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ABSTRACT
Variations in atmospheric circulation across the last deglaciation 

in the northernmost monsoon-influenced regions of Asia are not well 
constrained, highlighting a fundamental gap in our understanding 
of Asian climate. Here we reconstruct continental air temperatures 
for northeast China across the last deglaciation (past 16 k.y.), based 
on the distribution of bacterial branched glycerol dialkyl glycerol 
tetraethers in a sequence of the Hani peat (Jilin Province, northeast 
China). Our results indicate large (as much as 10 °C) oscillations in 
temperature in northeast China across the deglaciation, oscillations 
significantly larger than observed in other temperature records from 
low-latitude or same-latitude East Asia, but consistent with climate 
model simulations. This enhanced magnitude, as well as the timing 
of temperature variations, provides evidence for atmospheric tele-
connections with high latitudes; in particular, we suggest that high-
latitude cooling associated with Arctic ice expansion and changes in 
Atlantic Meridional Overturning Circulation enhanced the intensity 
and lowered the temperature of Eurasian mid-latitude westerlies and 
northwesterly winds over East Asia during the last glacial, delivering 
cold air masses to northeast China. During the deglaciation the west-
erlies and therefore delivery of cold air masses weakened, amplifying 
the deglacial warming in this region. We conclude that changes in 
North Atlantic climate had a particularly strong impact on the north-
ernmost parts of the East Asian monsoon–influenced area.

INTRODUCTION
Variations of the East Asian monsoon (EAM) systems over the last 

deglaciation are largely based on terrestrial records (An et al., 2012; 
Wang et al., 2001). The nature and locations of most of these records 
mean that they are largely restricted to summer monsoon precipitation 
reconstructions, and temperature records are scarce (Peterse et al., 2014), 
especially for continental monsoon areas. The northernmost monsoon-
influenced regions are likely to be particularly sensitive recorders of wider 
climate variations, given the interactions of the EAM and the wester-
lies (Nagashima et al., 2011). However, climate records are limited to 
a small number of paleoecological and paleohydrological records from 
peat deposits and maar lake sediments (Zhou et al., 2010; Schettler et al., 
2006). Thus, variations in atmospheric circulation across the deglaciation 
in this region are not as well understood as other parts of the EAM area.

Peat deposits are widespread in northeast China, offering the potential 
to reconstruct climate. Previous studies from peat sequences in northeast 
China documented wet conditions during the deglacial (Zhou et al., 2010). 

Although peat cellulose δ18O records from the Hani peat have been used 
to qualitatively reconstruct temperature changes since the deglaciation 
(Hong et al., 2009), quantitative temperature records from this region are 
lacking. Such records are critical for interrogating models of Asian climate 
change. For example, proxy evidence has suggested that the westerlies 
were stronger during the last glacial (Nagashima et al., 2011); if so, that 
would have amplified these cold periods in northeast China relative to 
temperature changes observed in other EAM regions, including the Loess 
Plateau and Lake Suigetsu in Japan (Nakagawa et al., 2005; Peterse et al., 
2014). Therefore, development of robust temperature records from north-
east China and a comparison with those from other areas, and particularly 
more southern Asian sites not as strongly influenced by the westerlies, 
would allow changes in atmospheric circulation patterns and the extent 
of monsoon influence to be deciphered.

Here we apply to the northeast China Hani peat sequence a recently 
developed peat-specific proxy for mean annual air temperature (MAATpeat) 
(Naafs et al., 2017) based on the distribution of bacterial branched glycerol 
dialkyl glycerol tetraethers (brGDGTs) (Sinninghe Damsté et al., 2000). 
This provides an exceptional opportunity to develop new temperature 
records and test the aforementioned hypotheses. The Hani peat sequence 
(42°13′N, 126°31′E; Fig. 1) spans the past 16 k.y., allowing us to directly 
evaluate the magnitude of regional terrestrial air temperature changes 
across the deglaciation. The sampling resolution of ~100–200 yr allows 
us to also examine millennial-scale events.

METHODS
An 885 cm peat sequence was obtained using a peat corer. The core was 

14C dated by accelerator mass spectroscopy (AMS; 10 samples between 48 
and 880 cm depth), with ages obtained using Bayesian age-depth modeling 
software Bacon (Blaauw and Christen, 2011). The model demonstrated 
that the core spans the past 16,000 calibrated years (Table DR1 and Fig. 
DR1 in the GSA Data Repository1). Freeze-dried, homogenized samples 
were extracted using the method of Zheng et al. (2014). The total lipid 
extracts were base hydrolyzed in 1M KOH/MeOH (5% H2O in volume) at 
80 °C for 2 h; the solution was then extracted with n-hexane. The extract 
was separated into apolar and polar fractions using silica gel flash column 
chromatography with n-hexane and MeOH as eluents, respectively. Half 
of the polar fraction was filtered through 0.45 μm polytetrafluoroethylene 

1 GSA Data Repository item 2017353, Table DR1 and Figure DR1 (results 
of AMS 14C dating), and Figure DR2 (temperature series based on the data and 
simulation), is available online at http://www.geosociety.org/datarepository/2017/ 
or on request from editing@geosociety.org.*E-mail: zhengnwu@163.com
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syringe filters and dried. The brGDGT analysis followed the procedure 
of Yang et al. (2015; see the Data Repository).

Based on the global peat calibration of Naafs et al. (2017), Hani peat 
temperatures range from −5.5 to 12.5 °C, with a mean value of 7 °C. The 
instrumental MAAT over the past 60 yr ranges from 3.8 to 7.4 °C in the 
region (data from http://data.cma.cn/), in agreement with the MAATpeat 
reconstructions for 3 surface peats from the Hani peatland: 5.5 °C, 3.5 °C, 
and 3.7 °C. Despite that similarity, it is important to note that this is one 
of the first applications of this proxy to reconstruct past MAAT.

RESULTS
The Hani MAATpeat record reveals that air temperatures in the area 

varied markedly over the past 16 k.y. (Fig. 2A). We note that variations 
in the MAATpeat record do not coincide with the peat cellulose δ18O tem-
perature record from the same setting (Fig. 2B); this might be due to the 
mixed signal of precipitation and temperature recorded by the latter (Hong 
et al., 2009, and references therein).

Temperatures obtained using our approach varied between −5.5 and 
3 °C (±4.7 °C) during the Oldest Dryas (OD, ca.16.2–14.5 ka), i.e., 2–10 °C 
cooler than the modern values. The lowest temperature occurred at 15.8 ka 
during the peak of the OD. Higher temperatures (~1–3 °C) from ca. 15.2 
to 14.5 ka appear to correspond to pre–Bølling-Allerød (B/A) warming 
or late Heinrich 1 warming, as recorded in the mid-latitude North Atlantic 
(Naafs et al., 2013). During the B/A, from 14.5 to 12.6 ka temperatures 
were higher, varying between 4 °C and 8 °C. Temperatures then decreased 
by 2–3 °C during the Younger Dryas (YD) to values of ~5 °C. From 11.5 
to 10.7 ka, corresponding to the Preboreal event, MAATpeat indicates even 
higher values, from 7.0 to 12 °C. MAATpeat continued to vary during 
the Holocene. From 10.7 to 6.0 ka, temperatures rose stepwise, with 2 
cool events at 10.6–10.2 and 8.6 ka, before reaching maximum values of 

~11 °C during the early Holocene from 8.0 to 6.0 ka. Following the early 
Holocene, temperatures at Hani gradually decreased to values of ~5 °C, 
close to the observed temperature at Hani across the past 60 yr (4–7.5 °C).

DISCUSSION AND CONCLUSIONS
MAATpeat variations at Hani are large and it is possible that MAATpeat 

has heretofore unknown complications resulting in overestimates of tem-
perature variation. The root mean square error for the entire calibration 

data set is relatively large, 4.7 °C (similar to that of other GDGT-based 
temperature proxies), but at least some of the variables that likely exert 
secondary controls, such as vegetation type, appear not to have changed 
significantly in the Hani sequence. Consequently, we consider the MAAT 
record to be robust, but acknowledge the issues associated with the appli-
cation of new proxies.

Our temperature record from the Hani core is the only one available 
from northeast China. The closest available temperature record across 
the deglaciation is from the pollen data set at Lake Suigetsu, more than 
1000 km away and located on the coast of the Sea of Japan in a different 
climatic zone (Fig. 1). The magnitude of deglacial temperature change 
at Hani (>10 ± 4.7 °C) is much larger than the pollen-based mean annual 
temperature change of 3–5 ± 2 °C between stadial and interstadial phases 
recorded at Lake Suigetsu (Nakagawa et al., 2005) (Fig. 2C). It is also 
larger than the 5–7 ± 5 °C warming recorded in the distal (>2000 km from 
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Figure 1. Location of the Hani peat in northeast China and other sites 
in the East Asian monsoon (EAM) region: 1—Lake Qinghai, 2—Gulang 
loess, 3—Jingyuan loess, 4—Yuanbao loess, 5—Lantian loess, 6—
Mangshan loess, 7—marine sediment core MD01–2407, 8—Lake 
Suigetsu, 9—Dajiuhu peat. EASM—East Asian summer monsoon, 
EAWM—East Asian winter monsoon, WJ—Westerly jet.

Figure 2. Temperature variations over the last deglaciation in the 
Hani peat region (Jilin Province, northeast China) and other areas. A: 
Peat-specific proxy for mean annual air temperature (MAATpeat) based 
temperatures in Hani region. B: δ18O temperature proxy from Hani 
peat cellulose (Hong et al., 2009). C: Mean annual temperatures (TAnn) 
derived from pollen records in Lake Suigetsu (Nakagawa et al., 2005). 
D: MAAT derived from branched glycerol dialkyl glycerol tetraethers in 
Mangshan loess (Peterse et al., 2014). E: MAAT derived from Lantian 
loess (Gao et al., 2012). F: MAAT derived from Yuanbao loess (Jia et 
al., 2013). G: δ18O-based North Greenland Ice Core Project (NGRIP) 
temperatures (Cuffey and Clow, 1997; Andersen et al., 2006). PB—Pre-
boreal, YD—Younger Dryas, B/A—Bølling-Allerød, OD—Oldest Dryas.
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the Hani peat) Loess Plateau Mangshan sequence (Peterse et al., 2014), 
Lantian loess (Gao et al., 2012), and Yuanbao loess (Jia et al., 2013), based 
on brGDGTs (Figs. 1 and 2D–2F), although these are lower resolution 
records and based on outdated analytical methods and calibrations that 
might underestimate the extent of temperature change (De Jonge et al., 
2014). The Hani temperature variation is also larger than the temperature 
change suggested by the pollen record from the Dajiuhu peat, located 
much farther to the south (Zhu et al., 2008; Fig. 1). These results indicate 
that the Hani peat region provides a unique deglacial temperature record 
compared to that recorded at other sites in Asia.

A relatively small deglacial temperature change is suggested by the 
Northern Hemisphere temperature stacks, which generally yield last gla-
cial temperatures 3–4 °C lower than those of the Holocene (Shakun et 
al., 2012). However, sea-surface temperature reconstructions from differ-
ent ocean basins suggest that the magnitude of warming is lower at low 
latitudes (1–3 °C) in comparison to higher latitudes (3–6 °C; Clark et al., 
2012). Large temperature differences between the last deglaciation and 
the Holocene were restricted to the high-latitude ocean (~7–12 °C) and 
over Greenland (~13–19 °C) (Fig. 2G; Waelbroeck et al., 2001; Cuffey 
and Clow, 1997; Andersen et al., 2006). Therefore, compared with the 
low-mid latitude oceans and other EAM regions, the reconstructed tem-
perature change at Hani is large, but it is similar to changes recorded at 
high northern latitudes.

The abrupt transitions at the beginning and end of the YD observed at 
Hani are similar to those recorded in the ice core records (Figs. 2A, 2G). 
Although the B/A is associated with an inferred intensification of the 
summer monsoon in cave records (Wang et al., 2001), these records do 
not exhibit the same rapid transitions. Moreover, a remarkable Preboreal 
event observed in North Greenland Ice Core Project (NGRIP) cores (ca. 
11.5–10 ka) (Fig. 2G) is also apparent in the Hani record (ca. 11.5–10.7 
ka), but absent in Chinese speleothem records. The millennial temperature 
oscillations observed in North Atlantic deglacial records are also apparent 
in the Hani temperature record but missing in the lower resolution records 
from Mangshan and Lantian on the southern Loess Plateau, Yuanbao on 
the western edge of the Loess Plateau (Fig. 2), and Jingyuan on the north-
western Chinese Loess Plateau (Fig. 1; Sun et al., 2012). The absence of 
these millennial temperature variations in the loess records could arise 
either from signal smoothing or dilution due to how the geochemical 
signatures are generated in the loess (Peterse et al., 2014), or to the lower 
resolution and discontinuity of loess sequences (Porter and An, 1995).

The Hani record appears to document enhanced temperature change, 
compared to other Asian regions, over the past 16 k.y. This is generally 
consistent with temperature changes simulated using the National Center 
for Atmospheric Research Community Climate System Model version 3 
(CCSM3) (Liu et al., 2009) that reveal a dramatic increase of 5–8 °C from 
the OD to the Preboreal (Fig. 3; Fig. DR2), similar to the temperature 
change of 6–10 °C suggested by the proxy data. The simulated spatial 
pattern of temperature change (Fig. 3) indicates that the OD to Preboreal 
MAAT change in northeast China was larger than in other regions, con-
sistent with the proxy data.

Because vegetation appears to have been stable in the Hani sequence, 
we conclude that vegetation cover and surface albedo had a negligible 
role in amplifying temperature change. Instead, we mainly ascribe the 
large and abrupt temperature changes recorded in the Hani peat across the 
deglaciation to changes in the delivery of cold air from the high-latitude 
North Atlantic to northeast China. Other sites from Asia also record these 
changes, but the effect appears to be amplified at Hani, the only record 
from northeast China. Based on the fact that the Hani peat record also 
exhibits a particularly strong response to millennial events (i.e., B/A and 
YD), we ascribe the differences between it and other Asian sites to par-
ticularly strong North Atlantic connections.

Expanded sea ice extent over the North Atlantic (Zhu et al., 2014) 
and the slowing of Atlantic Meridional Overturning Circulation (AMOC) 

during stadial intervals (McManus et al., 2004) likely cooled the high 
latitudes, lowering the temperature of downstream East Asia regions via 
cold air advection. At the same time, severe cooling in the high northern 
latitudes across the Eurasian continent increased the meridional thermal 
gradient between the low and high latitudes and could have intensified 
the mid-latitude westerlies and the East Asian winter monsoon. Stronger 
westerly winds in the upper troposphere and northwesterly winds in the 
lower troposphere that bring more cold air to Asia and northeast China in 
particular could have amplified the cooling at Hani during the last glacial 
compared to other Asian sites. There is supporting evidence from Lake 
Qinghai in the northeastern Tibetan Plateau (An et al., 2012), Central Asia 
(Vandenberghe et al., 2006), and the Chinese Loess Plateau (Porter and An, 
1995; Vandenberghe et al., 2006; Sun et al., 2012) that indicate that the 
westerlies were stronger during the last glacial. Other records from arid 
Central Asia also indicate that the westerlies weakened during the early 
Holocene (Chen et al., 2016). The interplay of the westerlies with mon-
soon systems also could have been important: the last glacial could have 
been characterized by a stronger atmospheric pressure gradient between 
high and low latitudes, which might not only have enhanced the wester-
lies but weakened the East Asian summer monsoon and strengthened the 
East Asian winter monsoon. In addition, a reduction of southerly winds 
due to a weakening of the North Pacific High over the northwest Pacific 
(Meyer and Barr, 2017) might have played a role.

In conclusion, we argue that stronger mid-latitude westerly winds in 
combination with colder Atlantic cold air masses related to Arctic sea 
ice expansion and slowing of AMOC likely led to more cold air being 
transported eastward and caused extremely low temperatures during the 
OD in northeast China, observed in both proxies and CCSM3 simulations. 
Regardless of the primary control, the dramatic variations in the Hani peat 
temperature record provide new and strong evidence for teleconnections 
between northeast China and the North Atlantic on orbital time scales.
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