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Abstract—The continuous growth of high-performance com-
puting (HPC) systems has lead to Fault Tolerance (FT) being
identified as one of the major challenges for exascale com-
puting, due to the expected decrease in Mean Time Between
Failures (MTBF). One source of faults are soft errors, which
can cause bit corruptions to the data held in memory. Current
solutions for protection against these errors include hardware
Error Correcting Codes (ECC), which incur overheads in power,
memory bandwidth and storage, while also introducing more
complexity to the hardware. In this paper we demonstrate
Application-Based Fault Tolerance (ABFT) as an alternative
method of protecting sparse matrices and dense vectors from data
corruptions, requiring no additional dedicated memory storage.
We use Teal.eaf, a heat conduction miniapp from the Mantevo
Project, to demonstrate how these ABFT techniques can be
adapted and applied to a sparse matrix solver-based application
and its underlying data structures in order to improve reliability
and performance.

Index Terms—Exascale; Fault Tolerance; Linear Sparse Ma-
trix Solvers; Resilience

I. INTRODUCTION

The original Exascale report by DARPA [1] has outlined
resiliency as one of the major four challenges faced by
Exascale computing. Part of this challenge is to ensure the
system has the ability to detect and handle faults which occur
during computation. One major source of such faults are
errors occurring in the memory of the system. These have
been extensively examined, with multiple studies investigating
faults which occur in DRAM and SRAM (e.g. [2], [3], [4],
[5], [6]) as well as GPU memory (e.g. [7], [8], [9]).

These studies have identified the following error types that
can cause faults in memory:

o Hard errors, which are caused by hardware failure
(whether permanent or temporary), for example DRAM
device failures or bits stuck at 1 or 0.

o Soft errors, usually caused by cosmic rays [10], which
can trigger upsets and flip bits in memory without any
permanent damage to the hardware.

Faults in memory, whether they are hard or soft, can cause

the following kinds of errors:

o Detectable Correctable Errors (DCE) - these are errors
which can be detected and corrected to the original state
by the system. These errors are usually not a source of
concern unless they keep occurring in the same location.
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o Detectable Uncorrectable Errors (DUE) - these errors can
be detected by the system, but not corrected. Unless a
recovery method is used, such as Checkpoint-Restart,
these errors usually cause a system failure.

« Silent Data Corruptions (SDC) - these occur when an er-
ror exceeds the error detecting capabilities of the system,
therefore going undetected by the system, or potentially
causing the system to attempt an erroneous correction.

SDCs can cause serious errors in calculations and so most
HPC systems deploy mechanisms to prevent these from occur-
ring, such as Error Correcting Codes (ECC). The aim of ECC
is to prevent SDCs by providing sufficient error detecting ca-
pabilities, as well as reducing, but not completely eliminating,
the number of DUEs. ECC protects the memory of a system by
adding additional redundant data, requiring additional storage.
This redundant data is then used to determine if any errors in
memory have occurred and if possible, these errors are then
corrected.

Common hardware implementations for protecting the data
stored in memory include Single Error Correction and Double
Error Detection (SECDED) Hamming codes [11], and Sin-
gle Symbol Correct and Double Symbol Detect (SSCDSD)
Chipkill [12]. Typical SECDED implementations add 8-bits
of redundant data for every 64 bits of data, whereas Chipkill
adds 16-bits for every 128 bits of data; both schemes therefore
add 12.5% overhead in terms of memory required to store the
redundant data. This extra overhead in memory storage means
that both of these solutions require extra DRAM devices to be
added to the DIMM, which increases the cost of memory, and
hence the total cost of the system. These extra devices also
increase the energy consumption of the DIMMs by at least
12.5% and with memory access expected to account for about
30% of the 20MW power budget of Exascale systems [13],
this overhead can be very costly.

Another downside of Chipkill is that SSCDSD can only use
x4 DRAM devices, which are 30% less energy efficient than x8
DRAM devices [14]. The use of x4 DRAM devices also means
that each 128-bit wide memory request needs to access 36
DRAM devices, significantly more than when using x§ DRAM
devices, further reducing the energy efficiency [15]. Whilst the
error rates of individual DRAM devices seem to stay constant
between different generations [16], the total number of faults is



likely to increase. This is because at Exascale the total number
of DRAM devices is expected to be much higher; for example,
the current number 3 HPC System on the Top500, Piz Daint,
has around 0.3PB of memory [17], whereas early Exascale
machines are predicted to have around 50PB of memory [18],
a two orders of magnitude increase.

Hardware ECC, usually SECDED, is also available in many
HPC GPUs which store the redundant bits along with the data.
However this means that when ECC is enabled, the memory
size and bandwidth available are reduced by around 12.5%,
with a corresponding increase in energy consumption during
memory accesses.

II. CONTRIBUTIONS

In this paper we make the following specific contributions
regarding the fault tolerance of sparse matrix-based solver
methods:

1) We extend prior Application Based Fault Tolerance
(ABFT) methods to fully protect the sparse matrix data
stored in CSR format and the dense floating point vec-
tors. These methods require no extra storage overhead.
We also provide a method to reduce the overheads of the
previously proposed techniques by taking advantage of
the properties of the Conjugate Gradient (CG) method.

2) We implement our techniques in the Tealeaf
miniapp [19], and use TealLeaf to provide performance
results on different architectures including, for the first
time, on GPUs using CUDA.

3) We compare different Error Detecting and/or Correcting
Codes to show the possible trade-offs between resilience
and runtime performance on multiple platforms.

The rest of this paper is structured as follows. In “Previous
Work”, we talk about previous latest work which is relevant
to our research. In Section “Error Detecting and Correcting
Codes” we provide an overview of the ECC methods which
we are using to detect and/or correct bit flips in the data of
the program. In Section “Sparse Matrix Solvers” we give an
overview of Tealeaf, the miniapp we have used to demonstrate
how our techniques can be applied to sparse matrix solvers.
We also describe the underlying data structures used by the
solvers and highlight how they can be used to provide FT. The
following Section “Protecting Sparse Matrix Solvers” details
of our efficient software based ECC with no storage overhead.
The Section “Performance Results” provides detailed perfor-
mance results for all of these techniques running on a range of
devices which are commonly found in HPC clusters. Finally in
“Performance Results” we provide our conclusions and discuss
ideas for future work.

III. PREVIOUS WORK

Previous work by McIntosh-Smith et al. [13] introduced
ABFT techniques for protecting sparse matrices stored in
either Coordinate (COO) or Compressed Sparse Row (CSR)
from SDCs. In this research the unused bits from the index
vectors were re-purposed to store the ECC data, meaning no
extra storage is required.

This work was then further extended in [20], where the
software ECC schemes were ported to Tealeaf, with the
addition of software-based CRC32C methods to protect the
Sparse Matrix elements themselves.

The techniques presented in this previous research however
do not fully protect the whole CSR matrix, as the row integer
vector has been left unprotected. Our new work improves on
earlier results, in that all the data structures are now protected,
including the dense integer and double floating point vectors.
In this new work we also investigate the performance of
the proposed techniques on a diverse range of architectures,
including both HPC and consumer GPUs.

IV. ERROR DETECTING AND CORRECTING CODES

In order to deal with noise in the data, such as cosmic rays
causing bit flips in memory, Error Detecting and/or Correcting
Codes have become the standard method to mitigate the
problem. These methods add redundant bits to the original
data, using an algorithm in order to form a codeword. This
redundancy increases the minimum Hamming Distance (HD)
between the codewords, which allows the receiver to detect
a limited number of errors that may occur anywhere in the
program data, and often to correct these errors without a
program failure.

One of the simplest and least computationally expensive
functions to calculate redundancy is Single Error Detection
(SED). This ECC scheme works by calculating the parity of
the data, and the parity is then added to the data to form
a codeword. When performing integrity checks, the whole
codeword is calculated, and if it is a non-zero value then bit
flips have occurred. This Error Detecting Code (EDC) provides
a minimum HD of 2, which means that it can detect one bit flip
(or actually all odd numbers of bit flips). However SED on its
own cannot correct any of these errors, and it will completely
miss any even number of bit flips.

Another ECC method we investigate in this paper is the
SECDED Hamming code, which is able to correct a single
bit flip, or detect a double bit flip in a codeword. In our
research we consider two versions of SECDED, SECDED64
and SECDEDI128, providing protection for 64 bits and 128
bits of data respectively. The SECDED64 method requires
significantly more redundant bits to be stored compared to
SECDEDI128, as the 64-bit version adds 8-bits of redundancy
per 64-bits of data, whereas the 128-bit version adds 9-bits of
redundancy per 128-bits of the data. This difference however
means that SECDED128 can only correct or detect half as
many errors as SECDED64 can per 128-bits of data.

When performing SECDED integrity checks, a syndrome
vector and parity of the codeword are calculated. If the
parity of the codeword is a non-zero value, then a single
error correction is performed using the syndrome to uniquely
identify the location of the bit flip inside the codeword. If the
parity is zero, but the syndrome vector is a non-zero value then
this indicates that a double bit error has occurred, but it cannot
be corrected and so another method such as Checkpoint-
Restart would be required to recover from this error. If three or



more bit flips occur within the same codeword, then SECDED
might in the best case detect these, but in the worst case it
may cause SDCs by either attempting to perform an erroneous
correction of the codeword, or by not being able to detect any
of the bit flips at all.

The final ECC code that we use to provide protection
against bit flips is a Cyclic Redundancy Check (CRC) code.
This checksum-based code treats the data as a polynomial
in the Galois field of two elements. This polynomial is then
divided by G(x), which is a predefined generator polynomial;
the remainder of this polynomial division is used as the
redundancy data. When an integrity check is performed, the
CRC checksum is removed from the codeword, the CRC value
is recalculated for the data and compared with the previously
stored value. If any bit flips have occurred then there will be a
difference between these checksums, which can then be used
to determine the location of bit flip(s).

In this work we focus on CRC32C, a particular type of CRC
which adds 32-bits of redundant data per codeword. This CRC
type has a generator polynomial with a (z + 1) factor, which
means that it can detect all odd bit errors and also burst errors'
of length up to and including 32 bits long [21]. Although CRC
is often considered an EDC, its error correcting capabilities are
often overlooked. The ability to correct bit flips by CRC is not
an easy thing to determine, because the minimum HD depends
on multiple factors, including the generator polynomial and
the length of the data; determining this minimum HD is an
NP problem. However given that we know what generator
polynomial we are using and we also know the codeword
sizes, these values can be pre-calculated. In our case when
using CRC32C, if we choose codewords of size in the range
178 to 5,243 bits, then the minimum HD is 6 [21], meaning
that CRC can be used to protect for up to 5 bit errors within
each codeword. More specifically, if we consider a code that
can correct n bit errors and detect m bit errors, denoted
nECmED, then we can form 2EC3ED, 1EC4ED or even 5SED
codes (n +m = 5). These error correcting capabilities do not
have a performance impact as error correction happens very
infrequently, unlike error detection, which generally occurs on
every memory access.

Another reason for picking CRC32C is that modern Intel
and ARMvS8 CPU architectures support calculating CRC32C
via instruction intrinsics, therefore providing hardware accel-
erated performance. When hardware support is not available,
a Slicing-by-16 algorithm is used, which has shown a good
performance compared to the naive long division method [22].

V. SPARSE MATRIX SOLVERS

In this paper we focus our research on ABFT techniques
for Sparse Matrix Solvers, however these techniques could be
applied to other applications that use similar data structures
and data access patterns.

In this section we provide an overview of the Teal.eaf heat
diffusion mini-app and describe application specific features
that have helped us with creating efficient ABFT techniques.

A burst error is an error affecting contiguous sequence of multiple bits.

A. TeaLeaf

In our research we utilise Tealeaf, which is a part of
Sandia National Laboratories’ Mantevo (https://mantevo.org)
mini-app benchmark suite. TeaLeaf is a memory bandwidth
bound application, meaning that extra memory bandwidth
used by ECC has a negative impact on performance. TealLeaf
solves the linear heat conduction equation in 2D on a spatially
decomposed regular grid using a five-point stencil. In this
paper we focus on using the CG method to perform each time-
step, however our ABFT techniques could be used with other
solver methods.

Computational steps in Tealeaf are broken down into
kernels. We note that the vast majority of TealLeaf’s runtime
(+98%) is spent inside three of these kernels, performing
matrix-vector products and dot products, and so when design-
ing our ABFT methods these memory access patterns were
taken into consideration.

During each time-step when a full CG solve is performed,
the sparse matrix does not change, and so we explore how
we can leverage this application-specific knowledge in order
to reduce the overheads of the ABFT techniques.

B. Sparse Matrices and Dense Vectors

Sparse matrices tend to have a very low number of non-
zero elements, and so storing them in compressed formats
is much more efficient than storing the whole matrix and
performing many redundant calculations on the zero elements.
We focus our efforts on the CSR format, where a m x n sparse
matrix is represented by three dense vectors. The first vector
v of length NNZ (Number of Non-Zeros) stores all the 64-bit
double floating point non-zero elements in row-major order.
The second vector y, also of length NNZ, stores the 32-bit
column index for each of the non-zero elements. The third
vector x of length m + 1 stores the 32-bit index into v of the
first nonzero element for each row in the matrix.

In [13] it was identified that as long as the matrix dimen-
sions were smaller than 232 — 1, then elements in the z and
y vectors will have unused bits. In previous work, where the
dimensions were further restricted to at most 232 — 1, these
unused bits of the y vector were re-purposed to store the
redundant ECC data required to protect the v and y vector;
however, the = vector was left unprotected. We extend this
research by investigating how to additionally protect the x
vector with no storage overhead. Note that in many production
solvers, the matrix dimensions may be larger than 232 _ 1,
warranting the need for 64-bit integer indices; our 32-bit
integer techniques are easily extended for this scenario.

Another important data structure that is present in this
solver is the double precision floating point vector. Unlike
the v vector from the CSR matrix, these double precision
floating point vectors have no unused bits that could be used to
store redundant data. In our research we therefore investigate
how we can combine the redundant data required to provide
protection in a manner that does not require extra memory
storage.



VI. PROTECTING SPARSE MATRIX SOLVERS

In this section we provide an overview of our new tech-
niques for providing efficient ECC protection to the whole
CSR matrix, including the floating point vectors.

A. Protecting CSR Matrices

The previous research in [13] and [20] has already provided
the details of how SED, SECDED and CRC32C can leverage
application specific knowledge about sparse matrix solvers,
such that the redundant bits required by ECC are mixed with
the original data to form the necessary codewords to protect
the CSR elements from bit flips. We therefore only provide
a brief overview of these techniques to demonstrate how the
redundant data is embedded into the CSR elements.

A CSR element is formed by pairing two vector elements
at the same indices from the double precision floating point
v data vector and the 32-bit integer y index vector, forming a
96-bit data structure. As Figure 1 shows, the redundant data
required to provide protection for each CSR element is stored
in the unused bits of the integer index. This approach puts
limits on the matrix size, as when using SED this means that
the matrix can have at most 23! — 1 columns, as bigger index
values cannot be represented (Figure 1 (a)). Similarly when
using SECDED or CRC32C this means that the matrix can
have at most 224 —1 columns (Figures 1 (b) & (c) respectively).

When using CRC32C as the protection method, each row is
protected by a single CRC checksum and since only 8 bits can
be used from each CSR element, each row has to have at least
four non-zero elements; this is not a problem as TeaLeaf has
five non-zero elements per row due to the five-point stencil.

1) Protecting the Row Integer Vector: A similar approach
for protecting the CSR elements can be applied to protecting
the = vector. We note that each element of this 32-bit integer
vector can have a value of at most NNZ, and so we can re-
purpose the most significant bits again by putting constraints
on the size of the matrix.

When using SED, as the Figure 2 (a) shows, the top bit from
each element in the index vector is used to store the parity,
meaning that the matrix can have at most 23! — 1 elements.

In order to use other ECC techniques, more bits from the
integer index vector have to be used. By using the top 4
bits to store the ECC data we can still have 22 — 1 or
~ 268 million elements in the matrix; however, using any
more bits could put too many constraints on the matrix size.
Our other ECC techniques require more than 4 bits to store
the redundancy bits, and therefore these techniques have to
move protect multiple elements at the same time to amortize
the ECC bits over more elements. Our new scheme allows
us to split the redundancy bits between 2, 4 and 8 elements
for SECDED64, SECDED128 or CRC32C respectively. An
example of SECDEDG64 is shown in Figure 2 (b).

2) Less Frequent Correctness Checking: During each time-
step of the solve, the sparse matrix does not change between
the CG iterations. This means that if an error occurs during
an iteration, it will still be there during successive iterations
unless another error occurs in the exactly same location.

By performing the integrity checks every N accesses to the
matrix instead of on every access, we can reduce the cost of
performing these checks with a trade off of having to do up to
N more iterations of CG before the error is detected. When
not performing the ECC checks we still need to make sure
that the indices from the CSR matrix are within the correct
range so that any out of bounds memory access which could
lead to a segmentation fault are avoided. To protect against
these, during the iterations where the integrity check is not
performed a boundary check is done instead. For the values
from the = vector we need to make sure that the values are
less than the total number of non zero elements in the matrix,
and when accessing the y vector, we need to make sure that
the values are less than the number of columns in the matrix.
At the end of each time step we also need to perform an extra
integrity check for the whole matrix just in case N does not
divide the number of iterations performed, to make sure no
errors escape unnoticed.

One drawback of this approach is that we lose the ability
to correct any errors, since any correctable errors that have
been detected during the integrity checks might have been
present during the past N —1 iterations. This suggests that this
approach should only be used with Error Detecting Codes.

B. Protecting Dense Floating Point Vectors

The double precision floating point values do not have any
unused bits due to their format, and so in order to provide ECC
with no storage overheads we choose to store the redundant
data in the least significant bits of the mantissa.

When using SED, the least significant bit in the 64-bit
floating point value’s mantissa is used to store the parity bit,
as shown in Figure 3 (a). More bits need to be used for other
ECC techniques: when using SECDED64, SECDEDI128 and
CRC32C, and splitting the redundant bits across 1, 2 and
4 double precision values respectively (Figure 3), then the
least significant 8, 5 and 8 bits respectively are used to store
these redundant bits. The redundant bits from SECDED128 or
CRC32C have to be split across multiple vector elements in
order to reduce the amount of noise that this storage method
would otherwise introduce into the data. The storage of the
redundant data in the least significant bits poses a risk that
the solver may take longer to converge, or in the worst case,
the solver might fail to converge altogether. Work by Elliott
et al. in [23] showed that solvers can successfully converge
without requiring additional iterations in an event of a single
bit flip, which implies that error detection using SED has no
effect on the accuracy of the solver. To control the level of
noise and bias caused by the storage of redundancy bits in the
floating point values, our framework masks all these bits to 0
whenever a floating point value is used for computation. In our
experiments using SECDED64, SECDEDI128 and CRC32C,
the solver has always converged with the norm of the solution
vector within 2.0 x 10~11% of the expected answer. However,
on some problem sizes the number of iterations increases in
the later time-steps, but the increase in the total number of
iterations was always observed to be less than 1%.



1 Bit 8 Bits

¥ Double bits
31 Bits 64 Bits 24 Bits I Integer bits
M ECC bits
(a) (b)

8 Bits 8 Bits 8 Bits

64 Bits 64 Bits

24 Bits
(c)

24 Bits 24 Bits

64 Bits

64 Bits 64 Bits

24 Bits 32 Bits

Fig. 1. Storing redundant data in unused index bits in sparse matrix elements. Sub-figures (a) and (b) show how SED and Hamming Code (respectively) are
used to protect each CSR element. Sub-figure (¢) demonstrates how our CRC32C checksum is distributed across the whole matrix row.
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Fig. 2. Storing redundant data in unused index bits in the row vector from the
sparse matrix. Sub-figure (a) shows how Parity is used to protect an individual
vector element. Sub-figure (b) shows how the redundant data is distributed
across multiple vector elements.
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Fig. 3. Storing redundant data in the least significant bits of the mantissa.
Sub-figures (a) and (b) show how Parity and Hamming Codes (respectively)
are used to protect an individual vector element. Sub-figure (c) shows how
the redundant data is distributed across multiple vector elements.

C. Read Modify Writes and Caching

Using multiple vector elements to form a codeword raises
problems with access granularity and performance. When
modifying a value in a vector, a potential Read-Modify-Write
(RMW) has to be performed as only part of the codeword
is being modified, and so the unmodified vector elements
need to be read and used to recalculate redundancy bits. This
operation is quite expensive as the read needs to perform
the integrity check on the data currently stored and the write
needs to recalculate the redundancy data, resulting in two ECC
calculations every write. We can remove most of the RMWs
by noticing that when performing calculations at position ¢,
the Sparse Matrix Solve algorithm will then work on the
next element ¢ 4+ 1, meaning that if we buffer the writes we

can commit a whole ECC element to memory in one go,
performing a single integrity calculation per multiple writes.
This approach however requires the algorithm to be adapted so
that the calculations performed are not performed on individual
vector elements, but instead on the whole ECC element at a
time. This approach dramatically reduces the overhead as the
integrity calculation on the read is no longer needed. It also
avoids race conditions in parallel implementations as threads
never write to the same ECC element.

Another issue with these compound ECC elements is that
usually when an element at index ¢ is being read, the element
at index 7@ + 1 is likely to be accessed at the next iteration of
the algorithm. In order to avoid having to recompute the same
integrity check multiple times we buffer each ECC element so
that the neighbouring vector values are readily available.

This buffering of reads removes most of the unnecessary
duplicate integrity checks, except for the accesses in the sparse
matrix-vector product kernel. This is because TealLeaf uses a
five-point stencil, meaning that when calculating the product
at index (4, ), the vector elements at the following indices are
accessed:

e i+ (j—1)xn e i+1+j%n
e i—1+jx%n e i+ (j+1)xn

This access pattern means that at least 3 ECC compound
elements are accessed, and so the buffering scheme for ECC
elements provides no real benefits. To combat this we have
created a caching scheme within the sparse matrix-vector
product kernel that is both multiple ECC element and multi-
iteration aware.

These buffering techniques come with trade offs as although
the performance is improved, our techniques described here
protected the program from bit flips in both main memory and
cache memory. These small caching buffers however might be
subject to bit flips in the cache memory, and since accessing
these buffers does not perform integrity checks, then only the
data stored in the main memory is fully protected.

VII. PERFORMANCE RESULTS

Most of the ABFT techniques we have described provide the
same level of protection as the alternatives commonly found
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in hardware. The exception is our CRC32C technique, which
if used to provide detection rather than correction, can detect
many more bits flips than the ECC hardware that is common
today. We have ported our techniques to different architectures
to measure their relative runtime overheads, and so in this
section we discuss our findings and identify strengths and
weaknesses of these different approaches in order to choose
the most advantageous protection for a given platform.

We performed our experiments on the following platforms:

o The results for Intel Broadwell were obtained using a
dual socket node with 18 Core Intel Xeon CPU E5-2695
v4 CPUs and the Intel Compiler v2017 with OpenMP;

o The results for Cavium ThunderX were obtained using a
dual socket node with 48 Core Cavium ThunderX CPUs
and the ARM HPC Compiler 1.3 with OpenMP;

e The results for the NVIDIA GPUs (K40, GTX 1080 Ti,
P100) were obtained with CUDA 8 and gcc v4.9.4.

We used an input file for TealLeaf with 2,048x2,048 cells,
performing 5 timesteps. All tests were run five times with the
mean time taken.

The Intel Broadwell and NVIDIA P100 platforms provide
hardware ECC which cannot be turned off. The platforms for
the Cavium ThunderX and NVIDIA GTX 1080 Ti consumer
GPU provide no hardware ECC. The NVIDIA K40 HPC GPU
allows the system administrator to turn the hardware ECC on
and off, and so this platform was used to set the target runtime
overhead. The hardware ECC on this GPU incurs a measured
overhead of 8.1% for Tealeaf, due to the fact that TeaLeaf is
a memory bandwidth bound application and this ECC method
requires some of the bandwidth for the redundancy data.

A. CSR Matrix Protection Overheads

The results in Figure 4 present reduced overheads relative to
the techniques shown in [13] and [20]. Our latest results agree
with our previous findings, showing that SED provides good
performance on almost all of the platforms, with the notable
exception of the K40.

The poor results on the NVIDIA K40 for all our ABFT
techniques are due to low occupancy, as the high register count
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Overhead (%)

SED SECDED6&4 SECDED128

ABFT Method
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Fig. 5. Execution time overheads for the ABFT techniques for protecting the
row integer vector used by the CSR format.

required by our software ECC techniques has resulted in a low
number of warps per Streaming Multiprocessors (SMs). These
results have significantly improved with the recent NVIDIA
Pascal architecture GPUs (NVIDIA P100 and GTX 1080 Ti),
where the higher register count resulted in a better utilisation
of the GPU. Our previous research found SECDED to cause
very high overheads, which we considered to be impractical.
However, on the NVIDIA Pascal GPUs these techniques cause
an overhead of less than 1%, which is much more acceptable.
Another promising result is the 1% overhead for CRC32C
on the NVIDIA P100 GPU, significantly lower than all other
platforms we tested. The overheads for SECDED and CRC32C
on other platforms are still quite large, and reducing the cost
of these in software only might not be possible.

The results in Figure 5 show the overheads for the proposed
ABFT techniques to protect the dense integer vector required
by the CSR matrix storage format. Similar to the previous
results, SED incurs little overhead on most platforms. These
results also show there are no benefits of using SECDED128
over SECDED64 for CSR matrix protection as the latter
provides better performance results with higher resiliency.

The different methods of protecting the CSR elements and
the CSR z vector can be mixed together to fully protect the
whole matrix, with the overhead being approximately equal
to the sum of the overheads of the two techniques. These
findings are promising as we are able to protect the whole CSR
matrix with minimal overhead. For example, when protecting
the whole matrix with SED or SECDED(64), we add less than
2% runtime overhead on both NVIDIA GTX 1080 Ti and
P100. Using hardware accelerated CRC32C we are also able to
protect the whole matrix with a 30% runtime overhead on the
Intel Broadwell platform, showing how instruction set support
can aid the ABFT techniques.

As previously described, the overheads for protecting the
CSR matrix can be further reduced by performing the in-
tegrity checks less frequently, i.e. not on every iteration. In
Figure 6 we can see that at first performing the checks every
other iteration proves beneficial for SED on Intel Broadwell,
however performing even less frequent checks gives no further
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Fig. 6. Runtime overheads of protecting the whole CSR matrix on Intel
Broadwell with SED with different check intervals, measured in iterations.
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Fig. 7. Runtime overheads of protecting the whole CSR matrix on Cavium
ThunderX with Hamming Codes (SECDED64) with different check intervals,
measured in iterations.

benefit. This overhead comes from the range checks for the
index values in the CSR matrix which prevent segmentation
faults, which introduce a fixed cost of some extra branching.
We can similarly reduce overheads of other combinations of
ABFT techniques on Intel Broadwell, however none of them
achieve below a 4% runtime overhead.

Figure 7 shows the overhead of protecting the CSR matrix
using SECDED on the Cavium ThunderX platform. The trend
shows a similar pattern to the results for Intel Broadwell,
where the less frequent checks can be used to reduce the
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Fig. 8. Runtime overheads of protecting the whole CSR matrix on NVIDIA
GTX 1080 Ti with CRC32C with different check intervals, measured in
iterations.
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Fig. 9. Runtime overheads for the ABFT techniques for protecting the dense
double precision floating point vectors.

overheads down to just 9%, after which most of the overhead
comes from performing range checking. Figure 8 shows that
by performing these checks only every 128 iterations of the
CG solve, we are able to reduce the overhead of protection
using CRC32C on the consumer GPU from 88% to just 1%,
demonstrating how successful this method can be.

B. Dense Floating Point Vector Protection Overheads

We expected the overheads for protecting the dense double
precision vectors to be much greater than the overheads for
protecting just the CSR matrix. This was because the matrix
is not modified during the time step and it is only accessed
by one kernel to calculate the sparse matrix-vector product.

The results in Figure 9 show the runtime overheads of
our techniques for fully protecting all of the double precision
floating point vectors in TeaLeaf. By choosing to protect the
vectors using SED, we incur an overhead of between 4%
and 32%, depending on the platform, showing that minimal
mechanism for protection against SDC can be efficiently
implemented in software. The NVIDIA GPUs have also shown
very good performance for SECDED64, with overheads of just
12% and 9% for the GTX 1080 Ti and P100 respectively.

By combining these results with the previous findings for
protecting the CSR matrix, we have been able to demonstrate
a software based ECC scheme which fully protects the matrix
and the double precision floating point vectors using SECDED
with an overhead of approximately 11%, getting close to our
8.1% target. At the same time, we can choose protection
schemes which can detect a greater number of bit flips than
current hardware, an ability which might be increasingly
important as we grow towards Exascale supercomputers.

VIII. DISCUSSION AND CONCLUSIONS

In this paper we have demonstrated efficient ABFT tech-
niques to fully protect the data stored by a sparse matrix
solver from bit-flips by leveraging our knowledge about the
application, something that hardware ECC alone cannot do.

Our software-based ECC approach has proved successful,
as we have been able to protect all the data with a runtime
overhead as low as 11% on some of the platforms, while



providing a similar level of resiliency to current hardware.
Our techniques demonstrate a clear advantage over current
hardware ECC and Chipkill approaches, as ours require no
extra storage or DRAM devices. We are also able to detect
a much larger number of bit flips than current hardware.
Our proposed solutions have been able to protect the data
stored by the sparse matrix solver on devices which do not
provide hardware ECC, such as consumer GPUs. Being able
to turn off ECC in hardware could therefore be an advantage
in future Exascale systems, especially if the dedicated memory
and bandwidth could then be given to the application instead.
These ABFT methods also allow the program to decide what
should happen in the event of an uncorrectable error, as the
CG solve might be able to continue due to its iterative nature,
without the need for checkpoint-restart, whereas the hardware
alternative would always issue an error.

However, we have not yet been able to achieve low runtime
overheads on all of the platforms which were tested. These
techniques also require modifications to the code, which
ideally would be implemented at the library level, in packages
such as PETSc (https://www.mcs.anl.gov/petsc/) or Trilinos
(https://trilinos.org/), which we hope to explore in future work.

We have shown that hardware accelerated CRC32C cal-
culations were an improvement over software-only solutions,
demonstrating that instruction set design can help with achiev-
ing better performance, and that combining software and hard-
ware methods to protect against SDCs might prove beneficial.

To conclude, we have shown that sparse matrix solvers can
be efficiently protected using ABFT techniques that utilise
software ECC at no extra cost in terms of memory storage, sav-
ing memory bandwidth which was previously required to move
the explicitly stored redundant ECC data. We have shown that
understanding the data access patterns, such as the five-point
stencils in TealLeaf, can be beneficial to the performance of
the resilience techniques. We have also shown that software
techniques can provide a higher degree of protection from bit
flips than current hardware approaches, and if some trade-
offs on how quickly errors are detected can be made, these
techniques can be applied with runtime overheads as low as
4% on CPUs and 1% on GPUs.
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