
                          Elsaied, B. S. F., Daghia, F., Ivanov, D., & Hallett, S. (2018). An iterative
multiscale modelling approach for nonlinear analysis of 3D composites.
International Journal of Solids and Structures, 132-133, 42-58.
https://doi.org/10.1016/j.ijsolstr.2017.08.017

Publisher's PDF, also known as Version of record

License (if available):
CC BY

Link to published version (if available):
10.1016/j.ijsolstr.2017.08.017

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at
https://www.sciencedirect.com/science/article/pii/S0020768317303748 . Please refer to any applicable terms of
use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1016/j.ijsolstr.2017.08.017
https://doi.org/10.1016/j.ijsolstr.2017.08.017
https://research-information.bris.ac.uk/en/publications/an-iterative-multiscale-modelling-approach-for-nonlinear-analysis-of-3d-composites(27649473-995b-435c-b7cc-689f146a33d3).html
https://research-information.bris.ac.uk/en/publications/an-iterative-multiscale-modelling-approach-for-nonlinear-analysis-of-3d-composites(27649473-995b-435c-b7cc-689f146a33d3).html


International Journal of Solids and Structures 132–133 (2018) 42–58 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

An iterative multiscale modelling approach for nonlinear analysis of 

3D composites 

Bassam El Said 

a , ∗, Federica Daghia 

b , Dmitry Ivanov 

a , Stephen R. Hallett a 

a Advanced Composites Centre for Innovation and Science, University of Bristol, Queen’s Building, BS8 1TR, United Kingdom 

b LMT, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France 

a r t i c l e i n f o 

Article history: 

Received 24 November 2016 

Revised 6 August 2017 

Available online 17 August 2017 

Keywords: 

Multi-scale modelling 

Domain decomposition 

3D Woven Composites 

Progressive damage 

a b s t r a c t 

The advent of new more complex classes of strongly heterogeneous materials, such as 3D woven com- 

posites, introduces new challenges for well-established finite element multiscale modelling approaches. 

These materials’ internal architecture dominates the local stress concentrations, damage initiation and 

damage progression. Additionally, the material loses periodicity during manufacture and conventional ho- 

mogenization approaches become inapplicable. In this paper, a multiscale modelling approach based on 

domain decomposition and homogenization is proposed to model the mechanical behaviour of these ma- 

terials. The proposed model formulates a set of displacement and force compatibility conditions between 

the various subdomains. The compatibility conditions are formulated by limiting the set of kinematically 

admissible solutions on the smaller scales in order to satisfy the larger scale basis functions at the inter- 

faces. The different subdomains are solved alongside the compatibility conditions in an iterative process. 

The proposed multiscale framework reduces the stress artefacts on the subdomains’ boundaries. This fea- 

ture allows the 3D woven material internal architecture represented at the smaller scales to control the 

structural response at the global scale. Additionally, this framework allows for selective application of 

nonlinear material models to the subdomains of interest through its ability to redistribute stresses across 

the subdomains boundaries. 

© 2017 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

3D woven composites are manufactured by integrally weaving

multiple 2D layers of fibre reinforcement together with fibre bun-

dles (yarns) in the through-thickness direction. The complete wo-

ven preform is then compacted to the desired thickness and shape.

Next, the preforms are infused using a liquid resin matrix mate-

rial, which is then cured under pressure. Compared to 2D compos-

ites, 3D composites offer enhanced impact resistance, delamination

resistance and energy absorption characteristics ( Guénon et al.,

1989 ). However, the complex nature of the fibre architecture in

these composite materials poses significant challenges to conven-

tional modelling approaches. The internal fibre architecture of a

complex 3D composite structure can be non-periodic and exhibits

extensive features and deformations ( El Said et al., 2014 ). Here

features are defined as unavoidable yarn path deformation in or-

der to conform to the geometry and/or the weave architecture.
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n the other hand, defects are defined as additional deforma-

ion resulting from the manufacturing processes and/or handling

uch as yarn crimp and waviness. Fig. 1 shows a cross-section of

 kinematic simulation of 3D composite forming, demonstrating

he loss of periodicity at the structural scale. Research has shown

hat damage initiation occurs at areas of geometric deformation

n the fibre architecture such as crimp and waviness ( Tan et al.,

0 0 0 ; Mahadik and Hallett, 2011 ). Moreover, it has been observed

hat stress relief mechanisms, such as matrix cracks, act to redis-

ribute the stresses and impact damage progression ( Cox et al.,

994 , 1996 ). Because of these mechanisms, failure strains, stresses

nd damage tolerance in 3D composites can only be predicted by

odelling the interaction of multiple failure events and the mate-

ial internal yarn architecture. 

The process of progressive failure in a 3D woven compos-

te material typically takes place on three different length scales.

he first scale is the micro-scale, which is the scale of the indi-

idual fibres and the surrounding matrix regions. The intermedi-

te scale is usually termed the meso-scale, which is at the scale

f the yarns. The meso-scale is where the weave style is repre-

ented and yarn architectural features are described. Finally, the
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A kinematic simulation showing the loss of periodicity during forming of 3D 

composites. 

Fig. 2. Scale definition and internal material architecture in a 3D woven composite, 

images from physical samples. 

Fig. 3. Overview of the proposed multi-scale modelling approach. 
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Fig. 4. Domain spatial decomposition. 
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acro-scale is where the global structure geometry is defined,

oads are applied and the design criteria such as structural stiff-

ess can be observed. Fig. 2 defines these length scales for a

D woven composite material. A large body of published re-

earch is dedicated to damage modelling in woven composite ma-

erials. A prerequisite to the application of these models is a

etailed knowledge of the stress/strain state across the domain
here damage models are applied. For 3D woven composites, this

tress/strain knowledge cannot be generated using high fidelity fi-

ite element models alone, since the loading and damage pro-

esses occur across multiple length scales. On the other hand,

odelling all the relevant scales in detail would result in pro-

ibitively large models. 

In most conventional composites applications, the three length

cales can be conveniently separated using periodic homogeniza-

ion. Equivalent microscale material properties can be calculated

ased on the knowledge of the fibre properties, matrix proper-

ies and the fibre density in a given Representative Volume El-

ment (RVE). This can be done using either analytical models

 Chamis, 1983, 1984 ) or computational micro-mechanics models

 Arteiro et al., 2015 ; Melro et al., 2013 ; Bai et al., 2015 ). In these

VE models, clusters of individual fibres embedded in a matrix

re modelled under periodic boundary conditions. The clustering

f these fibres is chosen to represent the fibre density at a given

ocation. The microscale equivalent material properties can then be

sed to build a mesoscale RVE which is used to calculate another

et of material properties taking into account the fibre/yarn orien-

ations and stacking sequences ( Lee et al., 2005 ; Koumpias et al.,

014 ; Obert et al., 2014 ; Schneider et al. ; Green et al., 2014 b;

iragoni and Hallett ; Tsukrov et al., 2011 ). Finally, a macroscale

tructural model can be built using the mesoscale equivalent

roperties. This macroscale model takes into consideration the

tructure geometry, the applied loads and boundary conditions.

owever, in 3D woven materials, the loss of periodicity on the

acroscale means that scale separation cannot be attained be-

ween the meso and macro scales. Consequently, more involved

ulti-scale modelling techniques are needed to handle 3D woven

tructures. 

The topic of multiscale modelling of composites has been

idely covered in literature ( Kanouté et al., 2009 ). These mod-

ls can range from simple ones concerned with calculating en-

elopes for the elastic properties of composites ( Hill, 1963 ;

ashin and Shtrikman, 1963 ; Watt, 1979 ) to complex numeri-

al models ( Ladevèze and Lubineau, 2001 ; Ladevèze et al., 2006 ).

onlinear multiscale models can be divided into two main cat-

gories. The first category is homogenization based approaches,

here meso-scale models are used to calculate equivalent mate-

ial properties, which can be later used as the constitutive law

n macro-scale models. Homogenisation based models are intuitive

nd straightforward to implement since the constitutive laws are

ormally built on the mesoscale, independent from the macro-

cale simulation. Composite materials pose a challenge for ho-

ogenisation based models. Progressive damage in composites is

 non-linear phenomenon that is dependent on the stress state.

he key challenge in this case is establishing a link between the

acro-scale and meso-scale models. This link should allow the
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Fig. 5. A schematic of kinematic compatibility conditions at the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Examples of nonconforming meso/macro meshes sharing a common bound- 

ary. 
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macro-stress state to drive the damage on the meso-scale. The

second category of models is based on domain decomposition

techniques. These techniques divide the model into interconnected

regions. Each region or domain can be solved under a different

modelling framework. The main computational benefits come from

the ability to run the expensive nonlinear material models on the

regions of interest rather than the whole structure. 

The question of which multiscale approach to choose is depen-

dent on whether the scale separation hypothesis is reasonable. In

those cases where scale separation is possible, homogenization ap-

proaches are normally the first choice. Several homogenization-

based approaches have been proposed for multiscale modelling

of composite materials mechanical problems ( Kouznetsova et al.,

2002 ; Kami ́nski and Kleiber, 2000 ; Chung and Tamma, 1999 ).

In the case of linear material behaviour, an RVE can be solved

separately from the macro simulation. However, for the case of

nonlinear material behaviour, which is the case for damage in

composites, the mesoscale response becomes dependent on the

macroscale stress state. In such cases, each macroscale integra-

tion point can be assigned a mesoscale RVE under periodic bound-

ary conditions as is the case with FE 2 approaches ( Feyel and

Chaboche, 20 0 0 ; Feyel, 2003 ; Smit et al., 1998 ). The stresses and

forces on the macro-scale are calculated as the volume average

of the stress and forces on the RVE. The boundary conditions

on the RVE are found from the macro-scale solution and ap-

plied to the meso-scale. The feedback loop between the meso

and macro scale is maintained with each FE solver iteration un-

til the simulation is complete. These approaches are quite pow-

erful since they are nonlinear in the true sense. However, the

need for an RVE per integration point results in a computation-

ally expensive simulation. Additionally, the numerical errors in

these methods increase as the RVE size approaches the macro

mesh size, which is the case with 3D woven composites. The

smallest periodic unit in a 3D material is normally few cen-

timetres in size, which approaches the size of the geometric

features of most advanced engineering components. 

Another main category of multi-scale models that are ap-

plicable to composites are the global-local analysis approaches.

These approaches can be used to model specific subdomains of
 e  
 given structures at the meso-scale. Finite Element Tearing and

nterconnecting (FETI) is an important example of such meth-

ds ( Farhat and Roux, 1991 , 1992 ; Farhat and Mandel, 1998 ;

arhat et al., 1998 , 20 0 0 , 20 01 ). In these methods, the problem do-

ain is decomposed into multiple disconnected subdomains. The

ubdomains are then re-connected using a set of Lagrangian mul-

ipliers introduced to enforce compatibility conditions at the in-

erfaces. The Lagrangian equations and the subdomains’ FE prob-

ems can be solved iteratively until the sub domains are in equi-

ibrium under the Lagrangian forces. Additionally, each sub domain

an be meshed separately with different non-conformal meshes

hat leads to further runtime reductions. However, the uncou-

ling of the subdomains in these approaches is based on the de-

omposition of the subdomains’stiffness matrices. Consequently,

hile these approaches can handle linear and geometrically non-

inear problems, material non-linearity can be challenging to

mplement efficiently. 

A different approach to non-linear global/local analysis is to use

n iterative approach to achieve displacement and force compat-

bility at the subdomains’ interfaces ( Gendre et al., 2009 , 2011 ;

hitcomb, 1991 ). Several global/local analysis approaches have

een applied to woven composites ( Woo and Whitcomb, 1996 ).

 key strength of this approach is the ability to start from a lin-

ar solution of the complete structure, which enhances conver-
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Fig. 7. Overview of computational solution strategy for the proposed global/local analysis approach. 

Fig. 8. Example problem domain decomposition and meshing. 
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ence speed. Additionally, these approaches can handle material

onlinearity resulting from damage. However, some of these ap-

roaches are limited to subdomains with compatible meshes,

hich is a serious limitation when modelling materials with

omplex internal architectures. Other approaches decompose the

omain into a set of interlocking sub domains and interfaces.

or each interface between two sub domains a displacement

ompatibility condition and stress compatibility conditions are
pplied ( Ladevèze et al., 2001 , 2010 ). The two compatibility

onditions are achieved simultaneously during the solution pro-

ess. The meso-scale subdomain displacements and forces are re-

ated to the macro quantities on the interface using projector func-

ions. Similar domain decomposition approaches have been ap-

lied to crack propagation in complex structures ( Guidault et al.,

0 07 , 20 08 ) and composite materials ( Daghia and Ladevèze, 2012 ;

erfriden et al., 2009 ). An alternative approach is to employ model
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Fig. 9. An example of iterative solution progress: axial stress contours evolution for each iteration (contour limits have been reduced to better visualize interface disconti- 

nuity). 

Fig. 10. An example of iterative solution progress: average displacement evolution vs iterations. 

Fig. 11. An example of iterative solution progress: average stress evolution vs iterations. 
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Fig. 12. Comparison between multiscale final solution and a full mesoscale model. 

Fig. 13. Hybrid multiscale solver time integration schemes. 
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eduction techniques and global/local analysis to couple a reduced

acroscale model with a mesoscale model undergoing damage

 Kerfriden et al., 2012 ). Thus, focusing the computational cost on

he mesoscale region. 

A limitation for some of the domain decomposition approaches

s the need to impose either a displacement or a force compat-

bility condition, this limitation can lead to stress artefacts on
he sub domain boundaries. For 3D woven composites and other

trongly heterogeneous materials, damage initiation starts from ar-

hitectural features distributed throughout the material. Bound-

ry stress artefacts will distort the damage initiations and pro-

ression, and will result in inaccurate predictions. For 3D wo-

en and other similarly complex heterogeneous materials a dedi-

ated multi-scale modelling approach is therefore needed, which
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Fig. 14. 3D woven composite yarn architecture; (a) kinematic model of 3D woven preform, (b) meso-scale Voxel model showing Yarn and Matrix material (c) Yarn voxels 

only (matrix removed). 

Fig. 15. Homogenization of 3D woven composites, (a) meso scale voxel model (b) Voronoi homogenized model (different colours indicate different yarns). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 16. V-notch shear specimen multi-scale model construction. 
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takes into consideration the complexities associated with 3D

meso-structure. The proposed model needs to minimize stress

artefacts resulting from subdomain connections. Additionally, the

proposed framework should be capable of handling the exception-

ally large finite element models resulting from the discretization

of 3D composite geometries on the meso-scale. Here we start from

the non-intrusive iterative global/local analysis approach proposed

by Gendre et al. (2009 ) and the iterative approach developed by

Daghia and Ladevèze (2012 ) . These approaches will be expanded

to account for non-conformal meshes using displacement compat-

ibility conditions based on the macro-scale basis functions. Addi-

tionally, in order to reduce meso/macro interface stress artefacts

a homogenization technique based on Voronoi tessellation will be

used to create the macro-scale linear models ( El Said et al., 2016 ).

The next sections in this paper are dedicated to presenting this ap-

proach and its application to 3D woven composites. 
. Iterative domain decomposition approach 

.1. Compatibility conditions 

The proposed approach starts by modelling the entire struc-

ure with a homogenised formulation, which will be termed the

acro-model hereafter. The homogenisation approach used in this

ork follows the Voronoi tessellation approach proposed by El Said

t al. (2016 ). In this approach, a volume based Voronoi tessella-

ion is used to smear the matrix regions in a 3D woven composite

hile maintaining the local material orientation. The resulting ho-

ogenised model is fully anisotropic and accurately represents the

tructure’s stiffness response. This homogenized model is solved

nder the global loads and boundary conditions. Once the macro-

cale problem has been solved and the displacement and strain

elds calculated, the highly loaded regions within that model can
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Fig. 17. Hybrid multiscale models applied to 3D woven composites (contour shows resultant shear strain). 

Fig. 18. Stress component acting on the crack surface of the smeared crack model. 
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Fig. 19. Bilinear damage propagation law. 

Fig. 20. A schematic of the open hole tension multiscale model (mesoscale shows 

yarn elements only, for visualisation). 
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e determined with reasonable accuracy. At this stage, the over-

ll stiffness response of the component has been calculated and

he next stage of analysis is to understand the failure envelope of

he structure under investigation. Thus, it becomes necessary to

emodel the highly loaded subdomains using a high fidelity rep-

esentation of the heterogeneities and internal material architec-

ure. These subdomains will replace the equivalent regions in the

acro-model. 

At first glance, this approach appears to be decomposing the

omain in the spatial sense. This spatial division is the philosophy

ehind the global/local analysis approaches reviewed earlier. How-

ver, the efficiency of the proposed approach can be enhanced by

ugmenting the modelling approach with key elements from ho-

ogenization techniques. This is achieved by using a homogenised

odel to solve the elastic loading phase. Additionally, the ho-

ogenised solution is also used as the initial condition for the

igh-fidelity model in the global/local analysis. Besides the spatial

ecomposition, the system response will be divided into homoge-

ized and high fidelity solutions. For the subdomains modelled as

acro-scale, the proposed approach will be primarily concerned

ith calculating stiffness and displacement response. The external

oads and boundary conditions will be applied on the macroscale

odel. In addition, at this scale the structural design criteria can

e assessed. For the mesoscale subdomains, the material internal

rchitecture will be described in details and the stress/strain state

bserved. Additionally, at this fine scale the material failure can be

redicted. Fig. 3 shows an overview of the proposed multi-scale

pproach. 

The main component of the proposed modelling approach is

he connection between the meso and macro scale subdomains.

onsider a heterogeneous body � under a given set of loads and

oundary conditions acting on its surface. The domain can be di-

ided into two sub domains �1 and �2 separated by a common

oundary ∂�12 ( Fig. 4 ). If the sub domain �1 is meshed using a

oarse mesh and the subdomain �2 is meshed in a fine mesh, �2 

an be solved as mesoscale while �1 can be solved as macroscale

homogenised). By applying this decomposition, the stress and

train distribution in the � domain can be predicted at the scale
2 
f individual yarns and damage models applied. At the same time,

he stiffness response of �1 is represented in the meso-model.

he incompatibility of displacements / forces on the boundaries

an lead to artificial stress concentrations at the interface. For 3D

oven composites and other strongly heterogeneous materials, the

tress concentrations resulting from the internal architecture are

istributed across the problem domain. Moreover, significant stress

edistribution is associated with the progressive damage develop-

ent. Consequently, the interfacial stresses will dominate the dam-

ge initiation and progression. 

Purely descending approaches will not capture the effect of the

eso-model during the macro-model computation since the two

odels are solved sequentially and only once. In a descending ap-

roach, one quantity, either displacement or force, is imposed from

he macro-model onto the meso-model. The dual quantity (for ex-

mple, the force in the case of a displacement formulation) will

ot be continuous. In order to make these quantities continuous, a

ual condition is needed which can be written as a residual. This

ual condition can then be solved in an iterative process, thus sat-

sfying both conditions simultaneously ensuring force and displace-

ent continuity. To avoid these errors, a combined displacement
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/ force formulation for the connection between the two scales is

proposed in this work. This proposed approach employs an itera-

tive scheme to relieve the artificial stresses resulting from the di-

rect coupling of the two domains. 

In the case of non-conforming meshes, the number of degrees

of freedom on the meso/macro interface do not match. Conse-

quently, a choice has to be made about which quantities should

be continuous locally everywhere and which quantities should be

continuous only on average. The work by Guidault et al. (2007 )

has investigated the issue of errors arising from mesh discontinu-

ities for displacement and force based formulations. In particular,

imposing the macro displacement completely might result in over

constraining the meso degrees of freedom on the interface. From

this point of view, the choice of completely connecting the meso

nodes to the macro displacement, which is the option retained in

the present work, is not optimal. However, this approach offers a

pragmatic solution to the problem of domain decomposition in 3D

woven composites where the internal architecture is continuous

across the domain interfaces. 

In the proposed approach, two compatibility conditions are as-

sembled and enforced on the sub domains interfaces. First, a dis-

placement compatibility condition is formulated, which establishes

a relation between the displacements at the macro and meso

scale interfaces. The proposed displacement condition is assembled

based on the macro subdomain ( �1 ) finite elements’ shape func-

tions. This approach is applicable as long as the following condi-

tions are satisfied: 

d �1 
≥ d �2 

(1)

where d �1 
and d �2 

are the average element size in the domains

�1 and �2 , respectively. Consequently, �1 will be considered as the

macro domain as long as it is represented by a coarser mesh, re-

gardless of the actual domain size. Next, the set of kinematically

admissible solutions of subdomain �2 will be limited to the set of

solutions that fit the solution of �1 on the boundary ∂�12 . The

two subdomains are connected by enforcing the macroscale shape

functions at the interface between the two subdomains.. Examples

of non-conforming meshes on the interface are shown in Fig. 5 . For

the displacement of node n 1 to be constrained to the macro ele-

ment edge N 3 − N 4 , n 1 displacement has to satisfy the macroscale

element shape function. The displacement of the meso-scale node

n 1 can be interpolated as follows: 

u n 1 = A 1 ( η) U N1 + A 2 ( η) U N2 + A 3 ( η) U N3 + A 4 ( η) U N4 

Here A 1 ( η) to A 4 ( η) are the shape functions associated with

each macro node in the quadrilateral macro element, u n 1 is the

nodal displacement of the relevant meso-node and U Ni are the

macro-nodes’ displacements. The shape functions are computed at

the point n 1 ( η), which corresponds to the meso-node coordinates

described in the macro-element intrinsic coordinates system. For a

general 3D macro element with M nodes, the meso-node displace-

ment can be written as: 

u j ( η) = 

i = M ∑ 

i =1 

A i ( η) U i 

Alternatively, for all nodes on the interface ∂�12 : 

u ∂ �12 
= A U ∂ �12 

(2)

where A is a l × M coefficient matrix for an interface with l

meso-nodes and M macro-nodes. The compatibility condition pro-

vided by Eq. (2) establishes a relation between the meso and

macro displacement. Since, this compatibility condition links meso

and macro nodes it is independent from the macro/meso elements’

relations. Fig. 5 shows three different arrangements between macro

and meso models. Each of these arrangements can be handled by

the proposed approach. Fig. 6 shows a schematic of feasible and
nfeasible meso-scale boundary conditions based on the kinemat-

cs of the macro mesh. 

A similar compatibility condition is needed to connect the

acro and meso interfacial forces acting between the two sub-

omains. This condition can be developed by enforcing a force

alance at the sub domains’ interface using projection of the

esoscale forces. In this approach, the meso-scale nodal forces are

rojected on the macro interface elements using, once again, the

acro-scale shape functions. For instance, the contribution of the

eso-scale nodal force from node n 1 in Fig. 6 to the macro-scale

odal forces is given by: 

 

n 1 
N1 = A 1 ( η) f n 1 

 

n 1 
N2 = A 2 ( η) f n 1 

 

n 1 
N3 = A 3 ( η) f n 1 

 

n 1 
N4 = A 4 ( η) f n 1 

here A 1 ( η) to A 4 ( η) have been previously defined, f n 1 is the

eso-scale force applied to n 1 and F n 1 
Ni 

are the contributions of f n 1 
rojected on the macro-scale nodal forces F Ni . Summation of the

ontributions of all meso-scale nodal forces yields the relation be-

ween the macro-scale and meso-scale nodal forces over the whole

nterface ∂�12 : 

 ∂ �12 
= A 

T f ∂ �12 
(3)

where F ∂�12 
is the global force vector acting on the macro-scale

nterface, f ∂�12 
is the global force vector acting on meso-scale in-

erface and A 

T is the transpose of the coefficient matrix A described

or the displacement boundary conditions. The meso-scale nodal

orce on the boundary is calculated by integrating the stresses on

he interfacial elements in similar manner to assembling an inter-

al force vector. 

Additionally, it can be shown that the proposed projection sat-

sfies the work equivalence at the macro/meso interface. The work

n the meso-domain boundary is given by: 

 

W meso ] ∂ �12 
= 

[
f T u 

]
∂ �12 

= 

[
f T A U 

]
∂ �12 

Similarly, the macro domain boundary is given by: 

 

W macro ] ∂ �12 
= 

[
F T U 

]
∂ �12 

= 

[ (
A 

T f 
)T 

U 

] 
∂ �12 

= 

[
f T A U 

]
∂ �12 

Once the two conditions are assembled, Eqs. (2) and (3) couple

he sub-domains without selecting a force based or displacement

ased formulation. Hence, the problem has been divided into two

ub domains, with associated compatibility conditions. 

.2. Computational strategy 

The main goal of the proposed computational strategy is to

olve the multiple domains under given loads and boundary con-

itions, whilst satisfying the compatibility conditions given by

qs. (2) and (3) . The complete system is non-linear and cannot

e solved directly using linear equation solvers. Here we pro-

ose an iterative scheme to solve this non-linear system. An ini-

ial homogenised model of the complete problem is built. This ho-

ogenised model is then solved to locate the highly stressed ar-

as in the structure. Once these highly stressed regions are lo-

ated, these regions are remodelled using the mesoscale formula-

ion and a fine mesh. Next, the compatibility conditions are assem-

led for the macro and meso-scale models. Then, the macro-scale

hape functions are used to assemble the coefficients matrix A . The

eso-scale subdomain is solved as boundary value problem under
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Fig. 21. Binder yarn transverse cracking damage index ( D mc ) at different loading stages, blue undamaged materials and red is fully damaged. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 22. 3D Woven open hole tension simulation: average stress evolution with time. 
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he displacements calculated from the full macro-scale solution us-

ng Eq. (2) . Next, a new set of interfacial forces from the meso-

odel can be extracted and projected on the macro boundary us-

ng Eq. (3) . A residual force vector for iteration n can be calculated

y comparing the change in the macro/meso interface forces: 

 

R 
∂ �12 

= 

∣∣F n 
∂ �12 

− F n −1 
∂ �12 

∣∣ (4) 

Fig. 7 shows a flow chart of this computational strategy. The

terative process between the meso and macro scales can be re-

eated until the residual force vector converges. To achieve conver-

ence, Eq. (3) is not applied directly in the numerical implementa-

ion. Instead, an interpolation scheme is used to calculate the inter-

acial forces, taking into account the forces from current iteration

 n ) and the previous iteration ( n − 1) using a factor α, and is given

y: 

F ∂ �12 

]
n 

= α
[
A 

T f ∂ �12 

]
n 

+ ( 1 − α) 
[
A 

T f ∂ �12 

]
n −1 

(5a) 

An iterative sparse conjugate gradient solver from the PETSC

ackage ( Balay et al., 20016 , 2016 ) is used to solve the finite ele-

ent equations. The convergence speed for this category of solvers

s dependent on the initial condition assumed at the start of the it-

rations. Here, we can project the homogenised solution from the

rst iteration on the mesoscale domain and use it as an initial
ondition for the iterative solver. The projection can be done us-

ng the same kinematic admissibility conditions, which were used

o assemble the displacement compatibility conditions described in

q. (2) . However, here the projection will be applied for the com-

lete meso-scale domain: 

 �1 
= A U �1 

+ δu �1 
(5b) 

Here the term δu �1 
represents the mesoscale solution comple-

ent with respect to the homogenized solution. Using this ap-

roach, the multiscale problem will be about finding the difference

etween the full homogenised solution and the multiscale model

ather than solving the complete model from scratch, which leads

o faster convergence. A key strength of this approach is avoiding

he need to calculate the inverse or pseudo-inverse of the subdo-

ain stiffness matrix. Consequently, it is not required to assemble

 global stiffness matrix in the case of explicit time integration to

olve the multiscale problem. 

A quarter model of square homogenous plate with an open hole

t its centre is used as a benchmark problem to illustrate the it-

rative strategy. The plate, under tension, is modelled in displace-

ent control. The domain decomposition and the solution progress

re shown in Figs. 8 and 9 . The region around the hole is mod-

lled using a fine mesh while the rest of the plate is modelled
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Fig. 23. 3D Woven open hole tension simulation: average axial displacement evolution with time. 

Fig. 24. A comparison of the matrix cracking pattern observed in two experimental samples against the model predictions (surface of the experiments is speckle painted for 

digital image correlation (DIC) measurements). 
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using a coarse mesh. The two meshes are incompatible with a size

ratio of 1:6. Figs. 10 and 11 show the evolution of the average

displacement and stresses calculated for every cross-section along

the plate length. It can be seen that as the solution progress both

the stresses and displacement become continuous across the plate.

Thus, eliminating the stress jump that existed at the start of the

solution. Fig. 12 shows a comparison of the stresses between the

multiscale solution and a full mesoscale solution, where the whole

plate is modelled using a fine mesh. The maximum error in the

mesoscale region is around 3%. This is reasonable value given the

benefits of eliminating stress discontinuity, which will be demon-

strated when applying the models to 3D woven composites. 

2.3. Time dependent problems 

The domain decomposition approach described in the previous

section can be expanded to handle time dependent problems. This

can be achieved by updating the displacement compatibility condi-

tions to link the velocities on the interface of the meso and macro

models. Two different time integration schemes can be used for

this category of problems: implicit and explicit. An implicit time

integration scheme requires the assembly of a Jacobian matrix for

each of the subdomains (meso and macro) and achieving con-

vergence for each iteration. Under the current strategy, the Jaco-

bian assembly and the residual vector are calculated independently

for each domain. Convergence for the time integration scheme is

also checked independently for each domain. Once both domains

achieve convergence, the compatibility conditions can be updated
nd the multi-scale convergence is checked. Fig. 13 shows the flow

hart for the time integration schemes for the proposed multi-scale

olver. 

Progressive damage modelling is an essential aspect of 3D wo-

en composite modelling. The damage initiation stresses in these

aterials can be quite low. Due to the heterogeneous nature of

omposites and its ability to redistribute stresses, these materi-

ls will continue to carry the loads well after damage has initi-

ted. One of the challenges for progressive damage finite element

odels in composites is the handling of fully damaged elements

sing continuum damage models. As damage progresses through

he model, it is common for some elements to be completely

amaged before a final failure event. These completely failed ele-

ents can lead to instability issues in an implicit time integration

cheme. It is therefore desirable, when modelling progressive fail-

re in 3D woven composites, to be able to switch to explicit time

ntegration when instabilities are detected. The time step in an

xplicit integration is considerably smaller than implicit schemes.

onsequently, applying the multiscale convergence criteria for ev-

ry time step will result in unreasonable runtimes. For explicit

ime integration, the compatibility conditions are updated based

n velocities and force values from the previous time step. Conse-

uently, the multiscale convergence check can be omitted in this

ase. Fig. 13 also shows the integration scheme for explicit time

ntegration. A dedicated parallel finite element code has been de-

eloped to implement the multiscale approach described here in-

luding the automatic switching from implicit to explicit time in-

egration as needed. 
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Fig. 25. Resultant axial force curves, experimental vs simulation. 
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Fig. 26. Fibre stresses at different loading levels (a) 30% UTS, (b) 80% UTS, (c) 95% 

UTS. 
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. Application to 3D woven composites 

The modelling framework described so far is generic and can be

pplied to any non-linear finite element problem. In this section,

he model will be applied to 3D woven composites to model their

echanical performance, based on realistic internal architectures.

 prerequisite to modelling heterogeneous materials is having a

omplete understanding of the heterogeneities’ distributions. This

an be achieved in 3D composites by employing kinematic mod-

lling, which simulates the weaving and compaction processes. In

his paper, the kinematic modelling approach developed by El Said

t al. (2014 ) was used to model a 3D orthogonal woven compos-

te described by Green et al. (2014 a). Fig. 14 shows the internal

arn architecture of the 3D woven fabric used in this paper, as pre-

icted by a multi-scale kinematic model. Once the internal mate-

ial architecture is known, the material orientations, fibre volume

ractions and matrix material regions can be determined and ap-

lied to a finite element model. Here, a Voxel meshing approach

s used to handle the geometric complexities associated with 3D

oven architectures. The construction of these high fidelity finite

lement models using Voxelization has been discussed at length

n Green et al. (2014 b) and El Said et al. (2016 ). For 3D woven

omposites with complex yarn architectures, the number of fea-

ures and their geometric complexity becomes prohibitive for most

eshing techniques. Voxelization divides the full problem domain

nto equally sized cubes called Voxels. Each individual Voxel is

ompared to the geometric entities in the domain to define its

roperties. Using this approach any complex geometry can be dis-

retized across the domain. In the case of two phase materials,

uch as 3D woven composites, the yarns can be mapped to the

oxels, with the remaining Voxels assigned the matrix material

roperties. An example of the Voxelization of a 3D woven compos-

te is shown in Fig. 14 (b) and (c). The presence of spurious stress

oncentrations on the matrix/ yarn boundaries is sometimes asso-

iated with Voxelization. In this paper, a direct mapping approach

s used to assign material properties to each integration point. In

his approach, Voxels which are modeled as fully integrated Hexa-

edral elements, can have matrix and yarn properties at the same

ime. This approach reduces spurious stress concentrations by cre-

ting transition elements on the surface of each yarn ( El Said et al.,

016 ). It is worth mentioning that other techniques have been pro-

osed in literature to handle spurious Voxelization stress concen-

rations, including non-local stress averaging and damage tracking

 Fang et al., 2016 ). 

In this work, yarn elements will be assigned 3D orthotropic

aterial properties oriented in the direction of the fibres at each
ocation. By choosing to assign equivalent material properties to

he Voxels, an implicit assumption of scale separation, between

he microscale (fibre scale) and mesoscale (yarn scale), is made. In

his case, the assigned properties have to be representative of the

icroscale fibre and matrix properties. Several homogenised mod-

ls have been proposed in literature and seen wide use for this

urpose. In this work, the model by Chamis (1983 , 1984 ) is em-

loyed to find microscale homogenised properties taking into ac-

ount the microscale fibre volume fraction for each Voxel. In later

ections of this paper, a homogenized damage model is introduced

or non-linear analysis. This is also done under an assumption of

icro/meso scale separation. There is however no requirement to

ave full micro / meso scale separation in the proposed frame-

ork. Nonlinear multiscale modelling approaches, such as the ones
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Fig. 27. Comparison between periodic homogenization and the multi-scale ap- 

proach. (A) Unit cell model, showing fibre direction stress under warp direction ten- 

sion loading (matrix removed for clarity), (B) V-notch specimen Von Mises stresses 

using homogenized properties (C) V-notch Von Mises stresses using multi-scale ap- 

proach. 
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described in the introduction of this paper, can also be used to link

the micro and meso scales. 

The voxel models described for the mesoscale are capable of

predicting the stress concentrations resulting from architectural

features. This is achieved by describing the yarn paths, crimp,

waviness and matrix regions with a high fidelity. Associated with

this high fidelity description is a high computational cost for these

models, which means they cannot be used on the macroscale even

for linear elastic analysis. For the 3D woven examples in this paper,

a spatial surface based Voronoi tessellation proposed by El Said

et al. (2016 ) is used to construct the homogenized macroscale

models. Voronoi tessellation homogenization has seen wide use in

modelling multi-phase materials by decomposing the domain into

cells centred on the inclusions. Equivalent properties are calculated
or each cell accounting for the inclusion and surrounding ma-

rix. The surface based Voronoi tessellation has the added advan-

age of considering the inclusion morphology in the tessellation.

hus, the homogenised model maintains the material directional-

ty and the fibre density. This is of prime importance in the case

f global/local analysis of 3D woven composites. Using this homog-

nization approach, the material directions in the macro subdo-

ains will match those across the interface in the meso subdo-

ains, allowing the macro model to respond more flexibly to the

hanges in the meso models. This leads to fewer stress artefacts

nd better stress redistribution across the boundary that will be

emonstrated in Section 4 of this paper. Fig. 15 shows the volume

ased Voronoi tessellation applied to a 3D composites sample. 

The framework described earlier in this section, which con-

ists of a macroscale Voronoi tessellation model, a Voxel based

esoscale model and the iterative global / local analysis, has been

pplied to several 3D woven composites examples. Fig. 16 shows

he domain decomposition of a 3D composite V-notch shear spec-

men ( Adams et al., 2007 ). This specimen is under in-plane shear

oading and the critical section is between the notch tips. The criti-

al section surrounding the notch has been modelled as meso-scale

hile the rest of the problem is modelled as macro-scale. A com-

arison between the resultant strain predicted by the multi-scale

odel and a full high fidelity solution is also shown in Fig. 17 .

t can be seen that for the multi-scale model no discontinuities

re present at the boundaries between the meso and macro scales.

oreover, the stiffness response of the two models matches well,

ith the shear modulus predicted by the multi-scale model being

.7 GPa and by the full mesoscale model 4.8 GPa. 

. Multi-scale modelling of progressive damage 

At this stage, a detailed prediction of the stresses and strains

cross regions of interest in a 3D woven composite can be gener-

ted. This can be used to further predict the progressive damage

ehaviour of the material. The topic of damage initiation and pro-

ression in composite materials has been widely studied in litera-

ure. Physically based phenomenological damage initiation models

ave been proposed and widely applied for both fibre and matrix

ominated properties ( Puck and Schürmann, 1998 ; Cuntze and Fre-

nd, 2004 ; Caddell et al., 1974 ). Several continuum damage models

ased on smeared crack approaches have been proposed for mod-

lling of progressive failure ( Pinho et al., 2006 b, Donadon et al.,

008 ; Vogler et al., 2013 ; Camanho et al., 2013 ; Lapczyk and Hur-

ado, 2007 ). In addition, cohesive zone models have been used to

odel delamination and cracking ( Jiang et al., 2007 ; De Moura

nd Gonçalves, 2004 ; Mukhopadhyay et al., 2015 a, b ). XFEM based

ethods have also been proposed as an efficient approach to mod-

lling crack growth ( Moës and Belytschko, 2002 ) and have been

pplied to composite materials ( Ye et al., 2012 ). The choice of

hich model or group of models to use with composite materi-

ls is largely related to a balance between accuracy and compu-

ational efficiency and is still an open research topic. However, it

s essential to understand the different length scales that com-

rise a given multiscale problem and determine the scale at which

he damage or the nonlinearity can be introduced. In this paper,

cale separation has been assumed between the meso and micro

cales. Consequently, the microscale behaviour can be represented

n the mesoscale model through equivalent properties, which in-

ludes parameters such as strength and energy release rates. 

In the case of 3D woven composites, two damage models are

eeded at the meso-scale. A damage model representing the yarn

aterial phase, which at the microscale is composed of fibres em-

edded in a matrix material. The other damage model represents

he matrix regions, which are composed of homogeneous material.

he selection of suitable scale to represent nonlinearity is specific
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o each multiscale problem. It is not mandatory to apply the ma-

erial nonlinearity to the meso-scale. For other types of materials,

t could be necessary to implement the damage models on finer

cales or it might be sufficient to apply them on the macro-scale.

n the next section, the implementation of damage models to the

esoscale, based on equivalent microscale properties, is presented.

s this is suitable for the 3D woven composites under considera-

ion here. These damage models were selected to meet the require-

ents for the verification case presented in this paper, which is an

n-plane tension loading case. However, for different loading cases

nd a more robust general solution, more complex failure crite-

ia will be needed. For an instance, to model compression loading

ases, the compressive fibre failure criterion should include the ef-

ect of shear stress, such as in Pinho et al. (2006 a). 

.1. Energy regularized smeared crack models 

A smeared crack damage model is chosen for use in both the

arn and matrix materials, since these models are computation-

lly efficient and suitable for Voxel meshes. A main drawback of

meared crack models is that the mesh can affect the direction

f damage progression. The cubic Voxel meshes used here tend

o reduce these mesh bias effects. Additionally, theses damage

odels assume an element crack plane. The cubic Voxels make

t easier to define this plane. It should be noted that these mod-

ls can be applied to other types of 3D elements if required.

meared crack models are straightforward to implement for the

esoscale, where the yarns are represented as continuum entities.

n this paper, the smeared crack model proposed by Pinho et al.

2006 b) and expanded to composites containing ply waviness by

ukhopadhyay et al. (2015a , b ) is used. A brief description of this

odel is given next for purpose of completeness. The interested

eader is referred to the original references for more details. This

odel tracks the initiation and progression of the various dam-

ge modes in a unidirectional composite, which is representative

f the yarn materials in 3D woven composites. The model assumes

hat damage initiates in the form of a crack on the microscale,

hich later progresses to split a mesoscale element completely.

he key damage modes’ initiation and progression are defined in

elation to the stress components acting on an assumed crack sur-

ace. Fig. 18 shows the definition of these stresses in relation to the

rack surface and crack angle. σ n is the normal stress perpendicu-

ar to crack surface. τ T and τ L are the in-plane shear stress acting

n the crack surface. The angle ϕ is the angle between the crack

urface and the material axis. 

Undamaged matrix response for yarn and resin pockets: in this

odel the matrix regions for both yarn and resin pockets material

odels is assumed to have a non-linear out of plane shearing be-

aviour governed by the following relation ( Mukhopadhyay et al.,

015 b): 

1 i = sgn ( γ1 i ) 
(
A 

(
1 − e −B | γ1 i | )), i = 2 , 3 (6)

Here σ 1 i is the shear stress components, γ 1 i is the associated

hear strain, A and B are material constants. Eq. (6) describes a

onlinear shear stress/strain relationship during loading. For the

nloading regime, the material behaviour is assumed linear. 

Fibre failure: a tensile criterion based on fibre rupture for the

arn material is given by: 

f F T = 

σ1 

S c11 

= 1 (7) 

here S c 11 is the mesoscale fibre ultimate tensile strength, which

as been calculated from the microscale volume fraction at the

iven location following Chamis, 1983 , 1984 ) based on the mate-

ial properties of the constituents given in Green et al. (2014 b). The

nite element implementation of this criterion reduces the fibre
irection stresses after failure by a factor of 0.98. The maximum

eduction factor has been limited to 0.98 to avoid numerical insta-

ilities. 

Matrix crack initiation under compression (in yarn material): ma-

rix crack initiation in compression is governed by the following

ondition: 

f MC = 

(
τT 

S s 
12 

− μT σn 

)2 

+ 

(
τL 

S s 
23 

− μL σn 

)2 

= 1 (8) 

S s 
12 

and S s 
23 

are the meso-scale in-plane and transverse shear 

trengths calculated taking into account the micro-properties of

he materials. μT and μL are the corresponding friction coeffi-

ients, which are material properties. 

Matrix cracking initiation under tension (in yarn material): ma-

rix crack initiation in tension is given by the criterion defined in

atalanotti et al. (2013 ): 

f MT = 

(
σN 

S s 
23 

)2 

+ 

(
τT 

S s 
12 

)2 

+ 

(
τL 

S s 
23 

)2 

+ λ

(
σN 

S s 
23 

)(
τT 

S s 
12 

)
+ κ

(
σN 

S s 
23 

)
= 1 (9) 

where 

= 

(
S s 23 

)2 − ( S C22 ) 
2 

S s 
23 

. S C22 

= 2 μL 

S s 23 

S s 
12 

− κ

S s 
12 

, S s 
13 

and S s 
23 

are the mesoscale composite shear strength

alues as calculated based on the local material micro properties.

qs. (8) and (9) are calculated on the fracture plane, which is not

nown beforehand. A golden section search algorithm ( Fang et al.,

016 ) is used to find the fracture angle ϕ which maximizes the

ailure index. 

Matrix crack progressive damage model using smeared crack ap-

roach: Once damage initiation for matrix cracking is predicted,

n energy regularized smeared crack model is used to predict the

rack opening. After the crack initiation, a driving stress for the

rack propagation is calculated: 

mat = 

√ 

σ 2 
N 

+ τ 2 
T 

+ τ 2 
L 

(10) 

Similarly, a driving strain εmat and a crack surface shear strain

mat can be calculated by resolving the strain components in rela-

ion to the crack surface. Using those values, an effective mixed

ode critical fracture energy per unit area is calculated at the

oint of crack initiation: 

 m 

= 

[ { 

1 

G N 

(
σ 0 

N ε 
0 
N 

σ 0 
mat ε 

0 
mat 

)2 
} α

+ 

{ { 

1 

G T 

(
σ 0 

T ε 
0 
T 

σ 0 
mat ε 

0 
mat 

)2 
} } α

+ 

{ { 

1 

G L 

(
σ 0 

L ε 
0 
L 

σ 0 
mat ε 

0 
mat 

)2 
} } α] 

−1 
α

(11) 

here G m 

is the mixed mode critical fracture energy per unit area,

 N is the fracture energy per unit area in the normal direction act-

ng perpendicular to the fracture plane, G T and G L are the shear

racture energies per unit area acting in the fracture plane. σ 0 and
0 are the effective stress and strains at the point of crack initia-

ion acting in the relevant direction. Assuming a bilinear damage

ropagation law on the meso-scale, an ultimate failure strain can

e calculated from the area under the curve in Fig. 19 , which is

iven by: 

 f = 

2 G m 

σ0 l c 
(12) 
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The characteristic length l c ensures mesh independent energy

dissipation. This length is an element property, calculated by pro-

jecting the length of the element side on the crack surface. A dam-

age index can be calculated relating the stress and strain on the

crack surface is defined by: 

D mc = max 

{ 

0 , min 

{ 

1 , 
ε f 

(
ε mat − ε 0 mat 

)
ε mat 

(
ε f − ε 0 mat 

)
} } 

(13)

The stresses acting on the crack surface can be adjusted to ac-

count for the progressive damage: 

σN → ( 1 − D mc ) σN 

τT → ( 1 − D mc ) τT 

τL → ( 1 − D mc ) τL 

} 

(14)

To avoid numerical instability, in the finite element implemen-

tation, the value of D mc is limited to 0.98. 

Resin pockets – matrix material progressive damage model using

smeared crack: the damage model discussed so far covers the yarn

transverse cracking and fibre failure for yarn materials, which are

orthotropic. In 3D woven composites, the mechanical performance

is dominated by the yarn behaviour, due to the presence of yarns

acting in all three directions. The mechanical performance of the

matrix regions is thus of reduced importance as compared to 2D

woven composites. In this work, a simplified damage model for the

resin pockets is employed. This model uses a pressure dependent

Von Mises criteria following Green et al. (2014 b) for damage initi-

ation ( Eq. (15 )). 

f R = 

S c m 

− S t m 

S c m 

S t m 

( σ1 + σ2 + σ3 ) 

+ 

1 

2 S c m 

S t m 

[
( σ1 − σ2 ) 

2 + ( σ2 − σ3 ) 
2 + ( σ1 − σ3 ) 

2 
]

(15)

where σ i with i = 1, 2, 3 are the principal stresses and S 
j 
m 

with j = t,

c are the matrix tensile and compressive strengths. The influence

of hydrostatic pressure in the tensile case evaluated here is how-

ever negligible. 

Damage progression is controlled by the same smeared crack

model used yarn materials. The fracture plane in the matrix do-

main is oriented using two angles instead of one and the golden

section search has to be adapted accordingly. Using this search,

the plane maximizing the matrix principal stresses is determined.

Once the fracture plane is found, the smeared crack model can

then be applied in a manner similar to the yarn material matrix

crack. 

4.2. Damage model results and analysis 

The smeared damage model described in the previous section

has been introduced to the proposed iterative multiscale approach.

A test model of an open hole 3D woven composite tension spec-

imen was run. The specimen is 29.7 mm in width and 5.3 mm

in thickness. The 3D woven composite used in this specimen is

a carbon fibre orthogonal 5 harness satin weave. The details of

this fabric architecture and material properties is given in El Said

et al. (2014 , 2016 ) and Green et al. (2014 a). The domain surround-

ing the open hole was modelled as mesoscale while the rest of

the specimen was modelled as macroscale. Fig. 20 shows the do-

main decomposition into meso and macroscale. The damage model

was applied to the mesoscale domain only while the macro do-

main was homogenized using Voronoi tessellation. The model was

loaded in tension under displacement control. 

The combined multi-scale/progressive damage capability is an

effective tool to understand the mechanical behaviour of com-

plex 3D composite materials. Fig. 21 shows the mesoscale sec-

tion binder yarn ( z -direction) transverse matrix cracks at increas-

ing load levels. It can be seen that the transverse cracks appear
t the regions with highest level of internal architectural defects

crimp). The initiation takes place around 30% Ultimate Tensile

trength (UTS). Damage initiation at this stage appears to be driven

y the internal fibre architecture only, independent of the location

f the hole. At higher loading levels, it can be seen that damage

rogresses faster in regions where the binder yarns interact with

he geometric features (the open hole). In domain decomposition

pproaches, where stress artefacts appear on the subdomain’s in-

erfaces, the damage may initiate from the boundaries instead of

rom the material’s meso-scale features. Consequently, the inter-

ction with geometric features and the ultimate failure behaviour

ill not be predicted correctly. Figs. 22 and 23 show the evolution

f average stress and displacement across the model. The results

how no significant stress or displacement discontinuities across

he meso/macro boundaries. 

Fig. 24 shows post-mortem images of two physical specimens

f an open hole tension test. The images show a highly diffused

amage pattern in the samples. Additionally, the images show a

igh variability in damage pattern between the samples. This vari-

bility is also reflected in the UTS values measured experimentally

76–94 kN) ( Townsend et al., 2009 ). Fig. 25 shows a comparison of

he experimentally measured resultant forces of several 3D woven

pecimens and the simulation which further confirms the variabil-

ty. This observation can be attributed to the interaction between

he material internal architecture and the geometric features men-

ioned earlier. The damage pattern predicted by the model for ma-

rix cracking, in both yarns and resin pockets, shows a similarly

iffuse pattern. Additionally, the simulated damage patterns repli-

ate the features observed in the experiment. Surface cracks and

arn splitting originating from the hole was observed in both the

odel and experiments over matching paths. 

The multi-scale framework captures another important as-

ect of 3D woven composites’ mechanical behaviour, which is

heir ability to redistribute stresses away from damaged zones.

ig. 26 shows the fibre direction stress distribution in the open

ole tension model across the meso and macro sub domains. Ini-

ially, stress concentrations appear near the hole, which leads to

rst fibre failure at this location. However, this does not lead to

atastrophic failure straight away. The material manages to divert

he stresses from the broken fibres, loading other undamaged fi-

res, which allows the material to continue carrying load. During

his phase, the iterative approach allows the surface yarns in the

acro subdomain to react to the increase of stresses in the surface

arns in the meso subdomain. Eventually, the level of stress in the

bres leads to their complete rupture across the specimen and ul-

imate failure. The multi-scale models presented here were capable

f capturing the ultimate failure load with good accuracy, given

he level of variability existing in these materials. Key to this ac-

urate prediction is the successful redistribution of stresses across

he subdomain boundaries, which is a result of the iterative ap-

roach proposed here. 

. Discussion and conclusions 

In this paper, a multi-scale modelling approach for the predic-

ion of progressive damage in 3D woven materials is presented.

t starts by solving a homogenized model of the complete struc-

ure. Next, the critically loaded regions in the structure are remod-

lled using a mesoscale high fidelity formulation, where damage

odels can be applied. The meso/macro problem is then solved

sing an iterative multi-scale process. The iterative process em-

loys displacement and force compatibility conditions to connect

he various subdomains and relieve the boundary stress artefacts.

he compatibility conditions are formulated by limiting the set of

inematically admissible solutions on the smaller scales in order to

atisfy the larger scale basis functions at the interfaces. 
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The proposed modelling approach was combined with a

rogressive damage model to predict the failure behaviour of 3D

oven composites. It has been demonstrated that the proposed

odelling framework is a capable of handling the strongly het-

rogeneous behaviour of these types of materials. The stress con-

entrations from the mesoscale material architecture were pre-

icted and allowed to initiate damage, free from boundary stress

rtefacts. Additionally, the interaction between the material ar-

hitecture and the geometric features in the structure has

een captured. Moreover, the proposed model tracked the stress

edistribution in the material undergoing progressive damage

cross the different subdomains due interactions between the

roblem subdomains throughout the various iterations. While this

pproach has been demonstrated here in relation to 3D woven

omposites in a meso/macro model, it is equally applicable to

ther categories of strongly heterogeneous materials. 

The model results and experimental verification demonstrate

he non-periodic nature of 3D woven composite structures.

he meso-scale stress concentrations interact with the geomet-

ic features and lead to a loss periodicity in the stress fields.

raditionally, composites have been modelled using periodic ho-

ogenisation. The work presented here indicates that periodic ho-

ogenisation of 3D woven composites is not so valuable at the

acro-scale as for other composite architectures. To illustrate this,

he V-notch specimen model presented earlier has been repeated

sing material properties obtained from periodic homogenisation

nd is shown in Fig. 27 . A unit cell model under periodic bound-

ry conditions was used to calculate the equivalent properties of

he 3D woven material. Six load cases were solved to calculate the

quivalent orthotropic material properties. These properties were

hen applied to a macro-scale model and solved using ABAQUS

tandard. It can be seen that the homogenised model fails to cap-

ure the stress concentration resulting from the internal architec-

ure and its interaction with the geometric features. While these

ypes of homogenised models can predict the stiffness behaviour

ith reasonable accuracy, they fail to predict the local variations

n stress state and consequently are not adequate for damage and

ailure modelling. 
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