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Online Appendix for Peer E�ects in Endogenous

Networks: One-sided Link Formation

Timo Hiller

August 24, 2017

Abstract

We solve for the case of one-sided network formation and show that all Nash equilibrium

networks are again nested split graphs.

1 Model Description

The one-sided speci�cation di�ers from the two-sided model in that, in order for a pair of agents

to bene�t from each other's e�ort level, only one agent needs to extend a link (and bear the cost).

This allows us to use Nash equilibrium as equilibrium concept. Note that under pairwise Nash

equilibrium pairs of agents can create only one link at a time and both agents may adjust their

e�ort levels. Under Nash equilibrium we consider deviations where an agent may extend multiple

links (and simultaneously delete any subset of existing ones), but only the (single) deviating agent

may adjust e�ort levels. Note that, since the respective other agent in a deviation now does not

alter his e�ort level, we now need strict convexity of the value function for our characterization

to go through.

Let again N = {1, 2, ..., n} be the set of players with n ≥ 3. As before, each player i

chooses a personal e�ort level xi ∈ X and a set of links, which are represented as a row vector

gi = (gi,1,..., gii−1, gii+1,..., gin), where gij ∈ {0, 1} for each j ∈ N\{i}. Assume X = [0,+∞) and

gi ∈ Gi = {0, 1}n−1. The set of strategies of i is denoted by Si = X×Gi and the set of strategies of

all players by S = S1×S2×...×Sn. A strategy pro�le s = (x,g) ∈ S again speci�es the individual

e�ort level of each player, x = (x1,x2,..., xn), and a set of links g = (g1,g2, ...,gn). Agent i is said

to sustain or extend a link to j if gi,j = 1 and to receive a link from j if gj,i = 1. The network of

relations g is a directed graph, i.e. it is possible that gi,j 6= gj,i. Let Ni(g) = {j ∈ N : gi,j = 1}
be the set of agents i has extended a link to and de�ne ηi(g) = |Ni(g)|. Call again the closure

of g an undirected network, which we denote by ḡ =cl(g), where ḡi,j = max{gi,j, gj,i} for each i
and j in N . Denote by Ni(ḡ) ={j ∈ N : ḡi,j = 1} the set of players that are directly connected

to i in ḡ. The e�ort level of i's direct neighbors can then be written as yi(ḡ) =
∑

j∈Ni(ḡ) xj. We
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will drop the subscript of yi when it is clear from the context. The network is said to be empty

and denoted by ḡe if ḡi,j = 0 ∀i, j ∈ N and complete and denoted by ḡc if ḡi,j = 1 ∀i, j ∈ N .

Payo�s of player i under strategy pro�le s = (x,g) are given by

Πi(s) = πi(x,g)− ηi(g)κ,

where κ denotes the cost of extending a link. The assumptions on the payo� function are as

in the one-sided speci�cation.

A Nash equilibrium is a strategy pro�le s∗=(x∗,g∗) such that

Πi(s
∗
i , s
∗
−i) ≥ Πi(si, s

∗
−i), ∀si ∈ Si,∀i ∈ N .

2 Equilibrium Characterization

We only present the corresponding result for Theorem 1 of the main part of the paper, namely

that all Nash networks are nested split graphs. This model is solved in a previous working paper

version (Hiller, 2013). Lemma 1 (OA) shows that there can be only one directed link between

any two agents.

Lemma 1 (OA): In any NE, (x,g), there is at most one directed link between any pair of

agents i, j ∈ N .

Proof. Assume that (x,g) is a Nash equilibrium and that gi,j = gj,i = 1. But then i can

pro�tably deviate by cutting the link to j such that gi,j = 0. Gross payo�s remain unchanged,

while i's linking total cost decrease by κ. Q.E.D.

In Lemma 2 (OA) we show that in any Nash equilibrium if i extends a link to l, then i must

also be connected to agent k for any k such that xk ≥ xl. Note that we do not require that i

extends a link to k, but only that i and k are connected. That is, it may be agent k extending

the link to agent i.

Lemma 2 (OA): In any NE, (x,g), if gi,l = 1 then ḡi,k = 1 ∀k : xk ≥ xl.

Proof. For gi,j = 1 to be part of a NE it must be that v(yi(ḡ))− v(yi(ḡ)− xl) ≥ κ. Assume

contrary to the above statement that ḡi,k = 0 for some k with xk ≥ xl. This, however, cannot

be a NE since i then �nds it pro�table to extend a link to agent k. To see this, note that

v(yi(ḡ) + xk) − v(yi(ḡ)) > v(yi(ḡ)) − v(yi(ḡ) − xl) ≥ κ, where the inequalities follow from the

convexity of the value function. We have reached a contradiction and therefore ḡi,k = 1 for all

agents k with xk ≥ xl. Q.E.D.

The following lemma shows that if i extends a link to l, then any agent k with a higher or

equal e�ort level than i must also be connected to l. Again this follows from the convexity of

the value function.
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Lemma 3 (OA): In any NE, (x,g), if gi,l = 1 then ḡk,l = 1 ∀k : xk ≥ xi.

Proof. For gi,j = 1 to be part of a NE, it must be that v(yi(ḡ)) − v(yi(ḡ) − xl) ≥ κ.

Assume contrary to the above statement that ḡk,l = 0 for some k with xk ≥ xi. Note next that

for xk ≥ xi to hold we must have yk(ḡ) ≥ yi(ḡ), which follows directly from strict strategic

complementarities. Therefore, v(yk(ḡ) + xl)− v(yk(ḡ)) > v(yi(ḡ))− v(yi(ḡ)− xl) ≥ κ, where the

inequalities follow from the convexity of the value function. We have reached a contradiction.

Q.E.D.

The following Lemma shows that in any Nash equilibrium if a pair of agents exert same e�ort

levels, then they must share the same neighborhoods. The proof is a direct consequence of the

convexity of the value function.

Lemma 4 (OA): In any NE, (x,g), xi = xk ⇔ Ni(ḡ) \ {k} = Nk(ḡ) \ {i}.

Proof. First we show that Ni(ḡ)\{k} = Nk(ḡ)\{i} ⇒ xi = xk. If ḡi,k = 0, then yi(ḡ) = yk(ḡ)

and therefore xi = xk. Assume next that ḡi,k = 1 and without loss of generality that xi > xk.

But then yi(ḡ) < yk(ḡ) and we have reached a contradiction. Next we show that xi = xk ⇒
Ni(ḡ) \ {k} = Nk(ḡ) \ {i}. Assume to the contrary that xi = xk and Ni(ḡ) \ {k} 6= Nk(ḡ) \ {i}.
Note that for xi = xk to hold it must be that yi(ḡ) = yk(ḡ). For Ni(ḡ) \ {k} 6= Nk(ḡ) \ {i} to
hold, there must exist an agent l such that l ∈ Nk(ḡ) and l /∈ Ni(ḡ). For the link ḡk,l = 1 to be

in place in ḡ we must have that v(yk(ḡ) − v(yk(ḡ) − xl) ≥ κ. But from yi(ḡ) = yk(ḡ) and the

convexity of the value function v(yi(ḡ) +xl)− v(yk(ḡ)) > v(yk(ḡ))− v(yk(ḡ)−xl) ≥ κ holds and

we reach a contradiction. Q.E.D.

Lemma 5 (OA) shows that in any Nash equilibrium if an agent i exerts a weakly lower e�ort

level than another agent k, then agent i's neighborhood is contained in k's neighborhood.

Lemma 5 (OA): In any NE, (x,g), xi ≤ xk ⇔ Ni(ḡ) \ {k} ⊆ Nk(ḡ) \ {i}.

Proof. We �rst show that Ni(ḡ)\{k} ⊆ Nk(ḡ)\{i} ⇒ xi ≤ xk. If ḡi,k = 0, then yi(ḡ) ≤ yk(ḡ)

and therefore xi ≤ xk. Assume next that ḡi,k = 1 and xi > xk holds. But then yi(ḡ) < yk(ḡ)

and we have reached a contradiction. Next we show that xi ≤ xk ⇒ Ni(ḡ) \ {k} ⊆ Nk(ḡ) \ {i}.
Assume to the contrary that xi ≤ xk and there exists an agent l such that l ∈ Ni(ḡ) and

l /∈ Nk(ḡ). For the link ḡi,l = 1 to be in place in ḡ either gi,l = 1 or gl,i = 1. If gi,l = 1, then

v(yi(ḡ))− v(yi(ḡ)−xl) ≥ κ must hold. But from yi ≤ yk and the convexity of the value function

we can write v(yk(ḡ) + xl) − v(yk(ḡ)) > v(yi(ḡ)) − v(yi(ḡ) − xl) ≥ κ and we have reached a

contradiction. We can apply an analogous argument for gl,i = 1. Q.E.D.
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In Theorem 1 (OA) we show that all Nash equilibria are nested split graphs.

Theorem 1 (OA): In any NE, the network g is a nested split graph.

Proof. Note �rst that the complete and the empty network are nested split graphs. We start

by showing that in any NE if ηk(ḡ) ≥ ηl(ḡ), then xk ≥ xl. Assume to the contrary that xl > xk.

We distinguish two cases. Consider �rst the case that ηk(ḡ) > ηl(ḡ) holds. Then there exists an

agent m ∈ Nk(ḡ) and m /∈ Nl(ḡ). We consider two subcases. Assume �rst that agent m extends

a link to k and gm,k = 1. But then, by xl > xk and Lemma 2 (OA), ḡm,l = 1 and we have

reached a contradiction. Next assume that agent k extends a link to m and gk,m = 1. But then,

by Lemma 3 (OA), ḡl,m = 1 must hold and we have reached a contradiction. Assume next that

ηk(ḡ) = η(ḡ). We distinguish two cases. If Nk(ḡ) \ {l} = Nl(ḡ) \ {k}, then xk = xl by Lemma

4 (OA) and we have reached a contradiction. If Nk(ḡ) \ {l} 6= Nl(ḡ) \ {k}, then there exists an

agent m ∈ Nk(ḡ) \ {l} and m /∈ Nl(ḡ) \ {k}. The argument that m ∈ Nl(ḡ) \ {k} must hold is

analogous to the previous case. We have established that in any NE if ηk(ḡ) ≥ ηl(ḡ) holds, then

xk ≥ xl also holds. Next we show that in any NE if ḡi,l = 1 and ηk(ḡ) ≥ ηl(ḡ) (and therefore

xk ≥ xl), then ḡi,k = 1. We distinguish two cases. We �rst assume gi,l = 1. Then by Lemma 2

(OA) ḡi,k = 1 holds. Assume next that gl,i = 1. Then by Lemma 3 (OA) ḡi,k = 1. That is, ḡ is

a nested split graph. Q.E.D.
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