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LINEARISATIONS AND THE ERSHOV HIERARCHY

S. BARRY COOPER, JAMES GAY, CHARLES M. HARRIS, KYUNG IL LEE,
AND ANTHONY MORPHETT

Abstract. A partial order is computably well founded if it does not computably em-
bed a copy of ω∗, the order type of the negative integers. It is computably scattered if
it does not computably embed a copy of η, the order type of Q. It is known that, for
each of these properties, there are computable partial orders satisfying the property
which do not have a computable linear extension with the same property. Rosenstein
showed, however, that for both of these properties, every computable partial order
satisfying the property has a ∆0

2 linear extension also satisfying the property. Thus,
linear extensions of a computable order preserving the properties of computable well
foundedness or computable scatteredness can always be found at the ∆0

2 level of the
arithmetical hierarchy, but not at the ∆0

1 level. In this paper, we investigate at which
level of the Ershov hierarchy such linear extensions can be found. We show that,
for both properties, every computable partial order satisfying the property has an
ω-c.e. linear extension with the same property. We establish that this is the best pos-
sible result within the Ershov hierarchy by constructing, respectively, computably well
founded and computably scattered orders which do not have n-c.e. linear extensions
which are computably well founded and computably scattered respectively, for any
n < ω. In a strengthening of Rosenstein’s theorems in another direction, we show
that a linear extension preserving each of these properties can be computed using any
oracle satisfying an escape property, which includes the class of non-generalised low2

sets. Finally, we show that the analogue of Rosenstein’s theorems do not hold for the
property of not computably embedding a copy of ζ, the order type of the integers, by
constructing a computable partial ordering which does not embed ζ, but such that
every ∆0

2 linear extension of the ordering does admit a computable embedding of ζ.
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2. Introduction

A common question in the study of partial orders is: which properties Q of a partial
order P can be preserved when taking a linear extension of P? That is to say,

if P is a partial order satisfying property Q,
is there a linear extension L of P which also satisfies Q?

(2.1)

Prominent examples of properties Q for which this is true include the property of
being well founded, due to Bonnet [Bon69], and the property of being scattered, due
to Bonnet & Pouzet [BP82] and Galvin & MacKenzie (unpublished). ‘Well founded’
and ‘scattered’ mean, respectively, not embedding the order type ω∗ of the negative
integers, and the order type η of the rational numbers. (Precise definitions of these and
other notions referred to above are deferred until section 3.)

From a computability perspective, we may ask:

if P is a computable partial order satisfying property Q,
is there a computable linear extension L of P which also satisfies Q?

(2.2)

In the case where Q is the property of being well founded, Rosenstein and Kierstead
(in [Ros84]) showed that the answer is yes: every well founded computable partial
order does have a well founded computable linear extension. For the property of being
scattered, the answer was later shown to be ‘no’ by Downey, Hirschfeldt, Lempp and
Solomon [DHLS03].

Rosenstein and Kierstead’s result is a partial effectivisation of Bonnet’s theorem that
every well founded partial order has a well founded linear extension. However, Rosen-
stein noted that it is not a complete effectivisation as, although the notion of order has
been effectivised (by the introduction of the adjective computable), the notion of well
foundedness has not. Therefore, Rosenstein proposed a weaker form of the properties
of well foundedness and scatteredness. An order P is computably well founded (respec-
tively, computably scattered) if there is no computable embedding of ω∗ (respectively, η)
into P . Rosenstein and Statman (in [Ros84]) showed that (2.2) does not hold for the
property of computable well foundedness: there is a computably well founded, com-
putable partial order P which does not have a computably well founded, computable
linear extension. Their counterexample P was a computable tree with no computable
infinite path.

If the answer to (2.2) is ‘no’ for a particular property Q, then we may ask the more
general question, what is the minimum complexity of a linear extension L of P needed
to preserve property Q? The complexity of an order may be measured, for example, by
its position in the arithmetical hierarchy, or by the type of oracle needed to compute the
order. Rosenstein took the first steps toward answering this question for the properties
of computable well foundedness and computable scatteredness, offering the following
two theorems in [Ros84].

Theorem 2.1 (Rosenstein). Every computably well founded computable partial order
P has a computably well founded linear extension L which is ∆0

2.

Theorem 2.2 (Rosenstein). Every computably scattered computable partial order P
has a computably scattered linear extension L which is ∆0

2.

The proof of Theorem 2.1 uses an oracle for the halting set ∅′ to construct the required
linear extension (thus yielding a ∆0

2 order by the Limit Lemma, given below as Lemma
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3.1). No proof of Theorem 2.2 was given in [Ros84], and to our knowledge a proof of
this theorem has not yet appeared in publication.

Rosenstein’s theorems thus give an upper bound of ∆0
2 for the minimum complexity

of a linear extension required to preserve the properties of computable well founded-
ness and computable scatteredness. In a survey chapter [Dow98] for the Handbook of
Recursive Mathematics, Downey asks whether this bound on the minimum complexity
can be reduced any further. Rosenstein’s theorems give the best possible bound within
the arithmetical hierarchy, since any Π0

1 or Σ0
1 linear order with computable domain is

in fact computable.
Therefore, to further sharpen our understanding of the minimum complexity, two

approaches present themselves: to investigate the complexity within a more fine-grained
subhierarchy of the class of ∆0

2 sets, or to use another measure of complexity aside from
the arithmetical hierarchy.

In this paper, taking the first approach, we investigate the problem using the Ershov
hierarchy, a well-known subhierarchy of the class of ∆0

2 sets. In section 4, we show
that the bound on the minimum complexity can be reduced to ω-c.e. within the Ershov
hierarchy. That is, every computably well founded (respectively, computably scattered)
computable partial order has a computably well founded (computably scattered) linear
extension which is ω-c.e. In section 5, we show that this bound cannot be reduced
any further within the Ershov hierarchy, by constructing a computably well founded
(respectively, classically scattered) computable partial order P which does not have a
computably well founded (computably scattered) linear extension L which is n-c.e. for
any n < ω. We thus identify the minimum level in the Ershov hierarchy at which linear
extensions preserving the properties of computable well foundedness and computable
scatteredness may be found.

As a step towards the second approach, in section 4 we also show that any oracle
satisfying an escape property, which includes all non-generalised low2 (non-GL2) sets,
can compute a computably well founded (respectively, computably scattered) lineari-
sation of a computably well founded (computably scattered) computable partial order.
Thus the information content of the oracle ∅′ used in Rosenstein’s proof of Theorem
2.1 can be reduced. To conclude, we turn our attention briefly to the property of not
computably embedding the order type ζ of the integers. We show that in this case the
minimum complexity required to preserve the property of not computably embedding
ζ is higher: we construct a computable linear order P which does not embed ζ, but
such that every ∆0

2 linearisation of P admits a computable embedding of ζ.

3. Preliminaries

We assume {We}e∈N to be a listing of c.e. sets with associated c.e. approximation
{We[s]}e,s∈N, such that x ∈ We[s] =⇒ x < s and |We[s + 1] \We[s]| ≤ 1 for all e and
s. We use ∅′ to denote the halting set { e | e ∈ We } and A≤TB to signify that the
set A is Turing reducible to set B (or is B-computable)—meaning that there is some
Turing machine with oracle B that computes A (under the identification of a set with
its characteristic function). 〈·, ·〉 is a standard 1-1 computable pairing function over the
integers satisfying max {n,m} ≤ 〈n,m〉 for all n,m ∈ N.

Lemma 3.1 (Schoenfield). Let A be a set. The following are equivalent.

1) A≤T∅′.
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2) A is ∆0
2.

3) There is a computable function f : N× N→ {0, 1} such that
(a) For all n ∈ N, f(n, 0) = 0.
(b) For all n ∈ ω, lims→∞f(n, s) = A(n).

We generally use notation of the form A(n)[s] to denote such f(n, s) and {A[s]}s∈N to
denote the derived approximation to A—where we may also think of A[s] as a (finite)
set. We say that such an approximation is ∆0

2.
Ershov’s Hierarchy [Ers68a, Ers68b, Ers70, Ars11] gives a classification of the ∆0

2

sets in terms of (notations of) the computable ordinals. Roughly speaking the place
of a ∆0

2 set A in the Ershov Hierarchy is given by measuring how long it takes for an
optimal (in terms of time) ∆0

2 approximation {A[s]}s∈N to A to settle down on any
input n ∈ N—where we say that {A[s]}s∈N has settled down at stage t on input n if
A(n)[s] = A(n) for all s ≥ t.

The present paper is concerned with the initial segment of the Ershov Hierarchy de-
fined relative to the finite ordinals 0, 1, 2, . . . and ω. Accordingly we apply the following
commonly used variant of Ershov’s original definition.

Definition 3.2. A ∆0
2 set A is said to be ω-computably enumerable (or ω-c.e.) if there

is a ∆0
2 approximation {A[s]}s∈N to A and computable function g : N→ N such that

|{ s | A(n)[s+ 1] 6= A(n)[s] }| ≤ g(n)

for all n ∈ N. A is said to be k-computably enumerable (or k-c.e.) for finite k if we can
choose g : N→ {k}, i.e. if A(n)[s+ 1] 6= A(n)[s] for at most k stages s. For γ ≤ ω, we
use Σ−1γ to denote the class of γ-c.e. sets and Σ−1<ω to denote

⋃
k<ω Σ−1k , i.e. the class of

all sets that are k-c.e. for some finite k.

We note the existence of a listing {R〈k,e〉}k,e∈N—which we shall use in section 5—of
the class Σ−1<ω with computable approximation {R〈k,e〉[s]}k,e,s∈N where, for any k, e ∈ N,
{R〈k,e〉[s]}s∈N is a k+ 1-c.e. approximation to the k+ 1-c.e. set R〈k,e〉. Indeed this easily
follows1 from the result (originally due to Ershov) that such a listing exists for any
fixed k + 1, by observing that the associated (k + 1-c.e.) approximation is constructed
uniformly in k + 1.

1Another way of doing this directly is in terms of the representation of n-c.e. sets as the union of
differences of c.e. sets. Accordingly—letting (e)i denote the the ith projection of e coded as a sequence
of length n+ 1—define g : N3 → N such that

Wg(n,e,k) =

{ ⋂
0≤i≤kW(e)i if 0 < k ≤ n
∅ otherwise.

Note that n dictates the choice of sequence into which we decode e (using the coding of finite sequences
induced by our pairing function). Thus if n = 2 the code e = 〈d0, d1, d2〉 is used with (e)i = di. Notice
that, by convention, if n = 0, e = 〈e〉 so that (e)0 = e. We now set

R〈n,e〉 =

bn2 c⋃
i=0

Wg(n,e,2i) \Wg(n,e,2i+1)

with R〈n,e〉[s] defined by using the s stage approximations of the c.e. sets involved in its definition.
It is easy to check that {R〈n,e〉[s]}s∈N defines an n + 1-c.e. approximation to R〈n,e〉. For example, if
e = 〈e〉 = 〈c0, c1〉 = 〈d0, d1, d2〉 then R〈0,e〉 = We, R〈1,e〉 = Wc0 \ (Wc0 ∩ Wc1) and

R〈2,e〉 = Wd0
\ (Wd0

∩ Wd1
)
⋃

(Wd0
∩ Wd1

∩ Wd3
) ,
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We say that P = (P,<P ) is a partial order if <P is irreflexive, asymmetric and
transitive. For (distinct) a, b ∈ P if neither a <P b nor b <P a we say that a, b are
<P -incomparable written a |P b and we say that a, b are <P -comparable otherwise. We
use (a, b)P to denote the subpartial order of P made up of those element lying strictly
<P -between a and b and we use square brackets to indicate inclusion of the limiting
elements. (E.g. [a, b]P includes both a and b.) We refer to the latter as <P -intervals.
Note that in Section 5, having duly forewarned the reader, we drop the “P” subscript
in our notation for intervals. We use the notation (a, b)P∗ to denote the set of elements
lying strictly <P -between a and b in P—where the actual <P -ordering of a and b is not
significant. For convenience we use −∞ and +∞ to denote notional elements such that
−∞ <P x and x <P +∞ for all x. We say that L = (L,<L) is a linear order (that
we sometimes also call a chain) if, for all distinct a, b ∈ L, a and b are <L-comparable.
(I.e. a <L b or b <L a.) We say that L is a linear extension of (or linearises) P if
L = P and, for all a, b ∈ P a <P b ⇒ a <L b.

For a computational complexity class Γ (such as ∆0
1, Σ0

1, Π0
1, Σ−1<ω, Σ−1ω or ∆0

2) we say
that P = (P,<P ) is Γ if both P and <P are Γ. If the domain P is in fact computable we
usually make the identification P = (N, <P ) via a (computably invertible) computable
labelling of P . Note that any linear extension of a computable partial order P has
computable domain by definition.

We think of <P as both a subset of N×N and a characteristic function over N under
our pairing function 〈·, ·〉. Accordingly <P (〈n,m〉) = 1 if and only if n <P m. We also
generalise this notation to that of approximations of sets with <P (〈n,m〉)[s] denoting
the s-stage approximation to <P (〈n,m〉). We sometimes use letters such as R to denote
the order relation, for example using (N, R) to denote a partial/linear order.

A linear order type α is said to be computable if there exists a computable linear
order L = (L,<L) of type α. Note that we also refer to L as a computable copy of α
in this case. We say that partial order P = (P,<P ) (computably) embeds order type
α if there is a (computable) copy L = (L,<L) of α such that L ⊆ P and <L coincides
with <P over L—i.e. such that L = (L,<P � L). For two order types α, β we say
that β embeds α—written α ≤ β—if there is a copy Lβ of β which embeds α. 1 + α
(α+ 1) denotes α with a bottom (top) element adjoined. More generally α+β denotes
the linear sum of α and β. ω, ω∗, ζ and η denote respectively the order types of the
nonnegative integers, negative integers, integers, and rationals.

A partial order is said to be (computably) well founded if it does not (computably)
embed the order type ω∗. Note that it is easily shown that P is well founded if and
only if there is no infinite descending sequence x0 >P x1 >P x2 >P . . . contained in
P—which we refer to as an ω∗ sequence—and also that P is computably well founded
if and only if, for all indices e, {We[s]}s∈N does not enumerate such a sequence. We say
that P is (computably) scattered if P does not (computably) embed the order type of
the rationals η. Now, defining the dyadic function d : N→ Q ∩ (0, 1) by setting

d(n) =

{
1
2

if n = 0
1+2m
2k+1 if n = (2k − 1) +m for some k ≥ 1 and 0 ≤ m < 2k ,

from which it is obvious that the associated approximations (e.g. R〈0,e〉[s] = We[s] etc.) are respectively
c.e., 2-c.e. and 3-c.e. Note also that it is also easy to show that {R〈n,e〉}n,e∈N lists all the n + 1-c.e.

sets.
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we say that x0, x1, x2, . . . is an η-sequence in P if, for all distinct n,m ≥ 0, xn <P xm
⇔ d(n) < d(m). Note that we can also think of the xi as labelling nodes on a binary
tree—and thus alternatively use binary instead of dyadic representations of the indices
of the sequence—so that x0 labels the root and introduction of the labels of nodes of
length l+1 corresponds to “densifying” (from left to right) the labels of nodes of length
≤ l. For example, after enumerating 7 elements of our sequence—i.e. those elements
labelled by nodes of length ≤ 2—we have:

x3 <P x1 <P x4 <P x0 <P x5 <P x2 <P x6 .

Now it is also easily shown that P is scattered if and only if there is no η sequence
contained in P and is computably scattered if and only if, for all indices e, {We[s]}s∈N
does not enumerate such a sequence.

Remark. Using these notions and the methods used below and in [Gay16] we can build,
via computable constructions, ω-c.e. copies—with computable domain—Lω∗ and Lη of
ω∗ and η respectively, such that Lω∗ is computably well founded and Lη is computably
scattered.

Further background on the basic computability theoretic techniques used here can
be found in [Coo04, Soa87, Odi89, Web12]. We also refer the reader to [Dow98] for a
review of computability theoretic results in the context of linear orderings.

4. Extendibility Results

In this section we show that, for both of the properties computable scatteredness and
computable well foundedness and any computable partial order which satisfies one of
these properties, there exists an ω-c.e. linearisation of P that also satisfies that property.

Remark. Given a computable order type α and a computable copy of η, we know that
η computably embeds α. Note in particular that this implies that any partial order P
which is computably well founded is also computably scattered.

Before considering Theorem 4.1 below we note that an alternative proof of this result
using the notion of an η-sequence can be found in Chapter 4 of [Gay16].

Theorem 4.1. Every computably scattered computable partial order has a computably
scattered ω-c.e. linear extension.

Proof. Let P = (N, <P ) be a computably scattered computable partial order. We will
build a linear order L = (N, <L) via a computable construction where at each stage s
we define a finite approximation L[s] = (L[s], <L[s]) to L where <L[s] is a linearisation
of <P restricted to domain L[s]. These approximations are defined such that L[0] = ∅
and, for all s > 0, L[s] = {0, . . . , b s

2
c} (so that L[2t] = L[2t+ 1] = {0, . . . , t}). Defining

<L(〈n,m〉) = lims→∞<L(〈n,m〉)[s]

the construction will ensure that <L(〈n,m〉) is defined for all n,m ∈ N and moreover
that |{ s |<L(〈n,m〉)[s] 6= <L(〈n,m〉)[s + 1] }| < 2〈n,m〉 so that <L is ω-c.e. Our
construction will also be defined to satisfy for all indices e the following requirements:

Qe : if We is infinite then there exist distinct x, y ∈ We such that We ∩ (x, y)L∗ = ∅.
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In this way We cannot be the domain of a dense linear order embedded in L so that
satisfaction of Qe for all e implies that L is computably scattered2. The requirements
are ordered in the usual way so that Qi has higher priority than Qj if i < j.

Notes and Notation.

For any index e we let xe0, x
e
1, . . . denote the members of We in the order dictated by

the approximation {We[s]}s∈N of We. We say, if xei , x
e
j are both defined, that xei is

e-older than xej if i < j (and likewise that xej is e-younger than xei ) and we apply this
terminology directly without use of indices.

The strategy to satisfy requirement Qe is to find a suitable pair {xe, ye} ⊆ We—a wit-
ness—and to endeavour to ensure that the interval (xe, ye)L remains empty. Formally,
a witness is a tuple 〈e, xe, ye〉 where e ∈ N, xe, ye ∈ We. The construction will ensure
that xe <L ye for such witnesses. A witness set is a finite set of witnesses M such that
there is at most one tuple 〈e, xe, ye〉 ∈ M for each e. In addition to the ordering L[s],
our construction will define a witness set M [s] at each stage s. Define

te[s] =

{
max{xe, ye} if there is some 〈e, xe, ye〉 ∈M [s]

0 otherwise,

and note that te[s] essentially specifies the ‘portion’ of L that Qe wishes to preserve in
order to ensure (xe, ye)L∗ = ∅. We also define

Te[s] = max { ti[s] | i < e } ∪ {e} (4.1)

which is the (length of the) initial segment of N on which Qe is not permitted to
modify <L. Accordingly, elements smaller than Te[s] act as “barriers” against action
taken by requirement Qe at stage s+ 1 in order to preserve the work of higher priority
requirements (with the term {e} added to ensure that <L is ω-c.e.).

We now define some procedures which will be used in the construction as well as in
Theorem 4.9. The first procedure takes as input an ordering J = (J,<J) on a finite set
J = N �k for some k, and a witness set M of witnesses to be respected, such that J is a
linear extension of P �J = (J,<P �J), x <J y and (x, y)J is empty for any 〈i, x, y〉 ∈M .
The procedure extends the ordering J by one element, by inserting the new element as
high as possible in the ordering while respecting the witnesses, i.e. maintaining (x, y)J
empty.

Procedure P1

(
J ,M

)
: Single-point extension of J respecting M .

Let n = |J |. Produce a new linear order J ′ on domain J ′ = J ∪ {n} (i.e., extending
the domain of J by one) by inserting n as follows.

Case 1. There is no m ∈ J with n <P m. Then insert n as the top element in J ′,
thus defining x <J ′ n for all x ∈ J .

Case 2. There is some m ∈ J with n <P m. Let m be the <J -least such. There are
two subcases.

2It follows from the Remark at the end of the Section 3 that the class C of computable copies of η
is a proper subclass of the class D of copies of η whose domain is computable. Therefore our proof
rules out any embedding in L of a member of D and so, in effect, delivers more than just computable
scatteredness of L.
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Case 2a. m is not equal to yi for any 〈i, xi, yi〉 ∈ M . Then obtain J ′ by inserting n
as the immediate predecessor of m in J , thus defining x <J ′ n for x ∈ J with x <J m,
and n <J ′ x for x ∈ J with m <J x or x = m.

Case 2b. m is equal to yi for some 〈i, xi, yi〉 ∈ M . Then obtain J ′ by inserting n as
the immediate predecessor of xi in J , thus defining x <J ′ n for x ∈ J with x <J xi,
and n <J ′ x for x ∈ J with xi <J x or x = xi.

The result of P1

(
J ,M

)
is the order J ′ = (J ′, <J ′) obtained above.

End of Procedure P1.

The next procedure creates a new empty interval (xe, ye)J ′ to satisfy Qe, via a method
we call plummeting. The procedure takes as input a linear order J = (J,<J), a pair
p = {x, y} ⊆ J such that x|Py and an index e of a c.e. set such that x, y ∈ We.

Procedure P2

(
J , p, e

)
: e-plummeting the pair p = {x, y} in the order J .

Assume without loss of generality that x <J y. Let S be the <J -ordered set lying in
the <J -interval (x, y)J comprising precisely those elements z such that x <P z. If y is
e-older than x, then we remove the set {x} ∪ S and reinsert it immediately above y to
obtain J ′, whereas if y is e-younger than x, then we reinsert S immediately above y
and x immediately below y. We do this in such a way that the <J -order of {x} ∪ S is
preserved. For example, if S = {x0 <J x1 <J · · · <J xk} and y is e-older than x, then
y <J ′ x and the <J ′-interval [y, xk]J ′ in J ′ is precisely the chain

y <J ′ x <J ′ x0 <J ′ x1 <J ′ · · · <J ′ xk (4.2)

whereas if y is e-younger than x, then x <J ′ y and the <J ′-interval [x, xk]J ′ is the chain
in (4.2) with the order of x and y reversed. Note that x and y are <J ′-juxtaposed (i.e.
adjacent) in both cases.

The result of P2

(
J , p, e

)
is the order J ′ = (J,<J ′) where <J ′ is as above.

End of Procedure P2.

Note that, in the present construction the use of the ages of x and y is irrelevant beyond
the fact that it helps to fully determine the plummeting process. However, as we shall
see, it allows the present construction to be applied directly in Theorem 4.8.

At each stage s of the construction we will define a finite linear order L[s] and a set
of witnesses M [s] = {〈i, xi, yi〉 : i ∈ D} where D is a finite subset of N. If there is some
〈i, xi, yi〉 ∈M [s] then we say that Qi is on at the end of stage s; otherwise we say that
Qi is off at the end of stage s.
Qe requires attention at stage s + 1 if it is off at the end of stage s and there are

distinct numbers x, y such that

(i) x, y ∈ L[s] ∩ We[s], and
(ii) x |P y, and
(iii) both x, y and every number lying <L[s] between them is greater (under <N)

than Te[s].

The Construction

Stage 0. Define L to be the trivial order on L[0] = ∅ and define M [0] = ∅.

Stage s+ 1 with s even. We add n = s
2

to the order.
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Let L[s+ 1] be the order obtained by running Procedure P1

(
L[s],M [s]

)
.3

Declare M [s+ 1] = M [s] and proceed to stage s+ 2.

Stage s+ 1 with s odd. We look to take action for some requirement Qe by e-plummeting.

Case 1. Some requirement Qe with e < s+1
2

requires attention.4

In this case choose the least such e and the least (under coding 〈·, ·〉) pair x, y satisfy-
ing (i)-(iii). Let L[s+1] be the order obtained by running Procedure P2

(
L[s], {x, y}, e

)
.

Let xe be the e-older of the pair {x, y} and ye be the e-younger. Let M [s + 1] =
{〈i, xi, yi〉 : 〈i, xi, yi〉 ∈M [s] and i < e}∪ {〈e, xe, ye〉} (hence Qe becomes on and all Qj

with j > e become off ). We say that Qe receives attention in this case.

Case 2. Otherwise.
Simply define L[s+ 1] = L[s] and M [s+ 1] = M [s].

Verification.

Let WHA[s] denote our Working Hypothesis A at stage s defined to be the conjunction
of Conditions (1)-(3) below.

(1) L[s] is a linear extension of <P �L[s].
(2) If Qe is on at the end of stage s then there is a (unique) pair xe, ye such that
〈e, xe, ye〉 ∈ M [s] and the <L[s]-interval (xe, ye)L[s] is empty. Also xe is e-older
than5 ye. (And if Qe is off then there are no such elements.)

(3) For any 〈i, x, y〉 and 〈j, x′, y′〉 ∈M [s] with i 6= j, {x, y} ∩ {x′, y′} = ∅.

Remark. Condition 3 of WHA[s], when taken in conjunction with Condition 2, says
that, for witnesses 〈i, x, y〉 and 〈j, x′, y′〉 at stage s, either x <L y <L x′ <L y′ or
x′ <L y′ <L x <L y. So WHA[s] implies that there is a linear ordering over the set
of witnesses at stage s. Note that the truth of WHA[s] validates the ‘pre-condition’ of
Procedure 1 that J = L[s] is a linear extension of P �J , x <J y and (x, y)J is empty
for 〈i, x, y〉 ∈M = M [s].

A straightforward analysis of the construction and Procedures P1 and P2 yields the
following.

Lemma 4.2. For any stage s ≥ 0 of the construction, WHA[s] ⇒ WHA[s+ 1].

Now also let WHB[s] denote our Working Hypothesis B at stage s defined to be the
conjunction of Conditions 4-5 below.

(4) For any i such that Qi is on at the end of both stage s and s + 1, and any
x, y ∈ L[s] such that z ≤ ti[s] (= ti[s+ 1]) for some z ∈ {x, y}, x <L[s+ 1] y ⇔
x <L[s] y.

(5) For any x, y ∈ L[s] if, for all i ≤ max {x, y}, Qi does not receive attention at
stage s+ 1, then x <L[s+ 1] y ⇔ x <L[s] y.

3Procedure P1 requires that x <J y and (x, y)J is empty for each 〈i, x, y〉 ∈M ; we verify later that
this holds.

4The condition e < s+1
2 ensures that it is always the case that N � (Te[s] + 1) ⊆ L[s] when Qe

requires attention.
5This part of the Working Hypothesis is only relevant to the proof of Theorem 4.8.



10 S.B. COOPER, J. GAY, C. HARRIS, K.I. LEE AND A. MORPHETT

Define WH[s] to be our overall Working Hypothesis at stage s, i.e. the conjunction
WHA[s] & WHB[s] of all five conditions. Then our next Lemma follows by induction
over stages for WHA[s] and direct inspection for WHB[s].

Lemma 4.3. For any stage s ≥ 0 of the construction, WH[s] is true.

Note 4.4. Suppose that s∗ is such that Qe is on at the end of every stage s ≥ s∗.
Note that Te[s] = Te[s

∗] for all s ≥ s∗ in this case. Then it follows from Lemma 4.3
that, for any n,m ∈ N such that z ≤ Te[s

∗] for some z ∈ {n,m}, and all s ≥ sn,m,
n <L[s] m⇔ n <L[sn,m] m, where sn,m is the least stage ≥ s∗ such that n,m ∈ L[sn,m].
In other words <L(〈n,m〉) is defined and coincides with <L(〈n,m〉)[s] for all s ≥ sn,m.
Moreover Lemma 4.3 also implies that Qe will be satisfied in this case as the witness
〈e, xe, ye〉 ∈ M [s∗] remains in M [s] henceforth and the <L-interval (xe, ye)L remains
empty.

Lemma 4.5. For all e ≥ 0, Qe receives attention at most 2e times and is satisfied6.

Proof. Consider index e > 0 and suppose that there is a stage se such that, for all
s > se and i < e, Qi does not receive attention at stage s. Suppose also that se is the
least such stage. As already mentioned in Note 4.4 we know that Te[s] = Te[se] for all
s ≥ se so we can define Te = lims→∞Te[s] = Te[se]. Label N � (Te + 1) as {b0, . . . , bTe}
in such a way that

b0 <L[se] b1 <L[se] . . . <L[se] bTe
and notice that, by Note 4.4, this ordering coincides with <L[s] for all s ≥ se and so
also with <L. (I.e. the ordering of the bi’s is terminally fixed from stage se onwards.)
Letting b−1 and bTe+1 denote −∞ and +∞ respectively, for 0 ≤ i ≤ Te + 1 define the
sets

Ui = We ∩ { z ∈ N | bi−1 <L z <L bi }
(i.e. Ui = We ∩ (bi−1, bi)L∗) and observe that, by Note 4.4, Ui is a c.e. set with c.e.
approximation {Ui[s]}s∈N defined by setting

Ui[s] =

{
∅ if s < se
We[s] ∩ L[s] ∩ { z ∈ N | bi−1 <L z <L bi } otherwise.

Remark. Intuitively Note 4.4 tells us that, from stage se onwards, the bi’s act as a set of
fixed barriers across which nothing in the construction now moves. In other words any
reordering of elements in the ongoing approximation L[s] either occurs strictly below
b0 or strictly above bTe or strictly in between bi−1 <L bi, for some 1 ≤ i ≤ Te and so, by
definition, this involves two elements x, y that are both in the same set Uj.

Suppose that We is infinite. Then we can choose i such that Ui is infinite. If there
exist distinct elements x, y ∈ Ui such that x |P y then clearly Qe will receive attention at
some stage s > se and be satisfied by Note 4.4. Otherwise Ui is linearly ordered by <P .
This means that <L is defined and coincides with <P over Ui. However computable
scatteredness of P implies that there is some pair x, y ∈ Ui such that Ui ∩ (x, y)L∗ is
empty. So, as the latter is the same as We ∩ (x, y)L∗, Qe is once again satisfied.

Now suppose that Qi in fact receives attention at most 2i times for all i ≤ e so that
this condition applies to all such i at stage se. By inspection—using the observation

6Note that we are not assuming that <L(〈n,m〉) is defined for all n,m ∈ N.
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that for as long as a requirement is on it does not receive attention—we see that this
implies that Qe has received attention at most (2e−1− 1)× 2 + 1 = 2e− 1 times by (the
end of) stage se. But, noting in the above that Qe receives attention at most once after
stage se, we see that Qe receives attention at most 2e times.

As the argument for e = 0 is an easy variant of the argument applied to the case
e > 0, Lemma 4.5 follows by induction over indices e ≥ 0. �

Lemma 4.6. For all n,m ∈ N, <L(〈n,m〉) is defined and

|{ s |<L(〈n,m〉)[s+ 1] 6= <L(〈n,m〉)[s] }| < 2〈n,m〉 .

In other words <L is ω-c.e.

Proof. Note firstly that, for any n,m ∈ N, max {n,m} ≤ 〈n,m〉. Also (by definition
of Te), for any stage s + 1, a requirement Qi can only change the <L-order of n and
m at stage s + 1 if i < max {n,m}.7 It follows by Lemma 4.5 that there exist at most∑〈n,m〉−1

i=0 2i = 2〈n,m〉 − 1 such stages s+ 1. �

Lemma 4.7. L = (N, <L) is a linear extension of P.

This Lemma follows directly from the conjunction of Lemmas 4.3 and 4.6 and con-
cludes the proof of Theorem 4.1. �

We now reapply the above construction to prove Theorem 4.8 below. We note that
this result was first proved in Chapter 2 of [Lee11].

Theorem 4.8. Every computably well founded computable partial order has a com-
putably well founded ω-c.e. linear extension.

Proof. Let P = (N, <P ) be a computably well founded computable partial order and
constuct the linear order L = (N, <L) precisely as in the proof of Theorem 4.1. In this
case we need to satisfy, for all indices e, the following requirement:

Qe : if We is infinite then there exist x, y ∈ We such that x is e-older than y

and x <L y.

This means that {We[s]}s∈N does not enumerate an ω∗ sequence in L so that satisfaction
of Qe for all e implies that L is computably well founded.

Apply the same Verification as that in the proof of Theorem 4.1 except for the analysis
of <L relative to the sets Ui in Lemma 4.5. Here, under the assumption that We is
infinite we consider the least i such that Ui is nonempty. If Ui is finite then there is
some j > i and x ∈ Ui, y ∈ Uj such that x is e-older than y. But, by Note 4.4 (and the
definitions of the elements bk and sets Uk), we know that, x <L bi, bj−1 <L y and that if
i < j− 1 then bi <L bj−1, so that x <L y. On the other hand, if Ui is infinite, and there
exist distinct x′, y′ ∈ Ui such that x′ |P y′ then clearly Qe will receive attention at some
stage s > s∗ and will thus be satisfied, as Procedure P2 ensures that the e-oldest of x′, y′

is placed <L-below the e-youngest. Otherwise Ui is (infinite and) linearly ordered by
<P and so <L coincides with <P over Ui. However, as Ui is itself a c.e. set, computable
well foundedness of P implies that there are elements x, y ∈ Ui such that x is e-older
than y and x <L y. Thus in each case Qe is satisfied.

7In fact we could use min {n,m} instead of max {n,m} here.
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Since the rest of the Verification is unchanged we see that not only Lemma 4.5 but
also Lemmas 4.6 and 4.7 follow as before so that L is a ω-c.e. computably well founded
linear extension of P in this case. �

We now give an extension of Rosenstein’s theorems in a different direction. By
the Limit Lemma 3.1, Rosenstein’s theorems 2.1 and 2.2 show that every computably
well founded (respectively, computably scattered) computable partial order P has a
computably well founded (computably scattered) linearisation which is computable in
∅′. Indeed, Rosenstein’s original proof of Theorem 2.1 uses an oracle for ∅′ to construct
the desired extension. We now show that the oracle ∅′ can be replaced with any oracle
satisfying the following property. Say that X ⊆ N has the ∅′ escape property if8

∀ total functions f ≤T ∅′ ∃ total function g ≤T X s.t. ∃∞x g(x) ≥ f(x). (4.3)

The class of sets satisfying (4.3) includes the non-generalised low2 (non-GL2) sets.9

Indeed it is well known (see for example [Nie09] Exercise 1.5.21) that X is non-GL2 if
and only if

∀ total functions f ≤T ∅′ ⊕X ∃ total function g ≤T X s.t. ∃∞x g(x) ≥ f(x)

which immediately implies (4.3).

Theorem 4.9. Let X ⊆ N satisfy (4.3). For any computably scattered computable par-
tial order P, there is a computably scattered linear extension L of P which is computable
in X.

Proof. We first prove the theorem for the case when X = ∅′. (This is in essence a proof
of Rosenstein’s Theorem 2.2.) We later show how to adapt the construction for an
oracle satisfying (4.3).

We will build the required linear extension L in finite extensions. Much of the
terminology and notation will be the same as in the proof of Theorem 4.1. We will
satisfy the same requirements

Qe : if We is infinite then there exist distinct x, y ∈ We such that We ∩ (x, y)L∗ = ∅.
The basic strategy to satisfy a requirement Qe at stage s+ 1 is: repeatedly extend the
order L[s] element-by-element using Procedure P1, until we find a suitable pair x, y to
plummet using Procedure P2 in order to satisfy Qe. Of course, this may not terminate
as we may never find a suitable x, y, but that can be determined with the oracle ∅′. If
the oracle tells us there is no such {x, y} then we can argue, similarly to Lemma 4.5,
that Qe is automatically satisfied due to computable scatteredness of <P .

At stage s + 1, we will have a linear order L[s] on some initial segment L[s] of N,
along with a finite witness set M [s] = {〈i, xi, yi〉 : i ∈ D}, and we define L[s + 1]
and M [s+ 1]. We define one further procedure which will be used in the construction,
which takes as input a finite linear order J , a witness set M = {〈i, xi, yi〉 : i ∈ D} with
xi <J yi and (xi, yi)J empty, and an index e of a c.e. set.

Procedure P3

(
J ,M, e

)
: Search for a candidate to e-plummet.

Let T = |J | where J = (J,<J). Build an order I = (I,<I) in substages.
Substage t = 0: Set I[0] = J .

8Recall that ∃∞x P (x) means ∀n ∃x>nP (x).
9Recall that a set X is generalised low2 (GL2) if X ′′ ≡T (∅′ ⊕X)′.
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Substage t+ 1: Check if there are distinct numbers x, y such that

(i) x, y ∈ We[t] ∩ I[t], and
(ii) x|Py, and
(iii) both x, y and every number lying <I[t] between them is greater (under <N) than

T .

If there is such a pair x, y then choose the least such (under 〈·, ·〉) and let I be
the ordering obtained by running Procedure P2(I[t], {x, y}, e

)
. Say that P3

(
J ,M, e

)
terminates after t+ 1 steps and returns output I.

If there is no such x, y then let J [t+1] be the ordering obtained by running Procedure
P1

(
I[t],M

)
. Continue to stage t+ 2.

End of Procedure P3.

The construction (∅′ version).

Stage s = 0: Define L[0] to be the trivial order on L[0] = ∅ and define M [0] = ∅.

Stage s+ 1: We are given L[s] and M [s]. Find the least e ≤ s, if it exists, such that

Qe is off at the end of stage s and

∃t ∈ N such that Procedure P3

(
L[s],M [s], e

)
terminates after t steps. (4.4)

Note that whether (4.4) holds can be determined using the oracle ∅′.
Case 1. If there is such an e, then let L[s + 1] be the ordering obtained by running
P3

(
L[s],M [s], e

)
. Let M [s + 1] = M [s] ∪ {〈e, x, y〉} where x, y is the pair plummeted

by P3

(
L[s],M [s], e

)
and x is e-older than y. Say that action is taken for Qe at stage

s+ 1.

Case 2. If there is no such e, then let L[s + 1] be the ordering obtained by running
Procedure P1

(
L[s],M [s]

)
, and let M [s+ 1] = M [s].

End of construction.

The construction described above satisfies the Working Hypothesis A WHA[s] from
Theorem 4.1 at every stage s. The required linear extension of P is L = lims L[s]. It is
computable in ∅′ since the L-ordering of x and y is determined at stage s = max{x, y}+1
at the latest. We now verify that we can either take action to satisfy each Qe, or else
Qe is automatically satisfied.

Lemma 4.10. Suppose that We is infinite and s0 is a stage such that Qe is off at the
end of stage s0, and (4.4) does not hold for e at stage s0 + 1. Then there are distinct
x, y ∈ We such that We ∩ (x, y)L∗ = ∅.
Proof. Suppose that We is infinite and s0 is as stated in the lemma. Let

b0 <L[s0] b1 <L[s0] . . . <L[s0] bk−1

be a listing of L[s0] in ascending <L[s0]-order, and let b−1 and bk denote −∞ and +∞
respectively. First, observe that for any x ∈ N \ L[s0] and 0 ≤ i ≤ k,

bi−1 <L x <L bi ⇐⇒
(

x 6<P bi−1, and either x <P bi or
bi = xj for some 〈j, xj, yj〉 ∈M [s0] and x <P yj.

)
(4.5)

That is, the ultimate position of x in L relative to L[s0] is computable. This can be
seen by noting that Procedure P1 preserves property (4.5), as does the application of
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Procedure P2 in conjunction with condition (iii) in Procedure P3. For 0 ≤ i ≤ k, let

Ui = We ∩ {z ∈ N | bi−1 <L z <L bi}.
The sets Ui are computably enumerable due to (4.5). Moreover, each Ui is linearly
ordered by <P—as otherwise the procedure P3

(
L[s0],M [s0], e

)
would terminate—and

its <P -ordering coincides with <L. Let i be such that Ui is infinite. Then computable
scatteredness of P implies that there is some pair x, y ∈ Ui such that Ui ∩ (x, y)L∗ is
empty. It now suffices to note that the latter is the same as We ∩ (x, y)L∗. �

To finish our verification that L is computably scattered for the case of X = ∅′, let
se be the least stage such that se ≥ e and action is not taken for any Qe′ with e′ < e at
any stage s ≥ se + 1. At stage se + 1 we either take action for Qe (if we haven’t already
done so earlier), or Lemma 4.10 guarantees that Qe is satisfied without taking action
for Qe.

10

Modifications necessary for an oracle satisfying (4.3). The strategy we will use
with an oracle X satisfying the escape property (4.3) is to find a ∅′-computable function
f(s) which will bound the number of steps needed for Procedure P3 to terminate at
stage s of the construction. Instead of asking the oracle directly whether (4.4) holds,
we can run P3 and see if it terminates within f(s) steps.

Although the weaker oracle cannot compute f directly, it can compute a function
g(s) which escapes f and this will be sufficient. Instead of checking (4.4) directly, we
will run P3 for g(s) steps. If it terminates within g(s) steps then we proceed to satisfy
Qe as above. If not, we will assume for now that it does not terminate (and thus Qe is
satisfied automatically as in Lemma 4.10). Later it may turn out that our bound g(s)
was incorrect so we have to take action for Qe at a later stage. Thus the requirements
will not be satisfied in sequential order. However, we can argue that our approximation
g(s) will eventually bound the termination time for P3

(
L[s],M [s], e

)
.

Note that the role of the oracle X is limited to computing g, and thus determining
which requirement will take action at each stage. The construction (for a fixed X) thus
traces out a path in a finitely branching, ∅′-computable subtree T of {−1, 0, 1, 2, . . .}<ω
defined as follows. With each node σ of T is associated a construction state (L[σ],M [σ]).
The root of T is the empty string; the root node is associated with construction state
(L[0],M [0]) as defined in stage 0 of the construction. Given a string σ ∈ T of length s,
the string σ̂〈i〉 is in T if

• 0 ≤ i ≤ s, and
• σ(m) 6= i for all m < s (i.e., requirement Qi has not yet been satisfied on this

branch), and
• there exists t ∈ N such that Procedure P3

(
L[σ],M [σ], i

)
terminates after t steps.

In this case the construction state associated with σ̂〈i〉 is the pair (L[s+ 1],M [s+ 1])
obtained by following Case 1 of the construction with L[s], M [s] and e replaced by
L[σ], M [σ] and i, respectively. The string σ̂〈−1〉 is also in T , and its construction
state is the pair (L[s+ 1],M [s+ 1]) obtained by taking Case 2 of the construction with
L[s] and M [s] replaced by L[σ] and M [σ], respectively.

10 Moreover, it is possible to show that if (4.4) holds for e at some stage s + 1, then it also holds
for e at any s′ + 1 < s+ 1. Therefore in fact se = e, and we either take action for Qe at stage e+ 1 or
not at all.
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Note that, given a string σ ∈ {−1, 0, 1, 2, . . .}<ω, the oracle ∅′ can compute the
construction state (L[σ],M [σ]), if σ ∈ T , or determine that σ /∈ T . The construction
with oracle ∅′, defined earlier, corresponds to one infinite path α through T .11

We now define the ∅′-computable function f which will be escaped by g. For e ∈ N
and a string σ ∈ {−1, 0, 1, 2, . . .}<ω, define

q(e, σ) =


the least t such that Procedure P3

(
L[σ],M [σ], e

)
terminates in t steps, if σ ∈ T and if such t exists

0 if there is no such t, or if σ /∈ T .

Then q is computable from ∅′ and q(e, σ) bounds the time needed to determine (4.4)
at step s+ 1 = |σ|+ 1 of a construction extending σ. However, as the construction will
be done computably in X, we don’t know in advance the path which the construction
will take through T ; moreover it may not be computable in ∅′ if X 6≤T ∅′. So to define
our ∅′-computable search bound f we must also search over all branches of T of length
s:

f(s) = max
σ,e

q(e, σ)

where σ ranges over all nodes of T of length s and 0 ≤ e ≤ |σ|.
We can now give the construction for the oracle X. By (4.3), X computes a function

g such that ∃∞s g(s) ≥ f(s). The construction for X runs exactly as specified above
for oracle ∅′, except we replace (4.4) with the following:

∃t ≤ g(s) such that Procedure P3

(
L[s],M [s], e

)
halts after t steps. (4.6)

By construction, the resulting L = lims L[s] is an X-computable linear extension of P .
We verify that it is computably scattered. Let W = We be an infinite c.e. set. Let se
be the least number ≥ e such that action is not taken for any Qe′ with e′ < e at any
stage s′ ≥ se+1. If there is some stage s such that (4.4) does not hold, then by Lemma
4.10 requirement Qe is satisfied automatically. Otherwise, (4.4) holds for e at every s,
so the function

p(s) = the least t such that P3

(
L[s],M [s], e

)
halts after t steps

is total. Let σs be the node from T corresponding to the construction after stage s;
that is, σs is such that L[σs] = L[s] and M [σs] = M [s]. Now by definition of q and f ,
for s ≥ e we have

p(s) = q(e, σs) ≤ f(s).

But the function g escapes f , so there is an s1 ≥ se such that g(s1) ≥ f(s1) ≥ p(s1).
At stage s1 + 1, action will be taken for Qe (if it has not already), ensuring that Qe

is satisfied and the suborder L �We = (We, <L�We) does not have order type η. This
establishes Theorem 4.9. �

We note again that the same construction, if applied to a computably well founded
partial order P , will yield a computably well founded linear extension L. Thus we may
replace “computably scattered” in the statement of Theorem 4.9 with “computably well
founded”.

11By note 10, α is defined by α(s) = s, if Case 1 was taken at stage s+ 1, or α(s) = −1, if Case 2
was taken at stage s+ 1.
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The property (4.3) appears to be exactly what is required for the construction above
to succeed. We conjecture that the strength of the oracle can not be reduced any
further.

5. Nonextendibility Results

We now show that the results in Section 4 are the best possible in the sense that,
whereas for γ = ω, a γ-c.e. linearisation can always be found that preserves computable
scatteredness or computable well foundedness, this is not the case for any γ < ω.
We note that proofs of Theorems 5.1, 5.2 and 5.4 first appeared in [Gay16]. We also
draw the reader’s attention to the fact that the fundamental methods used for the
constructions in this section are based on those used in the proofs of Theorems 1(3),
2(2) and 3 of [DHLS03].

Remark. The reader might find it instructive, before reading the Construction in the
proof of Theorem 5.1, but having understood the general context presented in the
preceding material—i.e. in the Notes and Notation etc.—to make an excursion via
Theorem 5.4 whose proof affords a simplified version of some of the underlying ideas.

Theorem 5.1. There exist a computably well founded computable partial order P which
has no computably well founded Σ−1<ω linear extension.

Proof. We construct a computable partial order P = (P,<P ) with P = N as a count-
able disjoint union of subpartial orders Pe = (Pe, <P � Pe) such that each Pe forms a
connected component of P and also such that every element of Pi is incomparable with
every element of Pj for any i 6= j. We will assume a computable listing {Re}e∈N—as
stipulated in Section 2—of the class Σ−1<ω with associated computable approximation
{Re[s]}e,s∈N defined in such a way that, for any n ≥ 1, R〈n−1,i〉 is an n-c.e. set and
{R〈n−1,i〉[s]}s∈N is an n-c.e. approximation to R〈n−1,i〉.

For any e we will construct Pe in such a way that any infinite chain—so a fortiori
any ω∗ sequence—in Pe computes the halting set ∅′ and is therefore not computable.
Since there are no <P -comparabilities between the different components of P this will
imply that P is computably well founded. On the other hand, for any set R ∈ Σ−1<ω
there is an index e such that R = Re and our construction will ensure that, if (N, Re)—
with Re seen as a set of ordered pairs—is a linear extension of P , then there will be a
computable ω∗ sequence {an}n∈N in (Pe, Re �Pe).

Notation. We use the shorthand Re linearises Pe to mean that (Pe, Re �Pe) is a linear
extension of Pe and use similar shorthand relative to the approximations used during
the construction, as also for Re with regard to P itself.

At each stage s+ 1 of the construction we define an approximation P [s+ 1] with do-
main some finite initial segment of N. To do this we firstly compute the approximations
Re[s+ 1] for e < s and an approximation ∅′[s+ 1] to the halting set. Starting at stage 0
with P [0] = ∅, at stage s+ 1 we add up to four new elements to each component Pe[s]
such that e < s to obtain Pe[s+ 1] and four new elements to the (at this point) empty
component Ps[s] to obtain Ps[s + 1]. When a number n enters the construction at a
stage s all of the <P -comparabilities of n with numbers k < n are set at stage s and
do not change at any later stage. So each Pe (and P itself) is computable because, to
decide whether a number k is in Pe it suffices to run the construction until stage k + 1
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whereas to decide <P relative to numbers m,n, it suffices to run the construction until
stage s = max {m,n}+ 1.

Pe[e+ 1] Pe[s+ 1]

x y

b-1

a-1

Rec0

d0

b0

b-1

a-1

x y

a0

Figure 1. The first two stages of the construction of Pe with w <P z
and w′ Re z

′ denoted by w ·−←· z and w′ ····Re···· z′ respectively.

Notes and Notation.

Our description will mostly relate to a single component Pe of P . We call a stage
s+ 1 > e+ 1 e-good if Re[s+ 1] linearises Pe[s]. The construction of Pe only proceeds
at e-good stages. It is important to note that the set of e-good stages is computable.

If s + 1 is an e-good stage then, for m,n ∈ Pe[s] we say that mRe n is computed at
stage s if 〈m,n〉 ∈ Re[s+ 1]. Note that, as s+ 1 is e-good, Re[s+ 1] linearises Pe[s] and
so 〈n,m〉 /∈ Re[s]. Notice also that for m,n ∈ Pe, mRe n is only computed at e-good
stages by definition so that, from now on, when we say that mRe n is computed (or
r-computed as defined below) at stage s we mean that s is an e-good stage. We say
that mRe n is 1-computed at stage s if it is computed at stage s and there is no earlier
stage t at which nRem is computed. For r > 1 we say that mRe n is r-computed at
stage s if mRe n is computed at stage s, there is an earlier stage t such that nRem
is r − 1-computed at stage t and, for any stage t < s′ < s and l such that nRem is
l-computed at stage s′, l = r − 1. Note that, if Re is k-c.e. and mRe n is r-computed
at some stage s then r ≤ k. Notice also that it might be the case that mRe n is
1-computed at stage s and there is an earlier stage t such that m,n ∈ Pe[t − 1] and
〈n,m〉 ∈ Re[t]. In fact it might be the case that 〈m,n〉 ∈ Re[t] as well. However this
just means by definition that t is not an e-good stage so that neither nRem nor mRe n
was computed at stage t. A similar observation applies for r-computations with r > 1.

Important Shorthand Convention. To avoid cluttering notation we use the short-
hand12 “interval” to refer to a <P -interval in P and—as mentioned in Section 3—drop
subscripts in the notation for the latter so that, for example, (bi, ai) denotes the open
interval with <P -lower bound bi and <P -upper bound ai.

We use Qi to denote the construction’s requirement—that we also think of as a
strategy—that any infinite chain in P computes the question ∅′(i) of whether i belongs
to the halting set. The reader should note that Qi can intervene in the construction
of any individual component Pe and at any Level (see later) of the construction of Pe.
These requirements interact (at any given Level) according to the usual process of finite

12This shorthand is entirely unambiguous as any interval to which we refer is always a <P -interval.
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injury with Qi being able to injure Qj if i < j.

The Construction

We consider fixed index e and describe the construction of the associated component
Pe. Assuming that e = 〈k − 1, i〉 we know that Re is k-c.e. and that {Re[s]}s∈N is a
k-c.e. approximation to Re. For k > 1 the construction has k different nested Levels.
For this reason we consider three different cases according to the value of k.

Case 1: k = 1.

Remark. k = 1 implies that Re is c.e. with {Re[s]}s∈N a c.e. approximation to Re.

At all stages s ≤ e by definition Pe[s] = ∅. At stage e + 1 four new elements a−1,
b−1, x and y are added to Pe[e] to obtain Pe[e+ 1] in such a way that b−1 <P x <P a−1
and b−1 <P y <P a−1 with x |P y as shown in Figure 1. Note that in the present case,
as k = 1, only 1-computations are involved in the construction and so by definition
everything here happens at Level 1. For simplicity we will omit mention of the Level
at present. However the reader should keep this aspect of the construction in mind as,
for the case when k > 1 the present case describes the Level 1 part of a construction
involving k Levels. We think of the interval (a−1, b−1) as the base interval of the
construction. (a−1, b−1) is now also the active interval (until the first e-good stage).

We suppose for the sake of the present argument that the set of e-good stages is
nonempty (and sufficiently large). At the first such stage s+1 > e+1 we have that, for
some u, v ∈ {x, y}, uRe v is 1-computed. Accordingly the x, y labels are removed with
c0 now labelling the element u and b0 labelling the element v. Also four new elements
a0, d0, x and y are added to Pe[s] to obtain Pe[s+1] in such a way that b−1 <P d0 <P c0,
b0 <P x <P a0 <P a−1, b0 <P y <P a0 <P a−1 and x |P y as shown in Figure 1. The
element a0 is now 0-activated and painted red and the interval (b0, a0) becomes the
active interval of the construction. Note that the 0-activation of a0 means that the
intervals (d0, c0) and (b0, a0) have been commandeered by strategy Q0. The fact that a0
is also red indicates that Q0 has not yet registered that13 0 ∈ ∅′ and that the ongoing
construction of Pe will proceed entirely in the interval (b0, a0) for the time being. If,
at some e-good stage t+ 1 > s+ 1 strategy Q0 registers 0 ∈ ∅′ (i.e. receives attention)
then a0 will be repainted blue and the construction will switch to constructing Pe in
the interval (d0, c0).

We now consider the general case of a subsequent e-good stage t + 1 > s + 1. We
suppose that, for some n ≥ 0 precisely the set {a0, . . . , an} has been defined (with
the associated elements bi, ci, di for each 0 ≤ i ≤ n) and that there are elements
{ai0 , . . . , aih} ⊆ {a0, . . . , an} such that air is r-active for each 0 ≤ r ≤ h. By definition
there is also an active interval which is the (smallest) interval in which the next element
an+1 will be defined (provided that the next e-good stage is not a ∅′-coding stage as
defined below). Note that the active interval contains two elements labelled x, y such
that x |P y. There are two cases.

13For the sake of simplicity this can only happen at a subsequent e-good stage following the activa-
tion of a0 even though it might already be the case that 0 ∈ ∅′[s+ 1].
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Notation. Strategy Qi requires attention at e-good stage s if there is a red i-active
element am (at the beginning of stage s) and i ∈ ∅′[s]. We say that s is a ∅′-coding
stage if there is a strategy Qi that requires attention at stage s.

Remark. To facilitate understanding of the construction we recommend a brief first
reading of the Cases below combined with inspection of the ensuing example.

Case A. t+ 1 is not a ∅′-coding stage. There are two subcases.

Case A(i). The active interval is (bn, an). This means that aih = an and that an is

red. Also—as t+ 1 is an e-good stage—for some u, v ∈ {x, y}, uRe v is 1-computed at
stage t + 1. Accordingly the x, y labels are removed with u being relabelled cn+1 and
v being relabelled bn+1. Moreover four new elements an+1, dn+1, x, y are added to Pe[t]
to obtain Pe[t + 1] in such a way that bn <P dn+1 <P cn+1, bn+1 <P x <P an+1 <P an,
bn+1 <P y <P an+1 <P an and x |P y, similarly to the case n = −1 described above.
The element an+1 is h + 1-activated and painted red14. The active interval is now
(bn+1, an+1).

Case A(ii). The active interval is (dm, cm) for some 0 ≤ m ≤ n. Note that this means
that aih = am and that am is blue; also that, for any m ≤ l ≤ n, al has been disacti-
vated. Note also that each such al was previously j-activated for some j > h but was,
by definition of the construction, disactivated at the previous e-good stage t′+ 1 (if not
already disactivated) since the fact that (dm, cm) is the active interval implies that Qh

received attention at stage t′+1. Notice also that we will be able to show that, if n > m,
the set {am+1, . . . , an} lies within the interval (bm, am) and forms a descending sequence
under Re (i.e. anRe . . . Re am+1). Now just as in Case A(i) we have u, v ∈ {x, y} such
that uRe v is 1-computed at stage t + 1. So, as before, the x, y labels are removed
with u being relabelled cn+1 and v being relabelled bn+1. Once again four new elements
an+1, dn+1, x, y are added to Pe[t] to obtain Pe[t + 1] but this time in such a way that
dm <P dn+1 <P cn+1, bn+1 <P x <P an+1 <P cm, bn+1 <P y <P an+1 <P cm and x |P y.
Also, as before, the element an+1 is h+1-activated and painted red. The active interval
is now (bn+1, an+1).

Case B. t + 1 is a ∅′-coding stage. This means that, for some 0 ≤ j ≤ h strategy
Qj requires attention—i.e. aij is red and j ∈ ∅′[s + 1]. Picking the least such j and
letting m = ij, Qj now repaints am blue and disactivates all al such that m < l ≤ n.
Note that this disactivation only actually involves elements air such that j < r ≤ h
since any other such al are already disactivated by definition of the construction. The
x, y labels are removed from the two elements contained in the present active interval,
and two new elements x, y are added to Pe[t] to obtain Pe[t + 1] in such a way that
dm <P x <P cm, dm <P y <P cm and x |P y. The active interval is now (dm, cm).

This ends the description of the construction. However in order to illustrate the under-
lying mechanics we consider a particular hypothetical example.

Example. We suppose that there are at least four e-good stages s+1, s1+1, s2+1, s3+1
and that 0 ∈ ∅′[s2 + 1] whereas 0 /∈ ∅′[s1 + 1]. We have that Pe[s+ 1] is represented in
Figure 1 with a0 0-activated and red and with (b0, a0) now the active interval. At stage

14I.e. the strategy Qh+1 has commandeered the intervals (dn+1, cn+1) and (bn+1, an+1) and now
waits for further e-good stages to register (or not) that h+ 1 ∈ ∅′.
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s1 + 1 Case A(i) applies resulting in Pe[s1 + 1] as shown in Figure 2. a1 is 1-activated
and red and (b1, a1) is now the active interval. At stage s2 + 1 Case B applies with
Q0 receiving attention resulting in Pe[s2 + 1]. Accordingly a0 is repainted blue, a1 is
disactivated and the active interval now becomes (d0, c0). At stage s3 + 1 case A(ii)
applies resulting in Pe[s3 + 1]. a2 is now 1-activated and red and (b2, a2) has become
the active interval.

Pe[s1 + 1] Pe[s2 + 1] Pe[s3 + 1]

Re

Re

c0

d0

b0

b-1

a-1

c1
d1

b1

a0
a1
x y

Re

Re

c0

d0

b0

b-1

a-1

c1
d1

b1

a0
a1

x y Re

Re

Re

c0

d0

b0

b-1

a-1

c1
d1

b1

a0
a1

c2 b2

a2

d2

x y

Figure 2. Example stages of the construction of Pe with w <P z and
w′ Re z

′ denoted by w ·−←· z and w′ ····Re···· z′ respectively.

Note in the above example that—under the assumption that there are infinitely many
e-good stages—we now have a2Re a1Re a0 as Re is computably enumerable. Also notice
that a0 remains permanently 0-active whereas the 1-active element was redefined once.
In fact more generally it is clear by construction that, for any i ≥ 0, after an i-active
element is defined, it can be redefined up to 2i−1 times. The reader might also observe
that if 0 had entered ∅′ only after several e-good stages the 1-active element would have
been redefined as some an with n > 2.

Verification of Case 1.

Note firstly that if there are only finitely many e-good stages then Pe will be finite
and so will not embed an infinite chain. Also, an easy contrapositive argument shows
us that, if Re linearises Pe, then there will be infinitely many e-good stages. We thus
assume without loss of generality that there are infinitely many e-good stages.

Now consider any e-good stage s and let ns be the greatest n such that ans is defined
at stage s. Then Case A must apply, and so ans+1 is defined, at one of the subsequent
ns+2 e-good stages (as the construction “runs out” of elements to which to apply Case
B). It follows by induction on n that an is defined for all n ≥ 0.

Also the existence of infinitely many e-good stages and the fact that Re is c.e. means
that, for any n ≥ 0, cnRe bn and moreover that this fact can be decided at the stage at
which cn and bn are defined.

Arguing by induction over indices we see that, for each i ≥ 0, there will be a stage
ti at which some element an is permanently i-activated (i.e. not disactivated at any
subsequent stage). We call such an element an the Qi witness.

Let T (s + 1) denote the statement that, for all indices 0 ≤ m < n and j satisfying
the conjunction of conditions (i), (ii) and (iii) below, it is the case that bm <P un, for
each u ∈ {a, b, c, d}.
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(i) am is j-active and red at the beginning of stage s+ 1.
(ii) an is defined at or before stage s+ 1.
(iii) am is still j-active at the end of stage s+ 1 (although not necessarily red).

Then using induction over the e-good stages of the construction we deduce that, for
any such stage s+ 1, T (s+ 1) is true.

Now consider n ≥ 0 and let t+ 1 be the stage at which an+1 is defined. Thus t+ 1 is
an e-good stage and an was already defined before the end of the previous e-good stage
s + 1. Note that necessarily Case A of the construction applies at stage t + 1. If Case
A(i) applies then an+1 <P an so that a fortiori an+1Re an. Also Case A(ii) only applies
if Case B applied at stage s + 1 so that—using the notation from the construction
above—either m = n, so that bm <P an by construction, or otherwise m < n in which
case bm <P an due to the truth of T (s + 1). But then an+1 <P cmRe an (as cmRe bm)
so that, once again, an+1Re an. It follows that, if Re linearises P (and thus also its
subcomponent Pe), then {an}n∈N is a ω∗ sequence in (Pe, Re �Pe). Clearly also {an}n∈N
is computable.

Now suppose that S = (S,<P � S) is an infinite chain in Pe. Enumerate S until
an element is found in either the interval [b0, a0] or the interval [d0, c0]. (In fact in
this first case we only need to enumerate three elements of S.) Note that only one
of these intervals I is infinite and thus I must contain elements from S whereas, as
S is a chain in Pe the other interval cannot contain any element of S. Note also that
establishing which interval contains a member of S immediately decides ∅′(0). Moreover
this information combined with simulation of the construction allows the Q1 witness
an, to be computed. Then the same query made relative to the intervals [bn, an] and
[dn, cn] decides ∅′(1) and allows the Q2 witness to be computed. Continuing in this way
we see that ∅′ is computable in S (and in fact in the set S itself).

Case 2: k = 2.

Remark. k = 2 implies that Re is 2-c.e. and that {Re[s]}s∈N is a 2-c.e. approximation
to Re.

The construction proceeds as in the case k = 1 except that there are now 2 Levels.
At stage e+1, Pe[e+1] is defined as in the case k = 1 with a−1, b−1, x, y being added (as
in Figure 1) with the difference here that we consider these labels to be Level 1 as also
(b−1, a−1) to be the Level 1 base interval and the present Level 1 active interval. We
also apply Level 2 labels a′−1, b

′
−1 to the elements already labelled a−1, b−1 and consider

(b′−1, a
′
−1) to be the Level 2 base interval and the present Level 2 active interval.

Note here that Level 2 is the controlling level of the construction. The Level 2
construction begins by passing control to Level 1 so that the construction now continues
precisely as before for as long as there is no n such that an (and bn, cn, dn) is defined
and bn Re cn is 2-computed (∗). (Remember that an, bn, cn, dn are defined when cnRe bn
is first 1-computed.) Note that it may be the case that the whole of the construction
remains Level 1—i.e. if (∗) occurs for no n. However, for the general case we suppose
that there is a (least) e-good stage s + 1 such that bnRe cn is 2-computed for some n.
Then the Level 2 construction intervenes and, choosing the pair bn, cn such that n is
least (if there are several such pairs) relabels bn as c′0 and cn as b′0 and adds four new
elements a′0, d

′
0, x, y to Pe[s] to obtain Pe[s + 1] in such a way that b′−1 <P d′0 <P c′0,

b′0 <P x <P a′0 <P a′−1, b
′
0 <P y <P a′0 <P a′−1 and x |P y precisely as in Figure 1 but
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with prime labels added. The Level 2 construction now abandons the preceding Level 1
definitions and all elements not bearing a Level 2 label are henceforth ignored.

Note that a′0, d
′
0 are defined to be <P -incomparable with all elements u bearing only

a Level 1 label except if u <P b
′
0 or c′0 <P u when the fact that b′0 <P a

′
0 and d′0 <P c

′
0

induces <P -comparability (due to the fact that we are constructing <P to be transitive).
Since Level 2 builds in new elements to be as incomparable as possible with Level 1
elements in this way we see that the unused Level 1 elements merely leave a finite
amount of “background noise” in the Level 2 construction. It is important to note that
this is an ongoing feature of the Level 2 construction and so, as the latter proceeds, the
unused Level 1 elements can be safely ignored without impairing the outcome of the
construction.

The element a′0 is now 0-activated and painted red and the interval (b′0, a
′
0) becomes

the Level 2 active interval. Note that 0-activation of a′0 means that the intervals (d′0, c
′
0)

and (a′0, b
′
0) have been commandeered by the strategy Q0 working at Level 2 in precisely

the same way that this happened at Level 1. The Level 2 construction now resets
a−1 = a′0 and b−1 = b′0 thereby stipulating that (a′0, b

′
0) is the new Level 1 base interval,

and the ongoing Level 1 active interval, and that the Level 1 construction must start
again from scratch in this interval. In this way the Level 2 construction effectively
passes control back to the Level 1 construction which can be thought of as starting in
a new incarnation (so that we can reuse the Level 1 labels without ambiguity). It will
now only intervene in the ongoing Level 1 construction if there is an e-good stage t+1 at
which Q0 requires attention at Level 2 or if it finds some pair bm, cm (under the present
reincarnated labelling) such that bmRe cm is 2-computed. In the first case it introduces
new elements x |P y to the interval (d′0, c

′
0), paints a′0 blue and resets (d′0, c

′
0) to be the

Level 2 active interval and, in so doing, resets b−1 = d′0 and a−1 = c′0. In the second
case the Level 2 construction determines the least m such that bmRe cm is 2-computed
at stage t+ 1, relabels bm as c′1 and cm as b′1 and adds new elements a′1, d

′
1, x, y in such

a way that b′0 <P d′1 <P c′1, b
′
1 <P x <P a′1 <P a′0, b

′
1 <P y <P a′1 <P a′0 and x |P y.

It paints a′1 red and resets the Level 2 interval to be (b′1, a
′
1) and, in so doing resets

b−1 = b′1 and a−1 = a′1. In both cases all previous Level 1 work is abandoned and the
Level 2 construction passes control back to Level 1 which again restarts from scratch
in the newly reassigned interval (b−1, a−1).

The Level 2 construction thus proceeds in precisely the same way as the Level 1
construction with the difference that Level 1 progress is dictated by registering 1-
computations on pairs supplied directly by the construction whereas Level 2 progress
is dictated by registering 2-computations on pairs supplied by Level 1. In other words
Cases A(i), A(ii) and B are applied in precisely the same way at Level 2 with appropriate
modifications made specifying the Level 1/Level 2 interactions involved.

To verify the construction in the present case we assume as in the case k = 1 that
there are infinitely many e-good stages. In the case that only a finite number of elements
a′n are defined we know that the Level 1 base interval (b−1, a−1) is either never reassigned
(i.e. if not even a′0 is defined) or eventually stabilises during the construction (as either
(b′m, a

′
m) for some m ≥ −1 or (d′l, c

′
l) for some l ≥ 0). Hence the verification described for

the case k = 1 applies directly to the Level 1 construction in the (eventually permanent
assignment of the) interval (b−1, a−1) in this case. In the case when a′n is defined for
all n ≥ 0 we can now apply the same verification but at Level 2. (Notice in particular
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that now c′nRe b
′
n for all n ≥ 0 and that this fact can be decided at the stage at

which b′n, c
′
n are defined.) Accordingly we can show, just as in the verification of the

Level 1 construction, that {a′n}n∈N is a computable ω∗ sequence in (Pe, Re � Pe) and
that, if S = (S,<P � S) is an infinite chain embedded in Pe, then we can compute ∅′
by querying, for n = 0, 1, 2, . . . , the intervals [c′n, d

′
n], [b′n, a

′
n] for a member of S and

simulating the Level 2 construction.

Case 3: k > 2.

Notation. In the following we use notation of the form a
(0)
n , a

(1)
n to denote the labels

that we previously (for simplicity) denoted respectively an, a′n (and similarly for la-
bels involving the letters u ∈ {b, c, d}). Level j labels are accordingly of the form

a
(j−1)
n , b

(j−1)
n , c

(j−1)
n , d

(j−1)
n .

Remark. Re is k-c.e. and {Re[s]}s∈N is a k-c.e. approximation to Re.

This is a straightforward generalisation of the Case 2 construction but now with
k > 2 different Levels of construction. At stage e+ 1, Pe[e+ 1] is defined as in the case

k = 1 (see Figure 1) with a
(0)
−1, b

(0)
−1, x, y being added but this time with a

(0)
−1, b

(0)
−1 also

being relabelled as a
(j−1)
−1 , b

(j−1)
−1 for each 1 < j ≤ k. Accordingly, for each 1 ≤ j ≤ k,

under these different labellings we consider the (same) interval (b
(j−1)
−1 , a

(j−1)
−1 ) to be the

Level j base interval and ongoing Level j active interval.
Note that Level k is the controlling level of the construction. The Level k construction

begins by passing control to Level k−1 and in this way control cascades down the levels
to Level 1. Hence the construction starts at Level 1 in precisely the way described
in Case 2. Now consider some 1 < j ≤ k. The Level j construction waits for a

(least) e-good stage s + 1 and Level j − 1 pair b
(j−2)
n , c

(j−2)
n such that b

(j−2)
n Re c

(j−2)
n

is j-computed. If this happens the Level j construction intervenes choosing the pair

b
(j−2)
n , c

(j−2)
n such that n is least and relabelling b

(j−2)
n as c

(j−1)
0 and c

(j−2)
n as b

(j−1)
0 .

It now adds four new elements a
(j−1)
0 , d

(j−1)
0 , x, y to Pe[s] to obtain Pe[s + 1] in such

a way that b
(j−1)
−1 <P d

(j−1)
0 <P c

(j−1)
0 , b

(j−1)
0 <P x <P a

(j−1)
0 <P a

(j−1)
−1 and also

b
(j−1)
0 <P y <P a

(j−1)
0 <P a

(j−1)
−1 and x |P y. The Level j construction now abandons the

preceding Level i definitions for all 1 ≤ i < j and all elements not bearing a Level j

label are henceforth ignored. The element a
(j−1)
0 is 0-activated and painted red and the

interval (b
(j−1)
0 , a

(j−1)
0 ) becomes the Level j active interval15. The Level j construction

now resets a
(i−1)
−1 = a

(j−1)
0 and b

(i−1)
−1 = b

(j−1)
0 for all 1 ≤ i < j thereby stipulating that

(a
(j−1)
0 , b

(j−1)
0 ) is the newly assigned Level i base interval and ongoing Level i active

interval for all such i. Control gets passed back from Level j to Level j − 1 and hence
cascaded back down to Level 1 so that each Level starts again from scratch in the

interval16 (a
(j−1)
0 , b

(j−1)
0 ). Thus we see that, for each Level 1 < j ≤ k the Level j

construction proceeds relative to the Level j − 1 precisely as described for j = k = 2
relative to Level 1 in Case 2 with progress of the Level j construction dictated by
registering j-computations on pairs supplied by Level j− 1. Note however that Level j

15Note that 0-activation of a
(j−1)
0 means that the intervals (d

(j−1)
0 , c

(j−1)
0 ) and (b

(j−1)
0 , a

(j−1)
0 ) have

been commandeered by the strategy Q0 working at Level j.
16This interval is “seen” by each level 1 ≤ i < j as (a

(i−1)
−1 , b

(i−1)
−1 ).
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proceeds under the proviso that its work can be interrupted by any Level j < i ≤ k
causing the Level j base interval to be reset and the Level j construction having to start
from scratch once again. In other words Cases A(i), A(ii) and B are applied at each
Level j precisely as described for the case k = 1 with appropriate modification now
specifying the Level j/Level j − 1 interaction involved, but with the further condition
that in each case, for all 1 ≤ i < j the Level i base interval is appropriately reassigned
(as described above) and each such Level starts again from scratch.

To verify the construction we assume as before that there are infinitely many e-good
stages. It follows that there is some 1 ≤ j ≤ k such that the definition of the Level j

base interval (b
(j−1)
−1 , a

(j−1)
−1 ) either is never reassigned or eventually stabilises and that,

within this interval, a
(j−1)
n is defined for all n ≥ 0. We can now apply the verification

procedure from Case 1 to the Level j construction in the interval (b
(j−1)
−1 , a

(j−1)
−1 ). (Notice

once again that c
(j−1)
n Re b

(j−1)
n for all n ≥ 0 and that this fact can be decided at the

stage at which b
(j−1)
n , c

(j−1)
n are defined.) Accordingly we can show that {a(j−1)n }n∈N is

a (computable) ω∗ sequence in (Pe, Re � Pe) and that, if S = (S,<P � S) is an infinite

chain embedded in Pe then, by querying the intervals [c
(j−1)
n , d

(j−1)
n ] and [b

(j−1)
n , a

(j−1)
n ]

for a member of S for n = 0, 1, 2, . . . and simulating the Level j construction, we can
compute ∅′.

Remark. We in fact see that this verification procedure can be bundled into two algo-
rithms, the first of which peforms a search on the k-levels of the construction and, if
Pe is infinite, extracts the ω∗ sequence in (Pe, Re � Pe) from the Level at which it is
defined. The second algorithm can then be used to compute ∅′ (in parallel) relative to
the ω∗ sequence extracted using as oracle any infinite chain S embedded in Pe. Note
that these algorithms can be defined uniformly in e = 〈k − 1, i〉 so that for the overall
partial order P we have two universal algorithms performing respectively the necessary
k Level search and oracle computations relative to Pe for any index e ≥ 0.

We now conclude from the work above that P satisfies the statement of Theorem 5.1.
Indeed, suppose that R ∈ Σ−1<ω linearises P . Then, for some index e, R = Re and it
follows that there are infinitely many e-good stages during the construction so that a
computable ω∗ sequence is constructed in (Pe, Re �Pe) as described above. Now suppose
that S is an infinite chain embedded in P then, as the elements in different components
are mutually incomparable, there is an index e such that S is entirely contained in the
component Pe and so, as we have seen, computes ∅′. It follows in particular that P is
computably well founded. �

Note that our construction will work for any choice of listing {Re}e∈N of the class
Σ−1<ω with associated effective approximation {Re[s]}e,s∈N provided that, for each e,
{Re[s]}s∈N is a k-c.e. approximation for some k. (Moreover we will still obtain two
search algorithms as described in the above Remark17.)

Now suppose that our listing includes a set Re which linearises P and is ω-c.e. but
is not in Σ−1<ω. Suppose for the sake of argument that it is also the case that, for any
〈u, v〉, {Re[s]}s∈N “changes its mind” on 〈u, v〉 at least 〈u, v〉 times. (However there is
of course by definition a computable function f such that this number of “changes of

17Our actual choice of listing {Re}e∈N simply makes the first algorithm “neater” in the sense that,
given e = 〈k − 1, i〉 it knows at the start that there are k Levels involved in searching Pe.
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mind” is bounded by f(〈u, v〉).) The problem that now arises during the construction

is that, for any Level j, if n is such that a
(j−1)
n is defined and is also (large enough)

such that 〈c(j−1)n , b
(j−1)
n 〉 > j, then b

(j−1)
n Re c

(j−1)
n will eventually be j + 1-computed.

Accordingly the construction of our putative ω∗ sequence at Level j will be abandoned
and the Level j construction will be restarted in a base interval newly assigned by Level
j + 1. Since this will happen infinitely often for all j we see that the construction of
an ω∗ sequence as described in Theorem 5.1 breaks down. This illustrates why our
construction will, as expected, not work at the ω-c.e. level.

Theorem 5.2. There exists a (classically) scattered computable partial order P which
has no computably scattered Σ−1<ω linear extension.

Proof. We construct a computable partial order P as a disjoint union of subpartial
orders Pe = (Pe, <P � Pe) with no comparabilities between different components as in
the proof of Theorem 5.1. We will again use the listing {Re}e∈N with its associated
computable approximation {Re[s]}e,s∈N. We will assume the same basic definitions and
notation of the construction in the proof of Theorem 5.1. In this case however we will
not be trying to code ∅′ and so, for example, the fundamental Level 1 construction
will involve only the definitions of pairs bn, cn (instead of the quadruples an, bn, cn, dn
defined in Theorem 5.1). Accordingly the strategies Qi do not intervene here so that
we do not need the notion of an i-active element. We will now in fact be able to talk
directly about the nth active interval on any Level where for example, on Level 1, this
interval is the one in which the pair bn, cn will be defined.

Here, given index e, we will construct Pe such that, for every element d ∈ Pe, either
the set { z ∈ Pe | z <P d } is finite or otherwise the set { z ∈ Pe | d <P z } is finite.
Thus each individual such component Pe is scattered so that, by the incomparability
of elements in different components, P is itself scattered. On the other hand, we will
construct Pe so that, if Re linearises P , then there will be a computable η sequence
embedded in (Pe, Re �Pe).

The Construction

We consider fixed index e and describe the construction of the associated component
Pe. Assuming that e = 〈k − 1, i〉 we know that that {Re[s]}s∈N is a k-c.e. approximation
to Re and that, as before, if k > 1, then the construction has k different nested Levels.
Due to the similarities with the construction of Theorem 5.1 we split our description
into two cases only—the case k = 1 and the case k > 1.

Case 1: k = 1.

At all stages s ≤ e by definition Pe[s] = ∅. At stage e + 1 four new elements b−1,
c−1, x and y are added to Pe[e] to obtain Pe[e+ 1] in such a way that b−1 <P x <P c−1
and b−1 <P y <P c−1 with x |P y as shown in Figure 1 under the relabelling of a−1 and
b−1 by c−1 and b−1 respectively. Note once again here that everything in the present
(k = 1) case happens at Level 1 but that, for simplicity we will omit mention of the
Level for the time being. The interval (b−1, c−1) is defined to be the 0-active interval.

We suppose for the sake of the present argument that the set of e-good stages is
nonempty (and sufficiently large). At the first such stage s+1 > e+1 we have that, for
some u, v ∈ {x, y}, uRe v is 1-computed. Accordingly the x, y labels are removed with
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c0 now labelling the element u and b0 labelling the element v. Also two new elements
x and y are added to Pe[s] to obtain Pe[s + 1] in such a way that b−1 <P x <P c0,
b−1 <P y <P c0 and x |P y and (b−1, c0) is now defined to be the 1-active interval.

Now consider the general case of the n+ 1st e-good stage with n ≥ 1. By definition
the n-active interval is defined as (bi, cj) for some distinct −1 ≤ i, j < n and contains
precisely the two <P -incomparable elements presently labelled x, y. We have that, for
some u, v ∈ {x, y}, uRe v is 1-computed. Accordingly the x, y labels are removed with
cn now labelling the element u and bn labelling the element v.

Remark. The construction is working under the assumption that b0, . . . , bn−1 forms the
initial segment of an η sequence under Re and that the active n-interval was chosen so
that now b0, . . . , bn−1, bn will also form an initial segment of the sequence. Accordingly
the choice of the n+ 1-active interval is now made in such a way that when (or if) bn+1

is defined in this interval it also will continue the η sequence. Note that, as mentioned
in Section 3, we can think of the bi’s as labelling nodes on a binary tree with b0 labelling
the root. Under this representation the choice of the active interval at this stage is made
in terms of a process of labelling the nodes of the tree of a certain length w + 1 from
left to right so as to “densify” the bi’s which label nodes of length ≤ w. Thus when this
process has labelled the rightmost node of length w+ 1 (corresponding to action taken
in an active interval of the form (bj, c−1)) the process restarts at the leftmost node of
length w + 2 (corresponding to a new active interval of the form (b−1, ch)).

Now, with the above remark and the fact that the n-active interval was defined as
(bi, cj) in mind, if j 6= −1 then the n + 1-active interval is defined to be (bj, cl) where
cl is the immediate Re-successor of bj. If j = −1, on the other hand, then the n + 1-
active interval is defined to be (b−1, ch) where ch is the immediate Re-successor of b−1.
It is important to note here that in the first case cl is the (unique) immediate <P -
successor of bj over the set {c0, . . . , cn−1} and that likewise in the second case ch is the
immediate <P -successor of b−1 over this set. Thus in both cases the n+1-active interval
is indeed a well defined (and empty) <P -interval. Also note that, by construction, bj is
the immediate Re-successor of cj. (The properties assumed here can be easily checked
during the induction argument over the e-good stages of the construction stipulated
below.) Using (bî, cĵ) to denote the n+ 1-active interval, two new elements x and y are
added to Pe[s] to obtain Pe[s+ 1] in such a way that bî <P x <P cĵ, bî <P y <P cĵ and
x |P y.

To illustrate what is happening note that, at the end of the third e-good stage s+ 1,
Pe[s+ 1] \ {x, y} is as follows,

b−1 <P c1 Re b1 <P c0 Re b0 <P c2 Re b2 <P c−1

with the 3-active interval being (b−1, c1) and the elements x, y inserted into this interval.
Note also that b1 Re b0 Re b2. Continuing further we find at the end of the seventh
e-good stage that

b3 Re b1 Re b4 Re b0 Re b5 Re b2 Re b6

and we see that the construction has now enumerated the first 7 elements of an η
sequence (under Re).

Verification of Case 1.
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We assume again without loss of generality—see the proof of Theorem 5.1—that
there are infinitely many e-good stages.

Then, by induction over e-good stages we easily check that, for all n ≥ 0, at the end
of the n + 1st e-good stage the construction has enumerated the elements b0, . . . , bn
ordered under Re as the initial segment of an η sequence. Therefore our assumption
that there are infinitely many e-good stages implies that the construction computes
{bn}n∈N as an η sequence (and so dense chain) under Re.

For all m ≥ 0, define Cm to be the set of elements u ∈ Pe[ŝ + 1] such that cm <P u
with ŝ + 1 being the m + 1st e-good stage, i.e. the stage when cm is defined. We now
show by induction over e-good stages that, for any such m, and e-good stage s+ 1 such
that cm has been defined before the end of this stage, (i) and (ii) below hold.

(i) Cm ⊆ {c−1, . . . , cm−1},
(ii) For all u ∈ Pe[s+ 1], cm <P u ⇔ u ∈ Cm.

Indeed at the first e-good stage we have b−1 <P c0 <P c−1 and b−1 <P b0 <P c−1 and
no other <P -comparabilities. Therefore both (i) and (ii) hold with C0 = {c−1}. Now
at the (beginning of the) n + 1st e-good stage s + 1 there exist −1 ≤ i, j < n such
that (bi, cj) is the n-active interval with x, y ∈ (bi, cj) and such that the construction
relabels these elements as bn, cn so that cn Re bn. Accordingly we have under this
new labelling bi <P bn <P cj and bi <P cn <P cj and no other new comparabilities
introduced beyond those dictated by the transitivity of Re. By the induction hypothesis
relative to the nth e-good stage t + 1, for each 0 ≤ h < n the set Ch is defined such
that Ch ⊆ {c−1, . . . , ch−1} and such that, for all u ∈ Pe[t+ 1], ch <P u ⇔ u ∈ Ch. This
implies that, as bi /∈ Ch, for all u ∈ Pe[s+ 1], we also have ch <P u ⇔ u ∈ Ch. On the
other hand clearly, for u ∈ Pe[s+1], cn <P u⇔ u ∈ Cn where we define Cn = {cj} ∪ Cj.
Note that our induction hypothesis (relative to Ch for h < n) and the fact that j < n
implies that Cn ⊆ {c−1, . . . , cn−1}. We thus conclude that the statement above is true.
Note that this means that, for any n ≥ 0, the set of elements <P -above cn in Pe is
the finite set Cn. A similar argument shows that, for any n ≥ 0 the set of elements
<P -below bn in Pe is finite. Thus Pe is scattered.

Case 2: k > 1.

Notation. We use notation of the form b
(0)
n , c

(0)
n to denote the labels that we previously

denoted respectively bn, cn. Level j labels are accordingly of the form b
(j−1)
n , c

(j−1)
n .

This is a straightforward application of Cases 2 and 3 in the proof of Theorem 5.1
to the context of the present Level 1 construction. In other words the construction
now has k Levels and each Level j > 1 processes its m-active interval by searching

the Level j − 1 construction in this interval for a Level j − 1 pair b
(j−2)
n , c

(j−2)
n such

that b
(j−2)
n Re c

(j−2)
n is j-computed (whereas the Level j − 1 labels have been in place

since c
(j−2)
n Re b

(j−2)
n was first j − 1 computed). When (or if) such a pair is found the

Level j construction chooses the pair with least index n and relabels c
(j−2)
n as b

(j−1)
m and

b
(j−2)
n as c

(j−1)
m (so that we now have c

(j−1)
m Re b

(j−1)
m ) chooses its m + 1-active interval

(b
(j−1)
i , c

(j−1)
l ) in precisely the way that this is done at Level 1, and inserts two new

elements x, y such that x |P y in this interval. It then, for all 1 ≤ r < j, resets the

Level r 0-active interval to its m + 1-active interval by resetting b
(r−1)
−1 = b

(j−1)
i and
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c
(r−1)
−1 = c

(j−1)
l thus causing Level r to abandon all previous work and signalling that

it is to restart in this interval. Level j then passes control back to Level j − 1 so that
the control cascades down to Level 1 and the construction restarts from scratch at all
Levels r < j in this interval.

The Level j construction thus proceeds precisely as described for Level 1 with the
difference that it registers j-computations of pairs supplied by the Level j−1—instead of
the process of registering 1-computations of pairs supplied directly by the construction
as happens at Level 1—under the proviso that its own work may be interrupted by the
action of some Level t with j < t ≤ k in a similar way to that just described. It is
important to note that, whenever Level j intervenes all elements of the construction that
do not have a Level j label are abandoned. (Note here that an element has Level r label
with j < r ≤ k only if it already has a Level j label.) Thus, for example, when Level j
intervenes for the first time the only elements now relevant to the construction are

b
(j−1)
−1 , c

(j−1)
−1 , b

(j−1)
0 , c

(j−1)
0 and the newly chosen elements x, y (with b

(j−1)
−1 , c

(j−1)
−1 being the

elements that were also originally labelled b
(0)
−1, c

(0)
−1 whereas b

(j−1)
0 , c

(j−1)
0 is the relabelling

of some pair c
(j−2)
n , b

(j−2)
n as described above but with m = 0). Note that the abandoned

elements of lower Levels once again cause a certain amount of “background noise” at
Level j. However, since no <P -comparabilities between new elements and abandoned
elements are defined (beyond those dictated by the fact that <P must be transitive)
this “background noise” causes only finite interference to the work carried out at Level
j and can thus be safely ignored.

To verify the construction for k > 1 we assume as before that there are infinitely
many e-good stages. It follows that there is some 1 ≤ j ≤ k such that the definition of

the Level 1 base interval (b
(j−1)
−1 , c

(j−1)
−1 ) either is never reassigned or eventually stabilises

and that, within this interval a
(j−1)
n is defined for all n ≥ 0. We can now apply the

Case 1 verification procedure to the Level j construction in the interval (b
(j−1)
−1 , c

(j−1)
−1 ).

(Notice that c
(j−1)
n Re b

(j−1)
n for all n ≥ 0 and that this fact can be decided at the

stage at which b
(j−1)
n , c

(j−1)
n are defined.) Accordingly we can show that {b(j−1)n }n∈N is a

(computable) η sequence in (Pe, Re �Pe) and that every element in Pe has either at most
finitely elements <P -above it at most finitely many elements <P below it. (Here we
take into account the abandoned elements of the construction as well as the elements
b
(j−1)
n , c

(j−1)
n .)

Remark. Similarly to before we see that the construction intrinsic to the verification
procedure can be bundled into a single algorithm, which peforms a search on the k-
levels of the construction and, if Pe is infinite, extracts the η sequence in (Pe, Re �Pe)
from the Level at which it is defined. Note that this algorithm can be defined uniformly
in e = 〈k − 1, i〉 so that for the overall partial order P we have a universal algorithm
performing the necessary k Level search relative to Pe for any index e ≥ 0.

We now conclude from the work above that P satisfies the statement of Theorem 5.2.
Indeed, suppose that R ∈ Σ−1<ω linearises P . Then for some index e, R = Re and it
follows that there are infinitely many e-good stages during the construction so that
a computable η sequence is constructed in (Pe, Re � Pe) as described above. Now as
we have seen, for any index e the component Pe is scattered. Thus, as elements from
different components are pairwise incomparable we see that P is itself scattered. �
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Note 5.3. Suppose that α is a computable order type such that ζ ≤ α. Then the
computable partial order P constructed in Theorem 5.2 does not embed α whereas any
Σ−1<ω linearisation L of P computably embeds α (as α computably embeds into the η
sequence that is constructed in L).

To end this section we turn our attention to the order type of the integers ζ. We firstly
note that, given a computable partial order P = (N, <P ) which does not computably
embed ζ, there is a ∆0

5 linearisation of P that does not computably embed ζ. Indeed
let G0 be the set of numbers a such that, for any index e, if We ⊆ { z ∈ N | z <P a },
then We does not define an ω∗ sequence in P . Then G0 is Π0

3. Also, letting G1 = N\G0

(so that G1 is Σ0
3) we see that, as P does not computably embed ζ, for any b ∈ G1 and

all indices e, if We ⊆ { z ∈ N | b <P z }, then We does not define an ω sequence in P .
Moreover, for any a ∈ G0 and b ∈ G1 it is not the case that b <P a. Hence, as both
G0 and G1 are ∅(3)-computable, using our construction in the proof of Theorem 4.8
(or Rosenstein’s construction proving Theorem 2.1), relativised to ∅(3) we obtain ∅(4)-
computable linearisations L0 and L1 of (G0, <P �G0) and (G1, <P �G1) respectively such
that L0 does not computably embed ω∗ and L1 does not computably embed ω. Thus
L = L0 + L1 is a ∆0

5 linearisation of P that does not computably embed ζ. So the
question that now arises is whether, using more delicate arguments, we can find such a
linearisation L which is ∆0

2 or even ω-c.e. We now answer this question in the negative.

Theorem 5.4. There exists a computable partial order P which does not embed ζ such
that any ∆0

2 linearisation of P computably embeds ζ.

Proof. For the present proof we assume that {Re}e∈N is a listing of the class of Σ0
2

sets with associated effective Σ0
2 approximation {Re[s]}e,s∈N. In other words—using in

addition our identification of numbers with pairs coded by 〈·, ·〉—we have that, for all
indices e,

Re = { 〈n,m〉 | ∃t(∀s ≥ t)[Re(〈n,m〉)[s] = 1 ] }
and that, for every Σ0

2 set R, there is some e such that R = Re.
We construct a computable partial order P as a disjoint union of subpartial orders

Pe with no <P -comparabilities between different components as in the proofs of Theo-
rem 5.1 and 5.2 with the main difference that this time we use the Σ0

2 approximation
{Re[s]}e,s∈N. Again we assume the basic definitions of our earlier proofs but with an
ingredient of simplification which will be described below.

Given index e we will construct Pe = (Pe, <P � Pe) such that, for every chain L in
Pe, if L is not finite, then it has order type either ω∗ or ω. Our construction will also
ensure that, if (N, Re) linearises P then there will be a computable copy of ζ embedded
in (Pe, Re � Pe).

The Construction

We consider fixed index e and describe the construction of the associated component
Pe. At all stages s ≤ e by definition Pe[s] = ∅. At stage e+1 two new elements x and y
are added to Pe[e] to obtain Pe[e+ 1] in such a way that x |P y. We say that s+ 1 is an
e-good18 stage during the present construction if Re[s+ 1] linearises the subcomponent

18If we choose {Re}e∈N and its Σ0
2 approximation such that, for every Σ0

2 (so in particular every ∆0
2)

set R there is an index e such that R = Re and the approximation {Re[s]}s∈N has infinitely many good
stages—i.e. stages s such that Re[s] ⊆ Re—then we can apply the definition of e-good stage from our
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of Pe comprising these two <P -incomparable elements (whatever the ongoing labelling
of the elements). Note that, as before, the set of e-good stages is computable.

We suppose, for the sake of the present argument, that the set of e-good stages is
nonempty (and sufficiently large). At the first e-good stage s+ 1 > e+ 1 we have that,
for some u, v ∈ {x, y}, u Re v is 1-computed. We now remove the x, y labels and label
the element u as c and v as b. We also add two new elements a0 and d0 to Pe[s] to obtain
Pe[s+1] such that d0 <P c and b <P a0 (with no other <P -comparabilities introduced).
Note that the idea is that d0 is to be the second element of an ω∗ sequence in Pe and a0
is to be the second19 element of an ω sequence in Pe. Accordingly at each subsequent
e-good stage for as long as b Re c is not 2-computed—i.e. c Re b is 1-computed at
every such stage—the construction adds two new elements so as to continue building
an ω∗ sequence <P -below c and an ω sequence <P -above b in Pe. Thus for n > 0, if
cRe b is 1-computed at the n+ 1st e-good stage s+ 1, then Pe[s] is made up of the two
chains dn−1 <P · · · <P d0 <P c and b <P a0 <P · · · <P an−1 and two new elements
dn, an are added so that Pe[s + 1] is made up of dn <P dn−1 <P · · · <P d0 <P c and
b <P a0 <P · · · <P an−1 <P an.

In the spirit of our earlier proofs we say that the construction is Level 1 for as long as
b Re c is not 2-computed. Note that clearly, if there are infinitely many e-good stages
and the construction remains permanently at Level 1, then Pe will consist of a copy of
ω∗ with first element c and a copy of ω with first element b (with no comparabilities
between pairs of elements in the two different chains). If—as will generally be the case—
there is an e-good stage at which b Re c is 2-computed then the construction abandons
the Level 1 construction and moves to Level 2 which means that it starts building—from
the first such e-good stage onwards—an ω∗ sequence <P -below b and an ω sequence
<P -above c in Pe. Level 2 now continues constructing these sequences at all e-good
stages for as long c Re b is not 3-computed at any such stage. If c Re b is eventually
3-computed the construction abandons the Level 2 construction and moves to Level
3 which starts from scratch building an ω∗ sequence <P -below c, whose elements are
<P -incomparable with the (finite) Level 1 chain previously built <P -below c, and an ω
sequence <P -above b, whose elements are likewise <P -incomparable with the Level 1
chain previously built <P -above b.

Overall the construction proceeds in Levels in a similar way to that outlined above
for Levels 1-3 with the construction always working at some specific Level k ≥ 1. Now
supposing without loss of generality that k is odd—noting that the case when k is
even is the same with the roles of b and c inverted—the construction remains at Level
k, provided that at every intervening e-good stage c Re b is k-computed. Meanwhile
the construction proceeds to build (at each e-good stage) an ω∗ sequence <P -below c,
whose elements are <P -incomparable with all elements belonging to chains previously
built <P -below c, and an ω sequence <P -above b, whose elements are likewise <P -
incomparable with all elements belonging to chains previously built <P -above b. (Notice
that the chains concerned are those built at Levels i with i < k and i odd.) If however
b Re c is k+1 computed at some subsequent e-good stage, then the construction moves

earlier proofs. However since this approach is not necessary here, for simplicity we apply the above
modified version of e-goodness.

19From the point of view of Note 5.5 below d0 and a0 are respectively the first elements of the ω∗

and ω sequences.
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to Level k + 1 and starts from scratch building sequences <P -below b and <P -above c
satisfying the same (incomparability) conditions as those just described with k being
replaced by k + 1 and b and c swapped.

Verification.

We assume again without loss of generality, as in the proofs of Theorem 5.1 and
5.2—that there are infinitely many e-good stages (otherwise Pe is finite and it cannot
be the case that Re linearises P). Notice that elements b and c are permanently defined
from the first e-good stage onwards. There are two cases. The first is the case in which
the construction processes Level k for all k ≥ 1. Note that this means that there will be
infinitely many pairwise <P -incomparable finite chains built <P -below b and infinitely
many pairwise <P -incomparable finite chains built <P -above b and likewise for c in
place of b. Moreover any maximal chain either includes b and is made up of b added to
one of the finite chains built <P -below b and to one of the finite chains built <P -above
b, or otherwise includes c and has the same description with c swapped for b. I.e. any
such chain is finite. The second case is when there is a Level k such that, from some
stage onwards the construction remains at Level k. Then, supposing without loss of
generality that k is odd, Pe is made up of an ω∗ sequence with c as first element and an
ω sequence with b as first element—with no <P -incomparabilities between members of
the different sequences—and a finite part corresponding to action taken at levels i < k
(i.e. the “background noise” of the construction of Pe). It follows therefore that in both
cases Pe does not embed ζ. Moreover since the present description applies to all indices
e and the subcomponents Pe of P are pairwise <P -incomparable we see that P itself
does not embed ζ.

Now suppose that Re linearises P . Suppose also, without loss of generality, that
b Re c. Then there is a stage te > e + 1 such that, for all s ≥ te, Re(〈b, c〉)[s] = 1.
Moreover, as Re linearises P and {Re[s]}s∈N is a Σ0

2 approximation to Re we know that
for infinitely many stages s ≥ te, Re(〈c, b〉)[s] = 0. However clearly each one of these
stages is an e-good stage of the construction. Moreover the construction is at some
fixed level k at all such stages (where k − 1 is in effect the total number of “changes
of mind” of Re relative to the pair b,c at previous e-good stages of the construction.)
Thus, as already mentioned above, c is the first element of an ω∗ sequence and b is the
first element of an ω sequence in Pe. Also, since c Re b and Re linearises Pe we have a
copy of ζ in (Pe, Re �Pe). Clearly this copy of ζ is computable by construction. This
concludes the proof of Theorem 5.4 given that, for any ∆0

2 set R, there is some e such
that20 R = Re. �

Note 5.5. Let α and β be infinite computable order types for which there exist, re-
spectively, computable copies L+

α and L−β of α + 1 and 1 + β such that neither L+
α nor

20Note that any Re that linearises P = (N, <P ) is ∆0
2. This is a special case of the fact (already

mentioned in the unrelativised case in the Introduction) that, for any set A, any linear order which is
either A-c.e. or A-co-c.e. but which has A-computable domain is in fact A-computable. (In the present
case Re is A-c.e. for A = ∅′.) Note also that we can also easily prove that Re is ∆0

2 directly in this
case by including an analysis of the ages of both the element 〈n,m〉 and 〈m,n〉 in the approximation
{Re[s]}s∈N. Notice moreover that we could assume our (choice of) listing {Re}s∈N to be such that, if
R is ∆0

2 then there is an index such that R = Re with {Re[s]}s∈N being a ∆0
2 approximation. We do

not make this assumption as it does not simplify our argument.
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L−β computably embeds the order type α+ β. (In particular, this is obviously the case
when both α + β 6≤ α + 1 and α + β 6≤ 1 + β.) Then by modifying the construction
in the proof of Theorem 5.4 to construct L+

α instead of a copy of ω∗ (= ω∗ + 1) and
L−β instead of a copy of ω (= 1 + ω) we see that, for any such α and β, there exists a

computable partial order P which does not computably embed α+β such that any ∆0
2

linearisation of P computably embeds α + β. Moreover, if in fact α + β 6≤ α + 1 and
α+β 6≤ 1+β, then the first “computably” in this statement can be dropped. Thus, for
example, we could replace ζ by the order type ω+ω∗ in the statement of Theorem 5.4.

Note 5.6. Suppose that in the construction of P in the proof of Theorem 5.4, for all
e ≥ 0, we use the component P2e (instead of Pe) to “diagonalise” against Re—i.e. to
ensure that, if Re linearises P , then (P2e, Re �P2e) computably embeds ζ—and that we
use component P2e+1 to code ∅′(e) as in the proof of Claim 1 of Theorem 3 in [DHLS03]
(choosing f such that Ran f = ∅′). Note that we can do this as follows. We name the
first two elements to be put into P2e+1 as xe, ye (instead of using the temporary labels
x, y as in the above proof). Then at every subsequent stage, for as long as we see
that e has not entered ∅′, we add two new elements in such a way as to progressively
construct a copy of ω∗ <P -below xe and a copy of ω <P -above ye in P2e+1. However if
we see that e enters ∅′ then we switch to building a copy of ω∗ <P -below ye and a copy
of ω <P -above xe in P2e+1. Then we find that any linearistion L = (N, <L) of P which
does not computably embed ζ is not only not ∆0

2 but also computes the halting set ∅′
since ∅′ = { e | xe <L ye }. In other words this variant of the construction forces the
Turing degree of such L to be strictly above 0′, the Turing degree of ∅′. Observe also
that Note 5.5 can again be applied to this result.
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