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Abstract. Hierarchical classification is commonly defined as multi-class
classification where the classes are hierarchically nested. Many practical
hierarchical classification problems also share features with multi-label
classification (i.e., each data point can have any number of labels, even
non-hierarchically related) and novelty detection (i.e., some data points
are novelties at some level of the hierarchy). A further complication is
that it is common for training data to be incompletely labelled, e.g. the
most specific labels are not always provided. In music genre classifica-
tion for example, there are numerous music genres (multi-class) which
are hierarchically related. Songs can belong to different (even non-nested)
genres (multi-label), and a song labelled as Rock may not belong to any
of its sub-genres, such that it is a novelty within this genre (novelty-
detection). Finally, the training data may label a song as Rock whereas
it really could be labelled correctly as the more specific genre Blues
Rock. In this paper we develop a new method for hierarchical classifi-
cation that naturally accommodates every one of these properties. To
achieve this we develop a novel approach, modelling it as a Hierarchical
Novelty Detection problem that can be trained through a single convex
second-order cone programming problem. This contrasts with most ex-
isting approaches that typically require a model to be trained for each
layer or internal node in the label hierarchy. Empirical results on a music
genre classification problem are reported, comparing with a state-of-the-
art method as well as simple benchmarks.

Keywords: Hierarchical Classification, Novelty Detection, Optimiza-
tion, Music Genre Classification, Music Information Retrieval

1 Introduction

Multi-Class Classification (MCC) is defined as the task of assigning one of three
or more labels to a training instance. Most approaches to MCC break this prob-
lem down in a set of simpler problems, typically two-class classification problems.
Examples include One vs All, One vs One and Error Correcting Output Code



(ECOC) approaches [1]. These approaches, however, fail to take into account
particular structure amongst the labels. A particular case of interest is Hierar-
chical Classification (HC), where labels are hierarchically nested. For example
in Music Genre Classification (MSC), if a song is labelled with Blues Rock the
hierarchical relation among genre labels implies that it can be labelled with Rock
as well. Also in domains such as image [2], text [17] and phoneme [5] classifica-
tion, assuming hierarchical label relations provides both enhanced accuracy and
more straightforward interpretation.

As a motivation for the present paper, we use the Music Genre Classification
(MGQC) task [4,10,11,13,15]. MGC is confronted with a number of issues:

1. Music genres are hierarchically organised (see Sec. 2.1 for a discussion). This
means that if a label applies (e.g. Blues Rock), then all more generic labels
must automatically apply as well (e.g. Rock).

2. Some songs are influenced by several non-hierarchically related genres. Thus,
several labels can apply, even if not directly related in the genre hierarchy.

3. Some songs can only sensibly be categorised into high-level genres (commonly
cited examples: Rock, Classical) and not easily into any subgenre, whereas
others might be highly specific (Melodic Death Metal).

4. However, the labels provided for some data points in commonly available
training sets are not always maximally specific, i.e., a Blues Rock song may
be labelled as Rock but not as Blues Rock. Some genre labels may also be
altogether missing, e.g. because the genre label was unknown by the data
annotator. In other words, while the presence of a label in the training implies
that this label applies to that song, the absence of a label does not imply
that it does not apply.

The first issue makes MGC a HC problem. Due to the second issue, MGC is
also inherently a Multi-Label Classification problem. The third issue means that
for each class there are really only positive examples available in the training
set, as the absence of a label for a data point does not imply that that data
point is a negative example for that class. MGC is thus reminiscent of Novelty
Detection (ND) [14]. Finally, to account for the fourth issue, a suitable method
must be capable of predicting a (set of) label(s) that are not necessarily maxi-
mally specific. We believe that these four issues are relevant in many practical
problems beyond MGC.

A naive approach to tackle issues 2-4 would be train a ND method for each
of the different classes. Given a song, it can then be labelled with the genres
for which the song is not a novelty. Unfortunately, this approach neglects the
hierarchical nature of the set of genre labels (issue 1).

In this paper we are interested in extending a well-known ND method to
the hierarchical setting, leading to a method that we call Hierarchical Novelty
Detection (HND). To the best of our knowledge, HND is the first method that
accounts for all four issues highlighted above. A further benefit of HND is that it
can be trained by solving a single convex second-order cone programming prob-
lem, making it a global or ‘big bang’ approach—such approaches are considered
preferable over the more common approaches that train a collection of models
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Fig. 1. Example of music genre relationships. (a): flat classification, where every genre
is a subgenre of the root. (b) tree structure, where the hierarchical nature of genres is
explicit. If links such as Blues — Blues Rock are included, the tree becomes a DAG.

for different levels in the hierarchy of labels [13]. Additionally the method allows
for labels to belong to various branches. Whether a novelty or not, we are able to
enrich the information about data points and this is relevant in MGC at least for
automatic identification of erroneously-annotated genre labels and for identifi-
cation of emerging music styles. To validate the method, we present experiments
on a set of samples from a publicly available dataset tagged by Last.fm users.
We defined a hierarchy over the genres in these data, but intentionally left a
subset out, to assess the extent to which our algorithm would identify songs
which belonged to this missing node in the graph as being novel.

The remainder of this paper is structured as follows. In Section 2 we re-
view existing approaches before introducing our proposed method in Section 3.
Experiments and conclusions are presented in Section 4.

2 Background

In this Section we delve deeper into how hierarchical classification and novelty
detection operate and outline the terminology and notation using MGC as do-
main, so that we can introduce our method concisely in Section 3. We begin
with a discussion on how relationships between genres can be represented math-
ematically.

2.1 Genres relationships: graphs, DAGs or trees?

For many problems, as in MGC, the relationship between classes can be for-
malised mathematically as a graph, with nodes equal to genres and edges be-



tween nodes representing relationships between genres. The exact nature of the
graph is the subject of current scholarly work. The model could be a directed or
undirected graph, with or without weights on the edges, with or without cycles
(in the directed case). Commonly the choice is between trees or Direct Acyclic
Graphs (DAG), but any election of a graph structure is only an approximation
of reality, a compromise reached for pure modelling purposes. Here, the set of
music genres is modelled as a Directed Acyclic Graph (DAG); see Fig. 1(b). The
root in this DAG will correspond to all genres, while the leaf nodes correspond
to the most specific genres. An edge connecting genre A to genre B means that
genre B is a subgenre of genre A. The flexibility of a DAG structure means that,
for example, Blues Rock may be a subgenre of both Blues and Rock.

2.2 Hierarchical classification

A very naive approach is a single multi-class classifier trained to discriminate
between each of the classes. This model ignores the hierarchical structure of the
labels given by the nature of music genres and therefore often performs poorly
when compared to models that explicitly exploit this information. The three
main hierarchical approaches are listed below. For a comprehensive review of
HC we refer the reader to [13] and the references therein.

Flat classifier approach A flat classification approach ignores the hierarchy
being able to predict only the leaf nodes, i.e., the most specific subclasses, and
then considers the IS-A relationship in the hierarchy for a multi-label classifi-
cation. Such an approach is unlikely to be beneficial for the performance of the
classifier.

Local classifier approach These methods are designed as a sequence of flat
classifiers. They are often top-down in nature, first classifying each test point
into one of the children of the root, and then iterating over the children. Either
the process continues until the test point reaches a leaf (mandatory leaf node
prediction in the language of [13]), or some stopping criteria are applied (non-
mandatory leaf node prediction).

Global classifier approach The most sophisticated approaches yield a single
overall model, trained at once on the entirety of the data. These are known as
‘big-bang’ approaches and are the most principled. However, only a handful of
methods exist that fall into this category [7,9,12]. Our method falls within this
category.

2.3 Novelty detection

The goal of Novelty Detection (ND) is to decide if new points belong to (one or
more) classes present in the data. A natural way to approach this problem is to
enclose the data within a decision surface, with any points that fall outside the
surface classified as novel. The most common surface is the hypersphere [14].



Hard margin novelty detection Let x = {z1,...,2,} be a set of n data
points with z; € R% i = 1,...,n. The simplest form of novelty detection fits a
hypersphere H = (i, R) around the data, specified by a centre vector u € R?
and radius R € R. Finding the H which most tightly fits the data x amounts to
solving the following optimisation problem:

min R?, subject to (1)
R,p
R>0 (2)
HXi—,UHQSRQ, 7::17"'7’“” (3)
where || - || represents Euclidean norm. The objective (3) is convex in R? and y,

meaning the above problem can be solved efficiently using gradient descent or
similar methods.

Soft margin novelty detection A common variant of the problem above
is to allow some points to be slightly outside the enclosing hypersphere. This
allows for extreme values to be ignored and is more robust in train/test settings.
Introducing slack variables £ € R,7 = 1,...,n and a hyper-parameter C' € R,
the objective then becomes:

min R?+C i, subject to 4
Rt ;51 J ( )

& >0, R>0 (5)

lx; —p|P <R*+&, i=1,...,n, (6)

This problem is still convex, but has an increase in computational complexity
due to the increased number of parameters.

Soft margin novelty detection with multiple classes Similarly to the mul-
tiple one-class SVM-based method [8], it is possible to perform novelty detection
with multiple known classes. One simply solves the problem (4) subject to (6) for
each class. Suppose that for each of the x; we have a label y; € {1,..., K'}. Then
it is required to find K hyperspheres {#H1,...,Hr} = {(u1, R1), ..., (ux, RK)},
which may be done via:

K n
. 2 .
Irzn;ins Zl Ry + 02 &, subject to (7)
§ >0, Rp,>0 (8)
% — py 1P < RZ, + &, i=1,...,n. (9)

Note that since there is no interaction between any hypersphere pj or Ry, this
problem can be solved independently for each k. However, using the above for-
mulation is faster in practice due to the reduced overhead.
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Fig. 2. Flat classification, HC, ND and the proposed HND within a three classes ex-
ample: black, grey (upper left corner) and light grey (lower right corner). In (a), the
point x is classified as belonging to the grey class. In (b) and subsequent plots, grey
and black are assumed to share the same parent. Here, x is classified as grey_or_black
and then possibly into one of grey or black, and y is classified as light grey. In (c),
x and y are classified as normal whilst z is classified as novel. Finally in (d), x is clas-
sified as grey_or_black, but novel to the classes grey, black and light grey, whilst
y is classified to be belonging to the dataset—see (c)—but none of its subclasses. z
is considered novel as before. Note that for (c) and (d) the slack variables allow some
points to fall slightly outside the spheres.

Using 2-dimensional toy data, Fig. 2 illustrates the differences between flat
classification, hierarchical classification, novelty detection and our proposed hi-
erarchical novelty detection, that we introduce below.

3 Hierarchical Novelty Detection and Classification

As previously illustrated in Sec. 1, hierarchical classification methods must sat-
isfy a number of design criteria. They must be able to operate in the multi-label
setting (both for the training set and for prediction). They must be able to work
with hierarchies that can be DAGSs, not just trees. They must predict label sets
that are upper sets of the DAG: for each predicted genre, all of its more generic
genres (higher in the DAG) must be predicted as well. We will refer to this cri-
terion as the consistency criterion of the label set. And finally, they must be
able to deal with training examples for which the label sets are incomplete. To
the best of our knowledge, no existing methods satisfy all of the design criteria
listed above and, importantly, none of them naturally deals with the fact that
the training label sets may be incomplete.

3.1 Hierarchical Novelty Detection

We take inspiration from the novelty detection methods listed in Sec. 2.3, with
the only addition that we enforce relationships between the hyperspheres (H;,
..., HK) by encoding the dependencies present in the hierarchy. Suppose that
the labels y; are arranged in a hierarchy, which may be realised as a rooted
DAG with nodes labelled {1,..., K}. Assuming w.l.o.g. that the label 1 is the



root of the DAG, each label k € {2,..., K} has a parent label set, which we
denote by Pa(k). We then represent the subclass constraint by insisting that the
hyperspheres for the subclasses are nested:

K n
gl;l}}g ;Rk + C;&, subject to (10)

& >0, R,>0 (11)
[|%; — py|| < Ry, + &, i=1,...,n. (12)
[|[pack) — txl| < Rpagry — B, k=2,..., K, (13)

This is a convex problem and is always feasible as we can trivially set all ux to be
the centre of the data, Ry equal to each other and large enough to encapsulate
all the data, and &; equal to 0. It is clear that in this case Equations (11-13) are
satisfied, and since the problem is convex we may use this as an initial solution
and improve our objective to a global minimum. It also admits an interpretation
of the C' parameter, as we demonstrate below.

3.2 Interpretation of the hyperparameter C

Along with convexity, Equations (10-13) present another interesting property
regarding the interpretation of the hyperparameter C. Suppose that (10) is solved
optimally for a given set of data points, and that the optimal objective is found
to be L* = EZ:1 Ry +C >, & . Now suppose that there is an increase in all of
the R}, so that R} — R} + A, where A € R*. Adding A to each of the K radii
corresponds to adding K A to the objective and, since L* is optimal, this means
there must be a reduction in C' Y} | & of KA. Therefore we want to determine
how the slacks & adjust in order to meet this arbitrage. With the original values
of R*, & satisfied,

& > llws — i3 || - Ry, (14)

by simply re-arranging constraint in (12). Denoting the adjusted slack variables
as &;, for values of the new R*, they must satisfy,

& > |l — || - By, — A (15)

Taking the difference of (14) and (15), summing over 4, and multiplying by C
we arrive at,

CY & —&>CnA. (16)

i=1

However, note that for some of the z;, the slacks will not need to be adjusted, as
they will remain within Ry of y,,. Let J C {1,...,n} be the set of points for
which the slacks need to be adjusted, with |J| = J < n. J can be understood as
the number of outliers in the optimal solution, as it corresponds to the number



of points which are outside their corresponding hypersphere. For all other i ¢ J
we may set & = & and so (16) becomes,

CY & —¢>CJIA (17)

JjeT
Recall that we require this change to be KA at the optimum, so we conclude
that CJA > KA or equivalently C' > % Remarkably, this means that we may
adjust C to directly control how many outliers we are willing to tolerate in our

problem. For example, if we wish to tolerate exactly one outlier, we should set
C =K.

4 Experimental Results

To validate our method we considered a comparison, using Hierarchical Preci-
sion and Recall as defined in [13], against our implementations of the methods
depicted in Sec. 2.2 as well as the hierarchical clustering algorithm from CLUS
library [16]. The former were implemented using one vs all approach with linear
Support Vector Machines as base classifier: a general one discriminating between
each class, a flat and a local hierarchical classifier. For the local classifier we used
a ‘siblings policy’ [6] for every node, i.e., considering samples for a parent node
and the child siblings as labels. Experiments were run over a subset of the sam-
ples provided by the Million Song Dataset [3] selected according to a user defined
taxonomy meant to allow for the possibility of discovering novelty genres in the
dataset. We will first proceed with the definition of the performance measures
and then with a description of the dataset before the final discussion.

4.1 Hierarchical Precision and Recall

Let us consider P; as one element in the set of predicted values for a sample by
any of the classifiers and T; as the set of real labels for the same sample. The
definitions for hierarchical precision (hP) and recall (hR) are:

DA LCTak I o skt
> |l 2. 1Tl

It is worth noting how this definition is the most inclusive possible as it con-

siders the possibility of multiple outputs for the classifier, although flat and

local solutions will mostly output a value in the hierarchy while considering the

superclasses labels. This is a well known problem affecting different methods

thoroughly discussed in [13]. In this sense, CLUS is among all methods the most
similar to HND for its ability to produce multiple labels along different branches.

hP (18)

4.2 Million Song Dataset

The Million Song Dataset [3] is a publicly available dataset constituted by fea-
tures collected by the Echo Nest, which has been additionally enhanced by a



Table 1. Summary of the dataset. Columns from left to right indicate respectively
name of the main tag/class for a sample, number of samples included in the dataset,
maximum number of tags per sample, average number of tags per sample and whether
the current class was meant to be discovered as a novelty.

| label [samples max tags|avg tags[novelty‘

blues rock| 100 4 2.07 No
blues 100 5 1.64 No
classical 100 3 1.05 Yes
country 100 5 1.46 Yes
electronic| 100 4 1.58 No
folk 100 6 1.69 Yes
jazz 100 5 1.37 Yes
metal 100 4 1.33 No
pop punk| 100 6 1.89 No
pop 100 4 1.58 No
punk rock| 100 5 1.69 No
rock 100 4 1.56 No
synth pop| 100 4 1.67 No
all genres| 1300 6 1.58 No

collection of annotations retrieved from the Last.fm website by means of tags
(labels) for every song in the set. These tags were used to select a subset of sam-
ples according to a user defined hierarchy of 13 different music genres. However
only 9 of them are featured in the taxonomy represented by the thick lines in
Fig. 1(b). For the purpose of testing, the algorithm was required to discover the
remaining 4 genres as novelties by labelling them as all genres samples.

The selection considers all the available tags for a single song. For example
a sample tagged as both rock and pop rock by the users was considered as
belonging to both classes. No limit over the number of labels was imposed except
for the fact that only labels belonging to the taxonomy were considered. The
choices resulted in an expansion of both training and test set: the previously
described example was used as training sample for both the classes in such
a context. For this reason the set-up affected and in some way penalized the
performance according to the given definition of hP and hR because a prediction
over the same example was considered partially or fully correct depending on the
number of correct tags in the output. Table 1 gives an overview of the sample
distribution. Training and test sets were built by splitting the collection in half.

4.3 Discussion and Conclusions

Experiments were performed to first study the effect of the variation of C on
the performance in terms of AP and hR. The chosen range for the fraction of
novelties was [0.005,0.7]. As shown in Fig. 3(a) HND scored better, as expected,
than a traditional method as a general One vs All (OVA) multi-class classifier,
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Fig. 3. Evaluation of precision and recall with significant values of C specified along
HND plot: (a) Hierarchical precision and recall for all evaluated methods. (b) Precision
and recall for novelty detection.

similar to the FLAT classifier for a certain range of C and it was outperformed
by other hierarchical strategies like CLUS and the local classifier (HOVA). We
believe that in the case of CLUS, better performances are due to the specific
clustering strategy which applies discriminant weights while descending down
the hierarchy. Unfortunately, our formulation does not allow a straightforward
integration (with relative interpretation) of a weighting strategy which might
reduce the performance gap.

By definition HOVA and FLAT are able to output multi-class labels, but
they are limited to the set of node labels that are on the path between the root
and the lowest classified node, but still HOVA is comparable with CLUS. CLUS
and HND, especially the latter, may de facto be penalized by their ability to
descend through different branches of the hierarchy and defected by excessive
specialization. The measures defined in (18) may not be adequate to actually
evaluate our algorithm.

Hierarchies and their arbitrariness usually represent the weakness of hier-
archical approaches as there is no unifying framework for the taxonomies. For
instance, consider a sample which is simply labelled pop punk in the hierarchy
of Fig. 1(b). It is more likely that it belongs to pop even if it is just labelled
as pop punk by many users. In Fig. 3(a) we explicitly marked the values of C
close to our method’s plot in order to show how increasing the ‘discovery’ factor
affects our precision as the denominator in AP is raised a lot by the tendency to
predict too many labels. Conversely high values of recall are due to this tendency
of hyperspheres from apparently far genre nodes in the hierarchy being instead
very super-imposed. Such observations also suggest how a different model, e.g.



ellipsoids, or a kernel version could lead to further improvements. This will be
explored as future work together with the possibility for samples to be labelled
as external to the set of nested hyperspheres, which may imply that a genre do
not even belong to the range included in all genres.

The ability to discover novelties is presented in Fig. 3(b). Both precision
and recall were evaluated by considering novelty and non-novelty samples as
positive and negative samples, respectively. As expected C' varies according to
the fraction of novelties and therefore to recall values. However here CLUS shows
how its precision may be very high on genres which are effectively far from those
belonging to hierarchy. Being those the majority of the test samples, and given
the effects of the weighting strategy on favouring higher levels of the hierarchy,
the performance values were definitely raised.
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