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ABSTRACT  19 

The snake pipefish, Entelurus aequoreus, is a widespread marine species occurring in pelagic 20 

and coastal environments in the northeastern Atlantic Ocean. Recently, the snake pipefish 21 

underwent a short-lived, yet substantial, increase in abundance and range expansion into 22 

arctic waters. However, little is known about the species’ population structure or if different 23 

ecotypes contributed to this outbreak. Specimens (n=178) were sampled from 25 locations 24 

from six regions spanning 1.9 million km2. A fragment of the mitochondrial cytochrome b 25 

gene and control region was used to assess population structure and genetic diversity. Both 26 

loci showed high haplotype diversity (Hd) and low nucleotide diversity (π) over all sampled 27 

locations. A genetic signature of population expansion was evident through mismatch 28 

distributions and tests for recent population expansion (Fu’s Fs, Tajima’s D, and R2). 29 

Effective population size analyses (Bayesian Skyline Plot) suggest an ancient expansion (50-30 

100 thousand years ago). However, we found neither significant population differentiation 31 

(AMOVA) among regions, nor evidence of genetically distinct ecotypes. This lack of 32 

structure is likely due to a pelagic life style, fast development and long distance dispersal 33 

aided by ocean currents. Our work highlights the need for further research to better 34 

understand the recent outbreak and how this species may respond to future environmental 35 

challenges.  36 

Keywords: Bayesian Skyline Plot, control region, cytochrome b, fish, life history, 37 

mitochondrial DNA, pelagic, population increase, population structure, range expansion 38 
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 Introduction 39 

 The introduction of molecular techniques to the study of species distributions has 40 

greatly improved our knowledge regarding species’ evolutionary history. Current genetic 41 

tools allow scientists to assess historical species distribution patterns, gene flow between 42 

populations, the identification of source populations, routes and patterns of invasion, and 43 

timing of range shifts, expansions as well as contractions (Hewitt, 1999; Schmitt, 2007; 44 

Moran & Alexander, 2014). For example, the assessment of levels of gene flow and genetic 45 

diversity between geographically separate populations is of particular interest for 46 

conservation practises because it can facilitate the identification of genetically independent 47 

populations or units, and guide conservation efforts (e.g., Bernard, Feldheim, Heithaus et al., 48 

2016). These studies highlight the importance of linking genetic data with species historical 49 

and geographical information to make biologically relevant interpretations. The discipline of 50 

phylogeography does exactly that by looking at geographical patterns of genetic diversity 51 

across populations or species over time (Avise, 2000).  52 

In this study, we investigate the phylogeography of the snake pipefish, Entelurus 53 

aequoreus L. 1758. This species is a member of the family Syngnathidae, the pipefishes, 54 

seahorses and seadragons, a group characterized by its unique form of reproduction, male 55 

pregnancy (Dawson, 1986). Life history traits appear to shape the past and present 56 

geographical distributions of syngnathids (Mobley, Small & Jones, 2011). Syngnathids tend 57 

to be poor swimmers with small fins and armoured bodies, and most are strict habitat 58 

specialists, relying heavily on crypsis for survival (Vincent, Berglund & Ahnesjö, 1995). All 59 

species in this family produce free-living juveniles (Hasse, 1974; Mi, Kornienko & Drozdov, 60 

1998; Monteiro, Almada & Vieira, 2003; Wetzel & Wourms, 2004) with short (Wilson & 61 

Vincent, 1998; Planas, Blanco, Chamorro et al., 2012) or entirely absent pelagic dispersal 62 

phases (Silva, Monteiro, Almada et al., 2006; Silva, Monteiro, Vieira et al., 2006). Having a 63 



4 
 

short pelagic dispersal phase is known to significantly limit dispersal potential (Grantham, 64 

Eckert & Shanks, 2003). Among adults, limited seasonal vertical migrations can occur, with 65 

individuals of some species coming into warmer shallow waters for mating, and returning to 66 

deeper waters at the end of breeding season or during brooding (Vincent et al., 1995; 67 

Monteiro, Berglund, Vieira et al., 2006).  68 

Previous studies on syngnathids have generally revealed relatively high genetic 69 

diversity and high population structuring, indicative of large effective population sizes and 70 

low dispersal ability (reviewed in Mobley et al., 2011). Most northern-hemisphere temperate 71 

syngnathid species show evidence of population expansions towards northern regions after 72 

the end of the last glaciation period  (circa 20 thousand years before present (ka); Woodall, 73 

Koldewey, Santos et al., 2009; Mobley, Small, Jue et al., 2010; Wilson & Eigenmann 74 

Veraguth, 2010; Woodall, Koldewey, Boehm et al., 2015) following similar northerly 75 

expansion of suitable habitat, i.e., seagrass meadows (Olsen, Stam, Coyer et al., 2004). Yet, 76 

their strong habitat dependency and limited dispersal capability is also reflected in their 77 

current geographical distributions that generally show high levels of population 78 

differentiation on relatively small geographical scales (e.g. Lourie, Green & Vincent, 2005; 79 

Wilson, Stiller & Rouse, 2016; Stiller, Wilson, Donnellan et al., 2017) and strong indications 80 

of limited dispersal (e.g. Chenoweth, Hughes & Connolly, 2002; reviewed in Mobley et al., 81 

2011; Wilson & Orr, 2011). Exceptions to these patterns have been interpreted as a result of 82 

recent colonization events (Nickel & Cursons, 2012), assumed to occur via rafting, where 83 

individuals drift with floating marine vegetation on ocean currents (Teske, Hamilton, Palsbøll 84 

et al., 2005; Fedrizzi, Stiassny, Boehm et al., 2015).  85 

From a phylogeographical perspective, the snake pipefish is an interesting species to 86 

study because of its wide geographic distribution, recent range expansion into polar waters, 87 

and dramatic fluctuations in abundance. Historically, this species inhabits a vast geographical 88 
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range in the temperate northeastern Atlantic, spanning from the European continental shelf to 89 

the west, southern Norway and Iceland in the north, to the Azores in the south and the Baltic 90 

Sea to the east (Dawson, 1986). Normally, the species is encountered throughout its range at 91 

low densities (Harris, Beare, Toresen et al., 2007). However, between 2003 and 2007 the 92 

snake pipefish reappeared in large numbers in coastal areas where it had for decades been 93 

considered rare (e.g. northern Wadden Sea, Polte & Buschbaum, 2008), including brackish 94 

estuarine waters (e.g. the Severn Estuary, Henderson & Bird, 2010). During this time, the 95 

snake pipefish was caught in numbers several orders of magnitude higher than in catches 96 

prior to 2003 (Kloppmann & Ulleweit, 2007; van Damme & Couperus, 2008). The snake 97 

pipefish also underwent a geographical range expansion into the Barents and Greenland Seas 98 

by 2005 (Harris et al., 2007; Rusyaev, Dolgov & Karamushko, 2007) and the first ever 99 

records of occurrence in Svalbard were reported by August 2006, representing a 15o 100 

latitudinal expansion northwards (approximately 1650km, Fleischer, Schaber & Piepenburg, 101 

2007). After 2007, populations of the snake pipefish declined dramatically and returned to 102 

low levels of abundance throughout its geographic range (Heath, Neat, Pinnegar et al., 2012). 103 

There is anecdotal evidence that this species has undergone mass mortality events off the 104 

European continental shelf in the Atlantic Ocean in 1885, 1887, and in the North Sea in 1911, 105 

although no satisfactory explanation for these events exists (Brongersma-Sanders, 1957). It is 106 

possible that these mass mortality events are an indication of previous population increases in 107 

snake pipefish abundance although data to corroborate this link are currently lacking.  108 

The snake pipefish is also an interesting species to investigate phylogeographically 109 

because of its unique life history traits. Unlike most other syngnathids that are predominantly 110 

associated with benthic habitats, the snake pipefish is described primarily as an oceanic 111 

species displaying a pelagic lifestyle and is found in both coastal and oceanic waters to 112 

depths up to 100m (Dawson, 1986; Kloppmann & Ulleweit, 2007). Because this species does 113 
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not require benthic habitats to reproduce they may breed in open waters and offspring as well 114 

as adults may be transported and mixed by ocean currents.  115 

Finally, the potential for cryptic species to contribute to the temporary population 116 

increase and range expansion of the snake pipefish has not yet been addressed. Previously, 117 

two species have been proposed for E. aequoreus over the years based on differences in body 118 

size, colour, position of the dorsal fin and in number of rays (Yarrel, 1839; Moreau, 1881; 119 

Fries, Ekström & Sundevall, 1895; Holt & Byrne, 1906; Dunker, 1915). However, these two 120 

species are currently not recognized (Dawson, 1986). Additional lines of investigation have 121 

suggested coastal and oceanic habitat-specific phenotypes, or ‘ecotypes’, based on 122 

morphology (van Damme & Couperus, 2008) or timing of breeding between coastal benthic 123 

populations (summer) and oceanic pelagic populations (spring) (Kloppmann & Ulleweit, 124 

2007). Thus, the potential for ecotypes or cryptic species to exist within E. aequoreus needs 125 

to be resolved with molecular markers.  126 

In this study, we investigate phylogeographic patterns in the snake pipefish 127 

throughout its contemporary distribution. Our specific goals are to assess population structure 128 

and historical patterns of population expansion over the geographical range of the snake 129 

pipefish. Further, we investigate whether molecular data support proposed coastal benthic 130 

and pelagic ecotypes or cryptic species. To achieve these goals, we used mitochondrial DNA 131 

(mtDNA, cytochrome b and control region) markers to investigate genetic differentiation and 132 

genetic variation in snake pipefish from 25 locations among six geographical regions 133 

spanning over 1.9 million km2 of their range in the Northeastern Atlantic Ocean.  134 

Materials and methods 135 

Collections 136 
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A total of 237 snake pipefish were collected from 25 locations in the Northeastern 137 

Atlantic Ocean between 2003 and 2010 using a variety of capture methods (Table 1, Fig. 1, 138 

Supplementary file S1). We assigned samples to regions based on conventional naming 139 

schemes of local water bodies or coastal areas. These regions correspond to regions defined 140 

by the OSPAR Commission (Region I: Arctic Waters = Norwegian Sea; Region II: Greater 141 

North Sea = North Sea; Region III Celtic Seas = Continental Shelf; Region IV Bay of Biscay 142 

and Iberian Coast = Spanish Coast) with the exception that Skagerrak/Kattegat were analysed 143 

separately from the North Sea due to the potential influence of the Baltic Sea, and the French 144 

Coast was analysed separately as it lies on the boundary of North Sea and Celtic Seas 145 

regions.  146 

DNA was extracted from a small piece of tail tissue (~1cm) using a Qiagen DNeasy 147 

kit from live, frozen or EtOH preserved fish. A portion of the mitochondrial cytochrome b 148 

gene and control region was amplified. We used primers L14725 (Pääbo, Thomas, Whitfield 149 

et al., 1991) and H15926 (Wilson, Vincent, Ahnesjö et al., 2001) to amplify the cytochrome 150 

b locus, and primers L15926 (Kocher, K., Meyer et al., 1989) and H16498 (Meyer, Kocher, 151 

Basasibwaki et al., 1990) to amplify the control region. Fragments were amplified via 152 

polymerase chain reaction (PCR) in 30µl volumes containing 3µl of 10X buffer, 1.8 µl of 153 

dNTPs (10µM of each dNTP), 3 µl of MgCl2 (50mM), 1.5 µl of each primer (10µM), and 0.5 154 

µl of Taq (5 units/µl; InviTaq, Stratech Biomedical, Birkenfeld, DE). The PCR thermal 155 

profile consisted of an initial denaturation at 95°C (2 min), followed by 35 cycles of 94°C (30 156 

sec), reannealing temperature (30 sec), 72°C (90 sec), and a final extension at 72°C for 10 157 

min. Reannealing temperature for cytochrome b was 48°C and control region was 56°C. PCR 158 

products were purified before sequencing with Illustra™ ExoStar (GE Healthcare, 159 

Buckinghamshire, UK) using 5μl of PCR product and 2μl of ExoStar. PCR products were 160 
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sequenced with the forward and reverse primers using an ABI 3100 DNA Analyzer (Applied 161 

Biosystems, Foster City, CA, USA). 162 

 Contigs were created using forward and reverse sequences using CODONCODE 163 

ALIGNER v. 5.1.5 (Codon Code Corporation, Centerville, MA, USA) for each individual 164 

and aligned for each locus using MUSCLE (Edgar, 2004). Sequences were verified by eye 165 

and trimmed. Unique haplotype sequences were identified using ‘DNA to haplotype collapser 166 

and converter‘ in FaBox v. 1.41 (http://birc.au.dk/fabox) and deposited in GenBank 167 

(accession numbers #: cytochrome b, KY857646 - KY857823; control region, KY965149 - 168 

KY965308).  169 

Genetic analyses 170 

Relationships between mitochondrial haplotypes were analysed for each locus 171 

independently to assess whether population structuring exists among the six regions 172 

combined over all time periods. Standard haplotype (h) and nucleotide (π) diversity statistics 173 

(Nei, 1987) were calculated for each region using DNASP 5.10.01 (Librado & Rozas, 2009). 174 

Mismatch distributions were investigated in both loci independently, and evidence for recent 175 

population expansion was tested using Tajima’s D test (Tajima, 1989), Fu’s Fs test (Fu, 1997) 176 

and the Ramos-Onsins and Rozas’s R2 statistic (Ramos-Onsins & Rozas, 2002), 177 

recommended for small sample sizes (Ramírez-Soriano, Ramos-Onsins, Rozas et al., 2008). 178 

Tajima’s D, Fs and R2 were calculated using the total number of mutations, excluding sites 179 

with alignment gaps or missing data, and significance was ascertained using coalescent 180 

simulations with 1000 replicates as implemented by DNASP. Population expansion under the 181 

constant size growth model was used to estimate R2. 182 

 To visualize the relationship between mitochondrial haplotypes from different 183 

regions, a haplotype network was constructed using HAPLOVIEWER (Salzburger, Ewing & 184 

http://birc.au.dk/fabox
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von Haeseler, 2011) based on maximum likelihood trees drawn in DNAML in PHYLIP 185 

v3.695 (Felsenstein, 1989) for both loci independently. To test for significant population 186 

subdivision among individual collections, we conducted pairwise ɸST tests for cytochrome b 187 

and control region sequences using ARLEQUIN v3.5.2.1 (Excoffier, Smouse & Quattro, 188 

1992; Excoffier, Laval & Schneider, 2005). Significance for pairwise differences was 189 

ascertained using an exact test with 100,000 permutations. An Analysis of Molecular 190 

Variance (AMOVA) was used to test the proportion of genetic differentiation within and 191 

between regions using ARLEQUIN for both loci independently pooled across years. 192 

AMOVA was also used to test whether there is support for genetic differentiation between 193 

pelagic and coastal benthic populations. Only locations with a minimum of five sequenced 194 

individuals were included in pairwise ɸST and AMOVA analyses, except for the three 195 

Norwegian Sea individuals that were included in the cytochrome b dataset since they 196 

represented a unique location. Significance of AMOVAs was determined using 99,999 197 

permutations as implemented in ARLEQUIN. 198 

 We analysed the potential for fluctuations in effective population size using Bayesian 199 

Skyline Plot (BSP, Drummond, Rambaut, Shapiro et al., 2005), a coalescent-based method 200 

implemented in BEAST 1.8.4 (Drummond & Rambaut, 2007). We first estimated the best-fit 201 

model of nucleotide substitution for each gene using JModelTest 2.0 (Darriba, Taboada, 202 

Doallo et al., 2012) on all samples. We selected the best-fit models according to the Bayesian 203 

Information Criterion, which were HKY+I+G and HKY+I for cytochrome b and the control 204 

region, respectively. We then ran the BSP analysis on the concatenation of the two 205 

mitochondrial loci using samples that successfully amplified both cytochrome b and the 206 

control region (n=140) using specific substitution models and mutation rates for each 207 

partition. We chose a mutation rate of 1x10-8 substitutions per nucleotide site per year for 208 

cytochrome b and 5x10-8 substitutions per nucleotide site per year for the control region 209 
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based on recommendations by Bowen, Muss, Rocha et al. (2006) and Mobley et al. (2010) 210 

assuming a constant mutation rate. We assumed a generation time of one generation per year 211 

based on unimodal distributions of body size in juveniles caught in plankton tows (Kirby, 212 

Johns & Lindley, 2006). Adults collected within a year show a bimodal distribution in body 213 

size but this may be accounted for by sexual dimorphism in body length (van Damme & 214 

Couperus, 2008) also suggesting one reproductive cycle per year. 215 

The BSP analysis consisted of 1x108 generations; parameters were sampled every 216 

10,000 generations of which 10% was discarded as burn-in. In order to check the analysis 217 

performance (i.e., the convergence of parameters by visually checking the effective sample 218 

size (ESS>200) values), we used TRACER 1.6 (Rambaut, Suchard, Xie et al., 2014).   219 

Ethical statement 220 

The present study was conducted in accordance to local and European Union law and no 221 

permit was needed for collecting fish. The study did not involve any endangered or protected 222 

species. 223 

 224 

Results 225 

Molecular diversity 226 

We resolved 900 bp of the cytochrome b gene from 178 snake pipefish from a large 227 

portion of their range. Cytochrome b yielded 94 unique haplotypes (Hd = 0.967 ± 0.006 S.D.) 228 

and 82 polymorphic sites (π = 0.0050 ± 0.0002 S.D., Table 2).  229 

Sequence analyses of 385 bp of the control region locus in 160 snake pipefish 230 

revealed variation in a dinucleotide microsatellite repeat in the control region at site 287. 231 
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Most sequences contained [TA]10 but [TA]9 occurred at a low frequency (0.16) and was 232 

present in all geographical regions analysed except the Norwegian Sea samples that failed to 233 

amplify at this locus (Table 1). Inclusion of a mitochondrial microsatellite is problematic for 234 

several reasons (Lunt, Whipple & Hyman, 1998). For example, microsatellites generally have 235 

much higher mutation rates (in terms of the gain or loss of a repeat) than nucleotide 236 

substitutions, and mutation rates in general are unknown for mitochondrial microsatellites 237 

(Sia, Butler, Dominska et al., 2000) and for this microsatellite in particular. Moreover, we did 238 

not determine if heteroplasmy, or the coexistence of nonidentical mtDNA molecules in the 239 

same individual, is occurring in this species. Heteroplasmy is common in species that have 240 

microsatellites in mtDNA in the AT-rich or control region causing difficulties for population 241 

genetics analyses (Lunt et al., 1998; Mayer & Kerth, 2005). Additionally, length variation in 242 

the microsatellite can be considered a gap or missing data and thus may be inappropriate for 243 

some analyses (Yang & Rannala, 2012). Therefore, we excluded the variable repeat from all 244 

analyses, and we resolved 383 bps of the control region resulting in 63 unique haplotypes (Hd 245 

= 0.893 ± 0.015 S.D.) and 43 polymorphic sites (π = 0.0054 ± 0.0003 S.D., Table 2).  246 

Population structure  247 

A maximum likelihood haplotype network constructed for cytochrome b showed four 248 

major (n ≥ 10) haplotypes (Fig. 2a). However, these haplotypes were comprised of 249 

representative individuals from most regions such that no genetic clustering could be 250 

discerned. For the control region, a maximum likelihood haplotype network also showed four 251 

major haplotypes and individuals from all populations were represented in these major 252 

haplotypes (Fig. 3). Overall, haplotype networks showed a star-like topology with high 253 

numbers of low-frequency mutations representative of a recent population expansion.  254 
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 Pairwise ɸST values ranged from -0.119 to 0.212 with a mean of -0.009 for 255 

cytochrome b, and ranged from -0.290 to 0.242 with a mean of -0.030 for the control region 256 

(Appendix S1). No significant differences between pairs of collections were detected after 257 

Bonferroni adjustment to correct for multiple comparisons (Rice, 1989). An AMOVA among 258 

collections within regions pooled across years indicated no significant population structuring 259 

(ɸST) for either cytochrome b or the control region (Table 3, Appendix S1). Finally, no 260 

evidence for genetically distinct ecotypes or cryptic species was found when investigating 261 

individuals captured in nearshore benthic habitats versus pelagic captures (Table 3). In all 262 

AMOVA comparisons, the variance explained by among groups and among collections 263 

within groups was negligible in comparison to the variance within collections (Table 3).  264 

Population expansion  265 

Significant values of Fu’s Fs, Tajima’s D, and Ramos-Onsins and Rozas’s R2 found in 266 

cytochrome b sequences, with the exception of the Spanish coast collection, support a 267 

scenario of recent population expansion when samples were pooled within locations and 268 

sampling times (Table 2). The control region, on the other hand, showed significant Fs 269 

values, but only Continental shelf and French Coast collections showed significant departures 270 

from neutrality in Tajima’s D and R2 tests (Table 2). When collections were pooled across all 271 

location and sampling times, both the cytochrome b and control region showed highly 272 

significant Fs, D and R2 values indicating recent population expansion was apparent (Table 273 

2). Mismatch distributions were unimodal and failed to reject the hypothesis of the sudden 274 

expansion model (Appendix S1). 275 

Bayesian Skyline Plot analysis with concatenated cytochrome b and control region 276 

sequences revealed that snake pipefish experienced a historical effective population size 277 

expansion starting about 100ka and obtaining current effective population sizes around 50ka 278 
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(Fig. 3). Individual effective population size analyses showed expansions approximately 279 

125ka for cytochrome b and 40ka for control region sequences (Appendix S1).  280 

Discussion 281 

Our study provides insight into the phylogeographic history of the snake pipefish, a 282 

widely distributed syngnathid species in the northeastern Atlantic with a pelagic lifestyle. 283 

Results from molecular analyses did not reveal any clear patterns in population structure by 284 

regions, despite relatively high haplotype diversity estimates. However, we did uncover a 285 

signature of a Pleistocene population expansion in the northeastern Atlantic approximately 286 

50-100ka. We also did not find any evidence for genetically distinct coastal or pelagic 287 

ecotypes or cryptic species, indicating that differences in phenotype are likely due to 288 

differences in ecological conditions. Taken together, our results point to a large population of 289 

snake pipefish throughout its contemporary northeastern Atlantic distribution and that such a 290 

high degree of homogenization is likely the result of a combination of specialized/unique life 291 

history traits and mixing by oceanic currents.  292 

Historical phylogeography  293 

The history of the northeastern Atlantic is one of extreme climatic changes, with 294 

multiple glaciation cycles until the late Pleistocene (last interglacial period ~125 ka, last 295 

glacial maximum ~20ka, Mokeddem, McManus & Oppo, 2014). During this period, many 296 

marine species were deeply impacted by glacial activity, which caused large reductions 297 

and/or shifts in suitable habitat (Mäkinen & Merilä, 2008) occasionally leading to precipitous 298 

population declines (Almada, Pereira, Robalo et al., 2008; Boehme, Thompson, Fedak et al., 299 

2012). The subsequent recolonization of the northeastern Atlantic oft times leads to complex 300 

genetic signatures of glacial refugia, range expansions and bottlenecks (e.g. Coyer, Peters, 301 

Stam et al., 2003; Gysels, Hellemans, Pampoulie et al., 2004; Luttikhuizen, Campos, van 302 



14 
 

Bleijswijk et al., 2008; Maggs, Castilho, Foltz et al., 2008; Robalo, Castilho, Francisco et al., 303 

2012).  304 

The current study suggests that the snake pipefish underwent a population expansion 305 

in the northeastern Atlantic Ocean approximately 50-100ka during the Pleistocene. This 306 

scenario is supported by a star-like network topology, mismatch distribution analyses and an 307 

increase in effective population size indicating a recent expansion and/or a short evolutionary 308 

history of the species in the northeastern Atlantic Ocean (Grant & Bowen, 1998). Several 309 

other species show limited geographic partitioning and a sudden population expansion much 310 

earlier than the last glacial maximum similar to the snake pipefish. For example, the time of 311 

population expansion in the snake pipefish as estimated by BSP is similar to that for Atlantic 312 

Cod (Gadus morhua) which shows population expansion ~60ka in the northeastern Atlantic 313 

based on mismatch distributions of the mitogenome (Carr & Marshall, 2008). Other species 314 

that show signatures of population expansion predating the last glacial maximum include 315 

pelagic migrating species such as Atlantic bluefin tuna Thunnus thynnus (Bremer, Viñas, 316 

Mejuto et al., 2005) and the European anchovy, Engradulis encrasicolus (Silva, Horne & 317 

Castilho, 2014). In contrast, other sympatric nearshore species of syngnathids closely 318 

associated with seagrass habitats show more recent recolonization of the northeastern 319 

Atlantic (15-36ka) based on coalescence analysis (Wilson & Eigenmann Veraguth, 2010). 320 

Thus, it appears that pelagic species show a reduced influence of Pleistocene glacial cycles in 321 

the northeastern Atlantic. 322 

Our estimates of expansion time are likely conservative, given that mutation rates are 323 

time dependent and are higher in younger lineages (Ho, Phillips, Cooper et al., 2005; Ho, 324 

Lanfear, Bromham et al., 2011; Crandall, Sbrocco, DeBoer et al., 2012; Grant, 2015). It is 325 

therefore possible that time since expansion is more recent than estimated from BSP. It is also 326 

probable that the differences in mutation rates chosen for cytochrome b and the control region 327 
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contribute to the discrepancy between individual locus estimates of expansion time and may 328 

have led to a more gradual expansion time using the concatenated loci as compared to 329 

individual loci (Appendix S1). Fluctuations in drift, in population size, selection, and 330 

reproductive skew may also influence divergence times (Burridge, Craw, Fletcher et al., 331 

2008; Grant, 2015; Niwa, Nashida & Yanagimoto, 2016). Finally, results of the BSP do not 332 

show recent (i.e., 10ka) fluctuations in effective population size although the probability of 333 

mtDNA markers capturing these phenomena is extremely unlikely.  334 

Population structure 335 

Population structuring over a large geographical range was not evident in this species 336 

from ɸST and AMOVA results. These results mirror those reported for several Atlantic fish 337 

species where high mobility and/or high dispersal potential are highlighted as causes for little 338 

or no population sub-structuring (Nesbo, Rueness, Iversen et al., 2000; Dannewitz, Maes, 339 

Johansson et al., 2005; Carr & Marshall, 2008; Limborg, Hanel, Debes et al., 2012). Our 340 

results suggest that despite having relatively low swimming ability, the snake pipefish is 341 

capable of dispersing over long distances, likely aided by a pelagic lifestyle and faster 342 

development rates relative to other northeastern Atlantic syngnathid species (Braga 343 

Goncalves, Ahnesjö & Kvarnemo, 2016). A similar pattern has been described in the non-344 

migratory, demersal marine fish, Sebastes schegelii, where the association of larvae and 345 

juveniles with rafting precludes population genetic differentiation throughout its geographical 346 

range (Zhang, Yanagimoto, Zhang et al., 2016). These results provide a stark contrast with 347 

several species of syngnathid that show population substructure over large spatial scales 348 

using mitochondrial markers (Lourie & Vincent, 2004; Lourie et al., 2005; Teske et al., 2005; 349 

Mobley et al., 2010; Wilson & Eigenmann Veraguth, 2010; Wilson et al., 2016).  350 

Greater resolution of population sub-structuring in snake pipefish could potentially be 351 

provided by additional nuclear markers. However, attempts to design microsatellite markers 352 
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for this species have not yet yielded sufficient numbers of polymorphic microsatellites to 353 

conduct such analyses (KB Mobley, I Braga Goncalves, unpublished data). Future studies 354 

that benefit from combined mtDNA and nuclear markers may reveal additional insights into 355 

the phylogeography of this species including resolution of the time since population 356 

expansion and estimate gene flow within the species. 357 

Range expansion 358 

Although a significant number of snake pipefish were caught in polar regions during 359 

the population increase in 2003-2007, they may have originated in the southern Norwegian 360 

Sea and drifted to these locations in ocean currents (Nesbo et al., 2000; Luttikhuizen et al., 361 

2008). In our study, we obtained only a few samples in polar waters from the Norwegian Sea 362 

in 2008. Haplotypes obtained from these samples were not distinct from southern populations 363 

suggesting that they are derived from the same large Atlantic gene pool. Due to the low 364 

abundance of snake pipefish after the population increase in north Atlantic waters (Heath et 365 

al., 2012), future surveys should investigate whether or not these fish continue to inhabit 366 

polar regions representing a true range expansion or whether these were just transient 367 

individuals that rafted northward on ocean currents during the 2003-2007 outbreak. 368 

Cryptic species 369 

Previous studies have documented phenotypic differences between snake pipefish 370 

collected in coastal and oceanic areas (Holt & Byrne, 1906; Zhang et al., 2016). Based on 371 

these differences, two species have been proposed previously, E. aequoreus found in oceanic 372 

waters and E. anguineus found in inshore habitats (Yarrel, 1839; Moreau, 1881), although E. 373 

anguineus is not currently recognized as a valid species (Dawson, 1985). These oceanic and 374 

coastal ‘ecotypes’ were recently described and a third potential intermediate ecotype that 375 

shares phenotypic similarities with both coastal and oceanic forms has been proposed (van 376 

Damme & Couperus, 2008). Despite differences in coloration and body condition, van 377 
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Damme and Couperus (2008) found no differences in ring and fin ray counts between 378 

perceived ecotypes in either sex and therefore concluded that all specimens belong to a single 379 

species. Based on mitochondrial haplotype frequencies, we also find no support that oceanic 380 

pelagic and benthic coastal ecotypes of snake pipefish collected in these habitats are different 381 

species. Instead, the snake pipefish appears to form a single species in the northeastern 382 

Atlantic and phenotypic plasticity in response to local ecological conditions encountered is 383 

the most probable explanation for the presence of multiple ecotypes. 384 

 385 

Conservation concerns 386 

According to the International Union for Conservation and Nature red list, E. 387 

aequoreus is evaluated as least concern (IUCN, 2017). Despite this listing, the sudden and 388 

substantial population increase in snake pipefish, although short lived, had a dramatic effect 389 

on the ecology of the northeastern Atlantic during the outbreak, and therefore warrants 390 

special mention. The significant increase in the numbers of snake pipefish in European waters 391 

was paralleled by a similar increase in the number of pipefish fed by parents to seabird 392 

nestlings in several species around the UK, Norway, Iceland, and the Faroe Islands 393 

(Luttikhuizen et al., 2008; Anderson, Evans, Potts et al., 2014). The hard exoskeleton and 394 

relatively low nutritional content of the snake pipefish (Harris, Newell, Daunt et al., 2008) 395 

make them unsuitable for consumption by nestlings and adults alike, and their increased use 396 

as food items was associated with seabird breeding failures in the UK (Mavor, Parsons, 397 

Heubeck et al., 2005; Mavor, Parsons, Heubeck et al., 2006; Luttikhuizen et al., 2008).  398 

Despite the ecological significance of this species, the cause of the recent population 399 

increase of the snake pipefish still remains unknown, as does its subsequent decline (Heath et 400 

al., 2012). Several non-mutually exclusive hypotheses have been put forward to explain its 401 
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population increase and expansion, namely: 1) a rise in surface seawater temperatures 402 

promoting longer breeding seasons and higher recruitment (Kirby et al., 2006; Gremillet & 403 

Boulinier, 2009; Neumann, Ehrich & Kroncke, 2009; Anderson et al., 2014), 2) a by-product 404 

of tracking changing and/or shifting plankton communities (van Damme & Couperus, 2008), 405 

3) promoted by the establishment of invasive algal species such as the Japanese seaweed, 406 

Sargassum muticum, that increased the amount of suitable habitat for successful reproduction 407 

in the coastal regions (Gysels et al., 2004) and, 4) a result of decreasing population size of 408 

interspecific competitors such as Lesser Sandeels (Ammodytes marinus) due to fishing and 409 

climate change (Heath et al., 2012; Anderson et al., 2014). Yet, there is no conclusive 410 

evidence to explain the sudden expansion.  411 

The increase in snake pipefish potentially started in one source spot on the continental 412 

shelf and dispersed over the entire northeastern Atlantic. Interestingly, the increase and 413 

expansion in the pelagic environment itself can be seen as a strategy of the species to 414 

colonize new suitable habitats. However, expansions of the same magnitude appear to be 415 

very rare: there are indications that a similar population increase took place at the end of the 416 

nineteenth century (Brongersma-Sanders, 1957; van Damme & Couperus, 2008). Climate 417 

change is expected to change ocean currents which, together with higher sea surface 418 

temperatures, will affect larval import, export and recruitment, leading to faster development, 419 

shorter larval stages and dispersal into new habitats (Kendall, Poti & Karnauskas, 2016). 420 

Improving our understanding of snake pipefish reproductive biology, habitat, feeding 421 

ecology, and dispersal potential is a critical next step to help pinpoint how current and future 422 

changes in climate and in prey distributions in the northeastern Atlantic may potentiate 423 

further population increases, which in turn may affect community structure.  424 

Conclusions 425 
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Understanding species’ current distribution patterns and historical demography is a 426 

fundamental goal in evolutionary biology. Our study contributes to this goal by investigating 427 

phylogeographic patterns in a species that has undergone a sudden population increase and 428 

range expansion that had a negative impact on the ecosystem of the northeastern Atlantic. 429 

Although the cause for the recent population increase and range expansion and contraction 430 

are still unknown, the phylogeographic patterns uncovered in our study demonstrate that the 431 

snake pipefish represents a single large population with no evidence of population sub-432 

structuring. This result, in contrast to all other syngnathids studied to date, may be explained 433 

by the pelagic lifestyle and poor swimming capabilities of the species, allowing individuals to 434 

be transported long distances by ocean currents. Our study adds to the understanding of this 435 

ecologically important species and future studies should incorporate a wider range of genetic 436 

markers to investigate population demographics, particularly concerning the recent 437 

population increase.  438 
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Table 1. Entelurus aequoreus collections. Region of collection, number of individuals collected (n), year collected, location, collection 750 

abbreviation (AB), habitat, latitude, longitude, the number of individuals amplifiable at the cytochrome b locus (ncytb) and control region locus 751 

(nCR), and presence of the microsatellite repeat [TA]9 in the control region are listed.  752 

Region n Year Location AB Habitat Latitude  Longitude  ncytb nCR 
[TA]

9 

Continental Shelf  5 2005 Atlantic Ocean CS1 pelagic 51°45'0.61"N 11°45'0.61"W 3 5 0 

 2 2005 Atlantic Ocean CS2 pelagic 56°10'2.39"N 9°47'4.81"W 2 1 0 

 9 2005 Atlantic Ocean CS3 pelagic 50°45'0.00"N 11° 7'0.01"W 8 7 2 

 15 2005 Atlantic Ocean CS4 pelagic 51°15'1.80"N 13°42'1.80"W 14 13 3 

 10 2007 Atlantic Ocean CS5 pelagic 49°8'15.99"N 10°22'48"W 10 5 1 

 23 2010 Atlantic Ocean CS6 pelagic 51°52'42.60"N 13° 8'3.01"W 22 21 3 

Spanish Coast 10 2007 Galacia, ES SC coastal  42°15'N 8°52'W 10 8 1 

North Sea  3 2005 North Sea  NS01 pelagic 57°48'34.99"N 0°52'50.70"W 3 1 0 

 5 2005 North Sea   NS02 pelagic 57°52'7.14"N 3°14'54.06"W 5 2 2 

 5 2005 North Sea  NS03 pelagic 57°44'55.03"N 1°21'28.26"W 5 2 0 

 1 2005 North Sea  NS04 pelagic 58°10'10.99"N 0°33'42.23"W 1 1 0 

 10 2005 North Sea   NS05 pelagic 58°10'37.27"N 3°10'12.00"W 10 7 5 

 8 2007 North Sea  NS06 pelagic 56°21'38.99"N 2° 4'58.19"W 8 8 1 

 2 2007 North Sea  NS07 pelagic 56° 7'34.21"N 3°28'3.00"E 2 2 0 

 7 2007 North Sea  NS08 pelagic 53°28'53.40"N 0°54'54.00"E 7 7 1 

 1 2007 North Sea  NS09 pelagic 55°36'16.20"N 2°46'31.19"E 1 1 0 

 1 2007 North Sea  NS10 pelagic 55°53'26.41"N 4°15'45.61"E 1 1 0 

 6 2007 North Sea  NS11 pelagic 56°45'29.41"N 1°33'30.60"W 6 5 0 

 6 2007 North Sea  NS12 pelagic 55°23'28.79"N 1°34'34.79"E 6 6 0 

Skagerrak/Katteg

at  
2 2003 Kølpen/Deget, DK SK1 coastal  57°27'17.66"N 10°35'53.61"E 2 2 0 

 1 2004 Dronningmølle, DK SK2 coastal  56° 6'6.07"N 12°24'34.77"E 1 1 0 

 9 2005 Gåsö, SE SK3 coastal  58°14'23.32"N 11°22'44.86"E 7 0 -- 
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 351 2006 Gåsö, SE SK4 coastal  58°14'23.32"N 11°22'44.86"E 20 19 2 

Norwegian Sea  1 2008 Norwegian Sea  NOR1 pelagic 68°15'40.02"N 4° 7'45.00"E 0 0 -- 

 5 2008 Norwegian Sea  NOR2 pelagic 68°15'24.66"N 0°31'45.36"W 3 0 -- 

French Coast  552 2010 Bay de Roscoff, FR FC coastal  48°42'13.75"N 3°55'11.67"W 21 35 4 

Total 
23

7 
      178 160 25 

 1A subset of 20 individuals was extracted. 2A subset of 35 individuals was extracted.  753 
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Table 2. Genetic diversity indices and tests of neutrality pooled across years in regions for Cytochrome b (900 bp) and control region (383 bp 754 

with microsatellite removed) loci. Number of individuals sequenced (n), number of unique haplotypes (H), haplotype diversity (Hd, ± S.D.), 755 

nucleotide diversity (π, ± S.D.), Tajima’s D (D), Fu’s Fs (Fs), and Ramos-Onsins and Rozas’s R2 (R2) test are given. Asterisks denote significant 756 

departures from neutrality: P<0.05 = *, P<0.01 = **, P<0.001***). 757 

 Cytochrome b     Control region     

Region n H Hd π 
D 

Fs R2  n H Hd π 
D 

Fs R2 

Continental Shelf 59 41 0.972 

(0.011) 

0.0049 

(0.0004) 

-1.97** -41.267*** 0.038***  52 25 0.919  

(0.022) 

0.0052 

(0.0004) 

-2.04*** -76.50*** 0.037*** 

Spanish Coast 10 7 0.911 
(0.077) 

0.0059 
(0.0008) 

-0.53 -0.89 0.127  8 6 0.929 
(0.084) 

0.0053 
(0.0011) 

0.25 -2.58* 0.023 

North Sea 55 36 0.962 

(0.015) 

0.0048 

(0.0004) 

-1.82** -31.99*** 0.045***  43 24 0.942 

(0.020) 

0.0072 

(0.0006) 

-1.31 -19.64*** 0.068 

Skagarrak/Kattegat 30 22 0.968 

(0.019) 

0.0049 

(0.0005) 

-1.50* -14.72*** 0.063**  22 12 0.905 

(0.044) 

0.0064 

(0.0009) 

-1.27 -5.76*** 0.079 

Norwegian Sea 3 3 1.000 
(0.272) 

0.0030 
(0.0009) 

-- -- --  0 -- -- -- -- -- -- 

French Coast 21 19 0.986 

(0.022) 

0.0055 

(0.0006) 

-1.48* -14.32*** 0.069**  35 21 0.943 

(0.024) 

0.0074 

(0.0009) 

-1.70* -16.11*** 0.062* 

Pooled 178 94 0.967 

(0.006) 

0.0050 

(0.0002) 

-2.22*** -133.75*** 0.025***  160 63 0.893 

(0.015) 

0.0054 

(0.0003) 

-2.29*** -76.50*** 0.025** 
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Table 3. Analysis of molecular variance (AMOVA) of Entelurus aequoreus based on 900 bp of mtDNA cytochrome b (Cytb) sequence and 383 758 

bp of mtDNA control region (CR) sequence (microsatellite at position 287 excluded). The percent variation (% var), and P value are listed for 759 

among groups (ɸCT), among collections within groups (ɸSC) and within collections ɸST. AMOVAs were conducted with all collections within 760 

regions (regions) and all collections pooled within habitat (coastal vs. pelagic).  761 

 762 

 763 

 764 

 765 

  Among groups  Among collections within 

groups 

 Within collections 

  % var ɸCT P value  % var ɸSC P value  ɸST P value 

All populations  Cytb 0.11 0.0011 0.4534  -0.62 -0.0062 0.5535  -0.0051 0.6189 

 CR 3.76 0.0376 0.0603  -3.11 -0.0324 0.9151  0.0065 0.4495 

            

Habitat Cytb -0.52 -0.0052 0.7534  -0.28 -0.0028 0.4951  -0.0080 0.6165 

 CR 2.82 0.0282 0.0937  -1.48 -0.0152 0.8135  0.0135 0.4472 
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Figure Legends 766 

Fig. 1. Sampling locations for Entelurus aequoreus in the northeastern Atlantic Ocean. 767 

Predominant ocean currents are shown in grey (after OSPAR, 2010). See Table 1 for sample 768 

information and abbreviations.  769 

Fig. 2. Maximum likelihood networks for Entelurus aequoreus pooled over years for a) 770 

mtDNA cytochrome b sequences (900bp) and b) mtDNA control region sequences with 771 

microsatellite at position 287 removed (383bp). Each circle represents a haplotype and its 772 

size is proportional to its total frequency. Colors correspond to regions (see Table 1 and text 773 

for descriptions). Black crossbars represent a single nucleotide mutation and filled in circles 774 

represent reconstructed haplotypes not sampled.  775 

Fig. 3. Bayesian Skyline Plot (BSP) showing changes in effective population size through 776 

time (thousand years before present, ka). Dashed line represents the median posterior 777 

estimate of the effective population size. The grey area delimited by continuous black lines 778 

shows the 95% highest posterior density limits.   779 


