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Abstract

Random walks are ubiquitous in the sciences, and they are interesting from both
theoretical and practical perspectives. They are one of the most fundamental
types of stochastic processes; can be used to model numerous phenomena, in-
cluding diffusion, interactions, and opinions among humans and animals; and
can be used to extract information about important entities or dense groups of
entities in a network. Random walks have been studied for many decades on
both regular lattices and (especially in the last couple of decades) on networks
with a variety of structures. In the present article, we survey the theory and
applications of random walks on networks, restricting ourselves to simple cases
of single and non-adaptive random walkers. We distinguish three main types of
random walks: discrete-time random walks, node-centric continuous-time ran-
dom walks, and edge-centric continuous-time random walks. We first briefly
survey random walks on a line, and then we consider random walks on various
types of networks. We extensively discuss applications of random walks, includ-
ing ranking of nodes (e.g., PageRank), community detection, respondent-driven
sampling, and opinion models such as voter models.
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1. Introduction1

Random walks (RWs) are popular models of stochastic processes with a very2

rich history [1–5]. 1 The term “random walk” was coined by Karl Pearson [6],3

and the study of RWs dates back to the “Gambler’s Ruin” problem analyzed4

by Pascal, Fermat, Huygens, Bernoulli, and others [7]. Additionally, Albert5

Einstein formulated stochastic motion (in the form of “Brownian motion”) of6

particles in continuous time due to their collisions with atoms and molecules7

[8]. Theoretical developments have involved mathematics (especially probabil-8

ity theory), computer science, statistical physics, operations research, and more.9

RW models have also been applied in various domains, ranging from locomo-10

tion and foraging of animals [9–12], the dynamics of neuronal firing [13, 14]11

and decision-making in the brain [15, 16] to population genetics [17], polymer12

chains [18, 19], descriptions of financial markets [20, 21], evolution of research13

interests (through RWs on problem space) [22], ranking systems [23], dimension14

reduction and feature extraction from high-dimensional data (e.g., in the form15

of “diffusion maps”) [24, 25], and even sports statistics [26, 27]. RW theory can16

also help predict arrival times of diseases spreading on networks [28]. There17

exist several monographs and review papers on RWs. Many of them treat RWs18

Email address: naoki.masuda@bristol.ac.uk (Naoki Masuda)
1See https://www.youtube.com/watch?v=stgYW6M5o4k for an introduction to random walks

for a public audience from the U.S. Public Broadcasting Service (PBS).
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on classical network topologies, such as regular lattices (e.g., Zd) and Cayley19

trees (i.e., trees in which each node has the same number of neighboring nodes,20

which we henceforth call the node “degree”) [4, 29–35]. Other monographs and21

surveys focus on RWs on fractal structures, revealing diffusion properties that22

are “anomalous” compared to RWs on regular lattices or Euclidean spaces (i.e.,23

Rd) [32, 36–40]. Other literature treats RWs on finite networks, which are equiv-24

alent to a finite Markov chain (in the discrete-time case) [1, 32, 41, 42] and are25

at the core of several stochastic algorithms.26

In parallel, “network science” has emerged in recent years as a central ap-27

proach to the study of complex systems [43–46]. Networks are a natural repre-28

sentation of systems composed of interacting elements and allow one to examine29

the impact of structure on the dynamics and function of a system (as well as30

the impact of dynamics and function on network structure). Examples include31

friendship networks, international relationships, gene-regulatory networks, food32

webs, airport networks, the internet, and myriad more. In each case, one can33

represent the system’s connectivity structure as a set of nodes (representing34

the entities in the system) and edges (representing interactions among those35

entities). The study of networks is highly interdisciplinary, and it integrates36

theoretical and computational tools from subjects such as applied mathematics,37

statistical physics, computer science, engineering, sociology, economics, biology,38

and other domains. Many networks exhibit complex yet regular patterns that39

are explainable (sometimes arguably) by simple mechanisms. Network science40

has also had a strong impact on the understanding of dynamical processes be-41

cause of the critical role of structure on spreading processes, synchronization,42

and others [47–49]. As with RWs, numerous books and review papers have been43

written on networks, including textbooks [44, 45, 50–52], general review articles44

[46, 53], and more specialized reviews on topics such as dynamical processes on45

networks [48, 49, 54], connections to statistical physics [55, 56], temporal net-46

works [57–59], multilayer networks [60–62], and community structure [63–65].47

The main purpose of the present review is to bring together two broad sub-48

jects — RWs and networks — by discussing their many interconnections and49

their ensuing applications. RWs are often used as a model for diffusion, and50

there has been intense research on the impact of network architecture on the51

dynamics of RWs. Moreover, nontrivial network structure paves the way for52

different definitions of RWs, and different definitions can be “natural” from53

some perspective, while leading to different diffusive processes on the same net-54

work. Finally, RWs are at the core of several algorithms to uncover structural55

properties in networks. We will discuss these points further in the next three56

paragraphs.57

First, RWs are often used as a model for diffusion, and there has been intense58

research on the impact of network architecture on the dynamics of RWs. The59

finiteness of a network — along with properties such as degree heterogeneity,60

community structure, and others — can make diffusion on networks both quan-61

titatively and even qualitatively different from diffusion on regular or infinite62

lattices. RWs on networks are an example of a Markov chain in which the set63

of nodes is the state space and the transition probabilities depend on the exis-64

4
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tence and weights of the edges between nodes. In this review, we will include65

a summary of results on the dependence of dynamical properties — including66

stationary distribution and mean first-passage time — on structural properties67

of an underlying network.68

Second, the irregularity of underlying network structure opens the door for69

different definitions of RWs. Each is “natural” from some perspective, but they70

lead to different diffusive processes even when considering the same network. For71

example, it is useful to distinguish between discrete-time and continuous-time72

RWs. On networks in which degree (i.e., the number of neighbors) is hetero-73

geneous (i.e., it depends on the node), one needs to subdivide continuous-time74

RWs further into two major types, depending on whether the random events75

that induce walker movement are generated on nodes or edges and correspond-76

ing to different types of propagators (normalized versus unnormalized Laplacian77

matrices). Different literatures use different variants of RWs, often implicitly.78

We distinguish different types of RWs and clarify the relationship between them,79

and we discuss formulations and results that are informed by empirical networks80

(such as networks with heavy-tailed degree distributions, multilayer networks,81

and temporal networks).82

Finally, RWs lie at the core of many algorithms to uncover various types83

of structural properties of networks. Consider the notion of identifying “cen-84

tral” nodes, edges, or other substructures in networks [44]. A powerful set of85

diagnostics (e.g., PageRank [23, 66] and eigenvector centrality [67]) are derived86

based on recursive arguments of the type “a node is important if it is connected87

to many important nodes”, and such derivations often rely on the trajectories88

of random walkers. Similarly, flow-based algorithms, based on trajectories of89

dynamical processes (e.g., RWs) being trapped within certain sets of node for90

a long time, are helpful for discovering mesoscale patterns in networks [65, 68].91

These techniques and algorithms open a wealth of applications that go well be-92

yond classical applications of RWs. Their design benefits both explicitly and93

implicitly from developing an understanding of how RW dynamics are influ-94

enced by network structure and how different types of RWs behave on the same95

network.96

There has been a vast amount of research on RWs on networks, and it is97

scattered across disparate corners of the scientific literature. It is impossible98

to cover everything, and we choose specific subsets of it to make our review99

cohesive, although we will occasionally include pointers to other parts of the100

landscape. First, we focus on the most standard types of RWs, in which a101

random walker moves to a neighbor with a probability proportional to edge102

weight, and their very close relatives. We only very rarely mention some of the103

numerous other types of RWs, which include correlated RWs [69], self-avoiding104

RWs [4, 70, 71], zero-range processes [72], multiplicative random processes [73,105

74], adaptive RWs (including reinforced RWs [75]), branching RWs [76], Lévy106

flights [34, 35], elephant RWs [77], quantum walks [78, 79], intermittent RWs107

[80], persistent RWs [81], starving RWs [82–84], mortal RWs [85], and so on.108

These processes are of course fascinating, and many of the different flavors of109

RWs are often developed with specific motivation from an application (e.g., a110

5
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Pac-Man-like “hungry RW” [86] has been used as a model for chemotaxis in a111

porous medium), are often inspired by applications, such as animal movement112

[10, 12] or financial markets [21], and one can find discussions of different flavors113

of RWs in Refs. [4, 34, 35]. Second, we will not cover many results for RWs114

on particular generative models of networks, except that we do give extensive115

attention to first-passage times for fractal and pseudo-fractal network models116

(see Section 3.2.5). Third, we will not discuss various important, rigorous results117

from mathematics and theoretical computer science. For such results, see [1, 4,118

30, 41, 42]. We focus instead on results that we believe give physical insight on119

RW processes and their applications.120

As a final warning, we focus exclusively on diffusive processes in which the121

total number of walkers (or, equivalently, the total probability of observing a122

walker) is a conserved quantity 2. The only exception is in Section 5.7, where123

we use “coalescing RWs” as an analytical tool. As we will see, this conserva-124

tion rule translates into certain properties of the operator that drives the RW125

process. When transposed, the operator leads naturally to linear models for con-126

sensus dynamics (see Sections 5.7 and 5.8). Among notable non-conservative127

processes, which we do not cover in this review, are classical epidemic processes128

[48, 49, 89, 90], in which the number of entities (e.g., viruses or infected individ-129

uals) varies over time. In the linear regime, corresponding to a small number of130

infected nodes, the propagator of infection events in simple epidemic processes131

such as susceptible–infected (SI) and susceptible–infected–recovered (SIR) mod-132

els are the adjacency matrix [91, 92]. In contrast, a propagator of an RW is a133

type of Laplacian matrix, as we will discuss in detail in Section 3. If all nodes134

have the same degree, these Laplacian and adjacency matrices are related lin-135

early, and their dynamics are essentially the same [59, 93]. However, they are136

generically different for heterogeneous networks, such as when degree depends137

on node identity. Therefore, the difference between conservative dynamics (de-138

scribed by a Laplacian matrix) and non-conservative dynamics (described by the139

adjacency matrix) tends to be more striking for heterogeneous than for homoge-140

neous networks. Other spreading models that are also beyond the scope of this141

work include threshold models of social contagions [49, 94] (e.g., for modeling142

adoption of behaviors) and reaction–diffusion dynamics [95].143

The rest of our review proceeds as follows. In Section 2, we discuss RWs on144

the line. In Section 3, we give a lengthy presentation of RWs on networks. We145

then discuss RWs on multilayer networks in Section 4.1 and RWs on temporal146

networks in Section 4.2. We discuss applications in Section 5, and we conclude147

in Section 6.148

2We thus consider “conservative” processes, though non-conservative processes are also
interesting [87, 88].

6
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2. Random walks on the line149

In this section, we review some basic properties of RW processes on one-150

dimensional space (i.e., the infinite line). This section serves as a primer to151

later sections, in which we examine RWs on general networks. In this and later152

sections, we carefully distinguish between discrete-time and continuous-time153

models.154

2.1. Discrete time155

Consider a discrete-time RW (DTRW) process on the infinite line, which we156

identify with R1 ≡ R. There is a single walker. At each discrete time step,157

it moves from some point to some other point, including the case of moving158

from a point to itself. The length and direction of the move are both random159

variables. We assume that the probability that a walker located at x moves to160

the interval [x+r, x+r+∆r] in one step is equal to f(r)∆r. The normalization is161 ∫∞
−∞ f(r)dr = 1, and we assume that moves at different times are independent.162

Let’s derive the probability density p(x;n) that a random walker is located
at a point x ∈ R after n steps. (For emphasis, we sometimes use the term
“discrete time” or “event time” for n.) The master equation is given by

p(x;n) =

∫ ∞

−∞
f(x− x′)p(x′;n− 1)dx′ . (1)

It is convenient to solve Eq. (1) for general x and n in the Fourier domain. We
define the Fourier transform by

p̂(k;n) ≡
∫ ∞

−∞
p(x;n)e−ikxdx (2)

and the inverse Fourier transform by

p(x;n) ≡ 1

2π

∫ ∞

−∞
p̂(k;n)eikxdk . (3)

Note that p̂(−k;n) is the “characteristic function” of a random variable x with

probability density p(x;n). The Fourier transform f̂(k) of f(x) is sometimes
called the “structure function” of the RW. The Taylor expansion of p̂(k;n)
around k = 0 yields

p̂(k;n) =〈e−ikx〉

=1− ik〈x〉 − 1

2
k2〈x2〉+O(k3) , (4)

where 〈·〉 is the expectation unless we state otherwise. One can thereby obtain163

moments of p(x;n) from the derivatives of p̂(k;n) at k = 0.164

The Fourier transform maps a convolution, such as Eq. (1), to a product;
and Eq. (1) thus yields

p̂(k;n) = f̂(k)p̂(k;n− 1) . (5)

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

If a random walker is located initially at x = 0, we obtain p(x; 0) = δ(x), where
δ(x) is the Dirac delta function, which has Fourier transform p̂(k; 0) = 1. We
thereby obtain

p̂(k;n) =
[
f̂(k)

]n
. (6)

Using the inverse Fourier transform in Eq. (3), we obtain a formal solution for
p(x;n) in the time domain:

p(x;n) =
1

2π

∫ ∞

−∞

[
f̂(k)

]n
eikxdk . (7)

The qualitative behavior of the solution in Eq. (7) depends on the details

of the structure function f̂(k). However, the asymptotic behavior of the RW

as n→∞ depends only on some of the properties of f̂(k). When the first two

moments of f̂(k) are finite, the solution converges to the Gaussian profile

p(x;n) =
1

(2πDn)1/2
e−

(x−vn)2

4Dn , (8)

where v ≡ 〈r〉 and D ≡ 〈(r − 〈r〉)2〉/2. Equation (8) implies that the variance165

of x grows linearly with time. This result is the “central limit theorem” for the166

sum of the sizes of the moves, which are independent random variables. This167

asymptotic regime is well-defined because the underlying space (i.e., the line)168

is infinitely large. One can derive these results in a similar manner when the169

underlying space is discrete (e.g., a one-dimensional lattice) [2, 4, 30, 31]. In170

situations in which the second moment of the structure function diverges, the171

process exhibits superdiffusion and the probability profile converges to so-called172

“Lévy distributions” [34, 35].173

2.2. Continuous time174

In this section, we consider continuous-time RWs (CTRWs), which incorpo-175

rate the timing of moves [4, 5, 30, 34, 35, 96]. We assume that a walker waits176

betweegn two moves for a duration τ that independently obeys the probability177

density function ψ(τ). In other words, the move events are generated by a re-178

newal process [3]. If τ = 1 with probability 1, the CTRW reduces to the DTRW179

described in Section 2.1. In a standard CTRW, one assumes that the time of180

a move event and the selection of a destination in a given move are indepen-181

dent. Therefore, a combination of ψ(τ) and f(r), where r is the displacement182

in a single move, completely determines the dynamical properties of a random183

walker.184

Let tn denote the time of the nth move. By definition, tn =
∑n
i=1 τi, where

each τi is independent and identically distributed (i.i.d.) and drawn from some
distribution ψ(τ). Additionally, we can write

p(x; t) =
∞∑

n=0

p(x;n)p(n, t) , (9)
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Figure 1: Schematic of the standard continuous-time random walk (CTRW) on a one-
dimensional lattice. (a) The position x of the walker in physical time t is described by p(x; t).
Note that tn represents the time of the nth move. (b) The position of the walker after n
moves is described by p(x;n).

where p(x; t) is the probability that the walker is located at x at time t, the185

quantity p(x;n) is the probability that the walker is located at x after n steps,186

and p(n, t) is the probability density that the walker has moved n times at time187

t. Note that it is crucial to distinguish p(x; t) and p(x;n), and we illustrate the188

difference between these probabilities with a schematic in Fig. 1. Equation (9)189

reflects the fact that a walker can visit x at time t after some number n of steps.190

The probability p(x;n) is given by the same solution, Eq. (7), as for the
DTRW. To obtain p(x; t) from Eq. (9), we need to examine p(n, t), and we
thus need to consider a renewal process generated by ψ(τ). According to the
elementary renewal theorem [97], the mean of n at time t is

〈n〉 =
t

〈τ〉 . (10)

Equation (10) indicates that n(t) grows linearly with time on average, irrespec-191

tive of the details of the distribution ψ(τ). However, realized values of n are192

random, inducing heterogeneity in the length of the RW “trajectory” (i.e., the193

walk measured in terms of the number of moves) observed at a given time t.194

When the CTRW is driven by a Poisson process, ψ(τ) is the exponential
distribution (i.e., ψ(τ) = βe−βτ ). In this case, n obeys the Poisson distribution
with mean βt. That is,

p(n, t) =
(βt)n

n!
e−βt . (11)

It requires some effort to derive p(n, t) when ψ(τ) is a general distribution.
To calculate the time of the nth event or the number of events in a given time
interval, we need to sum i.i.d. variables that obey ψ(τ). The duration τ ≥ 0 is

9
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nonnegative, so we take a Laplace transform

ψ̂(s) =

∫ ∞

0

ψ(τ)e−sτdτ ≡ 〈e−sτ 〉 . (12)

The Taylor expansion of Eq. (12) is given by

ψ̂(s) =
∞∑

n=0

(−1)n
〈τn〉sn
n!

(13)

and implies that ψ̂(s) generates the moments of ψ(τ) if they exist. One computes
the inverse Laplace transform by integrating in the complex plane:

ψ(τ) =
1

2πi

∫ c+i∞

c−i∞
ψ̂(s)esτds , (14)

where c is a real constant that is larger than the real part of all singularities of195

ψ̂(s).196

The probability that no event has occurred up to time t is

p(0, t) =

∫ ∞

t

ψ(t′)dt′ , (15)

whose Laplace transform is

p̂(0, s) =
1− ψ̂(s)

s
. (16)

The probability that one event occurs in [0, t] is

p(1, t) =

∫ t

0

ψ(t′)p(0, t− t′)dt′ . (17)

By Laplace-transforming Eq. (17) and applying Eq. (16), we obtain

p̂(1, s) = ψ̂(s)
1− ψ̂(s)

s
. (18)

By the same arguments, the probability density that n events occur at times
t1, t2, . . ., tn but at no other times in [0, t] is given by ψ(t1)ψ(t2− t1) · · ·ψ(tn−
tn−1)p(0, t− tn). This yields [97, 98]

p̂(n, s) =
[
ψ̂(s)

]n 1− ψ̂(s)

s
. (19)

In the analysis of RWs, Eq. (19) relates two ways to count time: one is in terms197

of the number of moves (n), and the other is in terms of the physical time (t).198

For a CTRW driven by a Poisson process, we obtain

ψ̂(s) =

∫ ∞

0

βe−βτe−sτdτ =
β

s+ β
. (20)

10
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Substituting Eq. (20) into Eq. (19) yields

p̂(n, s) =

(
β

s+ β

)n
1

s+ β
. (21)

By taking the Fourier transform of Eq. (9) with respect to x and the Laplace
transform of Eq. (9) with respect to t and then using Eqs. (6) and (19), we obtain

p̂(k; s) = p̂(k;n)p̂(n, s) (22)

=
1− ψ̂(s)

s

∞∑

n=0

f̂(k)nψ̂(s)n

=
1− ψ̂(s)

s

1

1− f̂(k)ψ̂(s)
. (23)

This result is central to the theory of CTRWs [96], and we will extend it to199

the case of general networks in Section 3.3. Taking the inverse transform of200

Eq. (23) with respect to both time and space yields p(x; t), and we can examine201

the behavior of the RW for large t by expanding p̂(k; s) or p̂(x; s) for small s.202

3. Random walks on networks203

3.1. Notation204

For our discussions, we assume that our networks are finite. However, to205

estimate how certain quantities scale with the number N of nodes, we sometimes206

examine the N →∞ limit. We allow our networks to have self-edges and multi-207

edges. We assume that the edge weights are nonnegative, so our networks are208

unsigned. For now, we assume that our networks are ordinary graphs (i.e.,209

the best-studied types of networks), but we will consider multilayer networks210

in Section 4.1 and temporal networks in Section 4.2. Because introducing edge211

weights does not usually complicate RW problems, we assume that our networks212

are weighted unless we state otherwise, and we consider unweighted networks to213

be a special case of weighted networks. We also assume that our networks are214

directed unless we state otherwise. We summarize our main notation in Table 1.215

An undirected network is called “regular” if all nodes have the same de-216

gree. Notably, many mathematical results for RWs on networks are restricted217

to regular graphs [1, 42, 99]. In this review, we are interested in networks with218

heterogeneous degree distributions, which tend to be the norm rather than the219

exception in empirical networks in numerous domains [100].220

In our discussions, we assume that undirected networks are connected net-221

works and that directed networks are “weakly connected” (i.e., that they are222

connected when one ignores the directions of the edges). It is clear (in the223

absence of jumps such as “teleportation” [23] to augment the RW) that a ran-224

dom walker is confined in the component in which it starts, and the analysis of225

RWs is then reduced to analysis within each component. See [44] for extensive226

discussions of components and weakly connected components.227
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Table 1: Main notation.
N number of nodes
M number of edges
vi the ith node (where i ∈ {1, . . . , N})
A The N × N weighted adjacency matrix of the network; the matrix component Aij ≥ 0

represents the weight of the edge from node vi to node vj . In an undirected network,
Aij = Aji (where i, j ∈ {1, . . . , N}). In an unweighted network, Aij ∈ {0, 1} (again with
i, j ∈ {1, . . . , N}).

L combinatorial Laplacian matrix
L′ RW normalized Laplacian matrix

si The strength of node vi in an undirected network; it is defined by si ≡
∑N
j=1Aij =

∑N
j=1Aji.

In an undirected and unweighted network, si is equal to the degree of vi, which we denote
by ki.

sin
i In-strength of vi; it is defined by sin

i =
∑N
j=1Aji. In an unweighted network, sin

i is equal to

the in-degree of vi, which we denote by kin
i .

sout
i Out-strength of vi; it is defined by sout

i =
∑N
j=1Aij . In an unweighted network, sout

i is equal

to the out-degree of vi, which we denote by kout
i .

〈k〉 mean degree, which is given by 〈k〉 =
∑
k kp(k) and indicates the sample mean of the degree

for a network
D The N ×N diagonal matrix whose (i, i)th element is equal to sout

i (where i ∈ {1, . . . , N}).
In an undirected network, the (i, i)th element of D is equal to si.

n discrete time
t continuous time
pi probability that a random walker visits vi
p∗i stationary density of a random walker at vi
≈ approximately equal to
∝ proportional to

3.2. Discrete time228

3.2.1. Definition and temporal evolution229

Consider a DTRW on a directed network. We suppose that there is a single
walker, which moves during each time step. When the walker is located at vi,
it moves to the out-neighbor vj with a probability proportional to Aij . The
transition-probability matrix T has elements Tij , which give the probability
that the walker moves from vi to vj , of

Tij =
Aij
sout
i

, (24)

where we assume that sout
i > 0. Other choices of T , informed by the adjacency230

matrix A, are also possible. One example is a “degree-biased RW” in unweighted231

(and usually undirected) networks [101–106]; in this case, Tij ∝ kαj , where α is232

a constant. If Aij = Aji = (kikj)
α, then T given by Eq. (24) gives this degree-233

12
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biased RW. Another example of a biased transition-probability matrix T is a234

“maximum entropy RW” [107–111].235

Because a random walker must go somewhere — including perhaps the cur-
rent node — in a given move, the following conservation condition holds:

N∑

j=1

Tij = 1 . (25)

A DTRW on a finite network is a Markov chain on N states. There is236

a huge literature (both pedagogical and more advanced) on Markov chains in237

general and for RWs in particular. This is especially true for finite state spaces238

(corresponding to finite networks) and for stationary Markov chains in which239

the transition probability does not depend on discrete time n [1, 112–120]. We240

draw from this literature to explain several properties of DTRWs in the rest of241

this section.242

Let pi(t) denote the probability that node vi is visited at discrete time n.
This probability evolves according to

pj(n+ 1) =
N∑

i=1

pi(n)Tij (j ∈ {1, . . . , N}) . (26)

Additionally,
N∑

i=1

pi(n) = 1 (27)

for any n if Eq. (27) holds for n = 0. Equation (26) is equivalent to

p(n+ 1) = p(n)T , (28)

where p(t) = (p1(n) , . . . , pN (n)). From Eq. (28), we see that

p(n) = p(0)Tn . (29)

3.2.2. Stationary density243

Consider the stationary density (i.e., the so-called “occupation probability”)
p∗ = (p∗1, . . . , p

∗
N ), where p∗i = limn→∞ pi(n) (with i ∈ {1, . . . , N}). Substitut-

ing pi(n) = pi(n+ 1) = p∗i into Eq. (28) yields

p∗ = p∗T . (30)

Therefore, the stationary density is the left eigenvector of T with eigenvalue244

1. The corresponding right eigenvector is (1 , . . . , 1)>, where > represents245

transposition.246

For a directed network that is “strongly connected” (i.e., a walker can travel247

from any node vi to any other node vj along directed edges [44]), p∗ is unique.248

In undirected networks, one just needs a network to be connected, which we249

have assumed.250
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In undirected networks, we obtain the central result

p∗i =
si∑N
`=1 s`

(i ∈ {1, . . . , N}) , (31)

which one can verify by substituting Eq. (31) into Eq. (30). For unweighted251

networks, Eq. (31) reduces to p∗i = ki/2M . Regardless of other structural252

properties of a network, the stationary density is determined solely by strength253

(and thus by degree for unweighted networks). Equation (31) also holds for254

directed networks that satisfy si ≡ sin
i = sout

i (where i ∈ {1, . . . , N}). Such255

directed networks are sometimes called “balanced” [1].256

In undirected networks,
p∗i Tij = p∗jTji . (32)

In other words, for each edge, the flow of probability in each direction must257

equal each other at equilibrium. This property, called “detailed balance” in258

statistical physics [121] and “time reversibility” in mathematics [1, 42], does259

not generally hold for directed networks.260

Let’s consider a generalization of the degree-biased RW to weighted networks
(i.e., a strength-biased RW) in which the probability that a random walker
located at node vi or vj traverses the edge (vi, vj) is proportional to (sisj)

α. It
follows that

Tij =
(sisj)

α

∑N
`=1(sis`)α

=
sαj∑

`;v`∈Ni
sα`

, (33)

where Ni is the neighborhood of vi. A strength-biased RW is equivalent to an
RW on a modified undirected network whose weighted adjacency matrix is given
by A′ij = (sisj)

α (see Fig. 2 for an example). The strength of node vi in this

modified network is given by s′i =
∑N
j=1A

′
ij = sαi

∑N
j;vj∈Ni

sαj . By substituting

s′i into Eq. (31) in place of si, we obtain the stationary density

p∗i =
sαi
∑
vj∈Ni

sαj∑N
i′=1 s

α
i′
∑
vj′∈Ni′

sαj′
. (34)

For an unweighted network constructed using a “configuration model” [122], a261

standard model of random networks, we obtain p∗i ≈ kα+1
i /

∑
`=1 k

α+1
` [123–262

125]. In particular, we obtain p∗i = 1/N for all nodes when α = −1. Therefore,263

in general, we expect that a node with a large strength tends to have a large264

p∗i when α > −1 (including for the unweighted case α = 0) and that the same265

node tends to have a small p∗i when α < −1. For nodes with a large strength,266

we expect p∗i to increase as α increases.267

For directed networks in general, one can write a first-order approximation
to the stationary density from Eq. (30). We assume that we do not possess any
information about the neighbors of vi, so we replace p∗j and sout

j by their mean
values:

p∗i =

N∑

j=1

p∗j
Aji
sout
j

≈ (const)×
N∑

j=1

Aji ∝ sin
i . (35)
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Figure 2: Strength-biased RW. (a) An original undirected network, whose weighted adjacency
matrix is given by A. (b) The modified undirected network, whose weighted adjacency matrix
is given by A′. The numbers attached to the edges represent the edge weight. We set α = 1.

On both synthetic and empirical networks, Eq. (35) is reasonably accurate in268

some cases but not in others [126–133].269

3.2.3. Relaxation time270

To determine the relaxation time to the stationary state, it is instructive271

to project the solution, Eq. (29), onto an appropriate basis of vectors and to272

represent it in terms of its modes. The procedure, which is analogous to taking a273

Fourier transform [see Eq. (2)], is sometimes called a “graph Fourier transform”274

[134, 135] and will be explained in this section [see Eqs. (43)–(45)].275

For simplicity, we consider undirected networks. In general, the transition
probability matrix T is asymmetric even for undirected networks, except for
regular graphs. However, one can derive its eigenvalues and eigenvectors from
those of the symmetric matrix

Ãij =
Aij√
sisj

, (36)

which we can decompose as follows:

Ãij =
N∑

`=1

λ`u`u
>
` , (37)

where λ` is the `th eigenvalue of Ã and u` is the corresponding normalized276

eigenvector (so that 〈u`,u`′〉 = δ``′ , where 〈 , 〉 is the inner product), and δ is277

the Kronecker delta. Because Ã is symmetric, each eigenvalue λ` is real.278

Because Tij =
√
sjÃij/

√
si, we have the following similarity relationship

between T and A [1, 136]:

T = D−1/2ÃD1/2 , (38)

where we defined D (a matrix whose nonzero entries lie only on the diagonal)
in Section 3.1. Equation (38) implies that T and Ã have the same eigenvalues.
In particular, all eigenvalues of T are real-valued, because that is the case for
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Ã. The left and right eigenvectors of T corresponding to the eigenvalue λ` are,
respectively,

uL
` =u>` D

1/2 = ((u`)1
√
s1, . . . , (u`)N

√
sN ) (39)

and

uR
` =D−1/2u` = ((u`)1/

√
s1, . . . , (u`)N/

√
sN )

>
. (40)

One can verify Eqs. (39) and (40) using Eq. (38) and the relation Ãu` = λ`u`.279

Using

Tn = D−1/2ÃnD1/2

= D−1/2
N∑

`=1

λn` u`u
>
` D

1/2

=

N∑

`=1

λn` u
R
` u

L
` , (41)

we obtain the following mode expansion of the solution of the RW:

p(n) = p(0)Tn =
N∑

`=1

λn` u
L
` 〈p(0),uR

` 〉 . (42)

That is,

pi(n) =

N∑

`=1

a`(n)(uL
` )i , (43)

where

a`(n) = λn` a`(0) , (44)

a`(0) ≡ 〈p(0),uR
` 〉 , (45)

and a`(n) is the projection onto the `th eigenmode. Equations (43)–(45) map the280

state vector p(n), which is defined on the nodes, to a vector (a1(n), . . . , aN (n))281

of eigenvector amplitudes (i.e., their coefficients). This transform, called the282

“graph Fourier transform”, generalizes the standard Fourier transform of an283

RW [see Eqs. (3) and (7)], and the eigenvectors of the transition-probability284

matrix T play the role of the Fourier modes eikx.285

For the matrix T and Ã, the eigenvalues λ` each satisfy −1 ≤ λ` ≤ 1 [1, 42].286

Except in the special cases of multipartite graphs, the strict inequality λ` > −1287

also holds. In this case, the mode with λ` = 1 corresponds to the stationary288

density, and we thus write uL
` = p∗. The right eigenvector that corresponds to289

this mode is uR
` ∝ (1, . . . , 1)>. All modes for which −1 < λ` < 1 decay to290

0. The eigenvalue λ` = 1 is the largest-magnitude eigenvalue, and the Perron–291

Frobenius theorem guarantees that all elements of uL
` and uR

` are positive.292
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Similar results hold for directed networks, although we cannot take advantage293

of the symmetric structure of the matrix Ã in general. In directed networks,294

the eigenvalues satisfy |λ`| ≤ 1. When |λ`| < 1 holds for all but one eigenvalue,295

which is the case except for directed variants of multipartite graphs with an even296

number of components, the mode with λ` = 1 corresponds to the stationary297

density. In this case, we obtain uL
` = p∗ and uR

` ∝ (1, . . . , 1)>. Again, the298

Perron–Frobenius theorem guarantees that all elements of uL
` are positive.299

By letting n → ∞ in Eq. (42), we obtain p∗ = uL
max〈p(0),uR

max〉, where
the subscript “max” indicates the mode corresponding to the dominant eigen-
value (which is equal to 1). Because uR

max ∝ (1, . . . , 1)>, it follows that
〈p(0),uR

max〉 = 1 regardless of the initial condition p(0). This is consistent with
the fact that uL

max gives the stationary density. By letting n be large but finite,
we obtain

p(n) ≈ uL
max〈p(0),uR

max〉+ λn2u
L
2 〈p(0),uR

2 〉 , (46)

where λ2 is the second-largest (in magnitude) eigenvalue of T . In deriving300

Eq. (46), we only kept two terms, because |λ`|n � |λ2|n for all eigenvalues λ`301

with ` > 2, assuming that |λ`| < |λ2| (where ` ∈ {3, . . . , N}). Equation (46)302

indicates that the second-largest eigenvalue of T governs the relaxation time.303

More generally, the relaxation speed is determined by the ratio between |λ2|304

and λmax = 1. The difference 1− λ2 is often called the “spectral gap”. A large305

spectral gap (i.e., a small-magnitude for λ2) entails fast relaxation.306

The “Cheeger inequality” gives useful bounds on λ2 [137]. The “Cheeger
constant”, which is also called “conductance”, is defined by

h = min
S

{
(number of edges that connect S and S)

min{vol(S), vol(S)}

}
, (47)

where S is a set of nodes in a network, S is the complementary set of the
nodes (i.e., S ∩ S = ∅ and S ∪ S is the complete set of the N nodes), and

vol(S) ≡∑N
i=1;vi∈S si. In the minimization in Eq. (47), we seek a bipartition of

a network such that the two parts are the most sparsely connected. (In other
words, we want a minimum cut.) The denominator in the right-hand side of
Eq. (47) prevents the selection of a very uneven bipartition, which would easily
yield a small value for the numerator. The Cheeger inequality is

h2

2
< 1− |λ2| ≤ 2h , (48)

so a small Cheeger constant h implies a small spectral gap 1 − |λ2| and hence307

slower relaxation. This result is intuitive, because one can partition a network308

with a small value of h into two well-separated communities such that it is309

difficult for random walkers to cross from one community to the other. Note310

that there are various versions of Cheeger constants and inequalities. They give311

qualitatively similar — but quantitatively different — results [1, 42, 54, 138–312

140]. As discussed in Ref. [68] and references therein, such results are important313

considerations for community detection.314
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A fact related to the relaxation time is that the power method is a practical315

method to calculate the stationary density of an RW in a directed network [141].316

Suppose that we start with an arbitrary initial vector p(0), excluding one that317

is orthogonal to p∗, and repeatedly left-multiply it by T . After many iterations,318

we obtain an accurate estimate of p∗. Because any p(0) that is orthogonal to p∗319

includes a negative entry, one can start iterations with any probability vector320

p(0). In practice, one may have to normalize p(n) after each iteration (or after321

some number of iterations) to avoid the elements of p(n) becoming too large or322

small.323

3.2.4. Exit probability324

One is often interested in the probability that a random walker terminates325

at a particular node, which is then called an “absorbing state”. Upon reaching326

an absorbing state, a stochastic process cannot escape from it. A node vi is327

“absorbing” if and only if Tii = 1, which implies that Tij = 0 (for j 6= i). A set328

of nodes is an “ergodic” set if (1) it is possible to go from vi to vj for any nodes329

in the set and (2) the process does not leave the set once it has been reached.330

An absorbing node is an ergodic set that consists of a single node. A state in a331

Markov chain is said to be a “transient state” if it does not belong to an ergodic332

set.333

When an RW is composed of N1 transient-state nodes and N2 absorbing-
state nodes, there are N1 +N2 = N nodes in total. Without loss of generality,
we relabel the nodes such that v1, . . ., vN1 are transient and vN1+1, . . ., vN are
absorbing. The transition-probability matrix T then has the following form:

T =

(
Q R
0 I

)
, (49)

where Q is an N1×N1 matrix that describes transitions between transient-state
nodes, R is an N1 × N2 matrix that describes transitions from transient-state
nodes to absorbing-state nodes, and I is the N2 × N2 identity matrix that
corresponds to individual absorbing-state nodes. Taking powers of Eq. (49)
yields

Tn =

(
Qn R+QR+ · · ·+QRn−1

0 I

)
. (50)

Suppose that we start from transient-state node vi and want to calculate the
mean number of visits to transient-state node vj before reaching an absorbing-
state node. This number of visits is equal to the (i, j)th element of the matrix

W =
∞∑

n=0

Qn = (I −Q)
−1

, (51)

because the (i, j)th element of Qn is equal to the probability that a random334

walker starting from vi visits vj at discrete time n. The matrix W is called the335

“fundamental matrix” associated with Q. The matrix on the right-hand side of336
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Eq. (51) is called the “resolvent” of Q. Similar considerations arise in the study337

of “central” (i.e., important) nodes in networks [142].338

The “exit probability” (i.e., the “first-passage-time probability”) is defined
as the probability Uij that the walker terminates at an absorbing state vj when
it starts from a transient state vi. When there are multiple absorbing-state
nodes, it is nontrivial to determine the exit probability. The probability that
the walker reaches vj after exactly n steps is given by the (i, j)th element of
Qn−1R. Therefore, we obtain the exit probability in matrix form as follows:

U =

∞∑

n=1

Qn−1R = WR . (52)

3.2.5. Mean first-passage and recurrence times339

When does a random walker starting from a certain source node arrive at340

a target node for the first time? The answer to this question is known as the341

“first-passage time” (or “first-hitting time”) if the source and target nodes are342

different and is known as the “recurrence time” (or the “first-return time”) when343

the source and target nodes are identical. Let mij (with i 6= j) denote the mean344

first-passage time (MFPT) from node vi to node vj . The mean recurrence time is345

mii. For directed networks, we assume strongly connected networks throughout346

this section to guarantee that mij < ∞ (for i, j ∈ {1, . . . , N}). For reviews on347

first-passage problems on networks and other media, see [31, 40].348

General networks: Let’s first consider some general results. The following
identity holds [1, 112, 113, 115]:

mij = 1 +
N∑

`=1;` 6=j
Ti`m`j . (53)

In its first step, a random walker moves from node vi to node v`, which produces349

the 1 on the right-hand side of Eq. (53). If ` = j, then the walk terminates at350

v`, resulting in a first-passage time of 1. Otherwise, we seek the first-passage351

from node v` (with ` 6= j) to node vj . This produces the second term on the352

right-hand side. Note that Eq. (53) is also valid when i = j.353

In matrix notation, we write Eq. (53) as

M = J + T (M −Mdg) , (54)

where M = (mij), all of the elements of the matrix J are equal to 1, and
Mdg is the diagonal matrix whose diagonal elements are equal to mii. By left-
multiplying Eq. (54) by p∗ and using p∗J = (1, . . . , 1) and p∗T = p∗, we
obtain the mean recurrence time

mii =
1

p∗i
. (55)

Equation (55) is called “Kac’s formula” [1, 118, 119].354
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There are several different ways to evaluate the MFPT mij (with i 6= j),355

and it is insightful to discuss different approaches.356

One method is simply to iterate Eq. (53) [115].357

A second method to calculate the MFPT, for a given j, is to rewrite Eq. (53)
as

m(j) = 1 + T
(j)
m(j) , (56)

where m(j) = (m1j , . . . ,mj−1,j ,mj+1,j . . . ,mNj)
> and 1 = (1, . . . , 1)> are

(N−1)-dimensional column vectors and T
(j)

is the (N−1)× (N−1) submatrix
of T that excludes the jth row and jth column [124]. The formal solution of
Eq. (56) is

m(j) =
(
L

(j)
)−1

D
(j)

1 , (57)

where D
(j)

is the submatrix of D that excludes the jth row and jth column and358

L
(j)

= D
(j) −A(j)

, where A
(j)

is the submatrix of A that excludes the jth row359

and jth column. The matrix L
(j)

is sometimes called a “grounded Laplacian360

matrix” [143] (although it is not a Laplacian matrix), and it is invertible because361

we assumed strongly connected networks. One can derive and solve Eq. (57)362

separately for each j.363

A third method to calculate the MFPT is to take advantage of relaxation
properties of RWs [144]. Let pij(n) denote the probability that a walker starting
at node vi visits node vj after n moves. The master equation is

pij(n+ 1) =

N∑

`=1

pi`(n)T`j . (58)

Let Fij(n) denote the probability that the walker starting from vi arrives at vj
for the first time after n moves. We obtain

pij(n) = δn0δij +
n∑

n′=0

Fij(n
′)pjj(n− n′) . (59)

Using a discrete-time Laplace transform (see, e.g., [145] for an extensive discus-
sion of such generating functions), defined by

p̂ij(s) ≡
∞∑

n=0

e−snpij(n) (60)

and

F̂ij(s) ≡
∞∑

n=0

e−snFij(n) , (61)

we transform Eq. (59) to

p̂ij(s) = δij + F̂ij(s)p̂jj(s) (62)
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and thereby obtain

F̂ij(s) =
p̂ij(s)− δij
p̂jj(s)

. (63)

Using Eq. (63) then yields

mij =

∞∑

n=0

nFij(n) = −F̂ ′ij(0)

=
−p̂′ij(0)p̂jj(0) + p̂′jj(0) [p̂ij(0)− δij ]

p̂jj(0)2
. (64)

To evaluate Eq. (64), we define

R
(m)
ij ≡

∞∑

n=0

nm
[
pij(n)− p∗j

]
. (65)

Equation (65) quantifies the relaxation speed at which pij(n) approaches the
stationary density. To write the Laplace transform, we multiply both sides of
Eq. (65) by (−1)msm/m! and sum over m. We thereby obtain

∞∑

m=0

R
(m)
ij (−1)m

sm

m!
=
∞∑

m=0

∞∑

n=0

nm(−1)m
sm

m!

[
pij(n)− p∗j

]

=

∞∑

n=0

e−sn
[
pij(n)− p∗j

]

= p̃ij(s)−
p∗j

1− e−s . (66)

Substituting Eq. (66) into Eq. (63) then yields

F̂ij(s) =

p∗j
s+o(s) +

∑∞
m=0R

(m)
ij (−1)m sm

m! − δij
p∗j

s+o(s) +
∑∞
m=0R

(m)
jj (−1)m sm

m!

=
p∗j +R

(0)
ij s− δijs+ o(s)

p∗j +R
(0)
jj s+ o(s)

= 1 +
R

(0)
ij −R

(0)
jj − δij

p∗j
s+ o(s) , (67)

where o(s) represents a quantity that is much smaller than s in the relevant
asymptotic limit (s→ 0 in the present case). Consequently,

mij = −F̂ ′ij(0) =





1
p∗j

(j = i) ,

R
(0)
jj −R

(0)
ij

p∗j
(j 6= i) ,

(68)
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which is consistent with Kac’s formula [see Eq. (55)]. For undirected networks,

substituting p∗j = sj/
∑N
`=1 s` into Eq. (68) yields

mij =





∑N
`=1 s`
sj

(j = i) ,
∑N

`=1 s`
sj

(
R

(0)
jj −R

(0)
ij

)
(j 6= i) .

(69)

A fourth method to examine the MFPT is to estimate mij using a mean-field
approximation [146–148]. Regardless of the source node vi, the target node vj
is reached with an approximate probability of p∗j in each time step. Therefore,

mij ≈
∞∑

n=1

np∗j (1− p∗j )n−1 =
1

p∗j
= mjj . (70)

Equation (70) is a rather coarse approximation, and mij can deviate consid-364

erably from mjj = 1/p∗j . More sophisticated mean-field approaches can likely365

do better, especially for networks with structures that are well-suited to the366

employed approximation.367

There have been many studies of MFPTs for various network models using368

both analytical and numerical approaches [31, 149–151, 151–153]. We will dis-369

cuss some examples of undirected and unweighted networks. We focus mainly370

on the MFPT between different nodes, although it is of course also interesting371

to calculate recurrence times.372

Regular networks: For a complete graph, mij (with i 6= j) is independent of
i and j because of the symmetry of the network. Therefore, Eq. (53) reduces to

mij =
1

N − 1
+
N − 2

N − 1
(1 +mij) , (71)

which yields mij = N − 1 for i 6= j. Kac’s formula [see Eq. (55)] implies that373

mii = N .374

For regular lattices Zd of any dimension d, Eq. (55) implies that mii ∝ N375

because p∗i ∝ ki = 2d for any i. Define m•j to be the MFPT averaged over376

all source nodes vi (i 6= j) [154]. For Zd, it satisfies the scalings m•j ∝ N2 for377

d = 1, m•j ∝ N lnN for d = 2, and m•j ∝ N for d = 3.378

Erdős–Rényi (ER) random graphs: Consider an ER random graph G(N, p),379

where p denotes the (independent) probability that each node pair has an edge.380

Assuming that the mean degree 〈k〉 is kept constant (i.e., p = 〈k〉/(N − 1) ∝381

1/N), we obtain mii ∝ N and mij ∝ N3/2 (with i 6= j) as N → ∞ [155] for382

the “giant component” (i.e., a largest connected component that scales linearly383

with the number N of network nodes as N → ∞ [44]). Now suppose that we384

assume instead that p > lnN/N , so that all nodes belong to a single component385

(in the N → ∞ limit) and thus mij (for i, j ∈ {1, . . . , N}) is well-defined. It386

then follows that mij averaged over all source and target nodes is equal to N−1,387

independently of p [156, 157]. In other words, for a sufficiently dense ER random388

graph, the MFPT is the same as that for the complete graph. The MFPT is389

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

much longer for directed ER graphs than for undirected ones, because random390

walkers do not backtrack on directed networks [158].391

Other network models with random features: Much effort in studying RWs392

on networks has considered first-passage times on Watts–Strogatz (WS) small-393

world networks [149, 159–164]. As expected, given that WS networks interpolate394

between regular lattices and ER networks 3, these studies have found that the395

behavior of an RW on WS networks lies somewhere between that on a regular396

lattice and that on ER graphs.397

Equation (69) has also been elaborated further for “scale-free” networks,
which are defined as networks with a power-law degree distribution p(k) ∝ k−γ ,
where p(k) is the degree distribution. Let’s consider scale-free networks that
are generated by a “configuration model” [122], so there are no degree–degree
correlations. We examine the mean of the MFPT mij over the position of the
source node vi (with i 6= j), which we select according to the stationary density.
We use m̃•j to denote this weighted mean of the MFPT over i. This mean is
distinct from the unweighted mean m•j . For scale-free networks constructed
using a configuration model, we obtain for large N that [166]

m̃•j ∝





N2/ds (ds < 2) ,

Nk
(1−2/ds)(γ−1)
j (2 < ds < 2(γ − 1)/(γ − 2)) ,

Nk−1
j (ds > 2(γ − 1)/(γ − 2)) ,

(72)

where ds ≡ 2df/dw is the “spectral dimension” of the network; the “fractal398

dimension” df is defined as the exponent of the scaling relation Nr ∝ rdf , where399

Nr is the number of nodes within distance r from a source node; and the “walk400

dimension” dw is defined from the scaling relation 〈r2〉 ∝ t2/dw , where r is401

the distance between the current position of the walker and the source node402

[36, 39]. In practice, one calculates the walk dimension as the scaling exponent403

for the time texit for a random walker to exit from a sphere of radius r from the404

source node (so that texit ∝ rdw) [167]. For regular lattices, dw = 2, and the405

diffusion is thus called “normal”. If dw 6= 2, the diffusion is called “anomalous”406

[39]. For the “compact exploration” case of ds < 2, Eq. (72) suggests that the407

asymptotic scaling of m̃•j with N does not depend on the target node at leading408

order. However, if ds > 2 (the second and the third cases in Eq. (72)), nodes409

with higher degrees are reached faster. In particular, for networks that satisfy410

the “small-world property” (i.e., the mean path length between nodes scales411

proportionally to lnN or even more slowly) [165], including popular scale-free412

network models (such as ones generated by a configuration model), one obtains413

ds =∞ (and ds is very large for many empirical networks). Therefore, the third414

case in Eq. (72) applies.415

Fractal and pseudo-fractal networks: There are various deterministic mech-416

anisms to grow networks in a recursive manner. Depending on the mode, these417

3Technically, it is a variant of WS networks with edge rewiring (rather than edge addition)
that interpolates between regular lattices and ER networks [165].
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Table 2: The term “hierarchical network” has been used (sometimes in a misleading way) to
describe various network structures. To help readers, we provide a short summary of three
common uses.

Hierarchical modularity A hierarchical network can indicate the presence of “hierarchical
modularity”, in which dense modules are themselves composed
of dense submodules in the recursive manner of a “Russian doll”
[174].

Status theory One can also understand a hierarchy in the context of “status
theory”, in which certain nodes have a higher status than others,
and a directed edge indicates a difference of status [175]. This
notion leads naturally to trees that are dominated by a root and,
more generally, to acyclic networks [176].

Pseudo-fractal networks Some models of pseudo-fractal networks are sometimes called hier-
archical networks. Ravasz and Barabási proposed to characterize
such “hierarchical” structure by examining a scaling relation be-
tween clustering coefficient and node degree [169, 170].

algorithms yield “pseudo-fractal” scale-free networks [168] (also called “hier-418

archical networks” [169, 170] or “transfractals” [171]; see Table 2 for different419

meanings of the term “hierarchical network” that exist in the literature), which420

have a highly symmetric structure and satisfy the small-world property; fractal421

networks that do not satisfy the small-world property [171–173]; or classical422

fractals [39]. These objects are defined and studied in the limit N → ∞. For423

such models, it is often possible to exploit their deterministic and recursive424

nature to exactly calculate the MFPT, and generating functions again can be425

helpful.426

Let’s start by looking at fractals that do not have a heavy-tailed degree427

distribution. In a recursive process of generating a fractal structure from a model428

of a fractal, we stop the process in each iteration and regard any intersection with429

more than one edges as a node. In this way, we define a network corresponding430

to each iteration. The recursive process generates a series of networks, where the431

number N of nodes becomes larger as one iterates further. We are interested432

in how the MFPT scales in such networks as a function of N . For example,433

consider a network constructed from the Sierpinski gasket [177]. When the434

target node is located at the apex of the gasket, the MFPT averaged over a435

uniform distribution of the source node is m•j ∝ N ln 5/ ln 3 ≈ N1.46 [39, 155,436

178]. Another example is the so-called “T-graph”, which is produced by the437

initial condition of two nodes connected by an edge and recursive replacement438

of each edge by a star composed of four nodes to produce a fractal [179, 180].439

For the T-graph, the MFPT when the target is the unique central node and440

the source node is distributed uniformly over the N − 1 remaining nodes is441

m•j ∝ N ln 6/ ln 3 ≈ N1.63 [181]. Yet another example are so-called “Vicsek442
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fractals”, which are produced by the initial condition of a star having f + 1443

nodes and recursive addition of f replicas of the current network, such that444

each replica network is connected to the current network by one edge between445

leaves (i.e., between a node with degree 1 in a replica and a node with degree 1446

in the current network) [182, 183]. For Vicsek fractals, the MFPT averaged over447

all pairs of source and target nodes, chosen from all possible pairs and denoted448

by m••, scales as m•• ∝ N ln(3f+3)/ ln(f+1) [184]. Similar scaling results have also449

been studied in other deterministic and stochastic fractals and heterogeneous450

media [31, 39, 180, 185].451

Now let’s consider fractal networks that have a power-law degree distribu-452

tion. One generates a so-called “(u, v)-flower”, where u and v are integers, by453

starting with two nodes connected by an edge and replacing each edge by two454

parallel paths of length u and v in each generation. This model produces fractal455

and scale-free networks for u, v ≥ 2 [171, 186]. The degree distribution of a456

(u, v)-flower is p(k) = k−γ , where γ = 1 + ln(uv)/ ln 2. For this network, the457

MFPT between so-called “hubs” (which, in this context, are defined as nodes458

that are present in the same finite generation and whose degree thus becomes459

infinite as N →∞) scales as mij ∝ N
ln(uv)

ln(u+v) [171]. Consistent with this result,460

when u = v, the MFPT, averaged over source-node position (which is distributed461

according to the stationary density), to the node with the largest degree (i.e.,462

one of the two nodes that exist initially) is given by m̃•j ∝ N2 lnu/ ln(2u) [187].463

A tree-like network model, called the “(u, v)-tree”, is produced if, in each gen-464

eration, one replaces every edge by a path of u edges and add two new paths of465

v/2 edges that start from each end point of the already-added path of u edges466

and have a loose end. (If v is odd, one adds two paths of (v ± 1)/2 edges.)467

When u ≥ 2, the (u, v)-tree model produces fractal and scale-free networks468

with γ = 1 + ln(u+ v)/ ln 2 [171, 173]. For such networks, the MFPT between469

hubs (which here too are defined as nodes that are present in the same finite470

generation) scales as mij ∝ N
ln[u(u+v)]
ln(u+v) [171, 188].471

All of the above results on fractals and fractal scale-free networks are con-472

sistent with a known scaling law for the MFPT: it scales proportionally to473

N2/ds = Ndw/df [155]. There are known analytical expressions for df and dw for474

the fractals and fractal scale-free networks whose MFPT we discussed above.475

The spectral dimension is ds = ln 9/ ln 5 ≈ 1.37 for the Sierpinski gasket [37],476

ds = ln 9/ ln 6 ≈ 1.23 for the T-graph [179], ds = 2 ln(f + 1)/ ln(3f + 3) for477

the Vicsek fractals [183], ds = 2 ln(u + v)/ ln(uv) for the fractal (u, v)-flowers478

[171, 189], and ds = 2 ln(u+ v)/ lnu(u+ v) for the fractal (u, v)-trees [171, 189].479

As we mentioned in the beginning of this section, there are also scale-free480

network models that are constructed deterministically and recursively. The481

resulting networks are not fractals [168–171, 190–193] and are sometimes called482

“pseudo-fractals” [168]. In the literature, fractal and pseudo-fractal networks are483

usually distinguished as follows. By definition, pseudo-fractal networks satisfy484

the small-world property, as they have a small mean path length (which scales485

as logN or smaller [165]) between pairs of nodes, possibly due to the creation of486

shortcuts during the generation of the network. In contrast, the fractal network487
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models discussed above, as well as conventional fractals, have large worlds, as488

the mean path length scales as a power of N [172]. Similar to the case of489

fractal networks, it is possible to exactly calculate the MFPT for a variety of490

pseudo-fractals by exploiting the recursive nature of their definitions.491

Before general (u, v)-flowers were proposed in Ref. [171], the special case492

with u = 1 and v = 2 had already been studied [168]. A (1, 2)-flower has degree493

distribution p(k) ∝ k−γ , where γ = 1 + ln 3/ ln 2 ≈ 2.59 [168]. A (u, v)-flower494

has a small mean path length and is non-fractal when u or v is equal to 1495

[171]. In a (1, 2)-flower, the MFPT for an arbitrary pair of nodes (present in496

a particular finite generation of the network) scales as mij ∝ N [155]. For the497

same network, mij averaged over a uniformly distributed location of the source498

node scales as m•j ∝ N ln 2/ ln 3 ≈ N0.63 when the target node vj is the largest499

hub (whose degree k ≈ N ln 2/ ln 3) [194]. For a (1, v)-flower for general v, the500

MFPT between hubs (i.e., nodes that are present in the same finite generation,501

so their degree becomes infinite as N → ∞) scales as mij ∝ N ln v/ ln(v+1),502

which is consistent with the results in Ref. [194] that we explained above. For503

a (1, v)-tree for general v, which produces non-fractal scale-free networks [171],504

the MFPT between hubs (i.e., nodes present in the same finite generation) scales505

as mij ∝ N and that between non-hub nodes (i.e., nodes of finite degree) scales506

as mij ∝ N lnN [171]. The MFPT to the most connected hub vj (i.e., the node507

that is present initially) averaged over the position of the uniformly distributed508

source node vi (with i 6= j) scales as m•j ∝ N [188]. Consider a different scale-509

free tree model, in which, in each generation, m new nodes are connected to510

each of the already existing nodes. This model produces a power-law degree511

distribution with γ = 1 + ln(2m+ 1)/ ln(m+ 1) [191]. For this network model,512

the MFPT averaged over all pairs of source and target nodes selected uniformly513

at random scales as m•• ∝ N lnN [195]. The MFPT when the target node is514

selected from the stationary density of an RW is also proportional to N lnN515

as N → ∞ for an arbitrary source node [196]. Similar results have also been516

derived for pseudo-fractal scale-free networks that include loops. In one such517

network model, one starts from a single node and, in each generation, adds518

two replicas of the present network and connects some nodes in each replica to519

the initially-present single node. This model produces scale-free networks with520

loops and with γ = ln 3/ ln 2 ≈ 1.59 [190]. For this model, the MFPT from the521

largest-degree hub (i.e., the initially-existing node) to a low-degree node created522

in the latest generation in the growth (and the corresponding MFPT in the523

reverse direction) scales as mij ∝ N1−ln 2/ ln 3 ≈ N0.37 [197]. The MFPT to the524

largest-degree hub starting from a uniformly distributed source node (where the525

position of the source node is selected with the equal probability from the N−1526

nodes excluding the target hub node) also scales as m•j ∝ N1−ln 2/ ln 3 [197].527

One obtains a related pseudo-fractal scale-free network model by starting the528

recursive growth process of a network from an Ninit-node connected network in529

which one root node is specified [169, 170]. In each generation, one adds Ninit−1530

replicas Ninit ≥ 3) and connects them to the root node by some edges. This531

model produces a scale-free network with γ = 1 + lnNinit/ ln(Ninit − 1). For532

this network model, the MFPT to the root node, which has the largest degree,533
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starting from a source node, selected with equal probability from all nodes534

but the root, scales as m•j ∝ N1−ln(Ninit−1)/ lnNinit [198]. Because Ninit ≥535

3, the MFPT scales no faster than N1−ln 2/ ln 3 ≈ N0.37. Finally, a so-called536

“Apollonian network” is defined through an Apollonian packing (i.e., a space-537

filling packing of spheres) and produces a power-law degree distribution with538

γ = 1 + ln 3/ ln 2 ≈ 2.58 [192, 193]. For Apollonian networks, the MFPT to the539

node with the largest degree, where the source node is selected with the equal540

probability from all but the target node, is given by m•j ∝ N2−ln 5/ ln 3 ≈ N0.54
541

[199].542

In the results in the above paragraph for pseudo-fractal scale-free (but non-543

fractal) networks, the MFPT scales at most proportional to N lnN and mostly544

scales sublinearly in N . The MFPT is smaller than for fractals and fractal scale-545

free networks for which mij (or its mean over source or target nodes) scales546

superlinearly (i.e., in proportion to N2/ds , where ds < 2). Because ds = ∞ for547

the aforementioned pseudo-fractal scale-free networks, which satisfy the small-548

world property, the MFPT does not scale in proportion to N2/ds . These results549

are consistent qualitatively with the third case in Eq. (72), although Eq. (72)550

was derived for a source node whose location satisfies the stationary density, and551

many of the aforementioned theoretical results were derived for specific source552

— target pairs or a source node selected with equal probability from all nodes553

(excluding the target node). Note that the largest degree in the aforementioned554

pseudo-fractal scale-free networks (including the (1, v)-flowers and (1, v)-trees)555

scales as a sublinear power of N [168–171, 190–193]. Therefore, the third line556

of Eq. (72) suggests sublinear power-law scaling of the MFPT with respect to557

N for these networks.558

Unsurprisingly, the MFPT can depend on the distance between source and
target nodes. The results in Ref. [144] have been extended to the case of net-
works such as fractal and pseudo-fractal networks in a way that takes into
account the distance between the source and target [167, 200]. The MFPT is

mij ∝





N(A+Brdw−df ) (df < dw ; i.e., ds < 2) ,

N(A+B ln r) (dw = df ; i.e., ds = 2) ,

N(A−Brdw−df ) (dw > df ; i.e., ds > 2) ,

(73)

where r is the distance between nodes vi and vj , and A and B are constants. For559

example, the Sierpinski gasket has df = ln 3/ ln 2 and dw = ln 5/ ln 2. Therefore,560

Eq. (73) implies that mij ∝ Nr(ln 5−ln 3)/ ln 2. The pseudo-fractal scale-free561

networks that we discussed above satisfy the small-world property, so df =562

∞ because the number Nr of nodes within radius r grows exponentially in r563

[172]. Additionally, Eq. (73) still holds if we replace df by the box-counting564

dimension dB. The box-counting dimension is defined by the scaling relation565

NB/N ∝ `−dBB , where NB is the number of non-overlapping boxes of linear size566

`B (e.g., the length of a side for a square) that are necessary to cover an entire567

fractal (and, in the present context, an entire network). For fractals without a568

heavy-tailed degree distribution, dB = df [172].569

For discussion of scaling theory based on renormalization theory for first-570
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passage time and other quantities on networks, see Refs. [152, 201]. For other571

approaches to first-passage times and return times on networks, see Refs. [150,572

202, 203].573

3.2.6. Cover time574

“Cover time” is defined as the time required for a random walker to visit575

all nodes [1, 42]. It has been proven that the expected cover time c, maximized576

with respect to the source node, scales approximately as c ln [c/(c− 1)]N lnN577

in an Erdős–Rényi random graph in which each pair of nodes is adjacent with578

a probability of approximately c(lnN)/N [204]. For a Barabási–Albert scale-579

free network, the expected cover time scales as 2m/(m − 1)N lnN , where m580

is the number of edges in each new node [205]. These results hold with high581

probability in the limit of infinite network size (i.e., with probability tending to 1582

asN →∞). For arbitrary networks, researchers have developed a universal form583

of the distribution of cover times [206] and a method for accurately calculating584

the mean cover time for networks on which RWs relax rapidly [207].585

In practice, exactly covering all nodes tends to be a rather strong require-
ment. In contrast to the above and other rigorous mathematical results on
exact cover time, physicists have tended to instead examine “coverage” C(n)
in terms of the number of distinct nodes visited at least once within n steps
[36, 96, 105, 149, 208–212]. For a complete graph, one can calculate that

C(n) =
N∑

i=1

[1− (1− p∗i )n] . (74)

because each node is visited with probability p∗i = 1/N in a single step. In some586

situations, one can also expect Eq. (74) to hold approximately as a mean-field587

calculation. The “edge coverage” (i.e., the number of distinct edges visited at588

least once within n steps) has also been examined for various networks [208, 213].589

3.3. Continuous-time random walks (CTRWs)590

Similar to the case of RWs on a line, CTRWs on networks have two main591

components: the statistics of a walker’s trajectory in terms of the number of592

steps and the statistics of the times at which events take place. By combining593

these two components, one can specify the probability that a random walker594

visits a specified node at a specified time. For RWs on networks, the dynamics of595

a walker are affected not only by the statistical properties of temporal events, but596

also by the type of network unit in which a temporal process is defined. First, we597

distinguish between node-centric CTRWs and edge-centric CTRWs [1, 136, 214,598

215]. For dynamical processes in general, there are often substantial differences599

between node-based dynamics and edge-based dynamics [49], so it is crucial to600

distinguish between these situations. A second delineation is between active601

and passive CTRWs, depending on whether a walker passively follows edges602

when available or actively initializes them as it travels. This second distinction603

becomes crucial for temporal process other than Poisson process. One can604
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1/4 1/4

for rwreview

(a) Node-centric CTRW (b) Edge-centric CTRW

1/3
1/4

1 1 1
1 11/3

1/3 1/4

Figure 3: Schematic of two types of continuous-time random walks (CTRWs) on networks: (a)
a node-centric CTRW and (b) an edge-centric CTRW. In each case, a walker is visiting either
a degree-3 node or a degree-4 node in a network, which we assume is unweighted for simplicity.
We show the transition rates for each edge. In panel (a), the walker travels at a unit rate
and moves to one of its out-neighbors with equal probability for each choice. Therefore, the
transition rate for each edge is the reciprocal of the out-degree of the node that the walker
is visiting. In panel (b), however, the transition rate on each edge is equal to 1. Therefore,
on average, a walker visiting the node with out-degree 4 leaves the node earlier than a walker
visiting the node with out-degree 3.

combine the above components to consider various types of walks (e.g., node-605

centric active CTRWs).606

3.3.1. Node-centric versus edge-centric random walks607

In a CTRW, a walker waits until the next move for a time τ , where τ is a608

random variable. For the sake of simplicity, let’s start with a scenario in which609

moves occur as independent Poisson processes. In other words, τ is distributed610

according to the exponential distribution with parameter λ. We can safely611

normalize λ to 1, because λ only sets the time scale. In a node-centric CTRW,612

a walker moves from node vi when it becomes active, and it selects one of the613

out-neighbors, which we denote by vj , as the destination with a probability614

proportional to Aij [see Fig. 3(a)]. This assumption is the same as that for a615

DTRW.616

The master equation for the Poissonian node-centric CTRW on a network is

dp(t)

dt
= p(t)(−I + T ) = −p(t)D−1L , (75)

where
L ≡ D −A (76)

is the (“combinatorial”) “Laplacian matrix” of the network. The process is
driven by the “random-walk normalized Laplacian”

L′ ≡ D−1L = I − T . (77)

That is, (L′)ij = δij − (Aij/s
out
i ). If we examine the node-centric CTRW in617

terms of the number n of moves, the trajectories are statistically the same as618

those of the DTRW in Eq. (26). Consistent with this observation, node-centric619

CTRWs are also called the “continuization” of the DTRW [1]. In particular, the620
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stationary density of the node-centric CTRW is the same as that of the DTRW.621

By setting the left-hand side of Eq. (75) to 0, we obtain p∗(−I+T ) = 0, so that622

p∗ = p∗T . If the network is undirected, p∗i = si/
∑N
`=1 s`. Node-centric CTRWs623

have been used in, for example, some empirical-data-driven metapopulation624

disease-spreading models [216, 217]. In those models, a network consists of625

subpopulations of individuals, and individuals move from one subpopulation to626

another through a mobility rule. The simplest mobility rule, which has been627

used widely, is that individuals move according to a Poissonian node-centric628

CTRW. (For a discussion of mobility models, see Ref. [59].)629

Another type of CTRW is an edge-centric CTRW, in which each edge (rather630

than a node) is activated independently according to a renewal process [see631

Fig. 3(b)]. By definition, once an edge is activated, it becomes available, and a632

random walker can use it to move to the associated adjacent node. This RW633

model has also been called the “fluid model” [1].634

When a Poisson process with a rate proportional to the edge weight is as-
signed independently to each edge, the master equation is

dp(t)

dt
= p(t)(−D +A) = −p(t)L . (78)

The Poissonian edge-centric CTRW is associated with the unnormalized (i.e.,635

combinatorial) Laplacian L. Equation (78) implies that the transition rate at636

node vi is equal to sout
i . A walker leaves a node with a large out-strength (such637

a node may be a network “hub”) more quickly than a node with a small out-638

strength. This situation contrasts with the aforementioned node-centric CTRW,639

for which the transition rate of a walker is the same for all nodes.640

The stationary density for Eq. (78) is

p∗L = 0 . (79)

Equation (79) is equivalent to p∗i s
out
i −∑N

j=1 p
∗
jAji = 0 (for i ∈ {1, . . . , N}),

which indicates that the in-flow of the probability (i.e.,
∑N
j=1 p

∗
jAji) and the out-

flow of the probability (i.e., p∗i s
out
i ) are balanced at each node. Equation (79)

also indicates that p∗ is a left eigenvector of L with eigenvalue 0. In connected
undirected networks, the 0 eigenvalue, which we denote by λ1 = 0, is an isolated
eigenvalue. Its associated eigenvector is

p∗ =
1

N
(1 , . . . , 1) . (80)

For a directed network, the right eigenvector corresponding to λ1 = 0 is still
given by (1, . . . , 1)>/N , but the left eigenvector (i.e., p∗) is different in general.
Equation (79) is equivalent to p∗D = (p∗D)

(
D−1A

)
= p∗DT , where (as usual)

T is the transition-probability matrix of the DTRW. Therefore, p∗D is the
stationary density for the DTRW (and hence for the above node-centric CTRW)
in general directed networks. In other words, for the edge-centric CTRW, p∗i
is given by the expression for p∗i for the node-centric CTRW divided by sout

i
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and properly normalized. Using this relationship, we divide Eq. (35) by sout
i to

derive the first-order approximation [132, 218]:

p∗i ≈ (const)× sin
i

sout
i

. (81)

For Poissonian node-centric CTRWs and Poissonian edge-centric CTRWs
(and also for DTRWs), one can express the stationary density for directed net-
works by enumerating spanning trees. We present this technique now because
it is easier to understand this approach using L rather than L′. The “(i, j)
cofactor” of L is defined by

Co (i, j) ≡ (−1)i+j detL
(i,j)

, (82)

where L
(i,j)

is the (N−1)×(N−1) matrix obtained by deleting the ith row and

the jth column of L. (Previously, we used L
(i)

to denote the (N − 1)× (N − 1)
matrix obtained by deleting the ith row and column from L (see Section 3.2.5),

and here we use the notation L
(i,j)

without ambiguity. Taking i = j yields

L
(i,i) ≡ L(i)

.) Because
∑N
j=1 Lij = 0 (with i ∈ {1, . . . , N}), the value of Co (i, j)

is independent of j. Using Eq. (82) and the fact that L is singular because of
the 0 eigenvalue, we obtain

N∑

i=1

Co(i, i)Lij =
N∑

i=1

Co(i, j)Lij

= detL = 0 (83)

for any j. This yields

p∗i ∝ Co (i, i) = detL
(i,i)

. (84)

From the matrix–tree theorem (i.e., Kirchhoff’s theorem), detL
(i,i)

is equal to641

the sum of the weights of all possible directed spanning trees rooted at vi (called642

“arbolescence”) [219, 220]. One thereby obtains p∗i from weighted spanning643

trees in a formula called the “Markov-chain tree formula” [1]. The “weight”644

of a spanning tree is defined as the product of the weight of the N − 1 edges645

that form the tree. For unweighted networks, the weight of a spanning tree is646

1, and detL
(i,i)

is equal to the number of spanning trees rooted at vi. When we647

apply Eq. (84) to a node-centric CTRW (or to a DTRW), we replace L by L′. In648

doing this, we must be aware of the weight of spanning trees even for unweighted649

networks because L′ is the combinatorial Laplacian for the weighted adjacency650

matrix D−1A, where A is a binary (i.e., unweighted) adjacency matrix.651

Equation (84) is useful for exacting calculating p∗i for some directed networks,652

including a variant of Watts–Strogatz small-world networks and multipartite653

networks [221], and for approximately calculating p∗i for some types of directed654

networks with community structure [222].655
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Although the stationary density differs for node-centric and edge-centric656

CTRWs, their trajectories (and also those of the DTRW) are statistically the657

same and are determined by the transition-probability matrix T [see Eq. (24)] for658

Poisson processes. For edge-centric CTRWs, this is true because the probability659

that a Poisson process on the edge (vi, vj) occurs first among the Poisson660

processes on all edges (vi, v`) (where ` ∈ {1, . . . , N}) is proportional to the rate661

of the process on the edge (vi, vj) (i.e., it is proportional to Aij). Let p(n) =662

(p1(n), . . . , pN (n)) denote the distribution of the random walker, where pi(n) is663

the probability that the walker visits vi after exactly n moves. In the Poissonian664

case, the master equations for the DTRW, the node-centric CTRW, and the665

edge-centric CTRW in terms of n are each given by Eq. (28). However, the666

temporal properties along these trajectories are in general different for the two667

Poissonian CTRWs. In the Poissonian node-centric CTRW, moves are triggered668

by a Poisson process at a constant rate, so the probability p(n, t) of having669

performed n steps at time t is given by a Poisson distribution. In the Poissonian670

edge-centric CTRW, however, p(n, t) depends on a walker’s trajectory. When a671

walker is at a node vi, the time to the next event is drawn from the exponential672

distribution with mean 1/sout
i . If a trajectory includes many nodes with large673

out-strengths, the number n of moves at a given time t tends to be larger than674

for trajectories that traverse many nodes with small out-strengths.675

The combinatorial Laplacian L of a connected, undirected network includes676

exactly one 0 eigenvalue, so 0 = λ1 < λ2 ≤ · · · ≤ λN , where λ` is its `th smallest677

eigenvalue. The combinatorial Laplacian of a directed network satisfies an anal-678

ogous relationship, 0 = λ1 < Re(λ2) ≤ · · · ≤ Re(λN ), provided the network is679

strongly connected or has just one strongly connected component from which all680

other nodes can be reached by a directed path [54, 220, 223]. In the latter case,681

we call such a strongly connected component the “root component” (including682

the case of a single node, which is then a “root node”). If there are multiple683

components in an undirected network or multiple root components, then there684

are multiple 0 eigenvalues in L, although we do not consider such situations in685

the present article. The spectral gap (and thus λ2) governs the relaxation time.686

The corresponding eigenvector u2 is called the “Fiedler vector”. For details of687

spectral properties of networks, see Refs. [44, 51, 54, 93, 137, 139, 140, 224, 225].688

When a network is undirected, one can also construct Eq. (78) as a type689

of deterministic, linear synchronization or coordination dynamics in which pi(t)690

is the state of node vi and nodes vi and vj attract each other with a coupling691

strength of Aij [54]. The only difference between CTRW dynamics and lin-692

earized synchronization dynamics is that pi(t) is confined between 0 and 1 and693

normalized in CTRWs, whereas it is not in synchronization dynamics. There-694

fore, various theoretical results on linear synchronization dynamics on networks695

are applicable to edge-centric CTRWs. In particular, methods to estimate the696

relaxation time via the spectral gap of L are useful for understanding relaxation697

properties of RWs [54, 226, 227].698
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3.3.2. Active versus passive random walks699

In Section 3.3.1, we assumed that temporal events are determined from Pois-700

son processes. In that case, it was not necessary to specify if temporal events are701

defined on the walker or on the network. However, for non-Poisson processes,702

it is crucial to specify these properties. In this section, we assume that tem-703

poral events are generated by renewal processes with arbitrary distributions of704

inter-event times. Various empirical data sets related to human activity support705

heavy-tailed (and hence non-exponential) distributions [57, 228]. See Ref. [229]706

for a discussion of how to estimate such distributions from empirical data.707

One type of model arises when a renewal process describes the timings of708

the moves of a random walker. In other words, the walker carries its own clock709

and re-initializes it after each move. The CTRW is then said to be active, which710

may be appropriate components of models of human or animal trajectories.711

A second model consists of assuming that it is the timings at which nodes or712

edges become active that are generated by a renewal process. In such scenarios,713

the node or the edge (rather than a walker) carries a clock, and the arrival of714

a walker does not modify it. The random walker is thus a passive entity that715

follows edges when they become available [214, 215]. Passive RWs are often used716

in models of spreading of a virus on a time-dependent contact network or in the717

spreading of information on a communication network.4 Active and passive718

walks model different types of situations. One can interpret active walks as a719

continuous-time process that can take place on a fixed network architecture.720

One can then construe the resulting flickering of edges induced by a walker721

as components of a temporal network. In contrast, passive walks are event-722

driven processes that take place on a temporal network, which has its own723

intrinsic dynamics. As we will see, the two types of walks have radically different724

mathematical properties.725

Node-centric active CTRWs. When the inter-event time between two moves
obeys a distribution ψ(τ) that is not exponential, the RW dynamics are non-
Markovian. In a non-Markovian setting, the rate at which a walker moves
depends on the time since the last move. To analyze this scenario, we consider
the extension of Eq. (9) to the case of general networks and write

p(t) =
∞∑

n=0

p(n)p(n, t) , (85)

where we recall that p(n, t) is the probability that a walker has moved n times
at time t. By taking the Laplace transform of Eq. (85) and using Eqs. (19), we
obtain

p̂(s) =
1− ψ̂(s)

s

∞∑

n=0

p(n)ψ̂(s)n . (86)

4However, spreading processes are typically non-conservative, so one needs to be careful
about using RWs in these situations.

33



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

We then substitute p(n) = p(0)Tn [see Eq. (29)] into Eq. (86), where T is the
transition-probability matrix of the DTRW, to obtain

p̂(s) =
1− ψ̂(s)

s
p(0)

[
I − T ψ̂(s)

]−1

. (87)

Equation (87) is a generalization to arbitrary networks of results by Montroll726

and Weiss [96]. We have implicitly taken a node-centric perspective, as the727

waiting time (i.e., the time to the next event) of the walker does not depend728

on the node degree; when the walker is ready for a move, it chooses one of729

the node’s edges uniformly at random and traverses it. The inverse Laplace730

transform of Eq. (87) gives the probability pi(t) that the walker visits vi at time731

t.732

For a Poisson process (i.e., when ψ(τ) = βe−βτ ), substituting ψ̂(s) = β/(s+
β) [see Eq. (20)] in Eq. (87) yields

sp̂(s)− p(0) = βp̂(s)(−I + T ) (88)

after some calculations. Because the inverse Laplace transform of sp̂(s)− p(0)733

is equal to dp
dt (t), Eq. (88) leads to Eq. (75) up to a multiplicative constant β.734

To understand how the form of ψ(τ) affects diffusive processes, let’s work in
the graph-Fourier domain. That is, we work in terms of the amplitude of the
eigenmodes, and we examine how the relaxation of different eigenmodes deviates
from the situation for Poisson processes [230]. Combining Eqs. (43)–(45) and
(86) yields

p̂(s) =
1− ψ̂(s)

s

N∑

`=1

a`(0)

1− λ`ψ̂(s)
uL
` , (89)

where λ` is an eigenvalue of T and uL
` is the corresponding left eigenvector. By

taking the inner product of both sides of Eq. (89) with the right eigenvector uR
`

of T for a particular value `, we obtain

â`(s) =
1− ψ̂(s)

s
[
1− λ`ψ̂(s)

]a`(0) . (90)

For CTRWs driven by Poisson processes, an eigenmode relaxes exponen-
tially in time. However, relaxation dynamics can be rather different when ψ(t)
is not an exponential distribution. For simplicity, we assume that ψ(t) has fi-
nite mean and finite variance. (When these moments are not defined, one can
examine dynamical processes using the framework of fractional calculus [231].)
We substitute a small-s expansion

ψ̂(s) = 1− 〈τ〉s+
1

2
〈τ2〉s2 + o(s2) (91)

into Eq. (90). For the `th mode, where λ` 6= 1, one can calculate that

a`(s) =
〈τ〉

1− λ`

[
1− s

(
λ`〈τ〉
1− λ`

+
〈τ2〉
2〈τ〉

)]
. (92)
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This leads to a characteristic time tcha of

tcha =
λ`〈τ〉
1− λ`

+
〈τ2〉
2〈τ〉

= 〈τ〉
(

1

ε`
+ βburst

)
, (93)

where ε` = 1 − λ` is the eigenvalue of the random-walk normalized Laplacian
L′ and

βburst =
σ2
τ − 〈τ〉2
2〈τ〉2 , (94)

where σ2
τ = 〈τ2〉 − 〈τ〉2 is the variance of τ . The quantity βburst ∈ [−1/2,∞)735

is a measure of burstiness. Poisson processes have βburst = 0, and βburst =736

−1/2 when ψ(τ) is distributed as a delta function. A heavy-tailed distribution,737

implying bursty activity of nodes, generates a large value of βburst.738

Let’s consider the slowest-decaying mode associated with the spectral gap ε`739

(i.e., the smallest nonzero eigenvalue of L′). The corresponding characteristic740

decay time tcha indicates the relaxation time of the CTRW towards equilibrium.741

Equation (93) includes competition between two factors. When the spectral gap742

is small relative to 1/βburst, the first term on the right-hand side of Eq. (93) is743

dominant. In this case, tcha is determined primarily by structural bottlenecks in744

a network (e.g., through the existence of sets of densely-connected nodes called745

“communities” (see Section 5.3), which are connected weakly to each other)746

[68, 137, 140]. When the spectral gap is larger or when an event sequence is747

bursty (in the sense of a large variation in inter-event times), the second term748

dominates the right-hand side of Eq. (93). In this case, tcha is determined749

primarily by the properties of ψ(τ) rather than by network structure.750

Because the inter-event time and the number of moves in a RW are sta-751

tistically independent, the stationary density of the node-centric CTRW with752

a general ψ(τ) is the same as those for a DTRW or a Poissonian node-centric753

CTRW. One can thus calculate the recurrence time and first-passage time of754

a node-centric CTRW by multiplying the corresponding results for the DTRW755

(see Section 3.2.5) by 〈τ〉.756

Edge-centric active CTRWs. One can define other types of active RWs
that have qualitatively different behaviors of the stationary density and first-
passage times. For instance, consider the following edge-centric active RW:
when a walker arrives at a node, it considers each edge and takes the first edge
available for transport. The time at which each edge appears is independently
drawn from the same distribution ψ(τ) where, as before, the clock on each edge
is re-initialized upon the arrival of a walker at an incident node. Because only
the first edge to appear is taken by the walker, there is a competition between
different edges. The probability density that a random walker moves from node
vi to node vj at time τ since the walker arrived at vi is

f(τ ; j ← i) = ψ(τ)

[∫ ∞

τ

ψ(τ ′)dτ ′
]ki−1

. (95)
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Some calculations yield

p∗i =
〈min`=1,...,ki τ`〉ki∑N
j=1〈min`=1,...,kj τ`〉kj

, (96)

where the factors of τ` are independent copies of inter-event times that are
drawn from the distribution ψ(τ). Because

〈
min

`=1,...,ki
τ`

〉
=

∫ ∞

0

[∫ ∞

τ ′
ψ(τ ′)dτ ′

]ki
dτ ′ (97)

depends only on ki, Eqs. (96) and (97) imply that p∗i depends only on ki. Note
that the stationary density for the active RW is not proportional to ki unless τ
is constant, which reduces the model to the DTRW. The mean recurrence time
for node vi is

mii =

∑N
j=1

〈
min`=1,...,kj τ`

〉
kj

ki
∝ 1

ki
. (98)

Equations (96) and (98) indicate that Kac’s formula [see Eq. (55)] is not satisfied757

unless the network is regular.758

Edge-centric passive CTRWs. Passive RWs differ from active ones in that
properties of a network (rather than a random walker) evolves as a renewal pro-
cess. We start with edge-centric passive RWs, which have attracted considerable
attention because of their many applications (e.g., diffusion on temporal net-
works). We thus assume that each edge is governed by an independent renewal
process, which we assume for simplicity is the same distribution ψ(τ) for each
edge. A first important difference from active walks arises from the “waiting-
time paradox” (which is also called the “bus paradox”) [3, 232]. In this paradox,
a walker arrives at node vi from node v`. The waiting time before edge (vi, vj)
(with j 6= `) is activated is typically longer than the naive expected value 〈τ〉/2.
Let ψw(τw) denote the distribution of waiting times τw on edge (vi, vj) after
a walker has arrived at node vi from node v` (where ` 6= j). See Fig. 4 for a
schematic. One can calculate ψw(τw) from ψ(τ) when the arrival of a walker
to vi and the activation of edge (vi, vj) are statistically independent processes.
In that situation, the probability density for the time at which a walker moves
from v` to vi lies in an interval of length τ satisfies

f(τ) =
τψ(τ)∫∞

0
τ ′ψ(τ ′)dτ ′

=
τψ(τ)

〈τ〉 . (99)

Conditioned on the walker’s arrival time to vi lying in an interval of length τ ,
the probability density for the waiting time to be equal to τw is

g(τw|τ) =

{
1/τ (0 ≤ τw ≤ τ) ,

0 (τ > τw) .
(100)

Equations (99) and (100) yield

ψw(τw) =

∫ ∞

τw

f(τ)g(τw|τ)dτ =
1

〈τ〉

∫ ∞

τw

ψ(τ)dτ . (101)
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for rwreview

waiting 
time (τw)

inter-event 
time (τ)

v1

v2

v3

Figure 4: Schematic illustrating the concept of waiting time. We show a trajectory of a
random walker using dotted arrows. The walker moves from node v3 to node v2, and it then
moves to node v1. This example corresponds to j = 1, i = 2, and ` = 3 in the main text. (See
the j 6= ` case in Eq. (102).)

In particular, the mean waiting time is given by
∫∞

0
τwψw(τw)dτw = 〈τ2〉/ (2〈τ〉).759

If ψ(τ) is heavy-tailed, 〈τ2〉 is much larger than 〈τ〉, so a typical waiting time760

is very long. For example, if ψ(τ) ∝ τ−γ , with γ ∈ (2, 3], the mean inter-event761

time is finite, whereas the mean waiting time diverges because 〈τ2〉 diverges.762

A second difference is that one can only derive approximate master equa-763

tions for edge-centric passive CTRWs, whereas they are exact for active CTRWs.764

When a random walker moves from node v` to node vi at time t, the waiting765

time (i.e., the time to the next event) on edge (vi, vj), where j 6= ` (we will766

consider the case j = ` in the next paragraph), is estimated by the distribution767

ψw However, if a random walker has already traversed edge (vi, vj) in the past768

— let’s suppose that the last traversal time occurred at t′ — the independence769

assumption that is required to derive Eq. (101) is not satisfied, and the waiting770

time on (vi, vj) is not given exactly by the distribution ψw, unless the process771

is Poissonian and ψ is an exponential distribution. The deviation between the772

waiting-time distribution and ψw increases when t′ approaches t. In the remain-773

der of the present section, we ignore any modification of the distribution of the774

subsequent waiting time caused by past events on (vi, vj); this corresponds to775

assuming that t′ = −∞. To our knowledge, the impact of such a memory effect776

(i.e., finite t′) has not been considered in detail in the literature.777

A third difference stems from the possibility of non-Markovian trajectories
for random walkers. To explain this point, consider the case of backtracking
moves (i.e., v` → vi → v`). For such backtracking moves, the waiting time on the
edge (vi, v`) is distributed according to ψ, rather than ψw, as the waiting-time
paradox does not apply. The existence of different waiting times for backtracking
and non-backtracking moves has impacts the motion of a walker. For a walker
to move to node vj at time τw since the walker moved from node v` to node vi,
there cannot be any events on any edges emanating from vi in [0, τw], and then
an event must occur on the edge (vi, vj) at time τw. Let f(τw; j ← i|i ← `)
denote the probability density of the event that a walker that has moved from
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v` to vi moves to node vj at time τw. We obtain

f(τw; j ← i|i← `) ≈
{
ψ(τw)

[∫∞
τw ψ

w(τ ′)dτ ′
]ki−1

(j = `) ,

ψw(τw)
[∫∞
τw ψ

w(τ ′)dτ ′
]ki−2 ∫∞

τw ψ(τ ′)dτ ′ (j 6= `) .

(102)

Equation (102) indicates that where a walker moves depends not only on its778

current position but also on the edge that it used to arrive to that position.779

For trajectories of RWs, one can construe this situation as a special case of the780

“memory networks” that we will discuss in Section 4.2.2.781

Unless ψ is an exponential distribution, f(τw; ` ← i|i ← `) is not equal to782

f(τw; j ← i|i← `) (with j 6= `) in general, so the trajectory of an RW (i.e., the783

walk measured in terms of the number of moves) is non-Markovian. In partic-784

ular, if ψ is a heavy-tailed distribution, the mean waiting time is larger than785

the mean inter-event time. Therefore, a walker tends to backtrack (i.e., there786

are sequences of moves of the form v` → vi → v`), and diffusion dynamics are787

slowed down. This slowing down is caused entirely by the modification of trajec-788

tories in non-exponential distributions, and, in particular, it does not arise from789

a competition between structural and temporal factors (in contrast to Eq. (94)).790

If ψ has lighter tails than an exponential distribution, a walker tends to avoid791

backtracking. (We briefly discuss non-backtracking RWs in Section 6.) When ψ792

is not an exponential distribution, trajectories of the edge-centric passive CTRW793

are different from those of active CTRWs or DTRWs.794

We now evaluate the stationary density and recurrence time of non-Poissonian
edge-centric passive CTRWs [215]. Let qj←i(t) denote the rate at which a ran-
dom walker moves from node vi to node vj at time t. This quantity satisfies the
following approximate self-consistency equation:

qj←i(t) ≈
∑

`∈Ni

[∫ t

0

f(t− t′; j ← i|i← `)qi←`(t
′)dt′

]

+ pj←i(0)δ(t) , (103)

where we recall that Ni is set of the neighbors of vi. The initial condition
satisfies ∑

j∈Ni

pi←j(0) = pi(0) . (104)

Equation (104) implies that one needs to specify an initial condition that in-
cludes not only the current position of the walker but also its previous location.
More generally, the transition probability of a move depends on the previous
move. The master equation is given by

d

dt
pi(t) =

∑

j∈Ni

[qi←j(t)− qj←i(t)] . (105)
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To derive the stationary density, we work in terms of qi←j(t) rather than
pi(t). We take the Laplace transform of Eq. (103) to obtain

q̂j←i(s) ≈
∑

`∈Ni

[
f̂(s; j ← i|i← `)q̂i←`(s)

]
+ pj←i(0) . (106)

Note that q̂j←i(s) 6= q̂i←j(s) in general even for undirected networks. Equa-
tion (106) is a set of linear equations with 2M unknowns. We solve q̂j←i(s) and
then calculate the stationary value of qj←i(t) (i.e., q∗j←i ≡ limt→∞ qj←i(t) as
q̂j←i(0)). We thereby obtain p∗i as a weighted sum of q∗i←j terms, where j ∈ Ni.
In fact, q∗j←i does not depend on i or j, and the final result is

p∗i =
1

N
(i ∈ {1, . . . , N}) . (107)

Therefore, the stationary density is the uniform density, independent of the
network structure and the form of ψ(τ). The mean recurrence time is

mii ≈
N〈τ〉
ki

. (108)

Equation (108) indicates that the mean recurrence time is essentially indepen-795

dent of ψ(τ), as it depends only on the mean 〈τ〉, which gives the trivial nor-796

malization of time. Equations (107) and (108) imply that Kac’s formula [see797

Eq. (55)] is not satisfied by any edge-centric passive CTRW except in regular798

networks.799

Node-centric passive CTRWs. To conclude our taxonomy of CTRWs on net-800

works, we mention a fourth combination: passive node-centric RWs. We are801

not aware of studies of node-centric passive RWs, though they may be relevant802

for situations in which the activity of a temporal network is driven by node dy-803

namics more than by interactions between nodes. Node-centric passive CTRWs804

are also subject to the bus paradox, but they are substantially simpler math-805

ematically than edge-centric active walks, because non-Markovian trajectories806

do not arise when the renewal processes on the nodes are independent.807

4. Random walks on generalized networks808

4.1. Multilayer networks809

A multilayer network includes different “layers” and allows one to explicitly810

incorporate different types of subsystems and/or different types of ties between811

edges [60, 61]. The latter case, which is often called a “multiplex” network, oc-812

curs when there are different types of interactions between individuals, different813

modes of transportation, and so on. If there are `max layers, one can represent814

a multilayer network as an ordinary (i.e., “monolayer”) network with `maxN815

nodes, where there are `max replicates of each node if each entity (represented816

by a node) exists on every layer. How strongly different layers are connected817

to each other (and which interlayer edges are present) has an enormous effect818
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Figure 5: Schematic of a Poissonian edge-centric CTRW on a multilayer network with `max = 2
layers. The values on the edges represent edge weights.

on diffusive dynamics in multilayer networks [61, 62, 233]. It thereby affects819

anything else, such as various community-detection methods, that are based on820

RWs (see Section 5.3) [234–236].821

Let’s consider Poissonian edge-centric CTRWs. For simplicity, we also as-
sume undirected multilayer networks in which each intra-layer network is a
connected network [237–239] and each node is present on every layer (though of
course this need not be true in general). We also assume that inter-layer edges
occur only between the same entity in different layers (i.e., so-called “diagonal”
coupling) and that there is only a single type (i.e., “aspect”) of layering [61].
(For example, a single-aspect multilayer network can be a multiplex network,
but it cannot be both multiplex and time-dependent.) Let Aα = (Aαij) denote
the adjacency matrix for the αth layer. One needs to think about both diffusion
within layers and diffusion between layers (see Fig. 5). Let Dα denote the intra-
layer diffusion constant in the αth layer, and let Dαβ (with α, β ∈ {1, . . . , `max})
denote the inter-layer diffusion constant between the αth and βth layers. Such
constants set the edge weights between pairs of nodes that represent the same
entity in different layers, and the corresponding nodes in the αth and βth layers
are connected by an edge on which there is a Poisson process with rate Dαβ .
The master equation is given by

dpαi (t)

dt
= Dα

N∑

j=1

Aαij
[
pαj (t)− pαi (t)

]
+

`max∑

α′=1

Dαβ

[
pα
′
i (t)− pαi (t)

]
, (109)

where pαi (t) is the probability that a random walker visits the ith node in the822

αth layer. The normalization is given by
∑`max

α=1

∑N
i=1 p

α
i (t) = 1.823

Consider the case of two layers and Dx ≡ D12 = D21 [237, 239]. Equa-
tion (109) is written concisely as

dp(t)

dt
= −p(t)L , (110)

where p(t) = (p1
1(t), p1

2(t), . . . , p1
N (t), p2

1(t), p2
2(t), . . . , p2

N (t)), and

L =

(
D1L1 +DxI −DxI
−DxI D2L2 +DxI

)
(111)
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is the (combinatorial) “supra-Laplacian”, where L1 and L2 are the (combi-824

natorial) Laplacian matrices for the intra-layer network. Because this RW is825

an edge-centric CTRW on an undirected network, the stationary density is826

(pαi )
∗

= 1/(2N) (with i ∈ {1, . . . , N} and α ∈ {1, 2}).827

The supra-Laplacian matrix L has a 0 eigenvalue that corresponds to the
stationary density. The relaxation time is governed by the smallest positive
eigenvalue (i.e., the spectral gap) λ2 of L. One of the nonzero eigenvalues is 2Dx

and has a corresponding eigenvector of (1, . . . , 1, −1, . . . ,−1). If the inter-
layer diffusion constant Dx is small, then λ2 = 2Dx, so the inter-layer hopping is
a bottleneck for diffusion in the entire multilayer network. In the opposite limit
(Dx � 1), one can examine diffusion properties using a perturbative analysis
[237]. The quantity 2Dx is still an eigenvalue, but it diverges to infinity in the
limit Dx → ∞, and there are N copies of the same eigenvalue in this limit.
Another important quantity is λs/2, the eigenvalue of (L1 + L2)/2; and there
are also N copies of this eigenvalue. Therefore, λ2 = λs/2. Note that L1 + L2

is the (combinatorial) Laplacian for the monolayer network obtained by adding
the intra-layer edge weights for each intra-layer edge and ignoring the inter-layer
edges. We obtain

λs

2
≥ λα=1

2 + λα=2
2

2
≥ min(λα=1

2 , λα=2
2 ) , (112)

where λα2 is the second-smallest eigenvalue (i.e., the spectral gap) of Lα, so it828

specifies the speed at which an RW on the network consisting only of the αth829

layer (so there are no inter-layer edges) relaxes to the stationary density. Equa-830

tion (112) implies that above diffusion in the two-layer network is faster than831

diffusion in the slower layer. For some multilayer networks, however, diffusion832

can occur faster than in each layer considered individually [237, 238].833

The small-Dx and Dx � 1 regimes are connected by a discontinuous (i.e.,834

“first-order”) phase transition [239]. More precisely, there exists a threshold835

value D∗x of Dx, such that λ2 = 2Dx for Dx ≤ D∗x and λ2 ≤ λs/2 for Dx ≥ D∗x.836

Note that Dx → λs/2 as Dx →∞. The first derivative of λ2 with respect to Dx837

is discontinuous at Dx = D∗x. The transition point has an upper bound given838

by D∗x ≤ λs/4.839

Reference [240] investigated the so-called “coverage” time of different types840

of CTRWs in multilayer networks by calculating the mean fraction of distinct841

nodes that are visited at least once (in any layer) in some time period by a walk842

(which can start from any node in a network). Reference [240] then examined843

coverage as a function of time when some nodes are deleted and used it to844

consider the resilience of multilayer networks to random node failures. In their845

paper, node failure is defined with respect to the removal of nodes in individual846

layers (rather than, e.g., removal from all layers), such as a failure of a station847

in a single transportation mode (i.e., a single layer) in a transportation network.848

See Refs. [60–62] and references therein for further discussion of diffusion849

processes in multilayer networks. For example, RWs have been employed to850

estimate the number of layers in multilayer networks [241]. The investigation of851

RWs in multilayer networks is a very active area of research.852
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4.2. Temporal networks853

Many empirical networks vary over time, and one can describe them as tem-854

poral networks [57, 58]. CTRWs with non-exponential distributions of inter-855

event times (see Section 3.3) are often discussed in the context of temporal856

networks, because non-Poissonian distributions of inter-event times are a fun-857

damental property of most empirical temporal networks [57, 228].858

In this section, we discuss some situations in which a temporal network is
given in the form of a sequence of static networks (which are called “snapshots”
in [59])5. In this type of example, one time-independent network corresponds
to a single observation (with a time stamp) of a temporal network, whose time
resolution may correspond to that imposed by a recording period (e.g., every
20 secs). One can then consider an RW on a (temporal) sequence of adjacency
matrices:

A = {A(1), A(2), . . . , A(nmax)} , (113)

where (A(n))ij encodes the activation of edge (vi, vj) at discrete time n (with859

n ∈ {1, . . . , nmax}). See the review [58] for a discussion of several models of860

RWs on temporal networks in addition to the ones that we will discuss in the861

following sections.862

4.2.1. Activity-driven model863

RWs on temporal networks have been examined both analytically and com-864

putationally. One useful approach is to examine RWs on an “activity-driven865

model” of temporal networks [147].866

The simplest type of activity-driven model generates a sequence of uncorre-867

lated time-independent networks [242]. First, we associate each node vi (with868

i ∈ {1 , . . . , N}) with a random variable ai, called the “activity potential”,869

drawn from a given distribution F (a) (with a ≥ 0). Second, at each discretized870

time t, each node vi is independently active with probability ai∆t < 1 and871

inactive with probability 1 − ai∆t, where ∆t is the time difference (which we872

assume to be homogeneous) between two consecutive time points. Third, at873

each t, each activated node generates m undirected edges that connect to m874

other nodes uniformly at random. When nodes vi and vj are both active and875

each connects to the other with an edge at time t, we suppose that there is876

exactly one unweighted edge (vi, vj) at t. In practice, we suppose that ai∆t is877

sufficiently small to prevent such mutual edge creation to occur too often. We878

regard the network at each t as an undirected and unweighted network, and we879

repeat this procedure independently to generate a time-independent network880

for the time interval ∆t.881

Consider the aggregation of a temporal network into a time-independent
network, which we construct by summing the edge weights across some time

5There are also other types of temporal networks [57, 58], and it is important to consider
the time scales of both network evolution and the evolution of dynamical processes on a
network to determine appropriate frameworks for network analysis [49].
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window for each edge. The aggregated network neglects any temporal informa-
tion contained in the temporal network during that window. If we aggregate
observed time-independent networks over some time — which cannot be too
long, or else the aggregated network might be a complete weighted graph — the
aggregated (and sometimes called “annealed”) adjacency matrix is given by

A∗ij ≈
m (ai + aj)

N
, (114)

where we neglect o(1/N) terms. The degree distribution of the aggregated
network is

p(k∗) ≈ 1

m
F

(
k

m
− 〈a〉

)
, (115)

where 〈a〉 =
∫
aF (a)da is the ensemble average of a. Therefore, a heterogeneous882

distribution F (a) yields a comparably heterogeneous degree distribution in the883

aggregated network.884

When we observe a temporal network with a fine temporal resolution, the
network at each time point is very sparse6. This also occurs for the above
activity-driven model if ai∆t and m are sufficiently small. A walker has to
remain at a node if the node is isolated at the present time t, and this fact has
a substantial effect on RW dynamics. In the above activity-driven model, there
are two ways for a walker located at node vi to move to node vj in a network at
time t [147, 244]. The first way is to combine the following three independent
events: (i) vi is activated with probability ai∆t, (ii) node vi is connected to vj
with probability m/N , and (iii) the edge (vi, vj) is traversed with probability
1/(m+m〈a〉∆t). Note that the mean degree of vi in a time-independent network
at an arbitrary time t when vi is activated is equal to m+m〈a〉∆t, because vi
has m〈a〉∆t edges from the activation of other nodes. The second way is to
combine the following four independent events: (i) node vi is not activated with
probability 1 − ai∆t, (ii) node vj is activated with probability aj∆t, (iii) vj is
connected to vi with probability m/N , and (iv) the edge (vi, vj) is traversed
with probability 1/(1 +m〈a〉∆t). By adding these contributions and assuming
that ∆t is small, we obtain a transition-probability matrix T with elements

Tij ≈ ai∆t
m

N

1

m+m〈a〉∆t + (1− ai∆t)aj∆t
m

N

1

1 +m〈a〉∆t

≈ ∆t

N
(ai +maj) (j 6= i) . (116)

Note that Tii = 1−∑N
j=1;j 6=i Tij .885

We aggregate all nodes with the same value of a into one group, and we
regard a as continuous. Let pa(t) denote the probability that a single node with

6We use the term “sparse” to indicate the presence of an extremely small number of edges
rather than in a conventional graph-theoretic sense, in which a sparse network still typically
has a large number of edges (but with an edge density that scales sufficiently slowly as the
number N of nodes becomes large) [44, 243].
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activity potential a is visited at time t. The normalization is
∫
pa(t)F (a)da = 1,

and the master equation in the ∆t→ 0 limit is

dpa(t)

dt
=

∫
a′pa′(t)F (a′)da′ − apa(t) +ma

1

N
−m〈a〉pa(t) . (117)

The first and second terms on the right-hand side of Eq. (117) account, respec-886

tively, for the in-flows and out-flows of probability driven by (∆t/N)ai on the887

right-hand side of Eq. (116). The third and fourth terms account, respectively,888

for the in-flows and out-flows driven by (∆t/N)maj in Eq. (116). This RW889

is a Poissonian node-centric CTRW whose general master equation is given by890

Eq. (75).891

The stationary density of Eq. (117) is

p∗a =
ma
N + φ

a+m〈a〉 , (118)

where

φ =

∫
ap∗aF (a)da (119)

is the mean probability flow from active nodes at equilibrium. By combining
Eqs. (118) and (119), we obtain the following self-consistency equation:

φ =

∫
a

ma
N + φ

a+m〈a〉F (a)da . (120)

Because we are considering a Poissonian node-centric CTRW in an undirected892

network, the stationary density for a time-independent, aggregated network893

has components that are proportional to node degree. Equation (114) implies894

that p∗a for the aggregated network is proportional to m(a + 〈a〉). However,895

the stationary density for the CTRW on the activity-driven temporal network896

model, obtained by numerically solving Eq. (120) for a given heterogeneous897

F (a), is rather different from the time-independent case [147]. In particular,898

in the activity-driven model, p∗a saturates as the degree (or, equivalently, a)899

increases.900

The MFPT is also different in the temporal and aggregated networks. At
equilibrium, the probability that a walker moves to node vj in each discrete

step of time ∆t is ξj =
∑N
i=1;i6=j p

∗
i Tij . The probability that the walker arrives

at vj for the first time after n steps is thus given by ξj(1 − ξj)n−1 under the
mean-field approximation in Eq. (70). One can then calculate that the MFPT
for the above activity-driven model is

mij ≈
∞∑

n=1

∆tnξj(1− ξj)n−1 =
∆t

ξj
=

N

maj +
∑N
`=1 a`p

∗
`

. (121)

This result is different from the aggregated (time-independent) network case, in901

which mij ≈ 1/p∗j under the mean-field approximation in Eq. (70). A crucial902
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difference between RW dynamics in the temporal and aggregated cases is that a903

walker in the activity-driven model can be trapped for some time in an isolated904

node vi and is temporarily unable to travel to a different node. At a later time,905

vi becomes connected to another node, and the walker can then move away from906

vi. This phenomenon never happens in a time-independent (i.e., aggregated)907

network, as edges are always present. These results were recently extended to908

RWs on an extended activity-driven model in which each node is assigned an909

attractiveness value in addition to an activity potential [245].910

One can also define RWs on empirical temporal networks. For example, given911

a sequence of time-independent networks, one can use each time-independent912

network to induce one time step of a DTRW [148]. (Another approach is to913

construct a multilayer representation of such a temporal network, and exam-914

ine an RW on the resulting multilayer network [61, 234].) In Ref. [148], the915

authors compared properties of RWs on empirical temporal networks to those916

on randomized temporal networks, which included ones in which the times of917

activating edge (vi, vj) are redistributed uniformly over time while keeping the918

weight of each edge in the aggregated network the same as that in the original919

temporal network. In comparison to such randomized temporal networks, the920

numerical computations in Ref. [148] suggest that empirical temporal networks921

tend to slow down RW processes, as the MFPT is large and the coverage at a922

given time is small. See Refs. [230, 231, 246–249] for discussions of the effects923

of temporal networks on the speed of diffusion on networks.924

Note that if the time-independent network at each time point is sparse, the925

trajectory of a random walker may not be as random as the terminology RW926

might suggest. For example, if the degree of vi equals 1 at a certain time t,927

then the walker located at vi must move to its one neighbor. If vi is isolated928

at time t, then the walker does not move at t. In the extreme case in which929

each node is adjacent to just one node or is isolated at all times, the trajectory930

of the “random” walk is deterministic. For example, in the temporal network931

on N = 4 nodes in Fig. 6, a walker starting from node v1 always visits node v4932

after three time steps, so there is no randomness. In a CTRW, this situation933

always occurs in some sense: if ψ(τ) is a continuous distribution, then multiple934

events occur at the same time with probability 0 because of the continuous-time935

nature of the stochastic dynamics. However, because the event times themselves936

are determined from a random process, we safely regard CTRWs as RWs. This937

situation is not shared by RWs on temporal networks when a network is given938

by a single realization of empirical or numerical data. Fortunately, there are at939

least two (imperfect) ways out of this conundrum. One solution is to aggregate940

a sequence of time-independent networks with a sufficiently large time window941

to make them sufficiently dense. Another solution is to allow walkers to wait942

at the current node with some probability even if an edge is available for it to943

move to another node.944

4.2.2. Memory networks945

By definition, a DTRW is a (stationary) Markov chain such that the transi-946

tion probability does not depend on the past trajectory. Poissonian CTRWs and947
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Figure 6: A temporal network with three time points and N = 4 nodes.

non-Poissonian active CTRWs (either node-centric or edge-centric) also share948

this property. However, many real temporal networks have correlations in edge949

activations [57–59]. Therefore, one does not expect a trajectory of RWs on an950

empirical temporal network to be a Markov chain, as certain trajectories are fa-951

vored and others are discouraged or even forbidden. Such trajectories are poorly952

reproduced by the first-order Markov chains that we have considered thus far.953

In this situation, using higher-order Markov chains may be helpful [248, 250],954

and it is also important to explore non-Markovian stochastic processes.955

To consider the above issue with empirical data in the context of temporal956

networks, we first map time series of edge activations in a sequence of time-957

independent networks to trajectories of walkers [250]. We assume that a walker958

is located initially at a uniformly randomly selected node vi. (The choice of ini-959

tial condition can matter if RW trajectories simulated in the following are short.)960

A walker waits there until at least one edge is available for it to move. When961

at least one edge becomes available, the walker leaves the node with probability962

1−q and does not move with probability q. As usual, the destination node vj is963

selected with probability Aij(t)/
∑N
`=1Ai`(t). We repeat this procedure several964

times and thereby generate multiple trajectories starting at n = 1 and finishing965

at n = nmax. When q = 0, the walker always moves to a different node using966

the first available edge [148, 230]. When q ∈ (0, 1), some randomness is intro-967

duced into the trajectories [251], preventing spurious effects such as a strong968

tendency for backtracking [252]. However, for sufficiently large q, the effect of969

temporal correlations between edges at short time scales becomes unimportant,970

which may dilute the impact of the temporality of the data. If trajectories971

are statistically independent of the past locations of a walker, it is sufficient to972

use a first-order Markov chain. In this case, the transition-probability matrix973

T = (Tij) constructed from an aggregated network, in which the weight of edge974

(vi, vj) is equal to the sum of (A(t))ij over time, is sufficient for describing the975

RWs. We denote a first-order Markov chain on an aggregated network by M1.976

See the top right panel of Fig. 7.977

In general, the probability that a random walker visits node vi after the978

(n+1)th step depends on the entire history of a stochastic process. To partially979

take into account temporal correlations between edge activations, one can use980

a second-order Markov chain. We define a process, which we denote by M2,981

using an expanded transition probability tensor, whose element Ti′ij represents982

the probability that a walker moves from node vi to node vj given that the983
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previous position is node vi′ . Another representation of the process M2 is to984

use a memoryless RW (i.e., a first-order Markov chain) between directed edges of985

the original network. In this representation, the probability that directed edge986

#     »vivj is visited depends on #      »vi′vi rather than only on node vi, as in the first-order987

Markov chain M1. For simplicity, for the rest of the present discussion, we988

use the shorthand notation
#»
ij for a directed edge #     »vivj . For this representation,989

we regard the state space (i.e., the set of directed edges) as the nodes of a new990

network, which we call the “M2 network” or “(second-order) memory network”.991

One construes the original network as a “physical network”, and the state space992

of M2 is the so-called “directed line graph” of the original network [253]. The993

memory network has 2M nodes whether the original network is directed or994

undirected. We sometimes use the term “memory nodes” for the nodes of a995

memory network. Even for undirected networks, we must assign two memory996

nodes
#»
ij and

#»
ji to each pair of adjacent nodes vi and vj in the original network,997

because a memory node encodes the time ordering of visits. The number of998

edges in a memory network is proportional to 〈k2〉N [254].999

To improve accuracy, one can also examine memory networks in the form of1000

higher-order Markov chains. For example, in a third-order Markov chain, the1001

transition probability depends on the currently visited node vi and two previ-1002

ously visited nodes vj and v`. A memory node is then specified by #          »v`vjvi. How-1003

ever, going beyond second-order Markov chains is not always practical. First, a1004

second-order memory network is conceptually simpler than higher-order coun-1005

terparts, as the memory nodes are given by edges of the original network rather1006

than by higher-order structures. Second, one may only obtain marginal gains by1007

considering higher orders [250]. Third, higher-order memory networks require1008

a lot of data, because the number of memory nodes and transition probabilities1009

to be estimated increases exponentially with the order of the Markov chain.1010

One encodes the dynamics of a second-order Markov chain by a transition-
probability matrix on the network with 2M nodes whose elements are given by
p(

#»
ij → # »

jk) (see Fig. 7). In practice, one estimates p(
#»
ij → # »

jk) with

p(
#»
ij → # »

jk) =
(number of transitions

#»
ij → # »

jk)
∑N
`=1(number of transitions

#»
ij → #»

j`)
, (122)

where one counts the number of transitions in the RW trajectories generated by1011

the sequence of time-independent networks. One interprets the transitions as1012

movements between directed edges. The normalization is given by
∑N
`=1 p(

#»
ij →1013

#»

j`) = 1. In situations in which one can measure RW trajectories in empirical1014

data, they can be used directly to estimate Eq. (122) [250].1015

In a first-order Markov chainM1 (i.e., a DTRW) on an unweighted network,
we obtain

p(
#»
ij → #»

j`) =

{
1/kj (v` is a neighbor of vj) ,

0 (otherwise) .
(123)

In general second-order Markov chains, the probability that a walker visits node
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for rwreview

v4v1

physical network

Markov model 
(state space)

v5v2

v3

v4v1

v5v2

v3

3413

3523

M1

M2

Figure 7: Memory networks (of order 2). The network on the left shows a part of a directed
network (a “physical network”). The width of each edge represents edge weight. In the present
example, we assume for simplicity that the physical network is unweighted. In the first-order
Markov chain M1, a state is a node of the physical network. In the second-order Markov
chain M2 (of which we show a part), a state is a directed edge of the physical network. The
state space is the directed line graph of the physical network. If the process that occurs on the
physical network is Markovian, transitions inM2 are uniform in the following sense. Suppose,
as indicated in the figure, that node v3 has two in-edges and two out-edges in the physical
network. One then should be able to reach node

# »
34 with equal probability from nodes

# »
13 and

# »
23, yielding the same weight for edges

# »
13→ # »

34 and
# »
23→ # »

34. In the part of M2 (determined
from, for example, a temporal network) that we show in this figure has edge weights that are
different from the expectation of the first-order Markov chain M1. In other words, a move
from node v3 to node v4 is more likely to occur when a walker arrives at v3 from v1 than
from v2. Therefore, the process represented byM2 network is not Markovian on the physical
network.

#»

j` after n+ 1 steps is given by

p(
#»

j`;n+ 1) =
N∑

i=1

p(
#»
ij;n)p(

#»
ij → #»

j`) . (124)

Edge-centric passive CTRWs with a non-exponential distribution ψ(τ) of1016

inter-event times are one example of a situation that is appropriate to model us-1017

ing a second-order Markov chain rather than a first-order chain. Equation (102)1018

implies that p(
#»

`i → #»
ij) depends on whether j = ` or j 6= `. In particular, if ψ(τ)1019

is a heavy-tailed distribution, then p(
#»

`i → #»

i`) (i.e., the probability to backtrack)1020

is larger than is expected in a first-order Markov chain. All other p(
#»

`i → #»
ij)1021

(j 6= `) values are the same. In contrast, if ψ(τ) is a lighter-tailed distribution1022

than an exponential distribution, p(
#»

`i → #»

i`) is smaller than expected in a first-1023

order Markov chain, and random walkers tend to avoid backtracking. The ex-1024

treme case of the latter situation is a non-backtracking RW [248, 250, 255, 256].1025

In such an RW, a walker performs an RW, except that it is not allowed to1026

backtrack [257, 258], so p(
#»
ij → #»

ji) = 0 and p(
#»
ij → #»

j`) = 1/(sout
j − Aji) (with1027

` 6= i).1028

A network’s associated non-backtracking matrix, which is a 2M × 2M adja-1029

cency matrix for theM2 network, has been used recently in several applications,1030
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including percolation [259, 260], network centralities [261], community detec-1031

tion [262–264], and efficient “immunization” algorithms [265]. More generally,1032

we also note that non-backtracking matrices help with “message passing” and1033

“belief propagation” approaches to network analysis.1034

To quantify the difference between a first-order Markov chain M1 and a
second-order Markov chainM2, we compare their entropy rates. “Entropy rate”
quantifies the uncertainty of the next state given the current state, weighted by
the stationary density. For M1, the entropy rate is

H1 = −
N∑

i,j=1

p∗i Tij log Tij . (125)

In M2, one calculates the entropy rate for a first-order Markov chain on the
memory network and thereby obtains

H2 = −
N∑

i,j,`=1

p∗#»
ij
p(

#»
ij → #»

j`) log p(
#»
ij → #»

j`) , (126)

where p∗#»
ij

is the stationary density at node
#»
ij in the memory network. In many1035

empirical temporal networks, H2 is considerably smaller than H1, implying1036

that one cannot neglect memory effects [248, 250] (also see [266, 267] for similar1037

measurements). The first-order Markov chain M1 tends to overestimate the1038

number of available neighbors around the current node of a random walker1039

compared to its higher-order counterparts.1040

The observation that H2 < H1 can influence RW dynamics, other dynamical1041

processes on networks, and how one wants to calculate certain structural fea-1042

tures of networks. For example, communities of networks found by second-order1043

Markov chains (see Section 5.3.1) tend to contain edges that are activated at the1044

same time [255]. Such communities are undetectable using first-order models1045

(such as the usual RWs). Memory also affects the relaxation time of an RW or1046

other Markov processes towards a stationary state [247].1047

The eigenvalue λ2 of T with the second-largest absolute value influences1048

network community structure and determines the relaxation time of RWs [230].1049

(See Section 5.3 for more discussions of community structure.) Temporal cor-1050

relations can either increase or decrease λ2, depending on how temporal cor-1051

relations are introduced [247]. If memory increases |λ2|, a random walker in1052

a second-order Markov process tends to be confined in a certain part of the1053

original network (i.e., the M1 network) than is suggested by network structure1054

alone. In the correspondingM2 network, a random walker tends to be trapped1055

in a community. In this case, memory has slowed down relaxation to a steady1056

state. However, if memory decreases |λ2|, a walker moves from one community1057

to another faster than is suggested by the original network. In this case, memory1058

accelerates relaxation to a steady state. Moreover, non-Markovian pathways in1059

a network without community structure can still create community structure in1060

the associated M2 network [59]. As a simple example (see Fig. 8), consider an1061

undirected 3-clique (i.e., a triangle).1062
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for rereview

1-q
q

1-q
q

v1

v3v2

Figure 8: A second-order Markov chain on a 3-clique. The widths of the arrows represent
(schematically) the transition probabilities in a second-order Markov chain. For example, a
walker that has moved from node v2 to node v1 moves back to v2 with probability q and
moves to v3 with probability 1− q in the next move. Because q > 1/2 in this figure, random
walkers tend to backtrack.

The transition-probability matrix of the usual DTRW (i.e., theM1 process)
is

T =




0 1
2

1
2

1
2 0 1

2
1
2

1
2 0


 , (127)

which yields λ2 = −1/2. On the triangle network, consider the second-order
Markov chain process defined by

p(
# »
12→ # »

21) = p(
# »
21→ # »

12) = p(
# »
13→ # »

31) = p(
# »
31→ # »

13) = p(
# »
23→ # »

32) = p(
# »
32→ # »

23) = q ,
(128)

p(
# »
12→ # »

23) = p(
# »
21→ # »

13) = p(
# »
13→ # »

32) = p(
# »
31→ # »

12) = p(
# »
23→ # »

31) = p(
# »
32→ # »

21) = 1− q ,
(129)

where q ∈ [1/2, 1) (see Fig. 8). This RW backtracks the edge traversed in the
previous step with probability q. If we order the nodes in the M2 network as
# »
12,

# »
21,

# »
13,

# »
31,

# »
23, and

# »
32, the transition-probability matrix is

T =




0 q 0 0 1− q 0
q 0 1− q 0 0 0
0 0 0 q 0 1− q

1− q 0 q 0 0 0
0 0 0 1− q 0 q
0 1− q 0 0 q 0



. (130)

The eigenvalues of T are 1, 1 − 2q, and
[
−1 + q ±

√
(1− q)2 + 4(2q − 1)

] /
2.1063

The last eigenvalues (for each of ±) have multiplicity two. The relaxation time is1064

governed by λ2 =
[
−1 + q −

√
(1− q)2 + 4(2q − 1)

] /
2 < 0. When q = 1/2, we1065

obtain λ2 = −1/2, which is consistent with the memoryless case. When q > 1/2,1066
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we see that λ2 decreases monotonically towards −1, which one obtains in the1067

limit q → 1. A large value of q makes |λ2| large and hence makes the spectral1068

gap small, so a random walker tends to spend a long time in a community in the1069

M2 network. In this situation, each of the three edges constitutes a community,1070

and it is difficult for the walker to leave any edge.1071

Storing the stationary density of a second-order Markov chain (i.e., p∗#»
ij

)1072

may be prohibitive, particularly for a network that is not sparse, because the1073

M2 network has 2M nodes. A space-friendly alternative is to introduce an1074

approximation p∗#»
ij
≈ p̂∗i p̂

∗
j (with i, j ∈ {1, . . . , N}) and estimate p̂∗i [268]. The1075

estimated p̂∗i is the stationary density of a modified second-order-like Markov1076

chain called a “spacey RW” [269]. In a spacey RW, a walker visiting node vj1077

forgets the last node vi that it has visited. The walker then draws the fictive last1078

position vi uniformly at random from the list of the nodes visited in the past.1079

(The probability that each node is selected is weighted by the number of past1080

visits to the node.) The walker then moves to v` according to the probability1081

p(
#»
ij → #»

j`). Spacey RWs are a type of “reinforced RW”, in which nodes or edges1082

(nodes in the present case) visited frequently in the past are also visited more1083

frequently in subsequent steps [75]. Spacey RWs have such a richer-get-richer1084

mechanism embedded in the process to select the fictive last position vi.1085

The formalism in this section allows one to examine how temporal corre-1086

lations in a network affect spreading processes [255, 267]. It can also be used1087

to directly exploit knowledge of the trajectories of diffusing entities (so-called1088

“trajectory data”) when they can be observed and collected. For instance,1089

the trajectory of a traveler between different airports is rather different from a1090

first-order Markov process, so it is important to consider higher-order Markov1091

processes or even non-Markovian dynamics [250]. Similar conclusions arise when1092

studying animal movements [270], Website traffic [271], and other applications.1093

Although trajectory data are becoming increasingly available, it is difficult1094

to measure trajectories for the vast majority of systems. Moreover, even when1095

they can be measured, a high-order Markov model or non-Markovian model may1096

be unnecessarily complicated to extract the most salient features of a system.1097

Consequently, researchers have proposed simple models of second-order Markov1098

dynamics based on the distinction between different types of transitions on net-1099

works. In practice, one can calibrate the model parameters in systems in which1100

trajectories can be measured and then use these models to simulate trajectories1101

in similar systems for which data on trajectories are not available.1102

In [250], Rosvall et al. enumerated three different types of transitions:1103

1. A return step, in which a walker coming from
#»
ij jumps to

#»
ji. In other1104

words: a walker coming from node i to j returns to node i.1105

2. A triangular step, in which a walker coming from
#»
ij moves to edge

#»

j`,1106

where ` 6= i is a neighbor of node i.1107

3. An exploratory step, in which a walker moves from
#»
ij to an edge

# »

j`′ whose1108

end point `′ is neither node i nor any of i’s neighbors.1109

To each of above types of transition, one then assigns a positive weight (denoted1110

r2, r3, and r>3, respectively) to account for their relative contributions. One1111
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can recover several existing types of processes for specific choices of parameters.1112

For example, r2 = r3 = r>3 yields a first-order Markov process and r2 = 0,1113

r3 = r>3 > 0 yields a non-backtracking RW.1114

5. Applications1115

5.1. Search on networks1116

People are often interested in finding a resource, service, or piece of informa-1117

tion that is available only at some nodes in a network [44]. If network structure1118

is completely known to a user or a designer, a shortest path from the initially1119

visited node to a destination node provides the most efficient way of searching,1120

although it may be sensible to plan a detour if one expects congestion from1121

traffic somewhere along a shortest path.1122

If a searcher has partial information about his/her destination (e.g., the ge-1123

ographic distance to it), one can of course use such information to inform search1124

paths [272]. In contrast, if one does not have any information about network1125

structure or has only local information (such as the degrees of neighbors), RWs1126

provide a viable approach for searching in networks. One context in which this1127

idea has been investigated and implemented are decentralized peer-to-peer net-1128

works [273, 274]. A node that sends a query emits Nrw packets to neighbors1129

selected uniformly at random. Each packet behaves as a random walker, which1130

travels until it finds the item or reaches a prescribed lifetime nmax, which is the1131

maximum number of steps it is allowed to take before it is removed from the1132

network. Search overhead is determined by Nrwnmax, which is a measure of the1133

number of walkers, averaged over time, that are wandering in a network. One1134

expects larger Nrwnmax to yield better search efficiency (i.e., a higher probability1135

that an item is found). Therefore, there is a trade-off between search overhead1136

and search efficiency. RW search methods are comparable with flooding search1137

methods in various networks and scenarios [273]. In a flooding method, first1138

used by Gnutella, a node with a query asks all of its neighbors, each of which1139

in turn asks all of its unvisited neighbors, and so on [275].1140

Most empirical networks are highly heterogeneous in node degree [44]. If a1141

node that is making or passing on a query knows the degrees of its neighbors,1142

one can enhance search efficiency by sending the query to high-degree neigh-1143

bors [276]. The main limitation of such an approach is that most queries are1144

forwarded to hubs, potentially causing overloading at such nodes (depending on1145

their capacity).1146

5.2. Ranking1147

In the study of networks, one often seeks to rank nodes, edges, or other struc-1148

tures based on their relative importances (i.e., “centralities”). There are myriad1149

ways to measure centralities in networks, especially for ranking nodes [44, 277],1150

and new ones are published at a very rapid pace. Many methods for computing1151

node centralities are based on eigenvectors of matrices and are derived from1152

various types of RWs or other walks. These include “Katz centrality” [278] and1153
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related measures (such as “communicability”) [142], “eigenvector centrality”1154

[67], “PageRank” [23], “hubs” and “authorities” [279], “non-backtracking cen-1155

trality” [261], and many others. By considering RWs on multilayer and temporal1156

networks, one can also generalize such notions of centrality [240, 251, 280–285].1157

5.2.1. PageRank1158

The most famous centrality measure is probably “PageRank”, which was in-1159

troduced originally for ranking web pages. In this context, it was introduced by1160

Brin and Page [66] (see also [286]), although an equivalent formulation had al-1161

ready existed for two decades [287]. (Brin and Page’s discovery was independent1162

of Ref. [287].)1163

PageRank is discussed thoroughly in many review papers and monographs1164

[23, 288–292], and it has been used (and generalized) for numerous applica-1165

tions — including ranking of academic journals and papers, professional sports,1166

disease-gene identification, discovery of correlated genes and proteins, systemic1167

risk in financial networks, anomaly detection in distributed engineered systems,1168

ordering of the most important functions in Linux, prediction of traffic flow1169

and human movement, recommendation systems in online marketplaces, image1170

search engines, identifying community structure in networks, and much more1171

[23]. We indicate a few fascinating applications in passing. For example, seven1172

new genes that predict the survival of patients in a type of pancreatic cancer were1173

identified using PageRank [293]. PageRank has also been used to rank profes-1174

sional tennis players [294], and PageRank and other RW-based ranking methods1175

have been used for ranking teams in U.S. college football [295, 296] and ranking1176

players in Major League Baseball [297]. PageRank and other eigenvector-based1177

centrality measures have also been used to rank universities [298], mathematics1178

research programs [284, 299], baby names [300], and many other things.1179

The PageRank vector is defined as the stationary density of a DTRW on a1180

network that is a modification of an original network to guarantee that the sta-1181

tionary density always exists. For the original network, the temporal evolution1182

of the probability p(n) that node vi (with i ∈ {1, . . . , N}) is visited at time n1183

is governed by Eq. (26) (or, equivalently, by Eq. (28)). The essential idea of1184

PageRank is to use the stationary density in Eq. (30) as a centrality measure.1185

Equation (30) implies that node vi is central if many edges enter node vi (i.e.,1186

it has a large in-degree), the source node of the edge that enters vi is a central1187

node, and the source node vj of the edge that enters vi has a small out-degree.1188

The last condition ensures that the total centrality of vj is shared among its1189

out-neighbors. This recursive relationship (i.e., a node is central if it is adjacent1190

to central nodes) leads to an eigenvalue problem. Other centrality measures1191

— including eigenvector centrality, Katz centrality, the hyperlink-induced topic1192

search algorithm (which uses “hubs” and “authorities”), and many others —1193

are based on the same basic idea [44]. In PageRank, the eigenvalue problem1194

corresponds specifically to the stationary density of a DTRW.1195

In an empirical directed network, one cannot typically use a transition-
probability matrix T without modification to measure centralities, because such
networks are not usually strongly connected. Consequently, there are transient
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nodes with stationary density equal to 0, and the stationary density need not be
unique, as it depends on the initial condition of an RW when there are multiple
absorbing states. To overcome these problems, we allow walkers to “teleport”
(e.g., uniformly at random) to other nodes to construct an effective network
that is strongly connected. The master equation for the altered RW is

pi(t+ 1) = α
N∑

j=1

pj(t)Tji + (1− α)ui , (131)

where the “preference vector” (u1, . . . , uN ), which satisfies the constraint1196 ∑N
i=1 ui = 1, determines the conditional probability that a walker teleports1197

to node vi when it teleports. At any node with at least one out-edge, a walker1198

teleports with probability 1−α. To prevent the transition probability in Eq. (24)1199

from being ill-defined, it is standard to ensure that a walker teleports with prob-1200

ability 1 (rather than with probability 1−α) when it visits a so-called “dangling1201

node” (which have no out-edges, so sout
i = 0 for a dangling node vi). Math-1202

ematically, we set Tij = uj (with j ∈ {1, . . . , N}) for any dangling node vi.1203

For web browsing, one interprets teleportation as a move to a new web page1204

without following a hyperlink on the web page that is currently being visited. If1205

ui > 0 (with i ∈ {1, . . . , N}), any α ∈ (0, 1) renders the altered RW ergodic, and1206

Eq. (131) thus converges to a unique stationary density. The PageRank vector1207

is the stationary state of Eq. (131), and it is equal to the normalized eigenvector1208

corresponding to the largest positive eigenvalue of the matrix T ′ with elements1209

T ′ij = αTij + (1− α)uj .1210

Power iteration of T ′ converges rapidly if the spectral gap of T ′ is large (or,1211

equivalently, if the second-largest eigenvalue of T ′ has small magnitude). The1212

second-largest (in magnitude) eigenvalue of T ′ is equal to αλ2, where λ2 is the1213

second-largest (in magnitude) eigenvalue of T [288]. Therefore, power iteration1214

converges towards the PageRank vector at a rate that is proportional to 1/α1215

[23]. However, a small value of α, which corresponds to a large teleportation1216

probability, dilutes the effect of the original network structure (which is encoded1217

in the transition-probability matrix T ). A rule of thumb is to set α near 1 to1218

suppress the effect of teleportation, but to also make sure that it is not too close.1219

A popular choice is to let α = 0.85 and use a preference vector of ui = 1/N1220

(with i ∈ {1, . . . , N}) so that one teleports to nodes uniformly at random. An1221

alternative choice is a “personalized PageRank” [23, 288–291, 301–304], in which1222

the preference vector is localized around one node or a small number of nodes1223

(which can be helpful for applications to community detection [68]). One can1224

also examine other teleportation strategies [305].1225

The stationary density of Eq. (131) has components

p∗i;α = (1− α)
N∑

j=1

uj
[
(I − αT )−1

]
ji
, (132)

and we note that we explicitly include the dependence on α in our notation.
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The Taylor expansion of Eq. (132) yields [306, 307]

p∗i;α ≈ ui +
∞∑

`=1

α`
N∑

j=1

uj
(
T `ji − T `−1

ji

)
. (133)

Equation (133) includes terms for walks of all lengths `, and it thereby reveals
the non-local nature of PageRank. When the value of α is large, a lot of credit
is given to long walks. (See Ref. [142] for similar discussions in the context of
centrality measures such as communicability.) In fact, the stationary density
can change drastically as a function of α [288]. Let’s set ui = 1/N (with
i ∈ {1, . . . , N}) and rewrite Eq. (133) as

p∗i;α =
1

N
+
∞∑

`=1

α`

N

N∑

j,j′=1

(
sin
j′ − sout

j

sin
j′

)
Tjj′T

`−1
j′i . (134)

The leading contribution for small α makes the PageRank vector uniform across1226

all nodes. Heterogeneity arises as α increases. Equation (134) indicates that1227

the contribution of each length-` walk is proportional to sin
j′ − sout

j . Each term1228

on the right-hand side of Eq. (134) vanishes when a network is regular in the1229

weighted sense (i.e., when sin
i = sout

i = s, where i ∈ {1, . . . , N}). This yields1230

p∗i;α = 1/N for any value of α.1231

A strategy to minimize the dependence of the PageRank vector on α is to
carefully choose the preference vector. One choice is ui = sin

i /
∑N
`=1 s

in
` [305],

inspired by the observation that the in-strength of a node is often correlated
positively with p∗i for a DTRW on the original network (see Section 3.2.2).
With this choice of ui, one uniformly randomly selects an edge rather than a
node. One then teleports, uniformly at random, to one of the two end points of
the selected edge. Substituting this preference vector into Eq. (133) yields

p∗i;α =
sin
i∑N

`=1 s
in
`

+
∞∑

`=1

α`
∑N
`=1 s

in
`

N∑

j=1

(
sin
j − sout

j

)
T `ji , (135)

which differs from Eq. (134) in several respects. As α → 0, the components1232

of the PageRank vector in Eq. (135) are given by the in-strength of the nodes.1233

(The simplest — and a rather popular — measure of centrality in networks is1234

simply to calculate node degrees and/or node strengths.) The `th-order contri-1235

bution consists of a weighted mean of the walks of length `. One expresses their1236

contribution to the PageRank vector in terms of the source node of a walk (i.e.,1237

vj) in Eq. (135). This contrasts with Eq. (134), where one instead expresses1238

the contribution in terms of edges (vj , vj′). A node vj that is the source of1239

more probability flow than it receives as a destination (i.e., sin
j > sout

j ) makes1240

a positive contribution to the PageRank vector, and a node vj with sin
j < sout

j1241

makes a negative contribution. Equation (135) is independent of α when a1242

network is balanced. (Recall from Section 3.2.2 that a directed network is bal-1243

anced when sin
i = sout

i for each i.) In a balanced network, Eq. (135) reduces to1244

p∗i = sin
i /
∑N
`=1 s

in
` .1245
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Chung proposed a variant of PageRank called “heat-kernel PageRank” (which1246

is defined for strongly connected networks) [308, 309]. It is the probability den-1247

sity of a Poissonian node-centric CTRW at time t, where t is the only parameter1248

and it plays the role of α from the original PageRank. One uses a preference1249

vector as an initial condition. Heat-kernel PageRank tends to the stationary1250

density of a DTRW as t → ∞. (For undirected networks, the components of1251

the limiting stationarity density are thus proportional to the node strengths.)1252

We also note that various versions of PageRank and similar RW-based cen-1253

tralities for multilayer networks have been proposed [281–283, 310–312].1254

5.2.2. Laplacian centrality1255

PageRank is essentially the stationary density of a DTRW. The stationary1256

density of the Poissonian edge-centric CTRW has also been employed as a cen-1257

trality measure for directed networks (and, in fact, it has a longer history than1258

PageRank [219, 313–315]). For strongly connected networks, such a “Laplacian1259

centrality” is defined by the left eigenvector corresponding to the 0 eigenvalue1260

of the (combinatorial) Laplacian L. That is, it is given by p∗ in Eq. (79). This1261

Laplacian centrality has been used, for example, to rank football teams [316],1262

baseball players [297], and neurons [222]. It has also been used in population1263

ecology as a “reproductive value” [317, 318].1264

5.2.3. TempoRank1265

One can extend the DTRW to temporal networks by using sequences {A(1), A(2), . . .}1266

of adjacency matrices (see Section 4.2). Therefore, one can also extend PageR-1267

ank to temporal networks. One such generalization is called “TempoRank”1268

[251], and Katz centrality [280, 319] and all eigenvector-based centralities [284]1269

have been generalized to such temporal networks.1270

In this section, we discuss TempoRank. We consider an undirected temporal1271

network whose edge weights at each discrete time have (nonnegative) integer1272

values. The latter assumption corresponds to a situation in which an event is1273

an unweighted edge and each node pair can experience multiple events during1274

the time window corresponding to a given matrix in the sequence. One can also1275

image a sequence of networks, in which one has a time-independent view (or1276

approximation) of a temporal network at a given instant in time. This weighting1277

assumes that a random walker at node vi that moves at discrete time n selects1278

each available edge (i.e., event) with the same probability and then traverse the1279

chosen edge. Because we consider DTRWs, the walker moves at most once per1280

time step. To avoid using a multilayer-network formalism, we also assume that1281

there are no inter-layer edges between different matrices in the sequence.1282

To make the walk random even when just a single edge is available to a
walker in a time period, we assume that, in each time period, a walker resists
moving from node vi with probability q per unit weight of an edge connected
to vi. For example, if vi is adjacent to a node with two events (i.e., edge weight
equal to two) and to another node with three events at discrete time n, a walker
visiting vi stays at the same node with probability q5 at time n. A large q
entails slow diffusion, and the parameter q allows one to explore situations in
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which diffusion is slower than the time scale of the dynamics of the network.
We define the transition probability from node vi to node vj at discrete time n
as

Tij(n) =





δij (si(n) = 0 , j ∈ {1, . . . , N}) ,
qsi(n) (si(n) ≥ 1 , i = j) ,

(A(n))ij(1− qsi(n))/si(n) (si(n) ≥ 1 , i 6= j) ,

(136)

where si(n) =
∑N
j=1(A(n))ij is the strength of vi at time n. Note that

∑N
j=1 Tij(n) =1283

1. From Eq. (136), we see that a walker does not move with probability qsi(n).1284

Otherwise, it moves to a neighbor with a uniform probability of 1/si(n). By1285

setting the probability of not moving to qsi(n), one ensures that the probability1286

of not moving from vi is unaffected by whether multiple edges are present si-1287

multaneously in a time period or if they are distributed over multiple times. For1288

example, if vi is connected simultaneously to three other nodes by unweighted1289

edges at time n = 1 but isolated at times n = 2 and n = 3, the probability that1290

a walker visiting vi does not move during n = 1, n = 2, and n = 3 is equal to1291

q3. The probability is the same if vi is connected to one node at each of n = 1,1292

n = 2, and n = 3. Note that one can derive the former case (i.e., three edges1293

simultaneously connected to vi) from the latter case (i.e., one edge connected1294

to vi at each time) by coarse-graining the temporal network (e.g., by regarding1295

A(3n − 2) + A(3n − 1) + A(3n) as a new adjacency matrix at a rescaled dis-1296

crete time n). Our formulation mitigates the effect of temporal resolution (and1297

time-window size) by equating the probability of not moving in the two cases.1298

The transition probability depends on time. When there are nmax time
windows, the transition probability for one “cycle” (i.e., one time through the
full time period in the temporal sequence of adjacency matrices) is defined as

T tp ≡ T (1)T (2) · · ·T (nmax) . (137)

Using periodic boundary conditions (i.e., by having the last adjacency matrix
A(nmax) loop back to A(1)), the “stationary density” at node vi is given by the
ith element of u(1), where

u(1) = u(1)T tp . (138)

There is no stationary density in the present RW process in the conventional1299

sense, because the network is changing in time. Due to the periodic boundary1300

conditions, the stationary density of walkers at each node differs across time1301

periods. The vector u(1) represents the stationary density when the RW is1302

observed right after time nmax (and before time 1) in each cycle. One defines1303

the TempoRank vector based on the running mean of the stationary density1304

over all time periods. That is, it is given by uavg ≡ ∑nmax

n=1 u(n)/nmax, where1305

u(n) is the stationary density when the observation is made right after time1306

n− 1 (and before time n).1307

5.2.4. Random-walk betweenness centrality1308

In our discussions of ranking methods, we have discussed centrality measures1309

(e.g., PageRank) that are derived from RWs. RWs are also useful for deriving1310
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v1 v2

v3

Figure 9: A network with two clearly distinguished communities.

variants of other familiar centrality measures, such as “betweenness centrality”.1311

Shortest-path betweenness centrality (i.e., geodesic betweenness centrality)
of a node is defined from a normalized count of the shortest paths that pass
through a focal node for all pairs of distinct source and target nodes in a network
[44, 320]. Specifically, the shortest-path betweenness of node vi is

bgeo
i =

∑

is 6=it

(number of shortest paths from vis to vit that pass through vi)

N(N − 1)× (number of shortest paths from vis to vit)
,

(139)
where the nodes vi, vis , and vit are all distinct. However, restricting to strictly1312

shortest paths can be problematic [321]. For example, consider the network1313

in Fig. 9 that includes two communities of densely-connected nodes. Nodes1314

v1 and v2 have large betweenness-centrality values because any shortest path1315

connecting one node in each community must pass through both v1 and v2.1316

However, because such a shortest path does not pass through v3, the shortest-1317

path betweenness of node v3 is 0, yet v3 may be more important than most other1318

nodes in connecting different parts of the network (albeit to a lesser extent than1319

v1 and v2). One can capture this intuition by allowing paths that are longer than1320

the strictly shortest ones to contribute to the value of a betweenness centrality.1321

One way to do this is to use RWs [144, 321].1322

We now explain the “RW betweenness centrality” introduced in Ref. [321].1323

Consider an undirected network. Similar to the definition of shortest-path be-1324

tweenness centrality, we specify the starting node vis and terminal node vit of1325

an RW. Intuitively, RW betweenness centrality of a node vi measures the num-1326

ber of times that a random walker starting from vis passes through vi before1327

reaching vit . If we do not specify vit , a walker wanders forever in the network,1328

and the centrality of vi is proportional to si [see Eq. (31)]. In RW between-1329

ness centrality, one still discounts long walks, because a walk terminates once a1330

walker reaches vit .1331

The RW betweenness centrality of node vi as

brwi ∝
N∑

is=1

is−1∑

it=1

(number of times that a walker starting at vis and terminating at vit “effectively” visits vi) .

(140)
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Note that the “effective” number of transitions between nodes vi and vj ∈ Ni1332

is equal to the difference (in absolute value) between the number of times that1333

a walker moves from node vi to node vj and the number of times that it moves1334

from node vj to node vi. An effective transition from v` to vi and then to a1335

different node vj (with j 6= `) completes an effective visit to vi. Therefore, the1336

number of effective visits to vi on the right-hand side of Eq. (140) is given by1337 ∑
j∈Ni

(number of effective transitions between vi and vj)/2.1338

Because an RW on a network is related to a corresponding electric circuit on
the same network [1, 35, 41, 44, 118, 119], we also discuss a centrality based on
electric circuits and then relate it to RW betweenness centrality brwi . Consider
an electric circuit in which one injects a unit current at node vis and drains it
at vit . Suppose that each edge has a conductance of Aij , and let Vi denote the
voltage at node vi. Kirchhoff’s current law at each vi implies that

N∑

j=1

Aij(Vi − Vj) = δi,is − δi,it . (141)

The left-hand side of Eq. (141) represents the current that flows from node vi
to node vj for each j ∈ {1, . . . , N}. Because

N∑

j=1

Aij = si , (142)

we rewrite Eq. (141) as

(D −A)V = LV = Icurr , (143)

where V = (V1, . . . , VN )>, the quantity Icurr is the column vector of size N
given by

Icurr
i =





1 , (i = is) ,

−1 , (i = it) ,

0 , (i 6∈ {is , it}) ,
(144)

and we recall that L is the combinatorial Laplacian matrix.1339

Because L does not have full rank, Eq. (143) does not have N independent
solutions, even though it consists of a set of N linear equations with unknowns
Vi (with i ∈ {1, . . . , N}). Therefore, we delete an arbitrary i0th row from L,
corresponding to setting Vi0 = 0, without loss of generality. As in Section 3.2.5,
we also delete the i0th row and column from D and A to yield (N−1)× (N−1)

matrices D
(i0)

and A
(i0)

, respectively. Similarly, we remove the i0th element

from V and Icurr to obtain (N − 1)-dimensional vectors V
(i0)

and I
curr(i0)

,
respectively. Equation (143) is thus equivalent to

(D
(i0) −A(i0)

)V
(i0)

= I
curr(i0)

. (145)
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For a connected network, the matrix D
(i0) −A(i0)

has full rank, and we obtain

V
(i0)

= (D
(i0) −A(i0)

)−1I
curr(i0)

. (146)

We now reinsert the i0th row and column of (D
(i0) − A(i0)

)−1 by filling them
with 0s, and we denote the resulting N ×N matrix by R = (Rij). Substituting
Eq. (144) into Eq. (146) then yields

Vi = Ri,is −Ri,it . (147)

Note that Eq. (147) satisfies the condition Vi0 = 0. The total current that flows
through node vi is

Currentis,iti =





1

2

N∑

j=1

Aij |Vi − Vj | =
1

2

N∑

j=1

Aij
∣∣Ri,is −Ri,it −Rj,i +Rj,i

∣∣ (i 6∈ {is, it}) ,

1 (i ∈ {is, it}) .
(148)

The division by 2 in the first case of Eq. (148) arises from the fact the same1340

current is counted twice when it flows into and out of vi.1341

One can show that RW betweenness centrality is equal to

brwi =

N∑

is=1

is−1∑

it=1

Currentis,iti

N(N − 1)/2
. (149)

That is, it is the normalized frequency that a random walker visits node vi before
it reaches vit . To verify Eq. (149), let’s consider a DTRW with an absorbing
boundary at vit . The transition-probability matrix consists of the elements

T ′ij =

{
Aij

si
(i 6= it) ,

δitj (i = it) .
(150)

The matrix T ′ is equal to the transition-probability matrix of a DTRW with an
absorbing boundary, so T ′ is equal to D−1A except in the itth row. We remove
the itth row and column from T ′, D−1, and A to obtain

T
′(it)

=
(
D

(it)
)−1

A
(it)

. (151)

Whenever the row sum of T
′

is less than 1, the walk is absorbed at vit with the1342

residual probability.1343

Consider an RW that starts from node vis . The probability that a random
walker visits vi (with i 6= it) after n steps is given by the (is, i)th element of(
T
′(it)
)n

. (For clarity, we use the indices 1, . . ., it−1, it+1, . . ., N rather than 1,

. . ., N−1 for the elements of T
′
.) Conditioned on this event, the probability that
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the walker moves to node vj in the next step is equal to 1/ki. The expected
number of times that the walker steps from node vi to a neighboring node
vj ∈ Ni is

∞∑

n=0

((
T
′(it)
)n)

isi

ki
=

([
I − T ′(it)

]−1
)

isi

ki

= ith element of
(
I

curr(it)
)> [

I −
(
D

(it)
)−1 (

A
(it)
)]−1 (

D
(it)
)−1

= ith element of
(
I

curr(it)
)> (

D
(it) −A(it)

)−1

. (152)

Because D
(it)

and A
(it)

are symmetric matrices, the left-hand side of Eq. (152) is1344

also equal to the ith element of

[(
I

curr(it)
)> (

D
(it) −A(it)

)−1
]>

=
(
D

(it) −A(it)
)−1

I
curr(it)

.1345

Therefore, Eq. (146) guarantees that the quantity
∑∞
n=0([(T

′(it)
)n]isi/ki) is1346

equal to voltage Vi when vi0 = vit . Finally, the “effective” number of tran-1347

sitions — i.e., the difference between the number of times that a walker moves1348

from node vi to node vj and the number of times that it moves from node vj to1349

node vi — is equal to |Vi − Vj |.1350

We now consider “RW centrality” [144], another a variant of RW betweenness
centrality. This centrality quantifies the speed at which a walker starting from
node vi reaches other nodes compared to the speed at which a walker starting
from an arbitrary node reaches vi. To formalize this idea, we use Eq. (69),
which gives the MFPT mij from node vi to node vj , and we focus on undirected
networks. One measures the importance of node vi relative to node vj by
calculating

mij −mji =

(
N∑

`=1

s`

)
×
[(

R
(0)
jj

sj
− R

(0)
ii

si

)
−
(
R

(0)
ij

sj
−
R

(0)
ji

si

)]
. (153)

For undirected networks, the following detailed balance, which extends Eq. (32),
holds [144]:

sipij(n) = si

N∑

`1,`2,...,`n−1=1

Ai`1
si

A`1`2
s`1

× A`n−1j

s`n−1

=
N∑

`1,`2,...,`n−1=1

Ai`1
s`1

A`1`2
s`2

× A`n−1j

sj
sj = sjpji(n) . (154)
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Substituting Eq. (154) into Eq. (65) yields

R
(0)
ij

sj
=

∑∞
n=0

[
pij(n)− p∞j

]

sj

=

∑∞
n=0

[
sjpji(n)

si
− sj∑N

`=1 s`

]

sj

=

∑∞
n=0

[
pji(n)− si∑N

`=1 s`

]

si
=
R

(0)
ji

si
. (155)

We then apply Eq. (155) to Eq. (153) to obtain

mij −mji = Crw(j)−1 − Crw(i)−1 , (156)

where

Crw(i) ≡ si

R
(0)
ii

∑N
`=1 s`

=
si

∑∞
n=0

[
pii(n)− si∑N

`=1 s`

]∑N
`=1 s`

(157)

is defined to be the RW centrality.1351

5.2.5. Discrete-choice models1352

Discrete-choice models describe decisions between distinct alternatives [322,
323]. Examples of discrete choices occur in everyday life; for example, one
can choose to shop at a given store, use a specific mode of transportation, or
root for the Los Angeles Dodgers instead of some other baseball team. In many
applications, one faces the problem of “rank aggregation” [324], as it is necessary
to aggregate preferences about an item over a set of alternatives, which one
observes for different individuals, who have different subsets of alternatives. For
example, the Bradley–Terry–Luce (BTL) model defines the probability to select
alternative i (where i ∈ {1, . . . , N}) over alternative j in a pairwise comparison
as

pij =
γi

γi + γj
, (158)

where γi > 0 is a latent parameter that encodes the attractiveness of alternative1353

i [325, 326].1354

The pairwise-choice Markov chain (PCMC) model is a discrete-choice model1355

that uses the stationary density of a CTRW as the probability to select i among1356

several alternatives [327]. In the PCMC model, one considers a Poissonian edge-1357

centric CTRW on an N -node directed and weighted network. An individual can1358

choose an item from a subset S of the N alternatives (i.e., nodes). Instead of1359

using the network’s adjacency matrix A to construct a transition-rate matrix1360

for a CTRW on the entire network (see Eq. (78)), the PCMC model uses A1361

to define a transition-rate matrix QS = (qij) on S. The rows and columns of1362
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QS are indexed by the elements in S, and they are defined by qij = Aij (for1363

j 6= i) and qii = −∑j∈S\i qij . For any set S, note that QS does not require the1364

diagonal elements of A, so we assume that they are 0. The PCMC model uses1365

the stationary density of the CTRW on S as the probability that an individual1366

chooses i when S is the set of alternatives. One can then estimate the matrix1367

A from, for example, empirical-choice data.1368

A generalization of the BTL model is the multinomial logit model (also called
the Plackett–Luce moel) [326, 328, 329], which treats the case of a choice among
more than two alternatives. The multinomial logit model defines the probability
piS to choose i from S as

piS =
γi∑
j∈S γj

. (159)

This model is a PCMC model, where the adjacency matrix is determined by
the BTL model, so Aji = γi/(γi + γj). A large γi value makes Aji large, which
in turn results in a large probability in-flow to the ith node and an increased
probability that an individual chooses i. In fact, the vector p∗ = (piS), with
i ∈ S, is the stationary density of the CTRW on S, because

(p∗QS)i =
1∑
`∈S γ`


 ∑

j∈S;j 6=i
γjAji − γi

∑

j∈S;j 6=i
Aij




=
γi∑
`∈S γ`


 ∑

j∈S;j 6=i

γj
γi + γj

−
∑

j∈S;j 6=i

γj
γi + γj


 = 0 (i ∈ {1, . . . , N}) .

(160)

Consider a data set given in the form of D = {(i`, S`)|` = 1, . . . , `max}, where1369

S` is the set of the items presented in the `th choice, i` ∈ S` is the item chosen1370

in the `th choice, and `max is the number of choices. The PCMC in which the1371

parameters (i.e., entries of A) are estimated by a maximum-likelihood method1372

yields a better predictive performance than benchmark discrete-choice models1373

on two empirical data sets [327].1374

One can also derive the maximum-likelihood estimator of the multinomial
logit model as the stationary density of a Poissonian edge-centric CTRW [330].
The likelihood L̃ of the parameters γ ≡ {γ1, . . ., γN} given data D is

L̃ (γ|D) =

`max∏

`=1

γi`∑
i′∈S`

γi′
. (161)
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By maximizing the log likelihood, one obtains

∂(log L̃)

∂γ̂i
=

∂

∂γ̂i

`max∑

`=1

(
log γ̂i` − log

∑

i′∈S`

γ̂i′

)

=

`max∑

`=1;`∈W̆i

(
1

γ̂i
− 1∑

i′∈S`
γ̂i′

)
−

`max∑

`=1;`∈L̆i

1∑
i′∈S`

γ̂i′

=0 (i ∈ {1, . . . , N}) , (162)

where W̆i = {`|i ∈ S` and i is chosen}, L̆i = {`|i ∈ S` and i is not chosen}, and
γ̂i (with i ∈ {1, . . . , N}) is the maximum-likelihood estimator. By multiplying
γ̂i by Eq. (162), one obtains

`max∑

`=1;`∈W̆i

∑
j∈S`;j 6=i γ̂j∑
i′∈S`

γ̂i′
−

`max∑

`=1;`∈L̆i

γ̂i∑
i′∈S`

γ̂i′
= 0 (i ∈ {1, . . . , N}) . (163)

Because L̆i = ∪Nj=1;j 6=i(W̆j ∩ L̆i), one can rewrite Eq. (163) as

N∑

j=1;j 6=i




N∑

`=1;`∈W̆i∩L̆j

γ̂j∑
i′∈S`

γ̂i′
−

N∑

`=1;`∈W̆j∩L̆i

γ̂i∑
i′∈S`

γ̂i′


 = 0 (i ∈ {1, . . . , N}) .

(164)
One rewrites Eq. (164) as

N∑

j=1;j 6=i
γ̂if(Dj�i, γ̂) =

N∑

j=1;j 6=i
γ̂jf(Di�j , γ̂) (i ∈ {1, . . . , N}) , (165)

where

f(D′, γ̂) =
∑

S∈D′

1∑
i′∈S γ̂i′

, (166)

D′ ⊂ D is a subset of the observation set D, and Di�j = {(i`, S`) ∈ D|` ∈ W̆i ∩1375

L̆j} ⊂ D is the set of observations in which i is preferred to j. Equation (165)1376

implies that the maximum-likelihood estimator is the stationary density of the1377

CTRW whose transition rate from the jth to the ith node is given by f(Di�j , γ̂).1378

One interprets f(Di�j , γ̂) =
∑
S∈Di�j

(
1/
∑
i′∈S γ̂i′

)
as the number of times i1379

is chosen over j (taken into accounted by the sum
∑
S∈Di�j

), weighted by the1380

strength of the alternatives in each observation (which is taken into account1381

with the term 1/
∑
i′∈S γ̂i′). Taking advantage of this relationship between the1382

CTRW and the maximum-likelihood estimator of the multinomial logit model1383

has resulted in inference algorithms for the multinomial logit model that is faster1384

and more accurate than previous methods for several data sets [330].1385

For other methods of rank aggregation based on RWs, see Refs. [324, 331,1386

332].1387
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5.3. Community detection1388

A useful approach for studying networks is to examine mesoscale structures,1389

of which the best-known type is “community structure” [63–65]. There are nu-1390

merous methods to algorithmically detect communities (and many applications1391

in which communities can be insightful), which are sets of densely connected1392

nodes such that connections between different communities are relatively sparse.1393

RWs provide a theoretical basis for understanding community structure and1394

practical algorithms for detecting them. The main idea is that, if a given net-1395

work has community structure, a random walker should be trapped within a1396

community for a relatively long time before leaving it. This arises from the high1397

density of edges within communities and the sparse connections across commu-1398

nities. Therefore, RWs that are observed on a short time scale should reveal1399

intra-community structure in a network, and RWs that are observed on a long1400

time scale should reveal global structure about the same network.1401

In this section, we introduce some algorithms for community detection that1402

are based on RWs. For other RW-based algorithms and theoretical underpin-1403

nings, see papers such as Refs. [68, 236, 333–342].1404

5.3.1. Markov-stability formulation of modularity1405

It is common to use the “modularity” objective function Q to quantify the
quality of a partition of a network into nonoverlapping communities, and many
community-detection methods are based on maximizing Q [65]. Consider a
partition of an undirected network into NCM communities. Let CMc denote the
cth community (with c ∈ {1, 2, . . . , NCM}). We use a variant (sometimes called
the “Newman–Girvan null model”) of an undirected configuration model [122]
that is defined as a random graph with a specified strength si at each node. For
this configuration model, the probability that nodes vi and vj are adjacent is

approximately Pij ≡ sisj/(2M ′), where M ′ =
∑N
i=1 si/2 is the sum of the edge

weight over all edges [44]. (Technically, Pij is a probability only for sufficiently
small edge weights; otherwise, it is an expectation.) Note that M ′ = M for an
unweighted network, where we recall that M is the number of edges. Modularity
is defined by

Q =
1

2M ′

NCM∑

c=1




N∑

i,j=1;
vi,vj∈CMc

(
Aij −

sisj
2M ′

)



=
1

2M ′

N∑

i,j=1

(
Aij −

sisj
2M ′

)
δ(gi, gj) , (167)

where gi is the community to which node vi has been assigned, and δ(gi, gj) = 11406

if gi = gj and δ(gi, gj) = 0 otherwise. The quantity Pij gives the elements1407

of a null-model matrix, and a wide variety of different versions of the matrix1408

P = (Pij) have been examined [343, 344]. More precisely, P is not a “null1409
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model” but rather a “null network” (which is a network generated from a null1410

model) [344].1411

Methods based on modularity maximization suffer from the fact that Q1412

has a resolution limit, so using Eq. (167) does not allow one to detect dense1413

communities of nodes that are smaller than a certain scale [345, 346] (though1414

some null models attempt to address this issue). Modularity maximization1415

also implicitly favors communities of a particular size that depend on the size1416

of the entire network (not only its internal structure), and methods based on1417

maximizing Q also have various other problematic features [65].1418

One can use RWs to gain insights into modularity and its resolution issues.1419

Modularity is closely related to “Markov stability”, which quantifies the ten-1420

dency for a random walker to stay inside a community for a long time. The1421

Markov stability of a partition of a network is defined as the probability that a1422

walker is in the same community at time 0 and time t in the equilibrium of the1423

Poissonian node-centric CTRW [347–350]. See Refs. [350, 351] for a version of1424

Markov stability derived from a DTRW.1425

The master equation is

dp(t)

dt
= −p(t)L′ , (168)

where we recall that L′ is the random-walk normalized Laplacian matrix [see1426

Eq. (77)]. The stationary density is given by Eq. (31).1427

Consider a pair of nodes, vi and vj , that belong to the same community.
Equation (168) implies that, in the stationary state, the probability that a
random walker visits vi and then vj after time t is equal to p∗i (e

−tL)ij . As with
modularity maximization, one needs to compare this quantity with a null model.
For Markov stability R(t), the standard null model is given by the probability
that a walker visits node vi at t = 0 and node vj at t = ∞. This yields a null
probability of p∗i p

∗
j . One thereby obtains a Markov stability of

R(t) =
N∑

i,j=1

[(
p∗i e
−tL′

)
ij
− p∗i p∗j

]
δ(gi, gj) . (169)

Because of the exponential factor e−tL, Markov stability combines walks of1428

various lengths between two nodes. The time t acts as a resolution parameter,1429

enabling one to zoom in and out to unravel multiscale structure in a network. A1430

large value of t gives large weightings to long walks and yields a small number1431

of communities. In the limit t → ∞, Markov stability is optimized by the1432

bipartition given by the signs of the elements of the Fiedler vector (i.e., a type1433

of spectral partitioning) if the corresponding eigenvalue is not degenerate [338].1434

More generally, spectral partitioning is related to RWs on networks because it1435

uses the eigenvectors of matrices such as the combinatorial Laplacian matrix or1436

a modularity matrix [88, 352].1437

Because it is computationally expensive to calculate e−tL
′

for large networks,
we use a linear approximation e−tL

′ ≈ I − tL′. To simplify our exposition, we
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now assume the case of undirected networks for the rest of this section [350].
By substituting p∗i = si/(2M

′) and p∗j = sj/(2M
′) into Eq. (169), we obtain

R(t) =
1

2M ′

N∑

i,j=1

[
tAij + (1− t)δijsi +

sisj
2M ′

]
δ(gi, gj) . (170)

Because
∑N
i,j=1(1− t)δijsiδ(gi, gj) =

∑N
i=1 si does not depend on the partition-

ing of a network, maximizing R(t) is equivalent to maximizing

Q(γ) =
1

2M ′

N∑

i,j=1

(
Aij − γ

sisj
2M ′

)
δ(gi, gj) , (171)

where γ ≡ 1/t. We ignore the constraint that t is small (which is admittedly1438

naughty mathematically) and thereby allow general values for γ when maximiz-1439

ing Q(γ). We also note that Q(γ) was derived originally using the perspective of1440

a Potts spin glass [353], and recently it has been related to maximum-likelihood1441

methods [354].1442

When γ = 1, Eq. (171) coincides with Eq. (167). Therefore, modularity1443

is an approximate variant of Markov stability. A large value of γ emphasizes1444

the penalty for classifying nodes into the same community and results in many1445

communities. The choice of the natural resolution parameter γ is an important1446

practical issue [352, 355], and it can be examined from a maximum-likelihood1447

approach [354].1448

5.3.2. Walktrap1449

In the Walktrap algorithm, one defines a measure of similarity between nodes
based on DTRWs and uses it for community detection [356]. (See Ref. [357] for
a similar method that uses DTRWs.) Consider an undirected and unweighted
network. Define the RW-based distance between two nodes, vi and vj , by

rij =

√√√√
N∑

`=1

(Tni` − Tnj`)2

k`
, (172)

where n is the number of steps in a DTRW. The distance rij is small when a1450

pair of random walkers — one starting from vi and the other starting from vj1451

— visit each node with similar probabilities after n steps. The denominator1452

k` discounts the fact that a walker visits v` with a probability proportional to1453

k` at equilibrium. Note that n needs to be large enough for random walkers1454

to be able to travel to any node. However, n should not be too large, because1455

limn→∞ Tni` = limn→∞ Tnj` = p∗` implies that rij is very close to 0 for all i, j ∈1456

{1, . . . , N} when n is large [64].1457

We expect that a pair of nodes, vi and vj , that are separated by a small1458

distance rij are likely to belong to the same community. One uses a stan-1459

dard agglomerative and hierarchical clustering algorithm on the distance matrix1460
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r = (rij). One starts from the partition composed of N single-node communi-1461

ties and joins a pair of communities (so-called “tentative communities”) with1462

the smallest distance, one pair at time, to produce a series of partitions until1463

the entire network is in a single community. In the merging process, one mea-1464

sures the distance between two communities CMc and CMc′ by the rij value,1465

normalized in some way, between vi, vj ∈ CMc ∪ CMc′ . This agglomerative1466

clustering algorithm is similar to a greedy algorithm to maximize modularity1467

across partitionings with different numbers of communities [358]. In Walktrap,1468

one merges a pair of communities under the restriction that they can be merged1469

only when they are adjacent to each other by at least one edge.1470

Other community-detection methods also rely on defining a similarity mea-1471

sure between nodes. An interesting approach is based on the concept of mean1472

first-passage time mij of a random walker (see Section 3.2.5) and its symmetriza-1473

tion mij +mji (the so-called “mean commute time”) [359]. The square root of1474

the mean commute time has the desirable property of being a Euclidian dis-1475

tance between nodes. In this context, it is called the “Euclidian commute-time1476

distance”. It decreases when the number of paths between two nodes increases1477

or when the length of any path between the two nodes decreases, and it can be1478

derived from the pseudo-inverse of the combinatorial Laplacian matrix L [360].1479

5.3.3. InfoMap1480

InfoMap is another algorithm for community detection based on RWs [361].1481

It is very popular and has been extended to the case of hierarchical algorithms1482

[362], memory networks [250], and multilayer networks [235]. In this section, we1483

discuss the basic version of InfoMap.1484

Consider a DTRW on a network, which can be directed or weighted. If1485

the network has meaningful community structure, a random walker tends to1486

be trapped within a community for a long time before traveling to a different1487

community. A trajectory of the RW is a sequence of the visited nodes (e.g.,1488

v3, v6, v3, v1, v8, . . .). Let’s encode each node into a finite binary sequence1489

(i.e., “a code word”) and concatenate the code words to encode the trajectory1490

of a random walker. For example, if v1, v2, v3, v4, v5, . . . are encoded into1491

000, 001, 010, 011, 100, . . ., then the trajectory v3, v6, v3, v1, v8, . . . is encoded1492

into 010101010000111 · · · . For unique decoding, one needs a “prefix-free” coding1493

scheme. In other words, a code word cannot be a “prefix” (i.e., an initial1494

segment) of another code word. For instance, if v1 and v2 are coded as 000 and1495

0001, respectively, then one’s code is not prefix-free, because 000 is an initial1496

segment of 0001.1497

The “Huffman code” is a popular prefix-free code that encodes individual1498

symbols (i.e., nodes vi) separately and tends to yield short binary sequences1499

[363]. It assigns a short code word to a frequently visited node. In a stationary1500

state, the mean code word length per step of an RW is
∑N
i=1 p

∗
i × len(i), where1501

len(i) denotes the length of the code word assigned to vi.1502

If symbols (such as vi in our context) appear independently in each step of
an RW, the Huffman code yields a mean code word length in each step that is
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close to the theoretical lower bound set by the Shannon entropy

H = −
N∑

i=1

p∗i log p∗i . (173)

However, the sequence of symbols is correlated in time, because it is produced1503

by an RW. Consequently, a different coding scheme can yield a mean code1504

length that is smaller than the Shannon entropy. InfoMap exploits community1505

structure and uses a two-layer variant of the Huffman code to achieve this goal.1506

Because there are fewer nodes in a community than in an entire network, one can1507

express a trajectory within each community using a shorter, different Huffman1508

code that is local to individual communities. In practice, one constructs the1509

two-layer Huffman code as follows:1510

1. When a random walker enters the cth community, one issues the (prede-1511

termined) code word that corresponds to entering community CMc.1512

2. The walker moves around within community CMc for some time. One1513

records the trajectory during this period by the sequence of code words1514

that corresponds to the sequence of visited nodes. One concatenates these1515

code words, and they appear after the code word (obtained in the previous1516

step) that corresponds to the entry to community CMc.1517

3. The walker eventually exits CMc. This event is represented by a special1518

code word, which one places after the sequence of code words that one has1519

obtained thus far.1520

4. The exit from CMc implies an immediate entry to a different community,1521

which we denote by CMc′ . Therefore, we concatenate the code word cor-1522

responding to the entry to CMc′ to the end of the sequence of code words1523

that we have obtained thus far.1524

5. One uses the code words that are local to CMc′ to record the trajectory1525

until the walker exits CMc′ . Note that one can use the same code word1526

to represent a node in CMc and a node in CMc′ . This fact does not cause1527

any problems, because one determines the current coding table from the1528

entry and exit code words.1529

6. Repeat steps 3–5.1530

Let’s consider the network in Fig. 10. The InfoMap algorithm partitions the1531

network into four communities, whose boundaries we show with the dotted lines.1532

The binary sequence at each node represents the local code word within the1533

corresponding community. When a random walker enters or exits a community,1534

one uses the corresponding “in” and “out” code word, respectively. For example,1535

the trajectory indicated by the red arrows is encoded into 11 111 10 01 00 00 101536

01 110. The first “11” indicates that the RW starts in the top left community, the1537

subsequent “111” indicates that the walk starts at node “111” in this community,1538

the “00 00” in the middle indicates that the walk exits this community (because1539

of the first “00”) and simultaneously enters the community to the right (because1540

of the second “00”).1541
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Figure 10: Optimal partitioning from the InfoMap algorithm along with its resulting code
words. We draw this example from a demonstration applet available at [364].

In contrast to the original Huffman code, we need 2NCM additional code1542

words to encode entry to and exit from communities. However, we can use a1543

smaller code length when a random walker travels within a community because1544

the code words local to a community are generally shorter than the code words1545

of the original Huffman code. If a network has strong community structure, one1546

expects that an RW within a community occupies a majority of steps if one op-1547

timally partitions the network into communities. Consequently, one expects the1548

mean code length to be smaller using InfoMap than by using a straightforward1549

Huffman code in networks with community structure. In practice, InfoMap1550

optimizes a quality function, called the “map equation” (where the word “equa-1551

tion” is a misnomer), instead of constructing the optimized coding scheme. The1552

map equation generalizes Eq. (173). The resulting quality function provides a1553

theoretical limit of how concisely one can encode an RW using a given partition.1554

One can optimize this function using some computational heuristic.1555

5.3.4. Local community detection1556

Another approach to community detection is to use local algorithms. For1557

example, given a node vi of interest, one can use a local algorithm to identify1558

a relatively small community around vi by examining only the nodes that are1559

adjacent to nodes that have been examined before. Local algorithms are partic-1560

ularly useful when a network is huge, and it is thus costly to apply a partitioning1561

algorithm to the entire network. As discussed in Ref. [68] (and in several refer-1562

ences therein), they also provide a means to studying overlapping communities1563

and to incorporate dynamical processes and seed sets into community detection.1564

Nibble is a local community-detection algorithm based on DTRWs [365–367].
The idea is to examine nodes that are visited frequently by a random walker
that starts from a node vi. Specifically, Nibble uses the transition-probability
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matrix

TNibble =
D−1A+ I

2
. (174)

Equation (174) implies that a random walker obeys the usual DTRW with1565

probability 1/2 and does not move with probability 1/2 in each time step. For1566

each of the nodes, Nibble also reduces the probability of a visit to it to 0 in1567

each time step if it is smaller than some threshold. Therefore, the probability1568

that the random walker is still present in the network decreases in time. The1569

probability reduction ensures that the detected community does not become1570

too large in a small number n of steps. One terminates the DTRW after a1571

certain number of steps according to a stopping criterion, which guarantees1572

that the discovered set of nodes has a low conductance (see Eq. (47)) and is1573

neither too small nor too large. Nibble can also be used as a building block for1574

network-partitioning algorithms that run in O(M) time [365, 367]. (Recall that1575

M denotes the number of edges (see Table 1).)1576

In the “seed-set expansion problem”, one seeks to discover a local community1577

that emanates from a small subset S of a network’s nodes. One expands the seed1578

set to estimate the rest of a community by ranking the nodes outside S. Variants1579

of personalized PageRank and heat-kernel PageRank are popular approaches for1580

studying seed-set expansion [368–370]. Like Nibble, one starts a DTRW from1581

a node vi ∈ S, and one then examines Tnij , which gives the probability that a1582

walker starting from vi visits node vj after n steps. The score for vj is given1583

by a weighted sum of Tnij over different lengths of walks. That is, the score is1584 ∑∞
n=1 wnT

n
ij , where wn is the weight assigned to walks of length n [370].1585

5.3.5. Multilayer modularity1586

One can generalize Markov stability to multilayer networks to derive mod-1587

ularity functions for such networks, including temporal networks given in the1588

form of a sequence of adjacency matrices (with interlayer edges that connect1589

corresponding nodes in the sequence) [234, 344].1590

As in Section 4.1, consider a multilayer network in the (supra-adjacency)1591

form of a weighted network on N`max nodes, where `max is the number of1592

layers. One specifies a node by the pair (vi, `), where i ∈ {1, . . . , N} indexes1593

an entity and ` ∈ {1, . . . , `max} indicates a layer. The adjacency matrix in each1594

layer ` (which can be, e.g., an aggregation over some time window of a temporal1595

network) is A(`), which we assume to be undirected for simplicity. The weight1596

of the interlayer edge between nodes (vi, `) and (vi, `
′) is Ci`′`. We consider a1597

multilayer network in which only nodes with the same index i can be adjacent to1598

each other, though multilayer networks also allow much more general structures1599

[61]. (Note that an entity vi need not exist on all layers [234].) For a multilayer1600

network that represents a temporal network, the simplest choice is to connect1601

the corresponding nodes (i.e., nodes with the same index i) across the adjacent1602

layers symmetrically and uniformly, so ω = Ci``′ = Ci`′` > 0 when `′ = ` + 11603

for ` ∈ {1, . . . , L− 1} and Ci``′ = 0 for `′ 6= `± 1.1604

To derive an expression for multilayer modularity for these “multislice” net-
works, we generalize the RW interpretation of modularity for time-independent
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networks (see Section 5.3.1) to the case of multilayer networks [234]. Random
walkers are allowed to move either between layers or within a layer. Consider
a Poissonian node-centric CTRW on a multilayer network with N`max nodes.
The master equation is given by

dpi`(t)

dt
=

`max∑

`′=1

N∑

j=1

[Aij(`
′)δ``′ + δijCj``′ ] pj`′(t)

κj`′
− pi`(t) , (175)

where κj`′ = kj`′ + cj`′ is the strength of the jth node in the `′th layer, kj`′ =∑N
i=1Aij(`) is the intra-layer strength of the jth node in the `′th layer, and

cj`′ =
∑`max

`′′=1 Cj`′`′′ is the inter-layer strength of the same node. The summand
on the right-hand side of Eq. (175) represents the rate at which a random walker
moves from node (vj , `

′) to node (vi, `). A move to (vi, `) is possible from the
nodes (vj , `) in the same layer at a rate of Aij(`)/κj`′ and from the ith node in
a different layer `′ at a rate of Cj``′/κj`′ . If Ci``′ = Ci`′` (with i ∈ {1, . . . , N}
and `, `′ ∈ {1, . . . , `max}), the stationary density is given by

p∗i` =
κi`∑`max

`′=1

∑N
i′=1 κi′`′

≡ κi`
2µ

. (176)

In the same manner as with monolayer networks, we examine the probability
that a random walker visits node (vj , `

′) at time t = 0 and node (vi, `) at a small
time ∆t. Within the small time ∆t, a walker initially at (vj , `

′) can make at
most a single step. Based on Eq. (175), the probability that the walker visits
node (vj , `

′) at time 0 and node (vi, `) at small time ∆t is

[
δijδ``′ + ∆t

(
Aij(`)δ``′ + δijCj``′

κj`′
− δijδ``′

)]
κj`′

2µ
. (177)

Under the independence assumption, which sets the null model, the situation
remains the same, but each intra-layer network is now replaced by a Newman–
Girvan (NG) null network whose degree distribution is determined by the orig-
inal set of adjacencies of the same layer [344]. The inter-layer transition proba-
bility, determined by Cj``′ , remains the same. Under the independence assump-
tion, the probability that a walker visits node (vj , `

′) at time t = 0 and node
(vi, `) after a single move is

(
ki`

2M`

kj`′

κj`′
δ``′ + δij

Cj``′

cj`′

cj`′

κj`′

)
κj`′

2µ
, (178)

whereM` =
∑N
j=1 kj`. In Eq. (178), κj`′/(2µ) is the probability that the random1605

walker visits (vj , `
′) at time 0 at equilibrium. The quantity in parentheses1606

represents the conditional probability that a walker visits node (vi, `) after a1607

single move starting from node (vj , `
′) at time 0. A move occurs within the1608

`′th layer with probability kj`′/κj`′ . If an intra-layer move occurs, the walker1609

moves to the ith node in the same layer with probability ki`′/(2M`′) according1610

to the NG null model. Alternatively, the walker moves to a different layer with1611
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probability cj`′/κj`′ = 1 − kj`′/κj`′ . If an inter-layer move occurs, the walker1612

moves to the jth node in the `th layer with probability Cj``′/cj`′ .1613

By subtracting Eq. (178) from Eq. (177) and then summing over nodes (vi, `)
and (vj , `

′) that belong to the same community, we obtain

Q =
1

2µ

∑

i,j,`,`′

[
(1−∆t)δijδ``′ + ∆tAij(`)δ``′ −

ki`kj`′

2M`
δ``′ + (∆t− 1)δijCj``′

]
× δ(gi`, gj`′) ,

(179)

where gi` is the community to which node (vi, `) has been assigned. Because∑
i,j,`,`′ δijδ``′δ(gi`, gj`′) = N`max is independent of the partitioning of the mul-

tilayer network and thus does not affect the maximization of Q, we ignore the
first term on the right-hand side of Eq. (179). By rescaling Cj``′ by a multi-
plicative factor of (∆t−1)/∆t, we can also ignore (∆t−1) in the fourth term. If
we allow γ ≡ 1/∆t to depend on the layer (see [234] for the justification), corre-
sponding to different diffusion rates in different layers, we obtain the following
formula for multilayer modularity:

Q =
1

2µ

∑

i,j,`,`′

[
Aij(`)− γ(`)

ki`kj`′

2M`
δ``′ + δijCj``′

]
δ(gi`, gj`′) . (180)

For simplicity, suppose that the inter-layer edge weight is uniform; that is,1614

ω = Ci``′ for any i, `, and `′ whenever entity vi exists in both layers. If an entity1615

vi does not exist in a layer, its associated interlayer edges have weight 0 because1616

they do not exist. If ω = 0, the different layers are independent networks.1617

If ω is sufficiently large, all existing copies (vi, `) of each node vi (with ` ∈1618

{1, . . . , `max}) are assigned to the same community because the third term on the1619

right-hand side of Eq. (180) dominates the others. More generally, a large value1620

of ω tends to yield a smaller number of communities. In contrast, a large γ(`)1621

value tends to yield a large number of communities. See Refs. [343, 344, 355, 371]1622

for illustrations and discussions.1623

5.4. Core–periphery structure1624

It is often insightful to decompose a network into one or more densely-1625

connected cores along with sparsely-connected peripheral nodes. By definition,1626

nodes in a core are heavily interconnected and also tend to be well-connected1627

to peripheral nodes. By contrast, peripheral nodes are sparsely connected (or,1628

ideally, not adjacent at all) to other peripheral nodes and tend to be adjacent1629

predominantly to core nodes. This idea, whose intuition draws somewhat on1630

the notion of pealing an onion (especially in the case of a single core), is also a1631

mesoscale network structure, but it has a rather different character from com-1632

munity structure. See Ref. [372] for a review of core–periphery, and see the1633

introduction of Ref. [373] for a brief survey.1634

There is an RW-based algorithm to extract core–periphery structure from
networks [374]. The idea is that if a random walker is located at a peripheral
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node, it is very unlikely to visit another peripheral node in the next time step
in a DTRW. One defines a “persistence probability” αS for a set of nodes S by

αS =

∑
i,j∈S p

∗
i Tij∑

i∈S p
∗
i

, (181)

where we recall that p∗i is the stationary density at node vi, and Tij is the
transition probability from vi to vj in a single move. Equation (181) is the
steady-state probability that a DTRW starting from a node in S remains in S
in the next time step. For an undirected network, we substitute p∗i = si/

∑N
`=1 s`

to reduce Eq. (181) to

αS =

∑
i,j∈S Aij∑
i∈S si

. (182)

Ideally, one obtains αS = 0 for any set S of nodes that includes only pe-1635

ripheral nodes. This condition is trivially satisfied when S consists of a single1636

node, and it becomes very difficult to satisfy as S becomes large. Reference1637

[374] used the following greedy algorithm. Start from a node with the smallest1638

total node strength sin
i + sout

i . If there are multiple such nodes, we select one of1639

them uniformly at random. For undirected networks, this reduces to selecting a1640

node with the minimum node strength. The set S is composed of a single node.1641

One then adds one node to the set S so that adding this node yields the smallest1642

value of αS . Again, if there are multiple candidate nodes, we break the tie by1643

selecting one of them uniformly at random. One continues this procedure and1644

sequentially adds nodes to try to keep αS small. One then assigns each node1645

vi a coreness value of αi, which one sets as the value of αS when vi is added.1646

Nodes with larger values of αi are deeper into a network core. One also defines1647

a network’s “α-periphery” as the set of nodes that satisfy αi ≤ α. Although1648

the algorithm has randomness in it because of the tie-breakers, Ref. [374] re-1649

ported that the randomness had negligible effects on their results for empirical1650

networks.1651

5.5. Diffusion maps1652

Dimension reduction is a type of compression that has numerous practical1653

applications in data mining, image processing, visualization, and many other1654

subjects [375]. Its aim is to find a transformation of a set of data points into1655

a low-dimensional space in a way that preserves quantities of interest, such as1656

distances between any pair of data points, preferably with a small number of1657

free parameters. “Diffusion maps” are a framework of RW-based dimension1658

reduction and encompass a wide variety of methods, such as kernel eigenmap1659

methods, as special cases [24, 25]. Diffusion maps are also useful for identifying1660

synchronous clusters of nodes in synchronization dynamics [376].1661

Consider a DTRW on an undirected, weighted network constructed from
a given set of data points, which one identifies with nodes. The edge weight
between nodes vi and vj is Aij = Aji, and it is given by a similarity value
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between the ith and jth data points. In our terminology, the “diffusion distance”
is defined by

dij(n) =

√√√√√
N∑

`=1

(
Tni` − Tnj`

)2

p∗`

=

√√√√√
N∑

`=1

(
Tni` − Tnj`

)2

s`
×

N∑

`=1

s` , (183)

which is the same as the distance measure used in the Walktrap algorithm,1662

except for the normalization (see Eq. (172)). Because dij(n) involves the sum-1663

mation of all walks of length n starting from vi and the summation of such1664

walks starting from vj , Refs. [24, 25] suggested that it is more robust to noise1665

in data than when using Aij as a similarity or distance measure for dimension1666

reduction.1667

Substituting Eq. (41) into Eq. (183) yields

dij(n) =

√√√√√
∑N
`=1

[∑N
`′=1 λ

n
`′

(
(u`′ )i√
si
− (u`′ )j√

sj

)
(u`′)`

√
s`

]2

s`
×

N∑

`=1

s`

=

√√√√
N∑

`=1

[
N∑

`′=1

λn`′

(
(u`′)i√
si
− (u`′)j√

sj

)
(u`′)`

]2

×
N∑

`=1

s` , (184)

where u`′ is the eigenvector corresponding to the `′th eigenvalue of Ã (see
Eq. (36)) and λ`′ is the `′th largest eigenvalue of Ã in terms of absolute value.
Note that λ1 = 1. Using 〈u`′ ,u`′′〉 = δ`′`′′ , Eq. (184) reduces to

dij(n) =

√√√√
N∑

`′=1

λ2n
`′

(
(u`′)i√
si
− (u`′)j√

sj

)2

×
N∑

`=1

s`

=

√√√√
N∑

`′=2

λ2n
`′

(
(u`′)i√
si
− (u`′)j√

sj

)2

×
N∑

`=1

s` . (185)

To derive the last line in Eq. (185), we used u1 = (
√
s1, . . . ,

√
sN )>, correspond-

ing to the stationary density (see Section 3.2.3). By neglecting eigenmodes
whose contributions are much smaller than the largest eigenmode in Eq. (185)
(i.e., u2), one defines a diffusion map by

Ψ(i;n) =
1√
si



λn2 (u2)i

...
λn˜̀(u˜̀)i


 , (186)
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where ˜̀ is the largest index `′ such that |λ`′ |n > δ |λ2|n, and δ is a parameter.1668

Each component of Ψ(i;n) is called a “diffusion coordinate”. Equations (185)1669

and (186) imply that, in R˜̀−1, the Euclidean distance between two data points1670

i and j is equal to the diffusion distance dij(n) with a tolerance of δ.1671

The properties of diffusion maps depend on the parameters n and δ. A1672

large value of δ yields a small value of ˜̀ and hence results in a large dimension1673

reduction. A diffusion map with a larger value of n extracts geometry on a1674

more global scale than one with a smaller value of n, so a collection of diffusion1675

maps for different values of n allows one to describe a data set with multliscale1676

geometric properties.1677

5.6. Respondent-driven sampling1678

One often is interested in estimating a population mean of certain quantities,1679

such as the fraction of infected individuals, the fraction of people who have1680

a particular opinion, or demographics such as age. If a population is large,1681

which is typical in the context of social surveys, it is impossible to record all1682

individuals. In such situations, a common challenge is how to sample individuals1683

in as unbiased manner as possible.1684

“Respondent-driven sampling” (RDS) is a popular sampling method that1685

uses edge-tracing in a social network [377, 378]. In RDS, one starts from a seed1686

individual (i.e., a seed node). The seed individual recruits his/her neighbors1687

to a survey by passing a coupon to each of them. The successfully recruited1688

individuals then participate in the survey and in turn pass coupons to their1689

neighbors who have not yet participated. To try to promote participation,1690

individuals who participate are rewarded financially. One takes a weighted1691

mean of the samples to derive an estimate of the quantity of interest (e.g., mean1692

age of a population).1693

It is necessary to take a weighted mean because the probability of being1694

recruited depends on the position of a person in a network. The so-called “RDS1695

II estimator” is an efficient and realistic estimator [379]. Consider the case in1696

which each respondent passes a single coupon to one of its uniformly randomly1697

selected neighbors. One can then describe the recruitment process as a DTRW if1698

one allows sampling with replacement for simplicity (i.e., if the same individual1699

can be sampled more than once). Again for simplicity, let’s also assume that1700

the network is undirected and unweighted. The essential idea of the RDS II1701

estimator is that one should discount the effect of a sampled node vi by a1702

factor of its degree ki, because vi is visited with probability p∗i ∝ ki. Note that1703

respondents have to report ki to be able to calculate this estimator, although1704

empirically it is difficult to accurately collect the ki values of respondents [380,1705

381].1706

We are interested in estimating the mean 〈y〉 of a quantity yi assigned to
node vi. We denote the set of sampled nodes by S and the number of samples
(i.e, the size of S) by NS . The estimator 〈ŷ〉 of 〈y〉 is

〈ŷ〉 =
1

NS

∑

vi∈S

yi
Np̂∗i

, (187)
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where p̂∗i is the estimate of the stationary density p∗i . We set the discount factor
on the right-hand side of Eq. (187) to be Np̂∗i , because it is normalized so that
〈Np̂∗i 〉 = 1. By assuming that we do not have access to the mean degree 〈k〉 of
the entire network, we estimate it by calculating

p̂∗i =
ki

N〈k̂〉
, (188)

where 〈k̂〉 is an estimate of 〈k〉. We use

〈k̂〉 =

∑
vi∈S

ki
Np∗i∑

vi∈S
1

Np∗i

=
NS∑

vi∈S (ki)
−1 . (189)

Combining Eqs. (187), (188), and (189) yields

〈ŷ〉 =

∑
vi∈S (ki)

−1
yi∑

vi∈S (ki)
−1 . (190)

The estimated quantity y can be either continuous-valued or discrete-valued.
Alternatively, one can estimate the proportion of nodes PA that have a discrete
type A (e.g., an infected state) by setting yi to the indicator function (i.e., yi = 1
when vi is of type A and yi = 0 otherwise). In this case, we obtain

P̂A =

∑
vi∈A∩S(ki)

−1

∑
vi∈S(ki)−1

. (191)

Note that, even if one controls for the effect of p∗i in this manner, the es-1707

timator 〈y〉 is statistically biased in practice. For example, the estimator is1708

inaccurate when networks have community structure [382] or have multiple1709

connected components [383]. Additionally, different techniques are required1710

for directed networks, because Eq. (188) (or, more succinctly, p∗i ∝ ki) does not1711

hold for directed networks [384, 385]. Furthermore, actual sampling trajectories1712

are non-backtracking, and one can incorporate this feature into RDS estimators1713

[386].1714

A strategy other than RDS II or other estimators of unbiased sampling of1715

nodes is to use a “Metropolis–Hasting RW” [387]. In such sampling, one modifies1716

the edge weight of the original network to guarantee that the stationary density1717

is the uniform density. This method has been used for sampling in peer-to-peer1718

(P2P) and online social networks [42, 388, 389].1719

5.7. Consensus probability and time of voter models1720

Voter models are a prototypical family of models of opinion formation that1721

are often defined in terms of a Markov process on a network [1, 31, 33, 49, 390–1722

392]. In traditional voter models, each node assumes one of two opinions, which1723

we call opinion 0 and and opinion 1, and the nodes’ opinions evolve stochastically1724

in time. If two adjacent nodes have the opposite opinion, a local consensus of1725
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opinion 0 or opinion 1 between the two nodes occurs at some rate. We suppose1726

that the local consensus dynamics on each edge obeys an independent Poisson1727

process, so the nodes update their opinions asynchronously. For example, if a1728

local consensus on the edge (vi, vj) in an undirected network occurs according1729

to a Poisson process at rate ∝ Aij , we say that voter dynamics obeys “edge1730

dynamics” (ED) (see Fig. 11) [393, 394]. (Note that people often use the term1731

“link dynamics” (LD), because it is common in physics to use the term “link”1732

for “edge”.) On finite networks, the final state of a network is the perfect1733

“consensus” of either opinion 0 or opinion 1 for every node. These two consensus1734

configurations are the only absorbing states of the stochastic process. Note that1735

consensus is sometimes also called “fixation” or “coordination”.1736

The best-studied phenomena in voter models include the probability for1737

a network to achieve consensus of a particular opinion and the mean time to1738

achieve consensus. The consensus probability is the probability that a consensus1739

of one opinion (e.g., opinion 0) is reached. With the complementary probability,1740

a finite network achieves a consensus of the other opinion (e.g., opinion 1). When1741

computing mean consensus time, one conditions on the consensus being reached.1742

Both consensus probability and mean consensus time depend both on the initial1743

configuration of opinions and on network structure.1744

The duality relationship between voter models and “coalescing RWs” (which1745

are non-conservative) makes analysis of RWs a powerful approach for calculating1746

consensus probability and mean consensus time [1, 390, 391, 395]. By definition,1747

a coalescing RW [396] starts by placing a random walker on each node in a1748

network, and the walkers perform independent Poissonian edge-centric CTRWs.1749

If different walkers meet at a node, they coalesce into one and continue as a single1750

random walker. On a finite network, all walkers eventually coalesce into a single1751

random walker.1752

When examining the dual process, we invert the time and direction of edges1753

[1, 390, 391, 395]. When proceeding backwards in time, two individuals some-1754

times “collide” in the dual process. Such a coalescence event corresponds to1755

two individuals sharing a common ancestor in the original opinion-formation1756

process. After two individuals coalesce in the dual process, they behave as a1757

single individual.1758

The duality relationship guarantees that the consensus probability Fi for1759

opinion 0 when node vi initially has opinion 0 and the other N − 1 nodes1760

initially have opinion 1 is given by the stationary density of the coalescing RW1761

on the network that one obtains by reversing all edges in an original network.1762

Because all walkers eventually coalesce into a single walker, Fi is given by the1763

stationary density of the usual RW on the edge-reversed network. If initially1764

there are multiple nodes with opinion 0, then the consensus probability for1765

opinion 0 is equal to the sum of Fi over the nodes with initial opinion 0. The1766

mean consensus time is equal to the mean time needed for all walkers to coalesce1767

into one walker. This equality is useful for evaluating the mean consensus time1768

for some networks, because the latter quantity is roughly approximated by the1769

mean time for the first meeting of two independent walkers whose initial location1770

is selected uniformly at random [397–399]. Similar to the MFPT, the mean time1771
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1/21/5

for rwreview

ED

1/31/4

VM

1/3

1/4

IP

Figure 11: Three updating rules for variants of the classical voter model on a network. For
illustration, assume that we have an undirected and unweighted network. With edge-dynamics
(ED), one first selects one of the M = 5 edges with equal probability (i.e., with probability
1/5 each). One then selects one of the two directions of the edge with equal probability 1/2,
and then one performs an opinion-updating step. In the most traditional voter model (VM),
which has node dynamics, one selects one of the N = 4 nodes with equal probability 1/4.
One then determines uniformly at random the neighbor from which the selected node imports
its opinion. In the invasion process (IP), one first selects one of the N = 4 nodes with equal
probability 1/4 (as in the VM). One then determines uniformly at random the neighbor to
which the selected node exports its opinion.

for two random walkers to meet is relatively easy to calculate.1772

Consider a directed network. As a convention, we assume that the directed1773

edge from vi to vj indicates that vi can coax vj into vi’s opinion. Even if the1774

network is undirected, one has to distinguish three rules of opinion updating1775

unless the network is regular [393, 394] (see Fig. 11). We evaluate the consensus1776

probability for these three types of voter dynamics using the duality relationship1777

[132, 395].1778

First, let’s consider a variant of the voter model that focuses on the dynamics
of edges [393, 394]. Under these “edge dynamics” (ED), one selects a directed

edge vi → vj (i.e., from node vi to node vj) with probability Aij/
∑N
i′,j′=1Ai′j′

in each step, and then node vj copies vi’s opinion with probability 1. One
then advances time by 1/N , so each node is updated once per unit time on
average. The dynamics are equivalent to opinion dynamics in which each edge
has a Poisson process with rate NAij/

∑N
i′,j′=1Ai′j′ , and an event induces a

local consensus event. The dual process for ED is a coalescing RW on the edge-
reversed network in continuous time. (In fact, it is a Poissonian edge-centric
CTRW.) By modifying Eq. (78), a single random walker satisfies the following
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master equation:

dp(t)

dt
= p(t)(−Drev +A>) = −p(t)Lrev , (192)

where A> is the adjacency matrix of the edge-reversed network, Drev is the
diagonal matrix whose (i, i)th element is sin

i , and Lrev is the combinatorial
Laplacian of the edge-reversed network. The consensus probability FED

i for
each node is given by the equilibrium of Eq. (192). That is,

(FED
1 , . . . , FED

N )Lrev = 0 . (193)

We can obtain an intuitive understanding of Eq. (193) by writing a recursive
equation for the consensus probability when the process starts from a single node
vi with opinion 0 (i.e., for FED

i ). We obtain

FED
i =

N∑

j=1

Aij∑N
i′,j′=1Ai′j′

FED
{i,j}+

∑N
j=1Aji∑N

i′,j′=1Ai′j′
×0+

∑N
i′,j′=1;i′ 6=i,j′ 6=iAi′j′∑N

i′,j′=1Ai′j′
FED
i ,

(194)
where FED

{i,j} is the probability that one reaches the consensus of opinion 0 start-
ing from the configuration in which vi and vj but no other nodes have opinion
0. To prove that FED

{i,j} = FED
i + FED

j , imagine that there are N different opin-

ions rather than two, and suppose that node vi (with i ∈ {1, . . . , N}) holds
opinion i. One can express the probability that opinion i or j eventually oc-
cupies the entire network either as FED

{i,j} or as FED
i + FED

j , so it follows that

FED
{i,j} = FED

i + FED
j . By substituting the latter relationship into Eq. (194), we

obtain
N∑

j=1

AijF
ED
j = FED

i

N∑

j=1

Aji , (195)

and we note that Eq. (195) is equivalent to Eq. (193).1779

The quantity FED
i is the stationary density of the Poissonian edge-centric

CTRW on the edge-reversed network. If the network is undirected, we obtain
Lrev = L and p∗i = FED

i = 1/N (with i ∈ {1, . . . , N}). Therefore, the likelihood
of propagating an opinion does not depend on which node is the seed of the
opinion. If the network is directed, we obtain a first-order approximation to
the consensus probability of a node by applying Eq. (81) for the edge-reversed
network [132]:

FED
i ≈ (const)× sout

i

sin
i

. (196)

Equation (196) is intuitive, because an out-edge indicates that vi can enforce its1780

opinion on another node, and an in-edge indicates that vi listens to neighboring1781

nodes.1782

In the traditional node-based “voter model” (VM) updating rule, one selects
a node vi uniformly at random (i.e., with equal probability 1/N) in each time
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step. One then selects an in-neighbor vj of vi with a probability that is pro-
portional to the weight of the in-edge from that node (i.e., = Aji/s

in
i ), and vi

copies the opinion of vj with probability 1. One then advances time by 1/N so
that on average one node experiences one opinion update per unit time. One
can map the dynamics of the VM updating rule to ED dynamics with a mod-
ified weighted adjacency matrix A(Drev)−1, whose (i, j)th element is equal to
Aij/s

in
j . The master equation for a single random walker on the edge-reversed

network is thus
dp(t)

dt
= p(t)(−I + (Drev)−1A>) . (197)

The equilibrium of the dynamics given by Eq. (197) gives the consensus proba-
bility FVM

i for opinion 0 when only node vi initially has opinion 0. By setting
the left-hand side of Eq. (197) to 0, we obtain

(FVM
1 , . . . , FVM

N ) = (FVM
1 , . . . , FVM

N )(Drev)−1A> , (198)

which is equal to the stationary density of a DTRW on the edge-reversed net-
work. Because Eqs. (192) and (197), respectively, represent a Poissonian edge-
centric CTRW and a DTRW on the same network, we obtain

FVM
i = sin

i F
ED
i (199)

for arbitrary networks (Section 3.3.1). When a network is undirected, the edge-
reversed network is the same as the original network, and we thereby see that

FVM
i =

si∑N
s`=1 s`

. (200)

When a network is directed, the first-order approximation is given by

FVM
i ∝ sout

i . (201)

In the so-called “invasion process” (IP) updating rule, one first selects a
node vi uniformly at random (i.e., with probability 1/N) at each time step
to propagate its opinion to one of its out-neighbors. One then selects an out-
neighbor vj of vi with probability Aij/s

out
i (i.e., uniformly at random), and then

node vj copies the opinion of vi with probability 1. One then advances time by
1/N . One can map IP dynamics to ED dynamics with the modified weighted
adjacency matrix D−1A, whose (i, j)th element is equal to Aij/s

out
i . The master

equation for a single walker in the edge-reversed network is

dp(t)

dt
= p(t)(−DIP +A>D−1) , (202)

whereDIP is the diagonal matrix whose (i, i)th element is given by
∑N
j=1

(
Aji/s

out
j

)
.

The consensus probability F IP
i satisfies

(F IP
1 , . . . , F IP

N ) = (F IP
1 , . . . , F IP

N )A>D−1(DIP)−1 . (203)
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For an undirected network, p∗i ∝ 1/si solves Eq. (203), so nodes with small
strengths are good at disseminating their opinions. For a directed network, the
first-order approximation to Eq. (203) is

F IP
i =

N∑

j=1

F IP
j Aij/s

out
i∑N

`=1A`i/s
out
`

≈
N∑

j=1

(const)×Aij/sout
i∑N

`=1A`i/(const)

∝ 1

sin
i

. (204)

5.8. DeGroot model1783

The “DeGroot model” is a linear deterministic model that describes opinion-1784

formation dynamics towards consensus [400–402]. Control theorists have studied1785

it as an example of a decentralized consensus algorithm (or protocol) [403]. Al-1786

though the DeGroot model is not usually discussed as an application of RWs,1787

there are relationships between the extent of a node’s influence on the final1788

collective opinion in the DeGroot model and the stationary density of RWs.1789

Before proceeding with our discussion, note that a recent generalization of the1790

DeGroot model combines the averaging rule of the former with an appraisal1791

mechanism (See Ref. [404] and references therein.) to describe the dynamics1792

of individuals’ self-appraisal and social power in a network [405]. For non-1793

linear opinion-formation dynamics that allow non-consensus steady states, see1794

Refs. [392, 406–409].1795

In the DeGroot model, the opinion of node vi at discrete time n is given by
a continuous variable xi(n). One assumes that node vj weighs the opinion xi(n)
of node vi with weight Aij to determine its opinion in the next time step (i.e.,

xj(n+ 1)). The normalization is
∑N
i=1Aij = 1, and the dynamics are given by

xi(n) =
N∑

j=1

Ajixj(n− 1) (i ∈ {1, . . . , N}) . (205)

In the DeGroot model, the column sum of A is equal to 1 for every column, and
recall that the row sum of T is equal to 1 for every row in a DTRW. To see the
correspondence between the two models, it is convenient to write Eq. (205) in
vector form as follows:

x(n) = A>x(n− 1) , (206)

where x(n) = (x1(n), . . . , xN (n))>. Because the row sum of A> equals 1, we1796

can identify A> with T . The DeGroot model and DTRWs are thus driven by1797

the same matrix, so their dynamics are essentially the same. The only difference1798

is that the state vector is multiplied on the left in the RW, but it is multiplied on1799

the right in the DeGroot model. Up to rescaling, the models are characterized1800

by the same eigenvalues and eigenvectors.1801
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As long as the spectral gap of T (i.e., A>) is positive, the stationary density1802

of a DTRW is given uniquely by the left eigenvector of T whose corresponding1803

eigenvalue is 1. Under the same condition, the asymptotic state of the DeGroot1804

model is given by the corresponding right eigenvector of A>. This eigenvector1805

is x∗ = (x∗1 , . . . , x
∗
N )> ∝ (1 , . . . , 1)>, and it corresponds to a state with full1806

consensus.1807

The initial opinion xi(0) of node vi affects the value of the final opinion
x∗1 = · · · = x∗N in consensus. If x∗1 = · · · = x∗N is close to xi(0) (for a general
set of initial conditions that we will specify below) one interprets node vi as

being influential. To quantify this idea, we postulate that
∑N
i=1 F

DG,disc
i xi(n)

is conserved over time for positive constants FDG,disc
i (with i ∈ {1, . . . , N}),

where the superscript “disc” stands for discrete time and
∑N
i=1 F

DG,disc
i = 1

gives the normalization. If such a conserved quantity exists, one obtains

N∑

i=1

FDG,disc
i xi(0) =

N∑

i=1

FDG,disc
i x∗i = x1 = · · · = x∗N . (207)

Equation (207) implies that FDG,disc
i quantifies the influence of vi on the final

opinion in consensus. By imposing this conservation law, one obtains

N∑

i=1

FDG,disc
i xi(n− 1) =

N∑

i=1

FDG,disc
i xi(n)

=

N∑

i=1

FDG,disc
j




N∑

j=1

Ajixj(n− 1)


 . (208)

By requiring that Eq. (208) holds for arbitrary xi(n− 1) (with i ∈ {1, . . . , N}),
we obtain

FDG,disc
i =

N∑

j=1

AijF
DG,disc
j . (209)

Equation (209) indicates that FDG,disc
i is the stationary density of the DTRW1808

whose transition-probability matrix is A>.1809

A continuous-time variant of the DeGroot model has similar relationships
[222]. Consider the continuous-time DeGroot model [403]

dxi(t)

dt
=

N∑

j=1

Aji [xj (t)− xi (t)] , (210)

and note that we do not impose
∑N
j=1Aji = 1. The asymptotic state of

Eq. (210) is given by x∗1 = · · · = x∗N . Similar to the discrete-time DeGroot
model above, we rewrite Eq. (210) as

dx(t)

dt
=
(
A> −Drev

)
x(t) ≡ −Lrevx(t) . (211)
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Recall that Drev is the diagonal matrix whose (i, i)th element equals sin
i ,1810

and Lrev is the combinatorial Laplacian matrix for the edge-reversed network.1811

The left eigenvector of Lrev corresponding to eigenvalue 0 gives the station-1812

ary density of the Poissonian edge-centric CTRW on the edge-reversed net-1813

work. The corresponding right eigenvector gives the asymptotic state of the1814

continuous-time DeGroot model. Moreover, this eigenvector is the consensus1815

state x∗ ∝ (1, . . . , 1)>. Equation (211) also has a fascinating interpretation as1816

linear synchronization dynamics that results from linearizing nonlinear systems1817

such as coupled Kuramoto oscillators [54, 410]. See, for example, the discussion1818

in [376].1819

Equation (211) yields

p∗
dx(t)

dt
= (p∗Lrev)x(t) = 0 , (212)

where p∗ = (p∗1, . . . , p
∗
N ), and p∗i is the stationary density of the Poissonian1820

edge-centric CTRW at node vi in the edge-reversed network. Therefore, p∗x(t)1821

is conserved, implying that
∑N
i=1 p

∗
i xi(0) =

∑N
i=1 p

∗
i x
∗
i = x∗1 = · · · = x∗N . We1822

thereby see that p∗i quantifies the influence of node vi on the final opinion,1823

similar to the case of the discrete-time DeGroot model.1824

6. Conclusions and outlook1825

Random walks play a central role in network science. As we have seen in this1826

review, RWs are at the core of numerous methods to extract information from1827

networked systems, and they serve as a leading-order model for (conservative)1828

diffusion processes on networks. Because conventional RWs are linear processes,1829

they are amenable to analysis. For example, one can exploit methods from linear1830

algebra to characterize dynamics in terms of modes relaxing on different time1831

scales, and one can even derive analytical solutions (e.g., via recursive equations)1832

for quantities such as mean first-passage time (MFPT). The simplicity of RWs1833

is crucial, because associated dynamical properties on networks can be analyzed1834

exactly, allowing one to uncover mechanisms by which network structure affects1835

dynamical processes, which is perhaps the primary goal of studying dynamical1836

processes on networks [49]. Many nonlinear processes (e.g., reaction–diffusion1837

systems) include terms related to linear diffusion, so studying RWs on networks1838

also yields important insights into the linear stability (and weakly nonlinear1839

regimes) of numerous nonlinear processes.1840

RWs have been studied thoroughly (especially on networks) for many decades,1841

but there remains much exciting work to be done. In the following paragraphs,1842

we discuss a few important directions in the study of RWs on networks. As with1843

the rest of our paper, these suggestions are far from exhaustive, and we look1844

forward to seeing new theory and applications of RWs. As we have discussed1845

at length, RWs have connections both to many other processes and to a di-1846

verse variety of applications, and we look forward especially to new, unexpected1847

connections that will come to light in the coming years.1848
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One prominent research direction is “non-backtracking RWs”, which have1849

opened new perspectives in recent years in topics such as community detection1850

[262–264], because of the convenient properties of their spectrum for sparse1851

networks. Non-backtracking spreading processes have also been used in the1852

examination of network centralities [261], percolation theory [259, 260], and1853

the design of efficient immunization algorithms [265]. Non-backtracking RWs1854

are a type of second-order Markov chain (see Section 4.2.2), and their further1855

study may provide algorithms for clustering and other applications that are1856

more efficient and/or realistic than current ones. As we have illustrated in this1857

review, one can define different types of RWs on the same network, and different1858

RWs lead to different processes, algorithms, and insights.1859

Intrinsically, community detection and other forms of clustering are a type1860

of model reduction, as one seeks to represent a given network (or dynamical1861

process on a network) using a smaller amount of information. InfoMap (see1862

Section 5.3.3) is a community-detection algorithm that is constructed explic-1863

itly on this principle. Related techniques include coarse-graining RWs in a way1864

that preserves the spectral properties of relevant matrices [411, 412], external1865

equitable partitions [413], and using computational group theory to find “hid-1866

den” symmetries in networks [414]. More generally, RWs are at the heart of1867

flow-based algorithms, and they have been exploited to examine node central-1868

ities (see Section 5.2), community structure (see Section 5.3), core–periphery1869

structure (see Section 5.4), and the mapping of networks into a Euclidean fea-1870

ture space [415]. It may also be fruitful to exploit similar ideas to examine1871

other types of network properties (e.g., “role similarity” [349, 416], “rich clubs”1872

[417, 418], and approximately multipartite structure [419]). RWs have also been1873

used for some studies of community structure in temporal and multilayer net-1874

works [68, 234–236] as well as for examining diffusion processes and centralities1875

in such networks [62, 237, 238, 240, 281, 283, 284], and much more remains1876

to be discovered in such applications. In temporal networks, for example, it is1877

important to consider the relative timescales of the network dynamics and the1878

RW dynamics. Novel types of RWs also play an important role in examining1879

higher-order network structure. Examples include the spacey RW [269, 420],1880

RWs on hypergraphs [421], and RWs on simplicial complexes [422].1881

One can also combine RWs with other dynamical processes to model real-1882

world phenomena in fascinating and insightful ways. For example, one can1883

couple RWs to other processes in multilayer networks [62, 423], where it is im-1884

portant to study scenarios such as infection spreading coupled to human/animal1885

mobility (and more generally to study diffusion dynamics coupled to other types1886

of dynamics). One very successful family of models that combines multiple types1887

of dynamics is metapopulation models of biological contagions, in which indi-1888

viduals move from one subpopulation to another in some way (e.g., according1889

to an RW) and infection events occur within each subpopulation [216, 217].1890

Metapopulation models, reaction–diffusion models [95, 216], and many other1891

dynamical processes on networks often feature diffusion in the form of a simple,1892

memoryless Poisson process. The use of more complicated and realistic RW1893

processes such as higher-order Markov chains (see Section 4.2.2) and CTRWs1894
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Figure 12: The weary random walker retires from the network and heads off into the distant
sunset. [This picture was drawn by Yulian Ng.]

driven by non-Poissonian renewal processes (see Sections 2.2 and 3.3) may yield1895

interesting results.1896

Various types of RWs continue to be employed actively for a diverse array of1897

applications. We mentioned several examples in Section 1, and we now indicate1898

a few more applications of different types of RWs. For example, a “hungry1899

RW” (taking some inspiration from the arcade game Pac-Man) has yielded1900

insights into anomalous diffusion in bacteria [86], a “waddling RW” allows one1901

to devise an efficient sampler for estimating the frequency of small subgraphs1902

in a network [424], Lévy flights can help capture features of animal foraging1903

[9, 11], multiplicative RWs are a useful approach for examining the dynamics of1904

financial markets [20, 21], self-avoiding RWs have helped improve understanding1905

of polymer chains [18, 19], the stochastic dynamics of neuronal firing have been1906

studied using Ornstein–Uhlenbeck processes (a type of CTRW with a leak term)1907

[13, 14], and the dynamics of correlated novelties (and Kauffman’s so-called1908

“adjacent possible”) have been modeled using an RW on a growing network1909

(representing the growing space of possible innovations) [425].1910

In the coming years, we expect that RWs will continue to play a crucial role1911

in physics, computer science, biology, sociology, and numerous other fields. The1912

study of RWs continues to yield fascinating, important, and inspiring insights.1913

Given how much random walkers have contributed to our scientific knowledge,1914

they must be exhausted by now (see Fig. 12).1915
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ian movement patterns of marine predators, Nature 465 (2010) 1066–1069.1949

[12] A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Per-1950

spectives, 2nd Edition, Springer, New York, NY, USA, 2001.1951

[13] H. C. Tuckwell, Introduction to Theoretical Neurobiology: Volume 2, Non-1952

linear and Stochastic Theories, Cambridge University Press, Cambridge,1953

UK, 1988.1954

[14] F. Gabbiani, S. J. Cox, Mathematics for Neuroscientists, Academic Press,1955

Amsterdam, The Netherlands, 2010.1956

87



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[15] M. Usher, J. L. McClelland, The time course of perceptual choice: The1957

leaky, competing accumulator model, Psychol. Rev. 108 (2001) 550–592.1958

[16] J. I. Gold, M. N. Shadlen, The neural basis of decision making, Annu.1959

Rev. Neurosci. 30 (2007) 535–574.1960

[17] W. J. Ewens, Mathematical Population Genetics I. Theoretical Introduc-1961

tion, Springer, New York, NY, USA, 2010.1962

[18] M. E. Fisher, Shape of a self-avoiding walk or polymer chain, J. Chem.1963

Phys. 44 (1966) 616–622.1964

[19] M. B. Isichenko, Percolation, statistical topography, and transport in ran-1965

dom media, Rev. Mod. Phys. 64 (1992) 961–1043.1966

[20] J. Y. Campbell, A. W. Lo, A. C. MacKinlay, The Econometrics of Finan-1967

cial Markets, Princeton University Press, Princeton, NJ, USA, 1996.1968

[21] R. N. Mantegna, H. E. Stanley, An Introduction to Econophysics, Cam-1969

bridge University Press, Cambridge, UK, 1999.1970

[22] T. Jia, D. Wang, B. K. Szymanski, Quantifying patterns of research-1971

interest evolution, Nat. Human Behav. 1 (2017) 0078.1972

[23] D. F. Gleich, PageRank beyond the Web, SIAM Rev. 57 (2015) 321–363.1973

[24] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner,1974

S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and1975

structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci. USA1976

102 (2005) 7426–7431.1977

[25] R. R. Coifman, S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal.1978

21 (2006) 5–30.1979

[26] A. Clauset, M. Kogan, S. Redner, Safe leads and lead changes in compet-1980

itive team sports, Phys. Rev. E 91 (2015) 062815.1981
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USA, 1993.2079

[72] M. R. Evans, T. Hanney, Nonequilibrium statistical mechanics of the zero-2080

range process and related models, J. Phys. A 38 (2005) R195–R240.2081

[73] A. Schenzle, H. Brand, Multiplicative stochastic processes in statistical2082

physics, Phys. Rev. A 20 (1979) 1628–1647.2083

[74] S. Havlin, R. B. Selinger, M. Schwartz, H. E. Stanley, A. Bunde, Random2084

multiplicative processes and transport in structures with correlated spatial2085

disorder, Phys. Rev. Lett. 61 (1988) 1438–1441.2086

[75] R. Pemantle, A survey of random processes with reinforcement, Prob.2087

Surveys 4 (2007) 1–79.2088

[76] R. B. Schinazi, Classical and Spatial Stochastic Processes, Birkhäuser,2089
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[130] S. Fortunato, M. Boguñá, A. Flammini, F. Menczer, Approximating2207

PageRank from in-degree, LNCS 4936 (2008) 59–71.2208

[131] A. Fersht, The most influential journals: Impact factor and eigenfactor,2209

Proc. Natl. Acad. Sci. USA 106 (2009) 6883–6884.2210

[132] N. Masuda, H. Ohtsuki, Evolutionary dynamics and fixation probabilities2211

in directed networks, New J. Phys. 11 (2009) 033012.2212

[133] G. Ghoshal, A. L. Barabási, Ranking stability and super-stable nodes in2213

complex networks, Nat. Commun. 2 (2011) 394.2214

[134] A. Sandryhaila, J. M. F. Moura, Discrete signal processing on graphs,2215

IEEE Trans. Signal Proc. 61 (2013) 1644–1656.2216

[135] N. Tremblay, P. Borgnat, Graph wavelets for multiscale community min-2217

ing, IEEE Trans. Signal Proc. 62 (2014) 5227–5239.2218

[136] A. N. Samukhin, S. N. Dorogovtsev, J. F. F. Mendes, Laplacian spectra2219

of, and random walks on, complex networks: Are scale-free architectures2220

really important?, Phys. Rev. E 77 (2008) 036115.2221

[137] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society,2222

Providence, RI, USA, 1997.2223
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Erdös–Rényi random graphs, Stat. Prob. Lett. 89 (2014) 81–88.2266

[158] I. Tishby, O. Biham, E. Katzav, The distribution of first hitting times of2267
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[277] L. Lü, D. Chen, X. L. Ren, Q. M. Zhang, Y. C. Zhang, T. Zhou, Vital2547

nodes identification in complex networks, Phys. Rep. 650 (2016) 1–63.2548

[278] L. Katz, A new status index derived from sociometric analysis, Psychome-2549

trika 18 (1953) 39–43.2550

[279] J. M. Kleinberg, Authoritative sources in a hyperlinked environment, J.2551

ACM 46 (1999) 604–632.2552

[280] P. Grindrod, M. C. Parsons, D. J. Higham, E. Estrada, Communicability2553

across evolving networks, Phys. Rev. E 83 (2011) 046120.2554

[281] A. Halu, R. J. Mondragón, P. Panzarasa, G. Bianconi, Multiplex PageR-2555

ank, PLOS ONE 8 (2013) e78293.2556
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