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SUSTAINABLE SANDWICH COMPOSITE STRUCTURES MADE FROM 

ALUMINIUM SHEETS AND DISPOSED BOTTLE CAPS 

Abstract: This work describes the development of a sustainable and low-cost sandwich composite structure made from 

aluminium skins and bonded to a tubular core with epoxy resin. The core is made from disposed plastic bottle caps. An 

analysis of variance (ANOVA) has been performed to determine the significance of the orientation of the bottle caps in 

the core, the use and type of adhesive over the bulk density and the mechanical properties of the sandwich panels. The 

results show that a core topology made from an alternated orientation of the bottle caps provides an enhancement of 

the resistance in the face skins and the core. The use of the epoxy adhesive between adjacent bottle caps also gives an 

increase of the maximum resistance of the panel. 

Key words: Sandwich composites, bottle caps waste, tubular honeycomb, analysis of variance. 

1. INTRODUCTION 

Sandwich structures are made from high-bending stiffness external skins bonded onto high transverse shear and 

low strength cores, such as foams or honeycombs [1]. The main structural features of sandwich composites are their 

high specific bending stiffness, strength, and favourable compressive behaviour, which are all characteristics that make 

them suitable for aerospace applications [2]. A variety of materials have been developed and evaluated as sandwich 

cores, with the hexagonal honeycomb cells made from aluminium and stainless steel being the most common ones [3]. 

In recent years the use of alternative core geometries and materials has also been evaluated. One of the most recently 

developed core topologies is the circular cell honeycomb, also called the tubular honeycomb (TH). THs have been used 

for different applications, ranging from supporting oil transport infrastructure in on and offshore facilities, to energy 

absorbing sandwich plates [4]. A significant body of research [4-9] has shown the advantages of using tubular 

honeycombs to enhance the mechanical performance of sandwich panels. Oruganti and Ghosh [5] have shown the 

intrinsic stiffness and strength enhancement of TH structures due to the geometrical constraints associated with the 

deformation of cylinders. Hu et al. [6] have also given evidence of the improved energy absorption capability of tubular 

honeycombs, and their generally adequate mechanical performance under out-of-plane loads. Different geometries of 

THs have been considered in previous work (Figure 1). The main difference between these packing topologies is the 

angle between the centres of the adjacent tubes [4]. The angles for the orthotropic, hexagonal, and cubic geometries are 

45º, 60º and 90º, respectively.  

 

  (a)    (b)    (c) 

Figure 1. Three tubular honeycomb geometries: (a) hexagonal, (b) cubic, and (c) orthotropic [4]. 

Polymeric tubes as core materials are present in the market, and one example is the tubular sandwich structure 

from the Plascore Company. This material consists of stacked tubes made from polyetherimide and joined by thermal 
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bonding [3]. Another example of tubular core present in open literature is the one within the sandwich structure 

proposed by Cabrera, Alcock, and Pejis [9]. The specific sandwich panel is fully made from polypropylene (PP) sheets, 

tubular cores and adhesive layers made of, resulting in an all-PP sample. The structure has been designed to be recycled 

in a single process, since all the components are made from the same material. The overall mechanical performance of 

this composite has been deemed adequate, when compared against reference samples made from glass fibre laminate 

skins and cores. Sustainability is one of the main challenges and requirements to develop future materials and structures 

that need to comply with EU directives for life cycle [9] [10]. A possible way to further address the recycling of waste 

material for structural applications (albeit secondary), is the re-use of bottle caps. Caps made of polypropylene (PP) are 

used to close PET bottles, and cannot be recycled together with the PET material since the polypropylene has a higher 

melting point than the PET. Moreover, recycled PP has less performant mechanical properties due to the rupture of 

polymeric chains, which leads to a reduction of the tensile strength and the Young’s modulus [11]. The use of 

differentiated recycling processes also causes a lower degree of re-use of the bottle caps compared with the bulk PET 

material (9% for PP vs. 25% for PET of the total recycled material in the US [12]). In 2012, the annual production of 

PET bottles in Brazil was close to 562,000 tonnes [13]. It is therefore evident to identify some alternative routes to re-

use the plastic caps, and their application as constituents for sandwich composite materials can potentially be a very 

attractive one. Cabrera, Alcock, and Pejis [9] have highlighted that polypropylene tubular cores achieve a moderate 

strength and high specific properties, besides being able to provide a new recycling route for the PP waste. Moreover, 

the closed surface presented by one side of the cap can favour the adhesion between core and skins, depending on the 

direction of adjacent bottle caps. 

The purpose of this work is to investigate the feasibility of using polypropylene bottle caps assembled in a cubic 

packing as a core material, and the mechanical performance of sandwich panels made with this particular core. The 

cubic packing for the bottle caps core was chosen because of its intrinsic easy manufacturing process. The sandwich 

panels have skins made of aluminium and are bonded with epoxy polymer adhesive. Two groups of experiments have 

been carried out to identify the effects of two manufacturing parameters on the mechanical and physical properties of 

these panels: (i) the position of the bottle caps and (ii) the bonding between the adjacent caps. The sets of experiments 

have been performed following a Design of Experiment (DoE) technique to relate the production parameters to changes 

in the bulk density, flexural stiffness, elastic modulus, skin stress and core shear modulus.  

2. MATERIALS AND METHODS 

2.1. Composite Materials 

The sandwich composites have been made with aluminium skins, bottle caps as polymeric core and epoxy 

polymer as adhesive. The epoxy resin (Type MX14, Amine-based hardener type HY951) was supplied by Huntsman 

(Brazil). The aluminium sheets (type ISO 1200 [14] with 0.5 mm thickness) were sourced from Alumiaço (Brazil). The 

disposed polypropylene bottle caps were obtained from Coca-Cola® soft drink bottles. The caps were washed and dried 

at room temperature for 24h to remove any dirt from the disposal process. 

2.2. Statistical Analysis 

An Analysis of Variance (ANOVA) was conducted to verify the significance of the response of the two 

experimental factors used in the DoE [15,16]. The factors were considered in two independent groups of experiments, 

one group for each factor assessed. The use of individual groups of experiments was considered because those factors 
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were judged to be independent from each other. No interaction effect is therefore assessed in this work. The first group 

of experiments tested two configurations for each orientation of the bottle caps: the first related to the caps placed along 

the same direction, the second along an alternated pattern (Figures 2.a and 2.b). The second group of experiments 

helped to understand the effectiveness of using an adhesive between the bottle caps. For this particular case three levels 

of experiments were considered: the presence of the bottle caps without adjacent connection, the bottle caps connected 

with hot melt as adhesive, and the caps bonded together with epoxy polymer. Three-point bending tests were used to 

determine the bulk density, flexural stiffness, elastic modulus, skin stress and the equivalent core shear modulus. The 

other factors related to the materials selection and the manufacturing processes were kept constant. These constant 

factors were the type of resin (Epoxy resin type MX14), the resin fraction (equivalent to an adhesive layer with 1 mm 

thickness), the resin mixture time (2 min), the cure time of the samples (10 days at room temperature, approximately at 

22ºC), type of aluminium sheet used (type ISO 1200 [14] with 0.5 mm thickness), honeycomb packing (cubic), and type 

of bottle cap (from Coke bottles, diameter of 30.52 mm and height of 12.4 mm). Table 1 summarises the experimental 

factors and the levels investigated in the two sets of experiments. The Analysis of Variance (ANOVA) provides the 

significance of each experimental factor on the responses (physical and mechanical properties) based on a confidence 

interval of 95%. The software Minitab 17 [17] was used for the treatment of the data and the analysis of the results. 

 

Figure 2. Schematic views of bottle caps oriented along a single (a) and alternate directions (b). 

 

Table 1. Experimental conditions 

2.3. Fabrication and testing 

The sandwich structure was produced in two steps. The external side of the aluminium sheet was first covered by 

a plastic layer to avoid resin leakage. The covered aluminium sheet was then inserted in a mould and adjusted to fit. The 

epoxy resin and the hardener were mixed for nearly 2 minutes and then spread over the uncovered aluminium surface 

located inside the mould, this to create a uniform adhesive layer with an estimated thickness of 1 mm. Finally, the bottle 

caps were placed by hand in sequence over the facings according to the orientation. The resin was cold cured under a 

3.5 kPa pressure for 24h. The same process was repeated for the second skin (Figure 3). Figure 4 shows the sandwich 

plate with the dimensions for the flexural test. The specimen size (242 x 92.1 x 14 mm) was based on those specified in 

 

(a) 

 

(b) 

Experiments Evaluated Factor Levels Samples 

1st set of 

Experiments 

Bottle caps 

Orientation 

Same direction (Fig 2.a) 8 (4 in each replicate) 

Alternated Directions (Fig 2.b) 8 (4 in each replicate) 

2nd set of 

Experiments 

Adhesive between 

bottle caps 

Without  
From the most favourable level of the 1st 

set of experiments 

Hot melt adhesive 8 (4 in each replicate) 

Epoxy resin reinforcement 8 (4 in each replicate) 
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the ASTM C393 standard for long beam samples [18]. Four samples were produced per experimental level (see Table 

1), with two replicates adopted for a total of 32 samples. During the first group of experiments no lateral connection 

between the adjacent bottle caps was used. For the second set of experiments the adjacent bottle caps were however 

connected using different techniques. The first lateral (sideways) connection method consisted in using hot melt glue 

between the bottle caps prior to the assembly of the sandwich panels. The second method consisted in spreading some 

epoxy polymer on the lateral surface of the caps with a wood stick. This operation was performed inside the mould, and 

the polymer layers created with these techniques helped to generate an additional lateral reinforcement. 

 

Figure 3. Second part of sandwich manufacturing process: first face with bottle caps being inserted in the mould with 

second face with epoxy resin 

 

Figure 4. Sandwich plate made with bottle caps core 

The sandwich plates were tested using a classical three-point bending (3P) loading for sandwich panels 

following the ASTM C393 standard [18]. Three-point bending tests can provide a rapid estimation of the flexural 

strength and stiffness of sandwich panels with readily available testing procedures. The 3P bending rig used in our work 

had a span length of 150 mm and cross head velocity of 6 mm/min, again as recommended by the ASTM C393 standard 

[18]. The samples were tested using a Shimadzu AGX machine with 100 kN load capacity (see Figure 5).  

 

Figure 5. Shimadzu Universal testing machine (a) and detail of 3P test rig (b) 

The parameters corresponding to the response of the DoE were the flexural stress and the flexural modulus (σf 

and Ef, according to ASTM D790 [19]), the core shear modulus (Gf, calculated following the ASTM D7250 protocol 

[20]), and the core shear ultimate and skin stresses (𝐹𝑠
𝑢𝑙𝑡 and σ [18]). The bulk density was determined by weighting 

each sample using a Marte BL3200H scale (ASTM D792-13 [21]). The core shear ultimate stress and the skin stress 

were calculated based on Equations 1 and 2 (ASTM C393 [18]):  

 1 cm 

   1 cm 
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𝐹𝑠
𝑢𝑙𝑡 =

𝑃𝑚𝑎𝑥

(𝑑 + 𝑐) ∗ 𝑏
 [𝑀𝑃𝑎] (1) 

𝜎 =
𝑃𝑚𝑎𝑥 ∗ 𝑆

2 ∗ 𝑡 ∗ (𝑑 + 𝑐) ∗ 𝑏
 [𝑀𝑃𝑎] (2) 

 In these equations Pmax is the maximum force prior to failure (in N), S is the span length, t is the nominal skin 

thickness, d is the sandwich thickness, c is the core thickness (obtained from 𝑐 =  𝑑 − 2 ∗ 𝑡), and b is the sandwich 

width. All lengths are in mm. The core shear modulus was calculated using the sets of equations presented below 

(Equations 3 to 6):  

𝐷 =
𝐸𝑠𝑘𝑖𝑛 ∗ (𝑑3 − 𝑐3)

12
 [𝑁 − 𝑚𝑚2] (3) 

𝑈𝑖 =
𝑃𝑖 ∗ (𝑆 − 𝐿1)

4 ∗ (∆ − (
𝑃𝑖

96∗𝐷
∗ (2 ∗ 𝑆3 )))

 [𝑁] 
(4) 

𝐺𝑖 =
𝑈𝑖 ∗ (𝑑 − 2 ∗ 𝑡)

(𝑑 − 𝑡)2 ∗ 𝑏
 [𝑀𝑃𝑎] (5) 

𝐺𝑓 =
∑ 𝐺𝑖10

𝑖=1

10
 [𝑀𝑃𝑎] (6) 

 Those equations are only appropriate if the elastic moduli of the skins are previously determined, and if both 

skins are identical (ASTM D7250 [20]). The flexural stiffness (D) is first calculated, with Eskin being the Young’s 

modulus of the skin (see Equation 3). The shear rigidity (Ui) and the core shear modulus (Gi) are calculated for a series 

of ten applied forces evenly spaced up to maximum force (see Equations 4 and 5). In those equations Pi is the force 

level considered (in N), L1 is the load span length (for 3PB test, L1 = 0) and Δ is the beam mid-span deflection (in mm) 

at each force level considered. When the mechanical response of the sandwich panel is approximately linear the overall 

core shear modulus (Gf) can be calculated from the values obtained at all force levels (see Equation 6). The flexural 

strength and modulus are calculated using Equations 7 and 8 (ASTM D790 [19]):  

𝜎𝑓 =
3 ∗ 𝑃𝑚𝑎𝑥 ∗ 𝑆

2 ∗ 𝑏 ∗ 𝑑2
 [𝑀𝑃𝑎] (7) 

𝐸𝑓 =
𝑆3 ∗ 𝑚

4 ∗ 𝑏 ∗ 𝑑3
 [𝑀𝑃𝑎] (8) 

For equation (8), the slope coefficient m (in N/mm) that indicates the slope of the initial straight-line portion of 

the load deflection curve is required.  

A microhardness test was carried out on the bottle cap samples to characterise the hardness HV of the core 

material. Square samples of 10 mm of side (Figure 6) were tested using a Mitutoyo MVK-G1 machine. The material 

shear (τmax) and tensile stress (σmax) can be extracted by using the Tresca criterion shown in Equations 9 and 10 [22]. 

The elastic modulus of the material (E) was determined from Equation 11 (see Giménez et al. [23]).  

𝜎𝑚𝑎𝑥 =
𝐻𝑉

3
 (9)  

𝜏𝑚𝑎𝑥 =
𝐻𝑉

6
 

(10) 
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𝐸 = 𝐻𝑉 ∗ 20 (11)  

 

Figure 6. Bottle caps samples used in the microhardness test 

3. RESULTS 

Table 2 shows the average values of the investigated parameters calculated using Equations 1 to 8. The values in 

the brackets correspond to the standard deviation of the calculated means. The first group of experiments (Experiment 

#1) indicates that the sandwich panels made with the alternate oriented bottle caps topology had the highest average 

values. The second group of experiments (Experiment #2) allowed to evaluate the types of connections, but only for the 

cores made with the caps in alternated directions, since this level featured the most promising mechanical properties in 

Experiment #1. Figure 7 shows some examples of the mid-span force vs displacement of the different types of panel 

topologies tested. Although both the single and alternate caps directions show a very similar overall stiffness (Figure 

7a), the sandwich panel with alternate caps featured the highest strength and toughness. The use of the hot melt 

adhesive provided a reduction of the sandwich panel stiffness (Figure 7b). On the other hand, the hot melt adhesive 

contributed to a slight improvement of the panel toughness. Sandwich panels with adjacent caps connected with the 

epoxy polymer featured a higher strength and toughness than the samples with no connection.  

 

    (a)      (b) 

Figure 7. Flexural mid-span Force vs. Displacement plots of Experiment #1 (a) and Experiment #2 (b). 

Table 2. Mean Results and standard deviation values obtained during the sandwich flexural tests for each condition. 

Responses 
Same bottle cap 

orientation 

Alternate bottle cap 

orientation 

Alternate bottle cap 

connected with hot 

melt adhesive 

Alternate bottle cap 

connected with 

epoxy polymer 
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Maximum Force (N) 1249.17 (81.67) 1515.17 (125.92) 1395.97 (108.69) 1874.55 (130.29) 

Core shear stress (MPa) 0.497 (0.038) 0.596 (0.061) 0.530 (0.045) 0.769 (0.065) 

Skin stress (MPa) 74.49 (5.84) 89.42 (9.12) 79.99 (6.68) 115.38 (9.69) 

Shear Modulus (MPa) 29.54 (4.68) 33.58 (5.35) 17.88 (1.92) 32.04 (6.59) 

Flexural Modulus (GPa) 2.01 (0.31) 2.31 (0.30) 1.57 (0.14) 2.49 (0.15) 

Flexural strength (MPa) 15.343 (1.409) 18.20 (2.181) 15.89 (1.584) 24.26 (2.41) 

Bulk Density (kg/m³) 514.62 (7.75) 510.42 (9.21) 493.02 (10.53) 532.04 (10.41) 

In the Analysis of Variance (ANOVA) it was assumed that no interaction occurred between the bottle caps 

orientation and the connection factors. Table 3 illustrates the P-Values obtained for each investigated response. The P-

values in bold are those below 0.05, and they are indicators of the presence of significant effects. The value of ‘R² 

Adjust’ was also obtained to show how well the statistical model predicts the responses from new observations. Higher 

values of R² (adj) imply models of greater predictability. The R² (adj) value for bottle cap orientation varied from 

76.49% to 92.34%. For the bottle cap connections, the R2 ranged from 73.65% to 79.45%. These values indicate a 

satisfactory adjustment of the data to the model. Tukey and Fisher tests were performed for the results of the 

Experiment #2 to compare the average values in each condition and identify the statistically significant levels. This 

comparison test was carried out since three levels were assessed during the Experiment #2, and ANOVA was not able 

to report which level is significantly different from the others [16]. 

Table 3. P-Values for each response 

Responses Bottle caps orientation Bottle caps connection 

Maximum Force (N) 0.010 0.007 

Core shear stress (MPa) 0.028 0.006 

Skin stress (MPa) 0.028 0.006 

Shear Modulus (MPa) 0.269 0.008 

Elastic Modulus (GPa) 0.227 0.004 

Flexural strength (MPa) 0.061 0.006 

 

The average values of the microhardness and the predicted mechanical properties (Eq. 9, Eq. 10, and Eq. 11) 

are shown in Table 4. The strength and the stiffness values show a good agreement with analogous results reported in 

open literature [24].  

Table 4. Characterisation of core material by microhardness test. 

Parameters Values 

Hardness (MPa) 50.3 

Elastic Modulus (GPa) 1.01 

Tensile strength (MPa) 16.7 

Shear Strength (MPa) 8.4 
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4. DISCUSSIONS 

4.1. Bottle Caps Orientation 

Table 2 shows that the alternated caps topology had a higher flexural strength compared to the one with the caps 

along the same direction. Further evidence to that conclusion is given by the graphs in Figure 8, which provide a 

comparison of the mean values and standard deviations in the two tested levels for all measured responses. However, 

according to the P-Values shown in Table 3 the bottle caps orientation has a significant effect only on the maximum 

bending force, core shear stress and skin stress. The P-Value for the flexural strength (0.061) was slightly above 0.05, 

which may indicate a significant effect if a lower confidence interval is considered. 

The flexural modulus was significantly lower than the Young’s modulus of the aluminium. This discrepancy can 

be attributed to a reduced adhesion between the smooth aluminium surface and the epoxy used to bond the skins to the 

bottle caps core. Therefore, early delamination prevented full contribution of the aluminium to the mechanical 

performance of the sandwich panels. The results were significantly dependent upon the core and the adhesives used, 

with the flexural modulus being quite similar to the modulus of the epoxy [25]. It is possible in principle to apply 

surface treatments and prevent the premature delamination caused by the reduced adhesion. These treatments of the 

aluminium surface range from chemical (primer finishing) to mechanical (sandpapering), in addition to mechanical 

fastening between the skins and the polymeric core.  

The higher values observed for the alternated bottle cap orientations may be justified by the distribution of the 

contact area between the bottle caps and the aluminium facings. It is a well-known fact that the bonding between 

metallic sheets and sandwich cores is a critical aspect for the mechanical performance of sandwich plates [26]. The 

bottle cap provides a larger contact area with the aluminium sheet because of the closed side. The core made from 

single direction caps provides an asymmetric connection with the facings. A lower mechanical performance, in terms of 

maximum force, can therefore be attributed to the presence of a reduced contact area between the core and skin on the 

open surface of the caps. 

 
    (a)      (b) 

 
    (c)      (d) 

 

21.3 % 

 

20.1 % 

 

19.9 % 

 

13.7% 
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    (e)      (f) 

Figure 8. Effect plots for the maximum force (a), core shear stress (b), skin stress (c), shear modulus (d), Flexural 

Modulus (e), and Flexural strength (f). 

Figure 9 shows an example of a failed sandwich panel with a core along a single direction. One can observe the 

presence of a delamination failure occurring on the face connected to the open surface of the bottle caps. This is a clear 

indication of the presence of a reduced contact and bonding area. 

 

Figure 9. Failed Bottle caps sandwich samples with evident delamination on cap side with open end. 

Delamination led to a shear failure of the core in the region between the adjacent bottle caps (Figure 10). The 

same failure pattern was observed in all samples with single direction caps. The higher force carried by in samples with 

the core made from bottle caps in alternate directions can be therefore attributed to the enhanced contact area with the 

two skins. Considering that the core shear stress, skin stress and flexural stress are dependent on the maximum force, 

the same conclusion can be extended to these mechanical parameters.  

 

Figure 10. A bottle caps sandwich sample with core shear failure between the adjacent caps. 

4.2. Connection of Bottle Caps 

A set of P-values lower than 0.05 (Table 3) indicate that all the mechanical parameters were significantly 

affected by the type of connection used. The highest mechanical performance of the sandwich panels was obtained for 

lateral connections with the epoxy. Figure 11 shows the mean values and standard deviation plots for the mechanical 

results assessed using the second experiment.  

 

15.02% 

 

18.62% 

    1 cm 
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   (a)       (b) 

     

   (c)       (d) 

     

   (e)       (f) 

Figure 11. Effect plots and comparison of the average results from various tests for the shear modulus (a), flexural 

modulus (b), maximum load (c), skin stress (d), core shear stress (e) and flexural strength (f). 

Tables 5 and 6 show the Tukey and Fisher matrices related to the comparison of the mean values. In these 

matrices, two levels that are not considered statistically different share a letter. The letters shown in Tables 5 and 6 are 

also presented in Figure 11. The comparison shows that the use of the hot melt adhesive had a major influence on the 

shear and the elastic moduli (see Table 5), causing some significant reductions of these engineering constants (12.7% 

and 32.3%, respectively). The reduced rigidity presented by the hot melt adhesive is the likely reason for the presence 

of a lower panel stiffness under bending deformations. The temperature of the hot melt glue is close to 130ºC [27], and 

this can partially affect the thermoplastic microstructure, since the melting temperature of the polypropylene is around 

160ºC [24]. In contrast, the Tukey and Fisher tests did not identify significant differences between the averages of those 

responses when the epoxy was used. This fact may be attributed to the similar composition between the sandwich 

composites with and without the epoxy polymer connection in adjacent caps. In the two classes of sandwich panels the 

amount of epoxy was almost the same.  

 

49.6 % 
60.1 % 

 

59.5 % 

47.6 % 

 

34.3 % 

8.1 % 

 

34.3 % 

8.1 % 

 

34.3 % 

8.1 % 

 

52.7 % 

14.5 % 

A 

A 

B 

A 

A 

B 

A 

A 

B 

A 

A 

B 

A 

A 

B 

A 

A 
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Table 5. Tukey and Fisher comparison test matrix for Shear Modulus and Flexural Modulus. 

 

 

 

 

 

Table 6. Tukey and Fisher comparison test matrix for Maximum Load, skin stress, core shear stress and flexural 

strength. 

 

 

 

 

The comparison of the average results for the remaining parameters showed a significant increase in the 

mechanical response when the epoxy was used between adjacent bottle caps (see Table 6). The majority of the epoxy-

connected samples did not present a visual shear failure between adjacent bottle caps. However, only one specimen 

from all tested samples reinforced with epoxy resin presented the previous failure mode (out-of-plane shear failure 

between bottle caps). That observation evidences a significant enhancement of the shear strength provided by epoxy 

resin between bottle caps. The failure of the reinforced panels was mainly due to the delamination of the aluminium 

skin. Figure 12 shows two examples of tested panels with the core made from the epoxy-connected caps. It is seen from 

the figure that the core is almost intact after the test. The use of the hot melt adhesive did not significantly change the 

other parameters. A small reduction of the average values however occurred, indicating that the hot melt adhesive did 

not act as expected to enhance the mechanical performance of the sandwich structures (see Figures 11.c to 11.f). 

 

Figure 12. Tested Bottle caps sandwich samples with no visible shear failure. 

 

4.3. Comparisons with other sandwich materials 

Table 7 compares the best setup condition (alternated orientation for bottle caps connected with epoxy resin) 

with a sandwich composite with tubular polypropylene core and polypropylene skins manufactured following the 

guidelines of Cabrera, Alcock, and Pejis [8]. The core density and some composite mechanical properties were 

compared between the two configurations. For a meaningful comparison, we have evaluated the specific properties (i.e., 

the ratio between each mechanical property and the composite bulk density). It is noted that all the mean values of the 

mechanical parameters obtained for the sandwich panel produced in this paper were superior to those achieved by the 

tubular core panel in [8]. Positive percentages mean that the properties of the sandwich bottle cap panels are higher. 

Despite the higher density of the panel with the bottle caps (0.532 g/cm³), the higher specific properties show the 

 Levels Matrix 

Adhesive between Bottle Caps  

Without adhesive A  

Epoxy polymer reinforcement A  

Hot melt adhesive  B 

 Levels Matrix 

Adhesive between Bottle Caps  

Without adhesive A  

Hot melt adhesive A  

Epoxy polymer reinforcement  B 
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overall high specific mechanical performance, and the feasibility of using the proposed bottle-cap sandwich panel 

configuration for secondary structural applications that require low-cost lightweight materials. 

Table 7. Comparison between the proposed sandwich composite and the sandwich composite with tubular core 

manufactured in [8] 

Response 
Alternate bottle cap orientation 

with epoxy connection 
PP composite [8]  

Percentage 

Variation 

Core Bulk Density (g/cm³) 0.1875 (0.0070) 0.120 56.25% 

Composite Bulk density (g/cm³) 0.532 (0.104) 0.195 172.82% 

Flexural rigidity (N-m²) 280.75 (10.53) 54.81 (2.21) 412.23% 

Specific Flexural Rigidity (x 10-6 N-m/g) 527.73 (19.80) 281.07 (11) 87.75% 

Shear stress (MPa) 0.77 (0.07) 0.27 184.81% 

Specific Shear Stress (N-m/g) 1.45 (0.12) 1.3 4.33% 

Skin Stress (MPa) 115.38 (9.69) 24 380.73% 

Specific Skin stress (N-m/g) 216.87 (18.22) 123.08 76.21% 

5. CONCLUSIONS 

This work has introduced a concept sandwich structure composed of aluminium skins and a core consisting of 

bottle caps connected by epoxy polymer. The design concept may provide a possible route to reuse disposed bottle caps 

that possess a lower degree of recyclability than their PET bottles, due to the higher melting temperature of the PP and 

its reduced performance after recycling. Statistical analyses (ANOVA and Comparison Mean Tests) were performed to 

identify the effect of the bottle cap orientation and the methods used to connect the caps on the mechanical performance 

of the sandwich panels. The bottle caps oriented along alternate directions provided a larger contact area with the 

external skins. The samples with that particular core exhibited enhanced mechanical properties under 3P bending 

loading, especially in terms of maximum force, shear and skin stresses. In addition, the use of an epoxy to connect the 

adjacent bottle caps provided a further increase of those mechanical parameters. That effect was however not observed 

when a hot melt adhesive was used for this purpose. The elastic and shear modulus appeared to be independent of the 

geometry and the connection methods used. In summary, this work featured a feasible approach to reuse domestic waste 

in a lightweight composite material, which can be used for secondary structural parts in engineering applications. 
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