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MESENCHYMAL STROMAL CELLS

Reduced neuroprotective potential of the mesenchymal stromal cell
secretome with ex vivo expansion, age and progressive multiple
sclerosis
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Abstract
Background. Clinical trials using ex vivo expansion of autologous mesenchymal stromal cells (MSCs) are in progress for
several neurological diseases including multiple sclerosis (MS). Given that environment alters MSC function, we exam-
ined whether in vitro expansion, increasing donor age and progressive MS affect the neuroprotective properties of the MSC
secretome. Methods. Comparative analyses of neuronal survival in the presence of MSC-conditioned medium (MSCcm)
isolated from control subjects (C-MSCcm) and those with MS (MS-MSCcm) were performed following (1) trophic factor
withdrawal and (2) nitric oxide–induced neurotoxicity. Results. Reduced neuronal survival following trophic factor with-
drawal was seen in association with increasing expansion of MSCs in vitro and MSC donor age. Controlling for these factors,
there was an independent, negative effect of progressive MS. In nitric oxide neurotoxicity, MSCcm-mediated neuroprotection
was reduced when C-MSCcm was isolated from higher-passage MSCs and was negatively associated with increasing MSC
passage number and donor age. Furthermore, the neuroprotective effect of MSCcm was lost when MSCs were isolated
from patients with MS. Discussion. Our findings have significant implications for MSC-based therapy in neurodegenerative
conditions, particularly for autologous MSC therapy in MS. Impaired neuroprotection mediated by the MSC secretome in
progressive MS may reflect reduced reparative potential of autologous MSC-based therapy in MS and it is likely that the
causes must be addressed before the full potential of MSC-based therapy is realized. Additionally, we anticipate that un-
derstanding the mechanisms responsible will contribute new insights into MS pathogenesis and may also be of wider relevance
to other neurodegenerative conditions.

Key Words: cell therapy, mesenchymal stromal cells, multiple sclerosis, neuroprotection

Introduction

Recently, there has been increasing appreciation of the
potential of cell-based therapies for treatment of
neurodegenerative diseases including multiple scle-
rosis (MS) [1]. Multipotent mesenchymal stromal
cells (MSCs) have received considerable attention given
that they can be relatively easily isolated from bone
marrow or other tissues and expanded in vitro. MSCs
secrete a wide range of factors and have a multiplic-
ity of actions in diverse processes, including
immunomodulation, inflammation, apoptosis and an-
giogenesis. Many reparative processes are now
recognized to be mediated, orchestrated or stimu-
lated by the MSC secretome–the collective term for

factors secreted as soluble molecules and/or in extra-
cellular vesicles. With respect to inflammatory
demyelination, MSCs have been shown to have anti-
inflammatory as well as neuro- and glioprotective
effects, and administration of MSC-conditioned
medium (MSCcm) improves the outcome of the MS
model experimental allergic encephalomyelitis (EAE)
[2]. Such properties, combined with their favorable
safety profile, have accelerated translation of MSC-
based therapy, which is currently being explored in
clinical trials in MS [1].

Characterization of bone marrow microenviron-
ment and sub-populations of bone marrow–derived
cells such as MSCs has been relatively limited in MS
[3–8], although an increase in senescence and altered
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cytokine secretion have been noted [5,6]. This is of
importance and potential therapeutic relevance given
that donor factors, including age, expansion in vitro
and disease states, have previously been reported to
influence MSC properties, including T-cell immuno-
suppression [9], with functional effects in a disease
model of MS [10]. We have recently shown that the
bone marrow microenvironment is abnormal in MS
and that MS MSCs have reduced proliferative po-
tential and display signs of premature aging in vitro
[11]. However, it is not known whether MSC func-
tion is impaired in MS.

In this study, we assessed whether MSC donor age
and expansion of MSCs in vitro alters their support
for neurons under conditions of trophic factor with-
drawal and whether there were differential effects of
the MSC secretome depending on whether MSCs were
isolated from control subjects or those with progres-
sive MS. Furthermore, we examined whether MSC
expansion and donor age or the presence of progres-
sive MS alters neuroprotective potential of the MSC
secretome using well-characterized in vitro assays of
MSC-mediated neuroprotection [12–15] in nitric oxide
(NO)–induced toxicity, a mechanism known to be of
pathophysiological relevance to inflammatory demy-
elinating disease.

Materials and methods

MSC isolation and culture

Bone marrow samples from control subjects who had
no prior exposure to immunomodulatory drugs were
obtained from the femoral shaft during total hip re-
placement for osteoarthritis (UK Research Ethics
Committee [REC] 10/H102/69). Bone marrow from
patients with progressive MS was obtained as a pos-
terior iliac crest aspirate from participants in the trials
“Assessment of Bone Marrow-Derived Cellular
Therapy in Progressive Multiple Sclerosis (ACTiMuS)”
(NCT01815632; REC 12/SW/0358) [16] or “Repeat
Infusion of Autologous Bone Marrow Cells in MS
(SIAMMS-II)” (NCT01932593; UK REC 13/SW/
0255) [17].

In the full cohort, the age of control subjects (n = 9;
mean age, 59.3 years) was greater than patients with
MS (n = 19; mean age, 50.6 years; Student t test
P = 0.004; Supplementary Table S1). There was a
strong trend for duration of progressive disease to in-
crease with age (Pearson r = 0.364; P = 0.052). Not
all samples were analysed in all experiments and the
number of biological replicates (n) for each experi-
ment is presented with the results. Summary data
regarding the cohort including details of exposure to
disease-modifying therapies are presented as supple-
mentary information (Supplementary Table S1). No
participant with primary progressive MS (n = 8) had

prior exposure to disease-modifying therapy. Of 11 par-
ticipants with secondary progressive MS, five had been
treated with disease-modifying therapy: two with beta-
interferon, two with glatiramer and one with beta-
interferon then glatiramer. No one had been exposed
to disease-modifying therapy in <12 months prior to
bone marrow isolation.

Control bone marrow from the femoral shaft was
collected in RPMI medium (Sigma) with 1000 IU
heparin. Patient samples were collected in heparin
before being transported in ethylenediaminetetraacetic
acid (EDTA; K2). Subsequently, marrow samples were
processed identically; MSCs were isolated using a
density gradient, expanded in vitro and demon-
strated to conform to expected cell surface phenotype
and mesenchymal differentiation potential [4].

Preparation of MSCcm

Culture flasks (T175 seeded with 450,000 cells) were
washed twice with Dulbecco’s Modified Eagle’s
Medium (DMEM) to remove standard MSC culture
medium. Minimum medium (MIN) consisting of
50 mL DMEM, 500 µL Pen-Strep (Gibco Penicillin-
Streptomycin Ref 15140-122), 500 µL Sato concentrate
(containing 100 µg/mL of bovine serum albumin,
0.06 µg/mL progesterone, 16 µg/mL putrescine,
0.04 µg/mL selenite, 0.04 µg/mL thyroxine and
0.04 µg/mL triiodothyronine) [18], 500 µL holo-
transferrin (Sigma-Aldrich RefT0665) and 250 µL L-
glutamine (Sigma Aldrich Ref I5500) was added to
flasks (22 mL per T175) and allowed to condition for
24 h. Conditioned medium was collected from cul-
tures of control MSCs (C-MSCcm) or MSCs isolated
from patients with MS (MS-MSCcm), centrifuged,
filtered and stored at -20oC [14].

Cortical neuron cultures

Isolation of rodent cortical neuron cultures was un-
dertaken as previously described [19] and 300,000
cells/well were seeded for immunocytochemistry in a
24-well plate. For a 96-well plate, 100,000 cells/well
were seeded. Incubation experiments were per-
formed at 5 days in vitro.

NO-induced toxicity

Cortical neurons were conditioned in MIN, C-MSCcm
or MS-MSCcm for 3 h prior to exposure to NO
(0.4 mmol/L DETANONOate for 24 h) as previ-
ously described [19].

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide assay

Neuronal survival was quantified using the 3-(4,
5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
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bromide (MTT) assay [20]. To correct for any sys-
tematic differences between experiments, MTT signal
was converted to an index; the value of MTT signal
in experimental conditions was divided by that in
control cultures.

Immunocytochemistry

Immunocytochemistry with panaxonal neurofilament
marker SMI312 (1:600; Covance) and neuronal marker
βIII tubulin (1:600; Sigma-Aldrich) permitted deter-
mination of average axonal length per field using
Image J software (1.49) as previously described [19].
Species-specific (1:500) Alexa Fluor 488- and 555-
conjugated antibodies (Invitrogen) were used to
visualize primary antibody staining and mounting
medium with 4′,6-diamidino-2-phenylindoleVectashield
for nuclear identification. The counts for the experi-
mental conditions were divided by the value in MIN,
to standardize the experiments across replicates.

Statistical analysis

Graphs were generated using GraphPad PRISM 5
(Graph Pad Software). Statistical analysis also used
GraphPad PRISM 5 other than the multiple regres-
sion model (STATA v12, StataCorp), which allowed
for correlation between replicates performed at dif-
ferent passage number from the same individual
(cluster option) where appropriate. Non-parametric
bootstrap analysis was used to account for possible non-
normality of the parameter’s distribution. Bar graphs
show mean ± standard error of the mean and regres-
sion lines were fitted with 95% confidence intervals
(CIs). Values of P < 0.05 were considered statistical-
ly significant.

Results

Reduced neuronal survival under conditions of trophic
factor withdrawal with C-MSCcm isolated from late-
passage MSCs

MSCcm has previously been shown to attenuate neu-
ronal death associated with trophic factor withdrawal
[15]. Given that ex vivo MSC expansion is required
for therapeutic use, we examined whether neuronal
survival in the presence of C-MSCcm was altered when
medium was conditioned from control MSCs at early-
(passage [p] ≤ 3) and late-passage number passage (p4–
7). Following withdrawal of trophic factors, reduced
neuronal survival as measured using MTT assay was
seen with C-MSCcm isolated from late-passage MSCs
(Figure 1A; P = 0.016). A negative correlation was seen
between neuronal MTT index and passage number
(Figure 1B).

Reduced neuronal survival with C-MSCcm under
conditions of trophic factor withdrawal with increasing
MSC donor age

Effect of MSC donor age on C-MSCcm-mediated cor-
tical neuron survival following trophic factor withdrawal
was examined using control MSCs at p2–7.With in-
creasing MSC donor age, neuronal survival following
withdrawal of trophic factors decreased (Figure 1C).

Reduced neuronal survival under conditions of trophic
factor withdrawal with MSCcm isolated from patients
with MS

We examined whether MSCcm isolated from pa-
tients with MS (MS-MSCcm) had equivalent capacity
to support cortical neurons in vitro under conditions

Figure 1. Reduced neuronal survival in the presence of C-MSCcm following trophic factor withdrawal with increasing MSC passage number
(A and B) and MSC donor age (C). Cortical neuron survival was assessed using the MTT survival assay (n = 6) with results normalized
to the MTT signal seen with C-MSCcm. Reduced neuronal survival under conditions of trophic factor withdrawal was observed when
MSCcm was isolated from MSCs p4–7 compared with p2–3 (*P < 0.05) and there was a negative association of neuronal survival with
increasing passage number (B; Pearson r = −0.94; P = 0.005; CI, −0.99–−0.57) and age (C; Pearson r = −0.87; P = 0.03; CI, −0.9851–
−0.1810). Not all samples were paired and where data from a single MSC culture were available at multiple passages, only a single sample
was included for correlation with passage number and the earliest available passage was selected for correlation of MTT with age. A total
of six biological replicates were included. There was no statistically significant correlation between age and passage number.
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of trophic factor withdrawal. Effects of C-MSCcm and
MS-MSCcm isolated from MSCs at p ≤ 3 (to mini-
mize confounding effect of passage number) and at
all passages examined (p2–7) on cortical neuron sur-
vival were assessed using the MTT assay as previously
described. Neuronal survival following trophic factor
withdrawal was reduced when MSCcm was isolated
from patients with MS (MS-MSCcm) but, without
correction for age and passage number, this effect did
not reach statistical significance. However, using mul-
tiple regression analysis to control age and passage
number, an independent effect was seen with reduced
cortical neuron survival with MS-MSCcm com-
pared with MSCcm (p ≤ 3 P = 0.047, CI, 0.28–
38.83; p2–7 P = 0.049, CI, 0.1–33.88).

Reduced C-MSCcm protection from NO-induced
neurotoxicity with C-MSCcm isolated from late-passage
MSCs

Cortical neurons exposed to NO show decreased sur-
vival. Under these experimental conditions, MSCcm
is known to be neuroprotective [19]. Using the model
of NO-induced neurotoxicity, we examined
neuroprotective capacity of C-MSCcm at early- (p2–
3) and late-(p4–7) passage number. Neuroprotection
afforded by C-MSCcm was significantly reduced when
C-MSCcm was isolated from MSCs at p ≥ 4
(Figure 2A) and decreased with increasing passage
number (Figure 2B).

Reduced neuroprotection from NO-induced toxicity with
isolation of C-MSCcm from older donors

Effect of MSC donor age on neuroprotection medi-
ated by C-MSCcm in the context of NO-induced
neurotoxicity was examined using control MSCs at

p2–5.With increasing donor age, neuronal survival in
presence of NO decreased (Figure 2C).

Reduced neuroprotection from NO-induced toxicity with
isolation of MSCcm from donors with progressive MS

In the presence of NO, decreased neuronal survival can
be measured using the MTT assay but, in addition, sur-
viving neurons have reduced axonal length, an effect
reduced by MSCcm [19]. We examined whether
C-MSCcm and MS-MSCcm had equivalent
neuroprotective potential as assessed by MTT and rel-
ative axonal length.To minimize potential interference
from effect of passage number, media conditioned from
MSCs at p2–3 were examined separately although anal-
ysis was also undertaken using multiple regression and
cluster analysis with all available data (p2–7).

Previously reported neuroprotective effects of
MSCcm were replicated when conditioned medium
was collected from MSC cultures (≤p3) isolated from
control subjects; significant reduction in neuronal sur-
vival and relative axonal length were no longer observed
when neurons were exposed to NO and C-MSCcm
(Figure 3). However, when conditioned medium was
harvested from MSCs (≤p3) collected from patients
with progressive MS (MS-MSCcm), only a trend
toward a neuroprotective effect was seen (Figure 3).
Using the regression model to account for age and
passage number (p2–3), an independent, negative effect
of progressive MS was observed in the MTT assay
(P = 0.04; CI, 0.90–38.62) and measurement of rel-
ative axonal length (P < 0.001; CI, 19.56–66.58).

Accounting for age, passage number (p2–7) and
repeated sampling from the same individual using mul-
tiple regression with cluster option, neuroprotective
effect of C-MSCcm and MS-MSCcm under

Figure 2. Reduced neuroprotection mediated by C-MSCcm when C-MSCcm is isolated from MSCs at late-passage number (A and B)
and with increasing MSC donor age (C). Cortical neuron survival was assessed using the MTT survival assay (n = 9) with results nor-
malized to the MTT signal seen with C-MSCcm. Reduced neuronal survival under conditions of NO-induced toxicity was observed when
MSCcm was isolated from MSCs p ≥ 4 (*P < 0.05) and MTT index decreased with passage number (B; Pearson r = −0.68; P = 0.04; CI,
−0.93–−0.03). There was a negative association of neuronal survival with increasing age (C; Pearson r = −0.79; P = 0.011; CI, −0.954–
−0.266). Not all samples were paired and where data from a single MSC culture were available at multiple passages, only a single sample
was included for correlation with passage number and the earliest available passage was selected for correlation of MTT with age. A total
of nine biological replicates were included. There was no statistically significant correlation between age and passage number.
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conditions of NO toxicity was examined using con-
ditioned medium collected from all available samples.
An independent, negative effect of presence of pro-
gressive MS was again seen on neuroprotective
potential of MSC secretome in both MTT assay (C-
MSCcm n = 9; MS-MSCcm n = 19; P = 0.043; CI,
0.56–34.3; total number of observations, 36) and in
assessment of relative axonal length (C-MSCcm n = 5,
MS-MSCcm n = 6; P = 0.032; CI, 1.84–42.17; total
number of observations, 16). No differences were ob-
served between primary and secondary progressive
cohorts, duration of progressive disease or with prior
exposure to MS disease-modifying therapies.

To exclude the possibility that an excessively high
concentration of trophic factors in MS-MSCcm was
toxic, the MTT model was used to explore
neuroprotective effect of reduced concentrations of MS-
MSCcm. However, the maximum effect was seen with
100% MS-MSCcm (data not shown).

Discussion

We have demonstrated that improved neuronal sur-
vival mediated by MSC secretome under conditions

of trophic factor withdrawal reduces with ex vivo ex-
pansion of MSCs and with increasing MSC donor age.
We have also identified that, when MSCs are iso-
lated from patients with MS, capacity of MSC
secretome to support neuronal survival under condi-
tions of trophic factor withdrawal is reduced.
Furthermore, using NO-induced neurotoxicity, we have
shown that neuroprotective potential of MSC
secretome decreases with donor age and with ex vivo
expansion of MSCs and that there is an indepen-
dent negative effect on neuroprotective potential of the
MSC secretome when the MSC donor has progres-
sive MS.

The multi-faceted reparative potential of MSCs,
including, for example, immunomodulatory and
neuroprotective properties, makes MSCs attractive can-
didates for cell-based therapy in neurological
conditions. Indeed, clinical trials using expansion of
autologous MSCs are now in progress for several neu-
rological diseases, including MS [1,21,22].
Furthermore, the increasing recognition of the im-
portance of paracrine factors in MSC-mediated repair
and regeneration has focused considerable attention
on the MSC secretome, and the possibility of

Figure 3. MS MSCcm fails to protect neurons from NO-induced toxicity. Neurotoxicity induced by NO was measured using the MTT
survival assay (A) and quantification of relative axonal length (B–F). A neurotoxic effect of NO was observed in both assays but this was
abrogated in the presence of MSCcm collected ≤p3 from control subjects (A MSCcm; MTT n = 5; axonal length n = 5) but not from
patients with MS (MS MSCcm; MTT n = 19; axonal length n = 5; all with secondary progressive MS); Kruskal-Wallis with Dunn mul-
tiple comparison test was not significant (NS), **P < 0.01. Figures C–F show representative images of cortical neurons stained with SMI-
312 (green) in MIN (C), in MIN when exposed to NO (D), in the presence of NO and C-MSCcm (E) and NO with MS MSCcm (F).
Scale bar = 100 µm.
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developing cell-free therapeutic interventions has been
raised [23,24]. Indeed, the importance of the secretome
has been highlighted by its inclusion in the Interna-
tional Society for CellularTherapy’s recommendations
regarding functional assessment of MSCs [25].

Increasingly, however, it is recognized that bone
marrow microenvironment and function of cells of
the stromal compartment are affected by disease states
not previously thought to be primarily associated with
marrow pathology [26–29].This contrasts with studies
where “priming” by pre-exposure of MSCs to noxious
stimuli was associated with increased effectiveness [30],
and suggests that, under prolonged exposure to stress-
ors as may occur in chronic disease, putative disease-
ameliorating responses of MSCs may not be
maintained. Alternatively or additionally, MSCs
themselves may be directly targeted by the disease
process.

In addition to disease-specific effects, deleterious
effects of aging and in vitro proliferation on MSC-
based therapy are now also recognized as factors that
may limit effectiveness of MSC-based therapy [11,31],
particularly if autologous cells are used. Both age and
in vitro expansion induce a variety of structural and
functional changes in MSCs [32–34], including al-
terations in cytoskeleton and reduced capacity for
migration and homing [35–38], impaired hematopoi-
esis [39], reduced immunosuppressive potential [40]
and reduced MSC-mediated anti-proliferative effects
[41,42]. With particular relevance to demyelinating
disease, aging has been reported to have deleterious
effects on beneficial impact of adipose-derived stem
cells in EAE [10].

We used a multiple regression model to account
for differences in age between control and MS cohorts,
although becasuse the MS cohort was younger we are
more likely to have under-estimated disease-related
effects. Aside from age-mismatch between cohorts, an
additional potential limitation of our study is differ-
ence in MSC origin between patients with MS and
control subjects. Notably, however, pelvic marrow is
generally accepted as the gold standard for isolation
of MSCs [43]. That the control cohort had osteoar-
thritis could be a possible additional confounding effect,
although, aside from age-related effects, there have been
no consistent reports of the effects of osteoarthritis
on isolation and proliferation of MSCs from femoral
shaft marrow [44–47].

Although none of the control subjects were exposed
to immunomodulatory drugs, they may have had anti-
inflammatory medications, such as non-steroidal anti-
inflammatory drugs (NSAIDs). The effect of such
drugs on MSC-mediated neuroprotection has not, to
the best of our knowledge, been examined. Altera-
tions of MSC gene expression by analgesics and anti-
inflammatory drugs have been noted in vitro [48], and,

in general, deleterious effects of anti-inflammatory
medications on MSC function have been docu-
mented including anti-proliferative effects [49,50],
impaired migration [50] and induction of apoptosis
[51].The effects of these medications in vivo is more
difficult to determine but compensatory mecha-
nisms have been noted in canine MSCs in vivo [52].
There is certainly no suggestion that NSAIDS are likely
to improve the reparative function of MSCs and,
overall, we consider it unlikely that medication-
related effects underlie our findings.

Although a minority of patients with MS were
exposed to disease-modifying therapy, there was no
difference in neuroprotective potential of MSC
secretome when cells were isolated from subjects with
primary versus secondary MS or variation by expo-
sure to disease-modifying therapy.We cannot comment
on whether MSCs from patients with relapsing-
remitting MS would have an altered secretome
compared with control subject who do not have MS
because we have had no access to bone marrow from
these patients.

Although there are data to support the use of xe-
nogeneic models in assays of MSC-mediated
immunosuppression, we acknowledge that in vitro ex-
periments using cells of different species may not
accurately mimic paracrine function in vivo [53]. None-
theless, we consider that our finding of reduced
neuroprotective potential of the MS-MSC secretome
requires further investigation, including an explora-
tion of mechanism(s) involved. Given that application
of NO causes neuronal cell death and axon loss via
complex mechanisms, including formation of reac-
tive nitrogen species, inhibition of mitochondrial
respiration [54] and excitotoxicity [55], we antici-
pate that MS-MSCs will secrete reduced levels of anti-
oxidants as well as altered levels of cytokines and
growth factors and may have impaired mitochon-
drial and peroxisome function, all of which have been
implicated in MS pathophysiology. We recommend
further analyses to examine whether MSCcm iso-
lated from subjects with MS has other functional
deficits of relevance to protective and reparative po-
tential including but not limited to anti-inflammatory
and immunomodulatory effects.

For optimization of MSC-based therapy in MS,
careful quality control of donor MSCs will be re-
quired and our studies support the recommendation
that this includes assessment of MSC secretome [25].
We anticipate that understanding mechanisms re-
sponsible for reduced neuroprotection afforded by MS
secretome in MS will yield new insights into MS patho-
genesis with potential for development of biomarkers
of disease activity and prognosis as well as identify-
ing novel treatments either via optimization of cell-
based therapy or using small molecules.
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