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Social contact networks underlying epidemic processes in humans and animals are highly dynamic.
The spreading of infections on such temporal networks can differ dramatically from spreading on
static networks. We theoretically investigate the effects of concurrency, the number of neighbors
that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-
infected-susceptible dynamics on temporal network models. We show that network dynamics can
suppress epidemics (i.e., yield a higher epidemic threshold) when nodes’ concurrency is low, but can
also enhance epidemics when the concurrency is high. We analytically determine different phases of
this concurrency-induced transition, and confirm our results with numerical simulations.

Introduction: Social contact networks on which infec-
tious diseases occur in humans and animals or viral in-
formation spreads online and offline are mostly dynamic.
Switching of partners and (usually non-Markovian) activ-
ity of individuals, for example, shape network dynamics
on such temporal networks [1–3]. Better understanding
of epidemic dynamics on temporal networks is needed to
help improve predictions of, and interventions in, emer-
gent infectious diseases, to design vaccination strategies,
and to identify viral marketing opportunities. This is
particularly so because what we know about epidemic
processes on static networks [4–7] is only valid when
the timescales of the network dynamics and of the in-
fectious processes are well separated. In fact, temporal
properties of networks, such as long-tailed distributions
of inter-contact times, temporal and cross-edge correla-
tion in inter-contact times, and entries and exits of nodes,
considerably alter how infections spread in a network [1–
3, 8, 9].

In the present study, we focus on a relatively neglected
component of temporal networks, i.e., the number of con-
current contacts that a node has. Even if two tem-
poral networks are the same when aggregated over a
time horizon, they may be different as temporal net-
works due to different levels of concurrency. Concur-
rency is a long-standing concept in epidemiology, in par-
ticular in the context of monogamy/polygamy affecting
sexually transmitted infections [10–12]. Modeling stud-
ies to date largely agree that a level of high concurrency
(e.g., polygamy as opposed to monogamy) enhances epi-
demic spreading in a population. However, this finding,
while intuitive, lacks theoretical underpinning. First,
some models assume that the mean degree, or equiva-
lently the average contact rate, of nodes increases as the
concurrency increases [13–16]. In these cases, the ob-
served enhancement in epidemic spreading is an obvious
outcome of a higher density of edges rather than a high
concurrency. Second, other models that vary the level
of concurrency while preserving the mean degree are nu-

merical [10, 11, 17, 18]. In the present study, we use the
analytically-tractable activity-driven model of temporal
networks [19–23] to explicitly modulate the size of the
concurrently active network with the structure of the ag-
gregate network fixed. With this machinery, we carefully
treat extinction effects, derive an analytically tractable
matrix equation using a probability generating function
for dynamical networks, and reveal non-monotonic ef-
fects of link concurrency on spreading dynamics. We
show that the dynamics of networks can either enhance
or suppress infection, depending on the amount of con-
currency that individual nodes have. Note that analysis
of epidemic processes driven by discrete pairwise contact
events, which is a popular approach [1–3, 9, 23–27], does
not address the problem of concurrency because we must
be able to control the number of simultaneously active
links possessed by a node in order to examine the role of
concurrency without confounding with other aspects.

Model: We consider the following continuous-time
susceptible-infected-susceptible (SIS) model on a
discrete-time variant of activity-driven networks, which
is a generative model of temporal networks [19–23].
The number of nodes is denoted by N . Each node
i (1 ≤ i ≤ N) is assigned an activity potential ai,
drawn from a probability density F (a) (0 < a ≤ 1).
Activity potential ai is the probability with which node
i is activated in a window of constant duration τ . If
activated, node i creates m undirected links each of
which connects to a randomly selected node (Fig. 1). If
two nodes are activated and send edges to each other,
we only create one edge between them. However, for
large N and relatively small ai, such events rarely occur.
After a fixed time τ , all edges are discarded. Then,
in the next time window, each node is again activated
with probability ai, independently of the activity in
the previous time window, and connects to randomly
selected nodes by m undirected links. We repeat this
procedure. Therefore, the network changes from one
time window to another and is an example of a switch-
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FIG. 1. Schematic of an activity-driven network with m = 3.

ing network [28–31]. A large τ implies that network
dynamics are slow compared to epidemic dynamics. In
the limit of τ → 0, the network blinks infinitesimally
fast, enabling the dynamical process to be approximated
on a time-averaged static network, as in [30].

For the SIS dynamics, each node takes either the sus-
ceptible or infected state. At any time, each susceptible
node contracts infection at rate β per infected neighbor-
ing node. Each infected node recovers at rate µ irrespec-
tively of the neighbors’ states. Changing τ to cτ (c > 0)
is equivalent to changing β and µ to β/c and µ/c, re-
spectively, whilst leaving τ unchanged. Therefore, we set
µ = 1 without loss of generality.
Analysis: We calculate the epidemic threshold as fol-
lows. First, we formulate SIS dynamics near the epidemic
threshold on a static star graph, which is the building
block of the activity-driven model, while explicitly con-
sidering extinction effects. Second, we convert the ob-
tained set of linear difference equations into a tractable
mathematical form with the use of a probability gen-
erating function of an activity distribution. Third, the
epidemic threshold is obtained from an implicit func-
tion. For the sake of the analysis, we assume that star
graphs generated by an activated node, which we call
the hub, are disjoint from each other. Because a star
graph with hub node i overlaps with another star graph
with probability ≈ m

∑
j 6=i aj(m+1)/N ∝ m2〈a〉, where

〈a〉 ≡
∫

daF (a)a is the mean activity potential, we im-
pose m2〈a〉 � 1. (However, our method works better
than the so-called individual-based approximation even
when m2〈a〉 = 0.5, as shown in the Supplemental Mate-
rial.) We denote by ρ(a, t) the probability that a node
with activity a is infected at time t. The fraction of in-
fected nodes in the entire network at time t is given by
〈ρ(t)〉 ≡

∫
daF (a)ρ(a, t). Let c1 be the probability with

which the hub in an isolated star graph is infected at time
t+τ , when the hub is the only infected node at time t and
the network has switched to a new configuration right at
time t. Let c2 be the probability with which the hub is
infected at t+ τ when only a single leaf node is infected
at t. The probability that a hub with activity potential a
is infected after the duration τ of the star graph, denoted
by ρ1, is given by

ρ1(a, t+ τ) = c1ρ(a, t) + c2m〈ρ(t)〉. (1)

In deriving Eq. (1), we considered the situation near the
epidemic threshold such that at most one node is infected
in the star graph at time t (and hence ρ(a, t), 〈ρ(t)〉 � 1).
The probability that a leaf with activity potential a that

has a hub neighbor with activity potential a′ is infected
after time τ is analogously given by

ρ2(a, a′, t+ τ) = c3ρ(a, t) + c4ρ(a′, t) + c5(m− 1)〈ρ(t)〉,
(2)

where c3, c4, and c5 are the probabilities with which a
leaf node with activity potential a is infected after dura-
tion τ when only that leaf node, the hub, and a different
leaf node is infected at time t, respectively. We derive
formulas for ci (1 ≤ i ≤ 5) in the Supplemental Mate-
rial. The probability that an isolated node with activity
potential a is infected after time τ is given by e−τρ(a, t).
By combining these contributions, we obtain

ρ(a, t+ τ) = aρ1(a, t+ τ) +

∫
da′F (a′)ma′ρ2(a, a′, t+ τ)

+ (1− a−m〈a〉)e−τρ(a, t). (3)

To analyze Eq. (3) further, we take a generating func-
tion approach. With this approach, one trades a prob-
ability distribution for a probability generating func-
tion whose derivatives provide us with useful information
about the distribution such as its moments. Furthermore,
it often makes analysis easier, in particular linear analy-
sis. By multiplying Eq. (3) by za and averaging over a,
we obtain

Θ(z, t+ τ) = c′1Θ(1)(z, t) + c′2Θ(1, t)g(1)(z) + c′3Θ(z, t)

+
[
c′4Θ(1)(1, t) + c′5Θ(1, t)

]
g(z), (4)

where c′1 ≡ c1−e−τ , c′2 ≡ mc2, c′3 ≡ e−τ+m〈a〉(c3−e−τ ),
c′4 ≡ mc4, c′5 ≡ m(m − 1)〈a〉c5, g(z) ≡

∫
daF (a)za

is the probability generating function of a, Θ(z, t) ≡∫
daF (a)ρ(a, t)za, and throughout the paper the super-

script (n) represents the n-th derivative with respect to
ln z. Although Eq. (3) is an infinite dimensional system
of linear difference equations, Eq. (4) is a single difference
equation of Θ(z, t) and its derivative [32].

We expand ρ(a, t) as a Maclaurin series as follows:

ρ(a, t) =

∞∑
n=1

wn(t)an−1. (5)

Using this polynomial basis representation (the conver-
gence is proven in the Supplemental Material), we can
consider the differentiations in Eq. (4) (i.e., Θ(1)(z, t) and
g(1)(z)) as an exchange of bases and convert Eq. (4) into a
tractable matrix form. Let p0 be the fraction of initially
infected nodes, which are uniformly randomly selected,
independently of a. We represent the initial condition as
w(t = 0) ≡ (w1(0), w2(0), . . .)> = (p0, 0, 0, . . .)

>
. Epi-

demic dynamics near the epidemic threshold obey linear
dynamics given by

w(t+ τ) = T (τ)w(t). (6)

By substituting Θ(z, t) =
∑∞
n=1 wn(t)g(n−1)(z) and

g(n−1)(1) = 〈an−1〉 in Eq. (4), we obtain
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T =



c′3 + 〈a〉c′4 + c′5 〈a2〉c′4 + 〈a〉c′5 〈a3〉c′4 + 〈a2〉c′5 〈a4〉c′4 + 〈a3〉c′5 〈a5〉c′4 + 〈a4〉c′5 · · ·
c′1 + c′2 〈a〉c′2 + c′3 〈a2〉c′2 〈a3〉c′2 〈a4〉c′2 · · ·

0 c′1 c′3 0 0 · · ·
0 0 c′1 c′3 0 · · ·
0 0 0 c′1 c′3 · · ·
...

...
...

...
...

. . .


. (7)

A positive prevalence 〈ρ(t)〉 (i.e., a positive fraction of in-
fected nodes in the equilibrium state) occurs only if the
largest eigenvalue of T (τ) exceeds 1, because in this sit-
uation the probability of being infected grows in time, at
least in the linear regime. Therefore, we get the following
implicit function for the epidemic threshold, denoted by
βc:

f(τ, βc) ≡
(1− r)(1− s)− (1 + q)u

S(q)

− qr − qs+ qrs− q2u− rs = 0, (8)

where S(q) ≡
∑∞
n=0

〈an+2〉
〈a〉n+2 q

n = 1
〈a〉2

〈
a2

1− a
〈a〉 q

〉
, q ≡

〈a〉c′1
1−c′3

, r ≡ 〈a〉c′2
1−c′3

, s ≡ 〈a〉c′4
1−c′3

, and u ≡ c′5
1−c′3

(see Sup-

plemental Material for the derivation). Note that f is a
function of β (= βc) through q, r, s, and u, which are
functions of β. In general, we obtain βc by numerically
solving Eq. (8), but some special cases can be determined
analytically.

In the limit τ → 0, Eq. (8) gives βc =[
m
(
〈a〉+

√
〈a2〉

)]−1
, which coincides with the epidemic

threshold for the activity-driven model derived in the pre-
vious studies [19, 22]. In fact, this βc value is the epidemic
threshold for the aggregate (and hence static) network,
whose adjacency matrix is given by A∗ij ≈ m(ai + aj)/N
[3, 31], as demonstrated in Fig. S1.

For general τ , if all nodes have the same activity po-
tential a, and if m = 1, we obtain βc as the solution of
the following implicit equation:

2ae
(βc−1)τ

2

[
cosh

(κcτ
2

)
+

1 + 3βc
κc

sinh

(
−κcτ

2

)]
− eτ + 1− 2a = 0, (9)

where κc =
√
β2
c + 6βc + 1.

The theoretical estimate of the epidemic threshold
(Eq. (8); we use Eq. (9) in the case of m = 1) is shown
by the solid lines in Figs. 2(a) and 2(b). It is compared
with numerically calculated prevalence values for various
τ and β values shown in different colors. Equations (8)
and (9) describe the numerical results fairly well. When
m = 1, the epidemic threshold increases with τ and di-
verges at τ ≈ 0.1 (Fig. 2(a)). Furthermore, slower net-
work dynamics (i.e., larger values of τ) reduce the preva-
lence for all values of β. In contrast, when m = 10, the
epidemic threshold decreases and then increases as τ in-
creases (Fig. 2(b)). The network dynamics (i.e., finite
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FIG. 2. Epidemic threshold and the numerically-simulated
prevalence when m = 1 ((a) and (c)) and m = 10 ((b) and
(d)). In (a) and (b), all nodes have the same activity poten-
tial value a. The solid lines represent the analytical estimate
of the epidemic threshold (Eq. (8); we plot Eq. (9) instead
in (a)). The dashed lines represent the epidemic threshold
obtained from the individual-based approximation (Supple-
mental Material). The color indicates the prevalence. In (c)
and (d), the activity potential (ε ≤ ai ≤ 0.9, 1 ≤ i ≤ N) obeys
a power-law distribution with exponent 3. In (a)–(d), we set
N = 2000 and adjust the values of a and ε such that the mean
degree is the same (〈k〉 = 0.1) in the four cases. We simulate
the stochastic SIS dynamics using the quasistationary state
method [33], as in [31], and calculate the prevalence averaged
over 100 realizations after discarding the first 15, 000 time
steps. We set the step size ∆t = 0.002. Qualitatively simi-
lar results are obtained for the variant of the activity-driven
model with a reinforcement mechanism of link creation [34]
(Fig. S3).

τ) impact epidemic dynamics in a qualitatively different
manner depending on m, i.e., the number of concurrent
neighbors that a hub has. Note that the estimate of βc
by the individual-based approximation ([31], see Supple-
mental Material for the derivation), which may be justi-
fied when m� 1, is consistent with the numerical results
and our theoretical results only at small τ (dashed lines
in Fig. 2(b)). Qualitatively similar when the activity po-
tential a is power-law distributed (Figs. 2(c) and 2(d)).

To illuminate the qualitatively different behaviors of
the epidemic threshold as τ increases, we determine a
phase diagram for the epidemic threshold. We focus our
analysis on the case in which all nodes share the activ-
ity potential value a, noting that qualitatively similar
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results are also found for power-law distributed activity
potentials (Fig. 3(b)). We calculate the two boundaries
partitioning different phases as follows. First, we observe
that the epidemic threshold diverges at τ = τ∗. In the
limit β → ∞, infection starting from a single infected
node in a star graph immediately spreads to the entire
star graph, leading to ci → 1 (1 ≤ i ≤ 5). By substi-
tuting ci → 1 in Eq. (8), we obtain f(τ∗, βc → ∞) = 0,
where

τ∗ = ln
1− (1 +m)a

1− (1 +m)2a
. (10)

When τ > τ∗, infection always dies out even if the in-
fection rate is infinitely large. This is because, in a fi-
nite network, infection always dies out after sufficiently
long time due to stochasticity [35–37]. Second, although
βc eventually diverges as τ increases, there may exist τc
such that βc at τ < τc is smaller than the βc value at
τ = 0. Motivated by the comparison between the be-
haviour of βc at m = 1 and m = 10 (Fig. 2), we pos-
tulate that τc (> 0) exists only for m > mc. Then, we
obtain dβc/dτ = 0 at (τ,m) = (0,mc). The derivative of
Eq. (8) gives ∂f/∂τ + (∂f/∂βc)(dβc/dτ) = 0. Because
dβc/dτ = 0 at (τ,m) = (0,mc), we obtain ∂f/∂τ = 0,
which leads to

mc =
3

1− 4a
. (11)

When m < mc, network dynamics (i.e., finite τ) always
reduce the prevalence for any τ (Figs. 2(a) and 2(c)).
When m > mc, a small τ raises the prevalence as com-
pared to τ = 0 (i.e., static network) but a larger τ reduces
the prevalence (Figs. 2(b) and 2(d)).

The phase diagram based on Eqs. (10) and (11) is
shown in Fig. 3(a). The βc values numerically calculated
by solving Eq. (8) are also shown in the figure. It should
be noted that the parameter values are normalized such
that βc has the same value for all m at τ = 0. We find
that the dynamics of the network may either increase or
decrease the prevalence, depending on the number of con-
nections that a node can simultaneously have, extending
the results shown in Fig. 2.

These results are not specific to the activity-driven
model. The phase diagram is qualitatively similar for
randomly distributed m (Fig. S4), for different distribu-
tions of activity potentials (Fig. S5), and for a different
model in which an activated node induces a clique in-
stead of a star (Fig. S6), modeling a group conversation
event as some temporal network models do [38–40].
Discussion: Our analytical method shows that the pres-
ence of network dynamics boosts the prevalence (and de-
creases the epidemic threshold βc) when the concurrency
m is large and suppresses the prevalence (and increases
βc) when m is small, for a range of values of the net-
work dynamic timescale τ . This result lends theoreti-
cal support to previous claims that concurrency boosts
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FIG. 3. Phase diagrams for the epidemic threshold, βc, when
the activity potential is (a) equal to a for all nodes, or (b)
obeys a power-law distribution with exponent 3 (ε ≤ ai ≤
0.9). We set 〈k〉 = 0.1 at m = 1 and adjust the value of a
and ε such that βc takes the same value for all m at τ = 0.
In the “die out” phase, infection eventually dies out for any
finite β. In the “suppressed” phase, βc is larger than the βc
value at τ = 0. In the “enhanced” phase, βc is smaller than
the βc value at τ = 0. The solid and dashed lines represent
τ∗ (Eq. (10)) and τc, respectively. The color bar indicates the
βc values. In the gray regions, βc > 100.

epidemic spreading [10, 11, 13–19, 41]. The result may
sound unsurprising because a large m value implies that
their exists a large connected component at any given
time. However, our finding is not trivial because a large
component consumes many edges such that other parts
of the network at the same time or the network at other
times would be more sparsely connected as compared to
the case of a small m. We confirmed that qualitatively
similar results are found when the activity potentials
were constructed from two empirical social contact net-
works (Fig. S7). Our results confirm that monogamous
sexual relationship or a small group of people chatting
face-to-face, as opposed to polygamous relationships or
large groups of conversations, hinders epidemic spread-
ing, where we compare like with like by constraining the
aggregate (static) network to be the same in all cases.
For general temporal networks, immunization strategies
that decrease concurrency (e.g., discouraging polygamy)
may be efficient. Restricting the size of the concurrent
connected component (e.g., size of a conversation group)
may also be a practical strategy.

Another important contribution of the present study
is the observation that infection dies out for a suffi-
ciently large τ , regardless of the level of concurrency.
As shown in Figs. 3 and S1, the transition to the “die
out” phase occurs at values of τ that correspond to net-
work dynamics and epidemic dynamics having compara-
ble timescales. This is a stochastic effect and cannot be
captured by existing approaches to epidemic processes
on temporal networks that neglect stochastic dying out,
such as differential equation systems for pair formulation-
dissolution models [11, 15–18] and individual-based ap-
proximations [31, 42, 43]. Our analysis methods explic-
itly consider such stochastic effects, and are therefore ex-
pected to be useful beyond the activity-driven model (or
the clique-based temporal networks analyzed in the Sup-
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plemental Material) and the SIS model.
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