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The Numbers Lead a Dance

Mathematics of the Sestina

Alan R. Champneys, Poul G. Hjorth, Harry Man

Abstract.

Sestinas are poems of 39 lines comprising six verses of six lines each, and a three line final
verse or ‘envoi’. The structure of the sestina is built around word repetition rather than strict
rhyme. Each verse uses the same set line ending words, but in a permuted order. The form of the
permutation is highly specific, and is equivalent to iteration of the tent map. This paper considers
for which number N of verses, other than 6, can a sestina-like poem be formed. That is, which
N will the prescribed permutation lead to a poem of N verses where no two verses have the
same order of their end words. In so doing, a link is found between permutation groups, chaotic
dynamics, and Cunningham numbers.

2010 Mathematics Subject Classification. Primary 05-XX; Secondary 11-UU, 37-E05.
Keywords. Permutation Groups, Iterative Maps, Chaotic Dynamics, Sestina Poetry.

1. Introduction

Sestinas are a form of highly complex poems designed around a particular pattern, see
e.g. [6, 13]. Each verse of the poem has six lines and there are 6 verses in total. In
addition there is a coda, called an envoi that contains just three lines. For the main
poem, the final word of each line is crucial. The collection of six such end-words is
invariant from verse to verse, yet the word order is permuted. The permutation from
one verse to the next takes a specific form. The idea is similar to that of a rifle shuffle
of a pack of cards. The list of words is split in two and the words from the second half
are meshed with the words from the first half, but in reverse order. Thus, what was
the last word is now first, what was the penultimate is now third, etc. This mixing is
is sometimes represented in a spiral pattern, as illustrated in Figure 1. Schimel[11]
describes the sestina as

“like a dance [12], with each stanza representing a reel. Each stanza is
based on the stanza directly preceding it. The order of the stanza peels off
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Verse 1
one
two
three
four
five
six

Verse 2
six
one
five
two
four
three

1
2
3
4
5
6

start here

Figure 1. Illustrating the permutation of the order of the end words when passing from the first
to the second verse. Here “one” to “six” represent the end words used in the first verse, and the
numbers 1 to 6 represent the position within a verse. This spiral illustration, found in several
poetry text books e.g. [6, 13], appears somewhat confusing as it is does not represent the actual
permutation map. Instead, the arrangement of the second verse is found by following the spiral,
beginning with 6.
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the lines of the prior stanza, moving ever inwards towards the core: last,
first, penultimate, second, antepenultimate, third.”

And what of the envoi? It contains all six end words, two per line, with half of the
end-words being placed somewhere within the body of the line, and half at the end.
It is like a closing passage of the dance in double time. Some versions of the sestina
demand a strict order for the placement of the six words on these lines,

…5 …2
…3 …4
…1 …6

some poets chose to vary the form by using synonyms, or otherwise shake up the form,
but the reason behind these alterations has to be implicit in either the imagery or the
language e.g., the numbers of a rocket countdown. Such numbers might be fudged if
the poem is about someone setting off fireworks in their garden and one firework goes
off unexpectedly early.
The envoi is a crucial part of each sestina, but because it is not involved directly in the
permutation of words from verse to verse, we shall ignore the envoi in the mathemat-
ical arguments that follow.
Scholars continue to debate on the sestina’s precise origins because of the volume of
poems thought to be comprised of sextains (six line verses) between the 11th and 13th
centuries. However, the form’s invention is commonly attributed to early 13th cen-
tury literary giant Arnaut Daniel with his poem (English translation: The Firm Desire
That Entered My Heart)1 At the time his poetic abilities were incontestable and it set
a deliberate challenge to those around him to make the poetry of courtship as tough as
possible by forcing the poet to utilise a pattern of repeated words while still keeping
their bride to be entertained. It also was incidentally quite pioneering, exhibiting a
kind of free verse, years ahead of other exponents of free verse like Christopher Smart
or Walt Whitman, with attention largely focused on content over rhyme. While any
challengers would be able to express themselves in a manner that was strictly regi-
mented it also allowed allowed poets to dispense with strict rhyme and meter. This
is probably one of the main reasons why in the 20th Century he was championed by
the likes of T.S. Eliot and Ezra Pound. Both Eliot and Pound were exponents of an
imagistic poetry which was sparse, and that lacked the romance, nostalgia and high
rhetoric that had so dominated the poetry of the previous century.
Think of poems such as Tennyson’s The Charge of the Light Brigade or Wordsworth’s
Daffodils and the line, ‘I wandered lonely as a cloud’. Poetry’s horizons opened up
under the modernists as they fractured the syntax and rhyme and formal conventions
of poetry, and now a poem could be made from found text, and fragments of dialogue,

1We shall not give precise references to the poems or poets mentioned in this introduction; this is, after
all, primarily an article on mathematics and the text of all the poems can easily be found online.
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and musical hall songs, or it could be made to look like rain trickling down a page,
and most importantly of all, the poem was no longer a piece of text reflecting on an
event, but it was the event itself. This shifted the spotlight to both the form a poem
could take, and how this interacted directly with its meaning. It was as if someone
in an art gallery pointed at a portrait and suddenly made the pronouncement that the
frame the portrait was sitting in was just as integral to the artwork’s meaning as the
painting itself. This shift in approach is still felt today, and particularly in the workings
of the sestina. The sestina structure itself is what frames the poem, and its structure,
therefore is subject to the same scrutiny as the poem’s literal meaning.
Well composed sestinas can either make the word repetition seem utterly necessary to
the unfolding narrative, which is the conventional view, or they can emphasize each
endword deliberately to bring the structure more to the fore. Great modern examples
of the form include John Ashbery’s The Painter and Paul Muldoon’s extraordinary
work Yarrow. There are several modern literary journals such as McSweeneys in San
Francisco that have in the past, purposefully asked for sestinas to ward off amateur
poets and mention the word ‘sestina’ to any poetry workshop now and you can expect
a sharp intake of breath from around the room because of its infamous complexity.
Mathematically, we can describe the sestina permutation as follows. Let m be the
number of m-line verses and let n represent the word that is at the end of the nth line
of verse p. Then the position in the (p + 1)st verse is given by the rule

n →

⎧

⎪

⎨

⎪

⎩

2n if n ≤
[

m
2

]

2m + 1 − 2n if
[

m
2

]

< n ≤ m
, (1)

where m is the number of lines in a verse and [⋅] represents the integer part of an
expression. Thus, for m = 6 we have

1 → 2, 2 → 4, 3 → 6, 4 → 5, 5 → 3, 6 → 1, (2)
as constructed in Figure 1.
For a sestina to work properly, each of the end-words, should have a turn at the end of
nth line of a verse, for each n = 1, 2,…m. This indeed occurs if m = 6 as indicated in
Table 1 and illustrated in the poems embedded in this article. Here, each word has a
turn in each position, and each line within a verse sees each end-word precisely once
during the poem. If one were to construct a seventh verse according to the rule (1),
then the order of the end-words would be identical to that of the first verse. Thus we
find that the permutation forms a cycle of length six.
The question we wish to address in this article is for which other verse lengths m does
this symmetric, egalitarian distribution of line order among the end-words occur if we
use the same basic rule (1) from verse to verse? A simple test shows, for example, that
something goes wrong if m = 7, or m = 8, see Tables 2 and 3 respectively.
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verse one two three four five six
1st line 1 6 3 5 4 2
2nd line 2 1 6 3 5 4
3rd line 3 5 4 2 1 6
4th line 4 2 1 6 3 5
5th line 5 4 2 1 6 3
6th line 6 3 5 4 2 1

Table 1. Position of the end-words of each line among the six verses of a six-line sestina. Here,
the number 1 represents the word that ends the first line of the first verse, 2 represents the word
that ends the second line of the first verse, etc. The word in the first line moves to the second
line, the word in the second line moves to the fourth line and so on.

verse one two three four five six seven
1st line 1 7 4 2 1 7 4
2nd line 2 1 7 4 2 1 7
3rd line 3 6 3 3 3 6 3
4th line 4 2 1 7 4 2 1
5th line 5 5 5 5 5 5 5
6th line 6 3 6 3 6 3 6
7th line 7 4 2 1 7 4 2

Table 2. Similar to Table 1 but for m = 7. Note the fifth line of each verse always ends with the
same word. That is, the number 5 is a fixed point of the rule (1). Also the sixth and third lines
share the same two words repeatedly; (6 3) is a period-two cycle of (1).

verse one two three four five six seven eight
1st line 1 8 4 2 1 8 4 2
2nd line 2 1 8 4 2 1 8 4
3rd line 3 7 5 6 3 7 5 6
4th line 4 2 1 8 4 2 1 8
5th line 5 6 3 7 5 6 3 7
6th line 6 3 7 5 6 3 7 5
7th line 7 5 6 3 7 5 6 3
8th line 8 4 2 1 8 4 2 1

Table 3. Similar to Table 1 but for m = 8. Note that the pattern repeats at the fifth verse, so
that the word that end the first line of the first verse only ever ends the first, second, fourth and
eighth lines of any subsequent verse, never the third, fifth, sixth or seventh. In fact, (1, 8, 4, 2) is
a period-four cycle of the rule (1), and so is (3, 7, 5, 6).

There are also poems known as double sestinas, which have m = 12. For example,
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one of the first known sestina in English, The Complaint of Lisa by Algernon Charles
Swinburne, is actually a double, although the permutation of the end-words does not
follow the rule (1) but appears somewhat random. We shall see shortly that there is
also a problem applying rule (1) when m = 12.
Strictly speaking, we should always choose m to be even in order for their to be an
envoi of length m∕2 with each line containing two end words. But, for purposes of
the mathematics, we shall ignore this restriction. Poets who engage on highly regular
forms like sestinas tend to do it in part for the challenge, and the requirement for a
non-integer number of lines in the envoi could provide an opportunity to subvert the
form creatively. Of course, the phrase “poetic license” springs to mind.

2. Recent history

Before proceeding, it might be interesting to point out the happenstance that led to this
article being written. It started with a chance meeting more than 10 years ago between
the first and last author on their regular daily commute from the same bus stop on the
outskirts of Bath to Bristol. Harry at the time was on a placement with a publishing
house following a successfulMA in CreativeWriting at Bath Spa University. Alan had
recently become the youngest ever head of Department of Engineering Mathematics
at Bristol. Harry had written the first two stanzas of a sestina, his opus magnus, with
m = 78.
Harry initially decided upon the number 78 for the simple fact that it was twice the
length (39) of the total number of lines of a conventional sestina including its envoi.
A familiar construction technique to most poets in this form is write down on a blank
piece of paper a guide to illustrate which words are going to arrive in what position
allowing the poem to be grafted onto this template and adjusted. Aware that the total
number of lines was now 6,123 it became necessary for Harry to plot out the new larger
sestina using a fractionally more adept system than pen and paper! Microsoft Excel
provided him with a chart illustrating the word positions for each verse. To his horror,
he noticed that already at verse 26, the entire sestina collapsed to the original order
and renewed its cycle once more, something that should only happen in a hypothetical
extra verse prior to the final envoi. The pleasure in the reading of a sestina for most
literary critics is precisely its strategic avoidance of this outcome!
With all the carefully chosen words in play already, and all the source material under
his belt and the idea firmly in his mind, there was little that could be done to rem-
edy the problem except for the increasingly large possibility of it all ending up in the
wastepaper basket. Not to be outdone by this setback he began to try and establish a
means by which to accurately predict the relationship between the number of lines in
a verse and the potentially disastrous outcome of word positions prematurely coming
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back to their original order and thus to restructure the two original verses while caus-
ing minimum damage to the sense of the writing. So should the sestina be grown or
shrunk?
Unknown to us, a solution was actually available in French, starting with the work in
the 1960s of the French Poet Raymond Queneau and his colleague the mathematician
Jacques Roubaud [8, 9]. Those results were recently summarised in the excellent ar-
ticle by Michael Saclolo in Notices of the American Mathematical Society [10]. Que-
neau asked exactly the same question. For what numbers m is an m-ina possible? In
French a sestina is called a sestine and so Roubard coined the phrase q-ines or quenines
in honour of Queneau for the admissible q-verse poem. This was later formalised by
Monique Bringer [2], a student of Roubard, who coined the phase Queneau-Daniell
group for the cyclic subgroup of the general linear group of order m generated by the
quinine permutation. She was able to provide a partial set of necessary and sufficient
conditions for admissible numbers m. The complete characterisation of which num-
bers m are admissible was not actually solved until 2008, in the work of Dumas [5],
whose results are reproduced in English in [10]. Dumas’ proof is not however con-
structive, in the following sense. It is easy to state necessary and sufficient conditions
for a number p to be prime, but there is no simple checkable formula that generates
the m’th prime number. So it seems to be also with sestina numbers.
In what follows we describe an investigation of the generalisation of a sestina, which
was arrived at independently of the French group theorists. In so doing so, we uncover
an alternative view, establishing a connection with a different branch of mathematics,
namely chaotic dynamical systems.

3. Permutation groups

We call m a sestina number if the permutation represented by (1) on the set of m
integers has minimal period m. Let us recall some basic facts from permutation group
theory.
The group of all permutations of m symbols is denoted by Sn. Basic theorems [7]
tell us that any element of the group has a unique minimal representation in terms of
disjoint cycles. Take the permutation (1) with m = 6 as described in (2) and Table 1.
A far more compact way of writing this is to look at the orbit of the position of the
first end-word after each successive application of the permutation: That is, following
the arrows around the circle of (2), we see that the first end-word of the first verse,
becomes the second end-word of the second verse, the fourth end-word of the third
verse, the 5th end-word of the fourth verse and so on. The circular representation also
allows us to find the orbit of any other end-word. For example, to see what happens
to the third end-word of the first verse, we start at the number 3 on the clock face and
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1

2

5
43

6

Figure 2. The orbit of the end-words for a sestina of length m = 6

follow the arrows six times. So, in the second verse, this word ends the sixth line; it
ends the first line of the third verse and so on. This then leads to the more compact
notation

(1, 2, 4, 5, 3, 6),

where the round brackets mean “and repeat”. Now m = 6 is a sestina number because
there is representation of the effect of the transformation (1) in terms of a single cycle.
If we try the same for m = 7, based on the information in table 2 we see that the
permutation is now written

(1, 2, 4, 7)(3, 6)(5)

which has three separate disjoint cycles. The end-words of lines one, two, four and
seven cycle, whereas lines three and six swap end-words between each successive
verse, while the fifth line ends with the same word each time.
Similarly for m = 8, we have

(1, 2, 4, 8)(3, 6, 5, 7)

two four-cycles, and for m = 12 we have
(1, 2, 4, 8, 9, 7, 11, 3, 6, 12)(5, 10)

a 10-cycle and a 2-cycle. This latter case shows the difficulty of trying to construct a
“double sestina” using the same transformation (1) as for the standard six-verse trans-
formation.
Thus, we have established a criterion for m to be a sestina number; namely that the
permutation (1) can be expressed as a single cycle of lengthm. Table 4 lists the disjoint
cycle representation for the first fewm. Note that there is no obvious pattern governing
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m cycle representation sestina number ?
1 (1) yes
2 (12) yes
3 (123) yes
4 (124)(3) no
5 (12435) yes
6 (124536) yes
7 (1247)(36)(5) no
8 (1248)(3657) no

Table 4. Cycle structure of the sestina permutation for the first few values of m.

which m’s lead to a single m-cycle and which do not. It is precisely this pattern that
we aim to uncover in the rest of this article.

4. A connection with chaotic dynamics

The equation (1) can be represented as discrete-time dynamical system acting on the
first m integers. A simple re-scaling, letting y = 2n∕(2m + 1), shows that repeated
iteration of (1) is equivalent to the dynamics of the tent map for y ∈ [0, 1]:

y →
{

2y if y ≤ 1∕2,
2 − 2y if 1∕2 < y ≤ 1. (3)

Instead of the integers from 1 to m we now have the points 2j∕(2m + 1), j = 1,⋯m
distributed between 0 and 1. For any value of m we will call these points sestina
points.
The dynamics of the map is represented graphically in Fig. 4. To be more precise, this
is the tent map with slope 2, which is part of the general family of tent maps

y →
{

�y if y ≤ 1∕2,
�(1 − y) if 1∕2 < y ≤ 1, (4)

with slope � > 0 [4]. Straightforward analysis shows that if � < 1, then the fixed
point x = 0 is the unique attractor of the system. That is, all initial conditions will
eventually converge towards x = 0 under repeated iteration of (4). If � = 1, then all
points with y ≤ 1∕2 are fixed points of this dynamical system.
It is when � > 1 that things get interesting. See Figure 4. In fact, among chaotic
maps, the tent map is rather special because of the sharp point at y = 1∕2. So as �
increases through 1, rather than a Feigenbaum period-doubling cascade that is familiar
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0.40.20
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0.4

Figure 3. Constructing the dynamics of the tent map via the so-called cobwebbing process.
Here y is replaced at the next unit of time by its value given by the formula (3). This value is
then fed back as the next value of y into the same formula, and so-on. This feedback process is
represented as the reflection of the value of the image of a given y-value in the 45◦ line.

to all who have studied smooth chaotic dynamical systems (see e.g. [4]) the dynamics
immediately becomes chaotic. There are still two fixed points, y = 0 and y = �∕(� +
1), but both are unstable. That is, if you choose an initial condition arbitrarily close
to one of these points, it moves away under iteration. For 1 < � <

√

2 then the
attractor of the map splits into two non-overlapping sub-intervals of (0, 1), Arbitrary
initial conditions are attracted to these two sub-intervals within which there is a chaotic
cycling of points. For√2 ≤ � ≤ 2 the seperate intervals start to overlap.
For � = 2 the map is fully chaotic. That is, almost all initial conditions are part of the
chaotic set and each region of the chaotic set are visitedwith equal probability. Starting
from some arbitrary y-value in the interval (0, 1) and repeatedly iterating the formula
(3), we reach a infinite sequence of further y-values that never repeat. Nevertheless,
this sequence eventually visits arbitrary close to every y-value in the interval [0, 1].
Moreover, no points that start in this interval ever escape. That is, the interval [0, 1]
is the unique chaotic attractor of the dynamics.
However, embedded within the chaos are a (countable) infinity of unstable periodic
orbits with all possible periods. In particular, all rational initial conditions of (3) lie
on periodic orbits. To see this, note that if an initial condition y = p∕q for integers p
and q then all forward images of this point must be expressible as a fraction r∕q for
some integer r. Moreover, the map takes the unit interval to itself, hence 0 ≤ r ≤ q.
Since there are only q + 1 such fractions, this must be a periodic orbit of period at
most q +1. In particular we are interested in the case that q = N for oddN = 2m+1
and p = 2n for some n ≤ m.
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Figure 4. Bifurcation diagram showing points on the attractor of the tent map (4) for 0 ≤ � ≤ 2.
At � = 1

The question we seek to address then is: what is the image under repeated iteration of
(3) of the specific initial condition y = 2∕(2m+1), for each odd integer 2m+1? If this
orbit has minimum period m then we say that m is a sestina number. The only other
possibility is that this initial condition lies on a periodic orbit with a lower period q.
So, it seems we must look at conditions for the existence of periodic orbits of (3) (and
hence of (1)) of arbitrary period q ≤ m.

5. Conditions for cycles

The example in Table 2 above shows that m = 7 fails to be a sestina number because
there exists a fixed point (a 1-cycle) and a 2-cycle. Also, from Table 3, m = 8 fails
to be a sestina number because the permutation is decomposed into two disjoint 4-
cycles. So in order to characterise which numbers are not sestina numbers, we need
to consider conditions for a position j (0 < j ≤ m) to be part of a period-q cycle for
q ≤ m.
Consider first the case of a fixed point. The fixed point for the tent map is at the
intersection between the map and the line x = y, and (disregarding the trivial fixed
point x = 0 which will not be relevant here) occurs at x = 2∕3. If one of the m sestina
points, xj = 2j∕(2m + 1), j = 1,⋯ , m happens to coincide with the value x = 2∕3,
then a 1-cycle will occur, and the number m (if different from 1) will fail as a sestina
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number. This will happen for all numbers m such that
2j

2m + 1
= 2

3
or

3|(2m + 1)

and is obviously the case for m = 7.

(a) (b) (c)

0 1 1 1

111

0 0

Figure 5. Location of (a) period-1 (fixpoint), (b) period-2 and (c) period-3 points for the tent
map is the abcissa for the intersection between repeated tents and the line y = x, see e.g., ([4]).

If we study the condition for 2-cycles, we must find the loci for period-2 points of the
tent map. These points are located where the twice repeated tent map intersects the
line x = y, i.e., at x = 2∕5, 2∕3, 4∕5, see figure 5. For sestina points to coincide with
these values, we find that in addition to 3|(2m + 1) that

2j
2m + 1

= 2
5

or 2j
2m + 1

= 2
3

or 2j
2m + 1

= 4
5

The middle condition gives us 3|(2m + 1) (because a period 1 orbit is also a period 2
orbit) but we now also have to exclude

5|(2m + 1)

to avoid period-2 orbits, so this condition prevents m (if different from 2) from being
a sestina number. For the value m = 7 we have both a 1-cycle and a 2-cycle present,
since both 3 and 5 are factors of (2m + 1).
3-cycles occur see figure 5 at the 23 − 1 values x = 2∕9, 2∕7, 4∕9, 4∕7, 6∕9, 6∕7, 8∕9,
and they will coincide with sestina values if 7|(2m + 1) or 9|(2m + 1).
Continuing in this manner, one finds:
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Proposition 1. The q-cycle points are located at

x = 2
2q + 1

, 2
2q − 1

, 4
2q + 1

, 4
2q − 1

,⋯ , 2k
2q − 1

,⋯ , 2
q − 2
2q + 1

, 2
q − 2
2q − 1

, 2q
2q + 1

□

All in all there are 2q − 1 such points.
If there is a j such that one of the sestina points x = 2j∕(2m + 1) coincides with a
q-cycle point, then the sestina permutation will contain a q-cycle.
This happens when ∃j, k ∈ ℕ, k = 1, ..m and k = 1, ..2m−1 such that

2j
2m + 1

= 2k
2q ± 1

or
k(2m + 1) = j(2q ± 1)

Here, ± is taken as “plus or minus“.
The necessary existence of at least one q-cycle (q ≤ m) for a sestina permutation over
m can be noted in the following
Proposition 2. For any odd number 2m + 1 there must be a number q ≤ m such that
(2m + 1)|(2q ± 1).

2

We are now in position to give a necessary and sufficient conditions for a number m
to be a sestina number. The first sestina point (j = 1) must be part of a m-cycle which
takes it to all the other positions, i.e., the m-cycle is not caused by successive q-cycles
where q is a factor of m:
Theorem 1. A number m is a sestina number if and only if (2m + 1)|(2m ± 1) and
(2m + 1) ∤ (2q ± 1) for any q which is a factor of m. 2

Unfortunately Theorem 1 is not constructive, since in order to check whether an arbi-
trarym is a sestina number, we have to factorise several potentially very large numbers.
In particular, it is not clear from the theorem howmany sestina numbers there are, even
if there are infinitely many or not.
The following corollaries establish some more information.
Corollary 1. For m to be a sestina number, 2m + 1 must be prime.
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Proof. Suppose that 2m + 1 is composite, let 2m + 1 = rs. where r and s are both
odd and smaller than 2m + 1 By the above corollary applied to r, there must exist a
q ≤ (r−1)∕2 such that r divides 2q ±1. Let (2q ±1) = rk. Now we have k(2m+1) =
(2q ±1)s where, by construction, k < 2q−1 and s < m. This is precisely the condition,
according to Proposition 1 for the existence of a q-cycle. But q < m by construction,
and hence m cannot be a sestina number.
Corollary 2. Let 2m+ 1 be a prime number that divides 2m ± 1. If m is also a prime,
then m is a sestina number.

Proof. This follows immediately from Theorem 1, since if m is prime its only factors
q are 1 and m itself.

Remarks:

1. Note that Corollary 2 is not a necessary condition for a sestina number. For
example, m = 6 and m = 9 are non-prime sestina numbers.

2. The Corollary does not establish how many sestina numbers there are, but at
least we have a simple algorithm for finding sestinas of large length. Take a
prime m such that 2m + 1 is also prime. Test whether (2m + 1) is a factor of
2m ± 1. If it is, then m is a sestina number. Perhaps this could be the point of
departure for a study of the cardinality of sestina numbers.

3. Whenm is itself a prime number, the numbers 2m−1 are the so-calledMersenne
primes. More generally Primes of the form 2m ± 1 are examples of what are
known as Cunningham Primes [1]. Such numbers are named after the British
number theorist who in 1925 [3] started what has become known as the Cun-
ningham project of finding factors of numbers of the form bn ± 1, for b =
2, 3, 5, 6, 7, 10, 11, 12 and large n.

6. Discussion

The above description of sestina numbers is in some way less than satisfactory. It
relies on the factorisation of large primes of the form 2m ± 1. As is well known such
factorisation is a complex computational task. In fact the brute force approach of
simply letting the numbers lead a dance, i.e., iterating the tent map m times, provides
a far quicker (order m) method of deciding whether m is a sestina number (in fact this
is the essence of Dumas’ theorem [5, 10]). Using this method it is a straightforward
computational task to construct all the sestina numbers less than a certain positive
integer. Here, for example, is a list of all sestina numbers up to m = 200:
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1, 2, 3, 5, 6, 9, 11, 14, 18, 23, 26, 29, 30, 33, 35, 39, 41, 50, 51, 53, 65, 69, 74, 81,
83, 86, 89, 90, 95, 98, 99, 105, 113, 119, 131, 134, 135, 146, 155, 158, 173, 174,
179, 183 ,186, 189, 191, 194

Also, the characterisation given here does not immediately tell us whether there are
infinitely many sestina numbers or not. This question is still open.
Finally, we return to the original motivation to this article. How to construct a sestina
with m = 78. Here 2m + 1 is prime but m isn’t. The permutation (1) splits into three
26-cycles:

(1,2,4,8,16,32,64,29,58,41,75,7,14,28,56,45,67,23,46,65,27,54,49,59,39,78)
(3,6,12,24,48,61,35,70,17,34,68,21,42,73,11,22,44,69,19,38,76,5,10,20,40,77)
(9,18,36,72,13,26,52,53,51,55,47,63,31,62,33,66,25,50,57,43,71,15,30,60,37,74)

So m = 78 is not a sestina number as defined here; the usual method of making a
sestina of this length will not work. Instead, an alternative strategy might be to use
the basic sestina permutation (1) 25 times to generate the first 26 verses, then apply
something else to perturb the situation so that we do not get locked into a 26 cycle.
One example of such a perturbation can be found by noticing that each successive
cycle in the above 26-cycles is the image of the previous one under

n →

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2n if n ≤
[

m
3

]

2m + 1 − 3n if
[

m
3

]

< n ≤
[

2m
3

]

3n − (2m + 1) if
[

2m
3

]

< n ≤ m

(5)

Hence we can apply this transformation to create the 27th verse, followed by 25 more
applications of the basic permutation (1) to create verses 28 to 52, one more applica-
tion of (5) to create verse 53, finishing off with a final 25 iterations of (1) to complete
the sestina.
However, this is a mathematical solution. From the point of view of a contemporary
poet it might be better for the variation to occur within the poem itself; creatively
intentional rather than merely because of the sestina number’s mathematical torsion.
Instead, the poet could take the opportunity to to build a relationship between the
number 26 and the poem’s content. The obvious example being the number of letters
in the alphabet. Harry is still writing his magnum opus.



7 AFTERWORD 16

7. Afterword

This article itself has, in fact, undergone amerry dance. The original chance encounter
mentioned in section 2 happened some ten years or so ago. Some of the theory was
worked out at the time and presented at the British Applied Mathematics Colloquium
which in the year 2007was held in Bristol. Harry provided an impromptu performance
sestina at the event. Then both authors went back to their day jobs and no article was
written. Harry is now fulfilling his then dream ambition to be a published poet and
Alan, having completed his stint as Head of Department and other managerial roles,
continues to slug it out as a regular engineering mathematics professor.
And so it would have remained had it not been for another chance encounter some
fifteen years or so before that, coincidentally also in Bristol. Alan, then a finishing
PhD at Oxford, got chatting with Poul, then a recently appointed Assistant Prof at
the Technical University of Denmark, at a conference on the Dynamics of Numerics
and the Numerics of Dynamics. It was quickly established that, in addition to scien-
tific interests in common, each has the same quirky sense of humour and attitude to
life. An invitation to Lyngby for the following year ensued and together they studied
the dynamics of chaos amid the beautiful deer park there. A lifelong friendship has
become established, but no joint publication has ever result from their collaboration.
Until now. A few years ago, chatting over a pint of British real ale, Poul expressed the
desire to pick up the pathetic half-finished manuscript that had resulted from Alan and
Harry’s original collaboration. He soon discovered Saclolo’s article and the preceding
work of the French poets and group theorists. We had been scooped. So, once again
our desire to publish seems to have been thwarted.
Then Poul was invited to speak at the birthday symposium for another longstanding
scientific friend, Helge Holden. The story of the sestina mathematics and its links to
chaos was once again resurrected, and Poul was even inspired to compose a sestina
for Helge (see elsewhere in this Volume). An invitation to write a paper based on his
talk has put new impetus into the collaboration; Alan and Harry are now back in touch
after their paths were separated. And so the number dance continues.
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