s
position in space, direction, energy, and location on the mesh.
There are also options for compacting the data structure, for
instance storing the energy alongside direction in a velocity
vector, or calculating the mesh cell on the fly.

When we port the code to work on the GPU, we only
consider the Structure of Arrays (SoA) layout, given that this
assists with coalescing memory access. In the case of CPU
and KNL, we wanted to explore the performance difference
between SoA and Array of Structures (AoS).

Fig. 5. SoA vs. AoS on a single socket of Intel Xeon E5-2699 v4 (Broadwell)
22 core CPU, and an Intel Xeon Phi 7210 (KNL) CPU with 256 threads.

The results in Figure 5 clearly demonstrate that, on the CPU,
the SoA implementations perform worse than AoS for all test
cases. We expect that the disparity in the results is caused by
the improved cache utilisation for AoS with the Over Particles
parallelisation scheme. Each particle, as encountered, can be
loaded from cache into registers with little redundant memory
access, and will be worked with for the entire particle history.
In the SoA scheme, each thread loads a cache line for each
particle field, and only uses a single item, which exacerbates
the memory access and latency issues.

E. Hyperthreading

The results in Figure 6 show that neutral benefits
significantly from hyperthreading. On the Intel Xeon CPU
we observed as much as a 1.37x speedup when running an
OpenMP thread per logical core compared to one thread
per physical core. On the KNL the csp test case speeds
up by 2.16x, while the same test problem on the POWER8
improves by 6.2x when running all 8 Simultaneous Multi-
Threads (SMT).

For comparison, the flow application saw no improvement
for running with hyperthreads, and a roughly 1.2x performance
penalty for oversubscribing the number of threads to hyper-
threads on the Broadwell CPU.

On Broadwell, we encountered a minor performance im-
provement for oversubscribing threads beyond the number of
logical cores. While this would not be a useful optimisation in
itself, it suggests that the context switching between threads
was faster than waiting on the thread’s current operation. It is
not clear if there are other factors influencing the performance;
however, we hypothesise that this is exposing the severe
memory latency issues encountered by the application.

Fig. 6. Increasing the number of threads on Intel Xeon Broadwell (left), Intel Xeon Phi Knights Landing (middle), and POWER8 (right).

F. Tally Privatisation

The tally in the neutral mini-app is an energy deposition
across the mesh. Our implementation requires an atomic
operation to ensure thread safety; however, this operation
is potentially expensive, as discussed in Section VI-A. One
possible optimisation was to privatise the tally mesh per
thread, which would completely avoid the need for the atomic
operation.

A consequence of privatising the tally mesh is that the
capacity of the tally data increases with the number of threads.
On a KNL, where 256 threads are optimal, the total memory
footprint of the csp test problem increases from 0.3GB to
31GB, which exceeds the maximum capacity of MCDRAM.
In practice, the DRAM is faster for this application; however,
this solution may encounter capacity issues with larger meshes,
or on future architecture.

Fig. 7. Demonstrating the speedup of the mesh privatisation technique for
the energy deposition tallies, across all CPU architectures and test problems.

The results in Figure 7 demonstrate that the optimisation
was possible, and in some cases lead to an improved runtime
for the application. On the Broadwell and KNL, a 1.16x
and 1.18x speedup were seen for the csp problem. While
this is a reasonable improvement, the extent of the atomic
overhead suggested that the optimisation would achieve a
more significant increase in performance. We hypothesise that
the increased memory footprint caused negative cache effects,
offsetting the benefit of removing the atomic operation.

A limitation of the results is that the energy deposition tally
is compressed at the end of the solve, to perform validation.
For a real-world use case, the application would likely be
collecting tallies to update the source terms of another ap-
plication, and the energy deposition would need to be merged
from all threads at every timestep. This was found to make the

solve significantly slower than when using atomic operations,
for all test architectures.

G. Vectorisation

Successful vectorisation is often essential for good perfor-
mance on the Intel Xeon and Intel Xeon Phi architectures. The
Over Events scheme provided obvious vectorisation opportu-
nities; however, it was not clear how the Over Particles loop
could be successfully vectorised given the complexity of the
branching within the single computational loop.

Fig. 8. Vectorisation per method of the Over Events parallelisation scheme.
Speedup compared to un-vectorised code.

Initially, vectorisation of the Over Events scheme was
inhibited by the atomic operation for tallying in each of the
loops. We were able to work around the issue by creating a
separate tally loop that handled the atomic operations after the
other events had completed. The results in Figure 8 show that
vectorisation only helped the facet events on the CPU, but that
the KNL benefited significantly for all events.

The Over Particles computational loop presented a signifi-
cant challenge for vectorisation, as the un-vectorisable atomic
operations were pervasive, and the loop contains deep branches
with varying workloads. In Section VI-F, we discussed the
privatisation of the tallying mesh for the purpose of removing
the atomic operation. Using this version of the code, it
was possible to convince the Intel compiler version 17.2 to
vectorise the entire computational loop, as the atomic had been
removed from the loop; however, the performance was either
not improved or worse in all cases.

H. Registers

The Over Particles scheme consists of a single large com-
putational loop that calls multiple different methods to handle

different events. On the GPU this leads to a high number
of registers per thread, which reduces the occupancy of the
application, harming performance. One of the most significant
optimisations we applied to this scheme involved restricting
the number of registers from 102 down to 64, achieving a
speedup of 1.6x for the csp problem.

VII. COMPARING OVER PARTICLES AND OVER EVENTS

Although we cannot guarantee that neutral is yet optimal
on every architecture, we have been able to explore many
avenues for optimisation. In this section we will discuss the
performance of both the Over Events and Over Particles
parallelisation schemes.

A. Intel Xeon Broadwell CPU

All results are for dual socket 22 core
Intel Xeon E5-2699 v4 (Broadwell) CPUs @
2.10Hz, where 88 threads are distributed with
KMP_AFFINITY=compact,granularity=fine,
compiled with ICC version 17.2. Note that the results are
taking advantage of the hyperthreading provided by the CPU,
as Section VI-B demonstrated a performance improvement.

Fig. 9. Results for dual socket Intel Xeon E5-2699 v4 (Broadwell) 22 core
CPUs, with 1 thread per logical core for 88 threads.

The results shown in Figure 9 unequivocally demonstrate
that the performance of the Over Particles approach is optimal
in all cases on the CPU. We have discovered many influential
factors in this performance difference:

1) The atomic operations conflict less often: With the
Over Events scheme, the atomic operations are batched into
a single loop for every particle. The Over Particles scheme
spreads the operations randomly along each particle history.

2) Caching occurs in registers: A major consequence of
parallelising over particles is the increased re-use of state such
as cross sections and densities. In the Over Events approach
this state is cached in the particle data store and streamed from
memory for each loop, greatly increasing memory traffic.

3) Vectorisation gave little performance benefit: In spite
of achieving vectorisation for all of the key routines, the
performance was poor due to the number of gathers and
scatters required because of the indirection in each loop.

In the future we plan to extend the results of this per-
formance analysis to consider MPI over sockets and threads
bound to the hyperthreads of each CPU.

Fig. 10. Results for the different implementations on a KNL 7210.

B. Intel Xeon Phi Knights Landing

All results are for a KNL 7210, with 256 threads distributed
with KMP_AFFINITY=scatter,granularity=fine,
compiled with ICC version 17.2.

Figure 10 demonstrates the performance with all mesh and
particle data either resident in MCDRAM or DRAM. For the
Over Events scheme we can see that the performance is gener-
ally worse, except for in the scattering case, where the runtime
is 1.73x lower than for the Over Particles scheme. In the
worst case, the csp problem, the Over Events scheme is 2.15x
slower. From profiling we understand that the improvement in
performance on the KNL is due to the fact that the collision
events are vectorised, and the memory latency issue is less
important due to the few scattered loads and stores seen for
highly scattering test problems. We found that for the other
problems, the application spends a significant proportion of
time waiting for memory to come into L2, and waiting on the
completion of atomic operations.

It can be noted that the shift between DRAM and MC-
DRAM affects the Over Events scheme significantly more than
the Over Particles scheme, with a 2.38x speedup for the csp
problem. In spite of the poor wallclock time, this is an example
of the Over Events parallelisation scheme taking advantage
of the hardware more successfully. The difference is not the
greatest you would expect, however, as a memory bandwidth
bound problem like flow can observe a 5.0x increase in
performance for using MCDRAM. In the scatter case the Over
Particles approach is slightly faster when accessing DRAM,
which appears to suggest that the increased MCDRAM latency
is degrading performance.

C. POWER8 CPU

The results shown in Figure 11 are for dual socketed 10
core POWER8 CPUs, with 160 threads (8 SMTS), distributed
with OMP_PROC_BIND=true, and compiled with the XL
compilers version 13.1.5.

As with the Intel Xeon, and Intel Xeon Phi, the results of
the Over Particles approach are significantly faster than for
the Over Events approach. The difference is slightly less on
the POWER8 than the Intel Xeon Broadwell, which observe
a 3.75x and 4.56x respective improvement in performance
for the Over Particles scheme compared to the Over Events
scheme with the csp problem. As the performance of the
POWER8 is worse than the Intel Xeon for both schemes, there
may be an underlying conflict with the architecture.

Fig. 11. Results for 160 threads of POWER8 CPU.

D. K20X GPU

In Figure 12 we include results for an NVIDIA K20X
GPU, with thread block sizes of 128 threads, compiled with
CUDA 8.0, as a point of comparison for the P100 GPU.

Fig. 12. Results for NVIDIA K20X GPU.

One of the major concerns we wish to address with this
research is the capability of the parallelisation schemes to
scale with future hardware generations, especially given that
they are not bound by the architectural limits on FLOPS or
memory bandwidth. The Over Particles approach achieved
35GB/s memory bandwidth for the core computational kernel,
which is roughly 20% of the achievable memory bandwidth
for the device. The memory bandwidth cannot be saturated by
the application due to the fact that the majority of the memory
access patterns are random.

For the Over Events scheme we expected that, even though
the net performance was worse, we would observe high
utilisation of the memory bandwidth of the device. The cached
data was laid out contiguously, such that there would be a high
volume of streaming traffic. Through profiling with nvprof
we found that the approach achieved around 90GB/s or 50%
of achievable memory bandwidth.

E. P100 GPU

The results in Figure 13 are for an NVIDIA P100 GPU,
with 128 wide thread blocks, compiled with CUDA 8.0
for architecture version 6.0. The performance difference is
again significant between the Over Particles and Over Events
scheme, with the Over Particles scheme achieving 3.64x faster
execution time for the csp problem. This suggests that, in
spite of the Over Events scheme appearing to take better
advantage of the hardware resources, the method is not scaling
with the improvements to the architecture. The Over Particles

scheme, on the other hand, has improved by 4.5x on the new
architectural generation.

Fig. 13. Results for NVIDIA P100 GPU.

We observed that compiling for the CUDA architecture ver-
sion 6.0 used 79 registers for the particle loop, while version
3.5 needed 102 registers. Although restricting the maximum
number of registers greatly improves the performance on the
K20X, we did not see the same improvements on the P100, in
spite of the profiler recommending this action. Restricting the
maximum number of registers to 64 improved the occupancy
of the main kernel from 0.38 up to 0.49, but the wallclock
increased by 1.07x, showing that the P100 does not require
as high occupancy as previous architecture generations for
maximum performance.

The achieved memory bandwidth on the P100 is 125GB/s,
which equates to 25% of achievable memory bandwidth on the
device. The P100 has more, smaller streaming multiprocessors
(SM) than the K20X, allowing for a net increase in the number
of active warps. As a consequence, it is possible for additional
concurrent memory requests, hiding some of the memory
latency and increasing the bandwidth utilisation.

The NVIDIA Visual Profiler suggested that 87% of the
computational kernel’s time was spent waiting for a mem-
ory dependency, with the remaining time spent waiting on
execution dependencies, confirming our suspicion of memory
latency issues. The profiler showed that the random access to
the density mesh was inefficient, contributing significantly to
the latency issues. It also showed that the branches of the facet
event were divergent, causing warp inefficiencies; however,
given the low grind time of the facet events, and the limited
work in each branch, it does not appear to cause a significant
performance issue.

VIII. FINAL PERFORMANCE RESULTS

At this stage we can depart from the Over Events scheme,
and focus on the performance differences between the archi-
tectures for the Over Particles scheme, which was superior
in almost every case, and demonstrated better scaling across
hardware generations.

The KNL results did not match our expectations, and
were beaten in almost all cases by the other architectures.
Investigation into the root cause of this issue is still ongoing,
but it may relate to the smaller caches on the KNL, or the more
complicated routing in the processor affecting the latency of
the application. The POWER8 achieves similar performance to
the KNL on the csp problem, while the Intel Xeon Broadwell
was 1.34x faster than the POWER8.

Fig. 14. Results for all tested devices with the Over Particles parallelisation scheme.

The K20X results were improved with some minor optimi-
sations, but were actually the slowest by a small margin for
the csp problem. Our expectation was that the divergent code
would not be suited at all to the SIMD architecture of the
GPU, which originally lead us to consider the Over Events
parallelisation scheme, and we were surprised the results of
the Over Particles scheme were not worse.

Figure 14 shows that the P100 is by far the fastest processor
for neutral as it is currently written. The csp problem
observes a 3.2x speedup compared to the dual socket Broad-
well, in spite of the algorithm not fully exploiting of the high
memory bandwidth or FLOPS. Compared to its predecessor,
the K20X, the P100 has increased performance by 4.5x, which
is an outstanding improvement across generations.

A. Architectural Advantages in the P100

Given that the P100 performed so well for this particular
algorithm, we wanted to consider the root cause of the perfor-
mance gap so that we can reason about the future architectural
requirements of the algorithm.

The Broadwell CPU is limited to a small finite number of
memory transactions per core, whereas the mechanisms with
which threads are scheduled on a K20X means that more
simultaneous in-flight memory requests are possible. Further
to this, the P100 allows even more in-flight memory requests
than the K20X, which will improve the random memory access
issues that the algorithm suffers from.

A notable difference between the P100 and K20X for
this particular application is that we had to simulate the
atomic operation on the K20X. On the P100, a hardware
supported double precision atomicAdd instruction is now
available. We experimentally determined that the improvement
in performance provided by this intrinsic was 1.20x.

We hypothesise that the intrinsic double precision atomics,
high memory bandwidth and utilisation, and latency hiding
characteristics of the P100 all contribute to the performance
advantage over the Intel Xeon Broadwell and K20X.

IX. FUTURE WORK

Although the optimisations considered in this research are
extensive, there still remain other potential opportunities that
we would like to explore. On NUMA architectures it is

possible that MPI decomposition will help to improve some
of the NUMA issues that we experienced with our OpenMP
implementation, and we plan to introduce a high performance,
load balanced, MPI parallelisation into the application. Further
to this, there are a number of other physical processes that can
be modeled, which may or may not affect the performance of
the mini-app. We are keen that fission, complex geometries,
and multi-material meshes etc. are explored with the mini-app.

X. RELATED WORK

Much research has focussed upon the development of robust
Monte Carlo applications, for instance the Milagro code from
Los Alomos National Laboratory [17], and the Mercury code
from Lawrence Livermore National Laboratories [9]. Romano
et al. [18] from MIT developed a new Monte Carlo particle
transport application, OpenMC, and demonstrated ideal weak
scaling above 100,000 processors. Siegel et al. [19] later
considered the threading of the OpenMC application.

Gentile et al. [12], discuss the algorithmic and performance
characteristics of the Monte Carlo and Implicit Monte Carlo
methods. Horelik et al. [20], discuss the capacity issues faced
when calculating tallies for full-core reactor benchmarks.

Mini-apps have been used extensively for performance op-
timisation studies, including porting applications onto diverse
hardware, with our group has contributing heavily to this space
[4], [6], [21]. Recently, we discussed the arch project, which
the neutral mini-app belongs to, including a description
of the design of each mini-app and potential research oppor-
tunities presented by the suite [22]. Other important studies
include the optimisation of the CloverLeaf hydrodynamics
application [23], [24], and the efforts of Bird et al. [25] to
develop a portable particle in cell code.

XI. CONCLUSION

The neutral mini-app has shown the difficulties associ-
ated with mapping Monte Carlo particle transport onto existing
architectures. We have been able to characterise the algorithm
as memory latency bound, and all attempts to circumvent
this characteristic resulted in worse performance overall. In
contrast, modern architectures are focussing on FLOPS, and
more recently memory bandwidth, with memory latency per-
formance generally worsening.

This research has demonstrated that the Over Particles ap-
proach was more than 2x faster than the Over Events approach
for our test cases and tested hardware, primarily due to the
reduced synchronisation and memory access requirements.
The modern HPC CPUs were quite close in performance to
the K20X, except the Intel Xeon Broadwell, which was more
than 1.3x faster than the other CPUs. Moving from the K20X
to the P100 saw a 4.5x performance improvement for the
Over Particles approach, suggesting that future generations
of hardware can continue to improve the performance of this
algorithm, even though memory bandwidth and FLOPS are
not fully saturated.

The random memory access pattern that the algorithm
exhibits is the primary bottleneck in the application, making it
highly sensitive to memory latency. Our results have demon-
strated that the latency tolerant nature of GPUs has provided
significantly higher performance than the other processors.
The P100 GPU was more than 3x faster than the CPUs,
even though the algorithm appears incompatible with the
architecture. We are open to the possibility that there are
other optimisations that could improve the performance of
the application on the tested architecture, and we plan to
continue the research independently and alongside the vendors
to explore this.

ACKNOWLEDGEMENTS

The authors would like to thank EPSRC for funding this
research. We also extend thanks to the Intel Parallel Comput-
ing Centre at the University of Bristol, for providing access to
the Zoo testbed. Further, we thank the GW4 consortium for
access to the Isambard supercomputer, which provided Intel
Xeon CPUs, KNLs, and NVIDIA P100 GPUs.

REFERENCES

[1] Los Alomos National Laboratory, “Trinity: Advanced Technology
System,” 2017. [Online]. Available: www.lanl.gov/projects/trinity

[2] Lawrence Livermore National Laboratory, “CORAL/Sierra,” 2017.
[Online]. Available: https://asc.llnl.gov/coral-info

[3] Oak Ridge National Laboratory, “Summit: Oak Ridge National
Laboratory’s next High Performance Supercomputer,” 2017. [Online].
Available: https://www.olcf.ornl.gov/summit/

[4] M. Martineau, S. McIntosh-Smith, M. Boulton, and W. Gaudin, “An
Evaluation of Emerging Many-Core Parallel Programming Models,” in
Proceedings of the 7th International Workshop on Programming Models
and Applications for Multicores and Manycores, ser. PMAM’16, 2016.

[5] McIntosh-Smith, S. and Price, J. and Sessions, R.B. and Ibarra, A.A.,
“High Performance in Silico Virtual Drug Screening On Many-Core
Processors,” International Journal of High Performance Computing
Applications, 2014.

[6] T. Deakin, S. McIntosh-Smith, M. Martineau, and W. Gaudin, “An im-
proved parallelism scheme for deterministic discrete ordinates transport,”
International Journal of High Performance Computing Applications,
2016.

[7] E. Lewis and W. Miller, Computational methods of neutron transport.
John Wiley and Sons, Inc.,New York, NY, Jan 1984.

[8] P. Andreo, “Monte Carlo techniques in medical radiation physics,”
Physics in medicine and biology, vol. 36, no. 7, p. 861, 1991.

[9] R. Procassini, M. OBrien, and J. Taylor, “Load balancing of parallel
Monte Carlo transport calculations,” Mathematics and Computation,
Supercomputing, Reactor Physics and Nuclear and Biological Appli-
cations, Palais des Papes, Avignon, Fra, 2005.

[10] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis et al., “The Landscape
of Parallel Computing Research: A View from Berkeley,” EECS Depart-
ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2006-
183, Dec 2006.

[11] T. P. Wilcox Jr, “COG: A particle transport code designed to solve the
Boltzmann equation for deep-penetration (shielding) problems: Volume
1: User’s Manual,” Lawrence Livermore National Lab., CA (USA), Tech.
Rep., 1989.

[12] N. Gentile, “Monte Carlo Particle Transport: Algorithm and Performance
Overview.” Livermore, CA: Lawrence Livermore, 2005.

[13] P. K. Romano, “Parallel algorithms for Monte Carlo particle transport
simulation on exascale computing architectures,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2013.

[14] A. Siegel, K. Smith, K. Felker, P. Romano, B. Forget, and P. Beckman,
“Improved cache performance in Monte Carlo transport calculations
using energy banding,” Computer Physics Communications, vol. 185,
no. 4, pp. 1195–1199, 2014.

[15] I. Lux and L. Koblinger, Monte Carlo particle transport methods:
neutron and photon calculations. Citeseer, 1991, vol. 102.

[16] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, “Parallel
random numbers: as easy as 1, 2, 3,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2011 International Conference
for. IEEE, 2011, pp. 1–12.

[17] T. J. Urbatsch and T. M. Evans, “Milagro Version 2 An Implicit Monte
Carlo Code for Thermal Radiative Transfer: Capabilities, Development,
and Usage,” Los Alamos National Laboratory (LANL), Los Alamos,
NM, Tech. Rep., 2006.

[18] P. K. Romano and B. Forget, “The OpenMC Monte
Carlo particle transport code,” Annals of Nuclear Energy,
vol. 51, pp. 274 – 281, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0306454912003283

[19] A. R. Siegel, K. Smith, P. K. Romano, B. Forget, and K. G. Felker,
“Multi-core performance studies of a monte carlo neutron transport
code,” The International Journal of High Performance Computing
Applications, vol. 28, no. 1, pp. 87–96, 2014. [Online]. Available:
http://dx.doi.org/10.1177/1094342013492179

[20] N. Horelik, B. Forget, K. Smith, and A. Siegel, “Domain decomposition
and terabyte tallies with the OpenMC Monte Carlo neutron transport
code,” Tech. Rep., 2015.

[21] S. McIntosh-Smith, M. Boulton, D. Curran, and J. Price, “On the
Performance Portability of Structured Grid Codes on Many-Core Com-
puter Architectures,” in Supercomputing, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8488, pp. 53–75.

[22] M. Martineau and S. McIntosh-Smith, “The arch Project: Physics
Mini-apps for Algorithmic Exploration and Evaluating Programming
Environments on HPC Architectures,” in The International Workshop
on Representative Applications (WRAp), 2017.

[23] A. Mallinson, D. Beckingsale, W. Gaudin et al., “Towards Portable
Performance for Explicit Hydrodynamics Codes,” 2013.

[24] W. Gaudin, A. Mallinson, O. Perks, J. Herdman, D. Beckingsale,
J. Levesque, and S. Jarvis, “Optimising Hydrodynamics applications for
the Cray XC30 with the application tool suite,” The Cray User Group,
pp. 4–8, 2014.

[25] R. F. Bird, S. J. Pennycook, S. A. Wright, and S. A. Jarvis, “Towards
a Portable and Future-Proof Particle-in-Cell Plasma Physics Code,”
Proceedings of 1st International Workshop on OpenCL (IWOCL 13),
2013.

