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Abstract

In this paper an axisymmetric model of an omnidirectional electromagnetic
acoustic transducer (EMAT) used to generate Lamb waves in conductive
plates is introduced. Based on the EMAT model, the structural parame-
ters of the permanent magnet were used as the design variables while other
parameters were fixed. The goal of the optimization was to strengthen the
generation of the A0 mode and suppress the generation of the S0 mode. The
amplitudes of the displacement components at the observation point of the
plate were used for calculation of the objective functions. Three approaches
to obtain the amplitudes were discussed. The first approach was solving the
peak values of the envelopes of the time waveforms from the time domain
simulations. The second approach also involved calculation of the peaks, but
the waveforms were from frequency domain model combined with the for-
ward and inverse Fourier transforms. The third approach involved a single
frequency in the frequency domain model. Single and multi-objective opti-
mizations were attempted, implemented with the genetic algorithms. In the
single objective optimizations, the goal was decreasing the ratio of the ampli-
tudes of the S0 and A0 modes, while in the multi-objective optimizations, an
extra goal was strengthening the A0 mode directly. The Pareto front from
the multi-objective optimizations was compared with the estimation from
the data on the discrete grid of the design variables. From the analysis of the
results, it could be concluded that for a linearized steel plate with a thickness
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of 10 mm and testing frequency of 50 kHz, the point with minimum S0/A0
could be selected, thus the multi-objective optimization effectively degener-
ated to the single objective optimization. While for an aluminum plate with
a thickness of 3 mm and frequency of 150 kHz, without further information
it would be difficult to select one particular solution from the Pareto front.

Keywords: ultrasonic transducers, omni-directional electromagnetic
acoustic transducers, Lorentz force, Lamb waves, multi-objective
optimization
PACS: 85.70.Ec

1. Introduction

Ultrasonic testing is widely used in various industries to check the in-
tegrity of critical structures, so as to avoid structural failure and accom-
panying economic losses, environmental pollutions and even human casual-
ties. Traditionally ultrasonic waves are generated in the solid under inves-
tigation with piezoelectric transducers, but these transducers require liquid
coupling to transfer the generated ultrasonic waves into the solid, and this
coupling is not always convenient, and may introduce uncertainty in the
testing process. As viable supplements to the piezoelectric transducers, some
non-contact techniques for generating ultrasonic waves are gaining attentions
these years. These non-contact techniques include air-coupled transducers,
laser-generation of ultrasonic waves and electromagnetic acoustic transducers
(EMATs). EMATs are the topic of this paper.

Some of the earliest analyses on EMATs and various types of ultrasonic
waves they can excite could be found in Thompsons work [1, 2, 3, 4]. EMATs
rely on the electromagnetic effects to generate ultrasonic waves in conductive
and magnetic materials directly, without requirement for liquid coupling. In
conductive solid, the EMATs work under the Lorentz force mechanism, this
process is relatively simple to comprehend. While in ferromagnetic materials,
besides the Lorentz forces, magnetostriction effect manifests, making the
transduction process more complex [5, 6]. In this paper, we will only consider
the Lorentz force in EMATs, which is a simplification if the material under
testing is magnetic. Two cases will be studied in this work, i.e. a linearised
steel plate and an aluminum plate. A constant magnetic permeability will be
applied for the steel plate so that the magnetism is not completely ignored.

The structure of an axisymmetric EMAT is shown in Fig. 1. It’s used
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Figure 1: A typical EMAT with an axisymmetric structure. This EMAT is composed of
a spiral coil and a cylindrical permanent magnet placed on a conductive solid

to generate bulk waves. The cylindrical magnet provides the vertical bias
magnetic field, and the spiral coil under it is fed with alternating current.
According to the electromagnetic induction law, eddy current is generated in
the near surface of the tested sample. Together with the bias field, the eddy
current gives rise to the Lorentz force, which then causes ultrasonic waves
to propagate in the sample. This figure is only for the purpose of concept
illustration, and in reality the fields can be complex. For example, the bias
field provided by the magnet is not uniform in terms of magnitude and not
strictly in the vertical direction. In fact, some parameters of the magnet,
that determine the distribution of the bias magnetic field, are what we will
use as the design variables of the optimizations.

EMATs are versatile, because with different configurations of the coil
and the bias magnetic field, different kinds of ultrasonic waves could be
generated. The non-contact nature of EMATs makes them suitable for some
special applications like testing hot or moving objects. In spite of these
obvious advantages, EMATs have their own disadvantages. One difficulty is
that the energy transduction efficiency is often relatively low, and the level of
magnitude of the acquired testing signal is only several microvolts. For this
reason, it’s always desired to build accurate models of EMATs, and design
EMATs with better performance based on the models, that is, obtaining
optimized parameters for these transducers.
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The model of an EMAT is multiphysics in nature, involving coupling of
the electromagnetic and elastodynamic fields. Modeling of EMATs has been
an attractive topic in the previous years. Ludwig conducted transient analy-
sis of a meander coil EMAT placed on isotropic non-ferromagnetic half-space,
assuming uniform static magnetic field [7]. Jafari-Shapoorabadi studied in
detail the controlling eddy current equations and argued that the previous
work using the total current divided by the cross section area of the conductor
as the source current density is equivalently applying the incomplete equa-
tion, and this means ignoring the skin effect and proximity effect [8], while
we proved the opposite in [9]. Dhayalan used the FEM package COMSOL
to build the electromagnetic model of a meander EMAT, and the simulated
Lorentz force was exported to another package Abaqus as the driving force
to excite Lamb waves [10]. These modelling work only involves non-magnetic
materials. There is also some initial work on modelling EMATs used to test
magnetic material, while we will not discuss further here.

The work on optimizations of EMATs are still rare. Mirkhania conducted
a parametric study of an EMAT composed of a racetrack coil, by varying the
ratio between the width of the magnet and the width of the coil, and found
that if this ratio was set at 1.2, the ultrasonic beam amplitude would be
improved [11]. One design variable and one objective function were used in
this optimization, accomplished only through observation of a set of curves
corresponding to different design variables instead of using a real optimiza-
tion algorithm. Seher optimized a spiral coil EMAT using genetic algorithm
optimization procedure in the global optimization toolbox of Matlab [12, 13].
The ratio between the amplitudes of the A0 mode and the S0 mode is selected
as the objective function to be maximized, i.e. preferably generating the A0
mode. This optimization work was partly inspired by [14] in which the influ-
ence of the direction of the exciting Lorentz forces on mode selectivity was
discussed with a simplified traction cone model.

In this paper, we build an axisymmetric model of an omnidirectional
EMAT used to generate Lamb waves in a conductive plate, with the finite
element package COMSOL. We choose COMSOL because of its power in
multiphysics modelling and great flexibility. We discuss different strategies
to calculate the amplitudes of displacement components at an observation
point in the plate, to be used to calculate the objective functions in opti-
mization. Then the work relating to both single objective and, more impor-
tantly, multi-objective optimizations of the EMAT is introduced, applying
the genetic algorithms. The topic of multi-objective optimizations is huge
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because it could be applied in so many applications in various fields includ-
ing economics, finance, optimal control, process optimization, optimal design,
etc. In the field of optimal design alone, diverse applications exist like nano-
CMOS voltage-controlled oscillator design [15], antenna design [16], optimal
sensor deployment [17], etc., while it hasn’t been considered in the design of
EMATs. We developed the optimization programs in Matlab, and achieved
performance enhancement by decreasing the total number of evaluations of
the objective functions.

In this work we followed a similar path as [12, 13], although with some
distinctive differences. For the EMAT model, we chose to model each wire of
the coil individually, instead of using other types of excitations, so that the
waveform from frequency domain analysis and FFT/IFFT processing is close
to the waveform from time-dependent analysis, because we wanted to use the
latter as the reference. We divided the model into three sub-models and two
geometries, so that the whole model has a clear structure. Besides the single
objective optimization, we mainly focused on multi-objective optimization of
the EMAT, solving the Pareto front of the problem with a MOGA program.
Values of objective functions at the discrete grid of the design variables were
also obtained to gain insight into the optimization problem. We developed
the single objective and multi-objective genetic algorithm programs ourselves
so that the performances are better compared with the code shipped with
Matlab, by reducing the total number of evaluations of the objective func-
tions, as already introduced.

2. The axisymmetric model of an omnidirectional EMAT

In this work we consider an omnidirectional EMAT composed of a spiral
coil and a cylindrical permanent magnet, similar to the typical EMAT struc-
ture shown in Fig. 1. The difference is that the EMAT modelled here is used
to generate Lamb waves in a plate, instead of bulk waves. One of the authors
proposed an analytical model of this EMAT [18] concerning the excitability
of different guided wave modes, from which the structural parameters of the
coil to be used in this work are also derived from. The coil is composed of
tightly wound copper wires, instead of forming a meander pattern, so both
S0 mode and A0 mode Lamb waves will be generated, while in this work,
the aim is to generate A0 mode Lamb waves, so we build the model bearing
this preference in mind.
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Figure 2: The geometry of the electromagnetic sub-models. This geometry is used for
magnetostatic analysis and eddy current analysis.

The complete EMAT model is composed of one magnetostatic sub-model
describing the magnetic field of the permanent magnet, one eddy current
sub-model analysing the eddy current phenomenon accompanied by the skin
and proximity effects, and one elastodynamic sub-model for simulation of
wave generation and propagation in the plate. The two electromagnetic sub-
models share one geometry containing the air, the inner section of the plate,
the copper wires, and the permanent magnet, as in Fig. 2. Note that in
this geometry only a section of the full plate is modelled. The elastodynamic
sub-model has its own geometry, only containing the full plate. The Lorentz
force calculated from the two electromagnetic sub-models is transferred to the
elastodynamic sub-model as the driving force of ultrasonic waves. There are
some benefits to use two geometries. One benefit is that the structure of the
model is very clear. Another benefit is that for elastodynamic simulation,
we can model the plate only, thus reducing the scale of the whole model.
Additionally, we can use different meshing rules for these two geometries,
according to the respective physics. This two-geometry treatment is valid
because the Lorentz force is local in the region of the plate just under the
transducer.
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In Fig. 2, it’s only necessary to consider the region where r > 0, since
this is an axisymmetric model. The testing frequency is 50 kHz. As in
[12], the relative magnetic permeability of the steel plate is 160, i.e. it’s
a simplified linear material. The conductivity is 4.032 MS/m (structural
steel in COMSOL). The thickness of the plate is 10 mm. The remanent
magnetic flux density of the magnet is set to 1.3 T (a typical value for NdFeB
permanent magnet) along the positive direction of the z axis. RM is the
radius of the magnet. lM is the liftoff distance of the magnet from its bottom
to the top of the coil. The two parameters of RM and lM will be used as
the design variables in the optimizations, while all the other parameters are
fixed for each optimization.

RC is the average radius of the coil decided as,

RC = (2n− 1)
λ

4
, n = 1, 2, ... (1)

in which λ is the wavelength of the desired Lamb wave mode. For the EMAT
on the steel plate, n is chosen to be 1, i.e. RC = λ

4
, similar as in [13]. It’s not

difficult to explain this equation. Because the model is axisymmetric, there
is actually a cluster of wires with currents in the opposite direction in the
region r < 0 in the actual coil (but not modeled in the axisymmetric FEM
model), so a closed coil is formed. Then the distance between the centers
of these two clusters of wires (2RC or the average diameter) should be half
the wavelength (2RC = λ

2
), or we can skip this value and jump to the next

proper value of RC including another half wavelength (RC = λ
4

+ λ
2
), and

so on. As stated previously, we want to selectively generate A0 mode Lamb
waves. For A0 mode Lamb waves in a steel plate of 10 mm thickness at 50
kHz, from the dispersion curves generated with a program we developed, the
phase velocity is 1867.78 m/s, then the wavelength λ is 37.36 mm.

WC is the radial width of the coil (difference between the outer and inner
radii of the coil). The coil is composed of two layers of copper wires with
conductivity as 5.998×107 S/m (default value for copper material in COM-
SOL). The wires form an array of 23 columns and 2 rows, as in [18]. The
wires have rectangular cross sections. The radial width of each wire is 0.3
mm, and the radial gap between adjacent wires in the same layer is 0.1 mm.
The axial height of the wire and the gap between the two layers are both
0.1 mm. We have chosen to model each wire individually for a reason to be
discussed later.

Special care must be taken when meshing the electromagnetic sub-models.
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A skin layer is cut from the top surface of the plate with a thickness of 0.15
mm. In the z direction, there are 4 elements in every skin depth (8.8617×10−5

m for steel material) in the skin layer of the plate. The elements in the plate
are rectangular elements generated with the mapped method. The remaining
elements are free triangular elements. All the elements have default quadratic
shape functions.

The geometry of the elastodynamic sub-model simply contains a full plate
with a radius of 1.2 m. The Young’s modulus is 200×109 Pa, Poisson’s ratio
is 0.33, density is 7850 kg/m3 (structural steel). The observation point to
record the displacement components in the simulations is located at 60 cm
from the z axis, in the middle plane of the plate. This distance is applied
to ensure that the waves are propagating stably at the observation point, as
confirmed by some simulations. From the displacement wave structures of
Lamb waves with the specified frequency and plate thickness, at the middle
plane of the plate, the displacement component u = ur only corresponds to
the S0 mode, while the other component w = uz only corresponds to the A0
mode.

In the elastodynamic sub-model, the sizes of the elements in the r di-
rection (ler) and the z direction (lez) must be chosen carefully to ensure
sufficient accuracy of the simulation. lez should be small enough to make
sure the number of the elements in the z direction is big enough to describe
the wave structures, i.e. the distributions of the displacement, stress or any
other physical variable along the thickness of the plate waveguide, accurately.
10 is adopted as the element number in the z direction for the simulation.
ler must also be small enough to ensure that there exists a sufficient num-
ber of elements in one wave length of the Lamb waves, which means that if
λ = Cp/f is the wave length and

λ

ler
= N (2)

then N should be at least 10 for a good spatial resolution, and the value of
20 is recommended [19]. N =10 in this work. This is reasonable considering
that the default quadratic shape functions are used in discretization of the
sub-model.

The boundaries of the sub-models must be handled with care. In the
geometry for the electromagnetic sub-models, there is a layer of infinite ele-
ments at the air boundary simulating an air region extending to infinitely far
away. This infinite element layer helps to improve the accuracy of simulation
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at the air boundary. In the geometry of the elastodynamic sub-model, the
top and bottom boundaries of the full plate are free boundaries without con-
straints or loads. For a transient analysis, the outer end edge (at r = 1.2 m)
is also a free boundary. If the full plate is long enough in the radial direction
or the total time of simulation is limited to a proper value, the reflections
from the end of the plate can be avoided. While for a frequency domain
analysis, an extra perfectly matched layer (PML) must be added to the end
of the plate so that the energy in the plate can dissipate. In this work, the
PML layer is 0.08 m in the r direction and composed of 10 layers of elements
in this direction (10×10 elements in the PML region).

To further increase the accuracy of the model, fillets are added to the
sharp corners of the magnet and the wires, so that the singularities are re-
moved, while at the same time the number of elements and hence the scale
of the model is also increased.

3. The time domain model vs. the frequency domain model

For optimization, we must obtain the amplitudes of the displacement
components at the observation point, since they will be used to calculate the
objective functions. Deciding how to calculate the amplitudes is thus crucial.

The first approach is implemented via the time-domain model. In the
time-domain model, the bias magnetic field comes from the magnetostatic
simulation. The eddy current distribution, and the generation and propa-
gation of the Lamb waves are from time-dependent simulations. A time-
stepping scheme is used for this simulation. For convergence of the time-
dependent solver in COMSOL, a very small time step must be used, which
means the simulation will be time-consuming. In this work, the number of
time steps is usually set as 6000, for the tone-burst excitation signal x(t)
composed of 5 sinusoidal periods modulated with a Hanning window func-
tion. For a simulation time of 3.1163×10−4 s, the time step is 5.1938×10−8

s. Once the time waveforms u(t) and w(t) at the observation point are simu-
lated, the amplitudes/peaks of the envelops of these waveforms will be solved
as, {

pu = max (|u(t) + iH[u(t)]|)
pw = max (|w(t) + iH[w(t)]|) (3)

in which i is the imaginary unit, H [·] is the Hilbert transform, f + iH[f ]
is the analytic signal corresponding to the time signal f , and the absolute
value of this analytic signal gives the envelope. max means solving the peak
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of the envelope, if there’s only one wave packet in the time waveform, the
maximum value of the envelope corresponds to its peak. Because evolution-
ary algorithms will be applied in this work for optimizations, the number of
evaluations of the objective function, i.e. the number of runs of the numerical
model, will be big, so the time domain model is too time-consuming to be
considered in optimizations, then an alternative faster approach is desired.

Another approach is to transform the input time-continuous excitation
signal to its frequency components via Fourier transform (implemented with
FFT on a computer), feed them into a frequency domain model, transform
the output back into the time-response with inverse Fourier transform (im-
plemented with IFFT), and finally solve the peaks of the envelopes of the
time waveforms. The time waveforms obtained in this way can be expressed
as, {

u(t) = F−1 {F [x(t)]Hu(ω,RM , lM)}
w(t) = F−1 {F [x(t)]Hw(ω,RM , lM)} (4)

in which F represents Fourier transform, F−1 is the inverse Fourier trans-
form, x(t) is the input tone burst signal, Hu(ω,RM , lM) is the system function
for the displacement component u along the r axis, and Hw(ω,RM , lM) is the
system function for the displacement component w along the z axis. RM and
lM are included to stress that these system functions change with the design
variables, while the input signal x(t) is fixed. Then the amplitudes/peaks
are solved just like in equation (3). Because the spectrum of the input burst
signal is concentrated around the center frequency, we can select only the
frequency components bigger than some threshold value as an acceptable ap-
proximation. Normally tens of (or fewer) frequency components are enough,
as verified by various tests, so this approach will be less time-consuming than
the time-domain simulation. For this purpose, we build a frequency-domain
model of the EMAT, in which the bias magnetic field is again from the mag-
netostatic simulation, but the eddy current sub-model and the elastodynamic
sub-model are completely in the frequency-domain. Then we implement this
proposed approach by connecting the frequency-domain model in COMSOL
with the Matlab environment. The time waveforms from this approach are
carefully compared with the waveforms from the previous time domain sim-
ulations, which serve as a reference. From many test simulations that we
conducted, it was found that not every type of current or current density ex-
citation in COMSOL could satisfy our requirement that the time waveforms
from both methods be the same. For this reason, we choose to model every
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Figure 3: u and w waveforms from time-dependent simulation and frequency domain
model with FFT/IFFT processing.

wire of the coil individually by specifying the total current in this wire, which
is more complex than specifying other types of excitations. This is necessary
because it satisfies our requirement. As an example, u and w waveforms
from the time-dependent simulation and the frequency domain model with
FFT/IFFT processing are compared in Fig. 3. The design variables are se-
lected as RM = 8 mm and lM = 1 mm. The threshold to select the frequency
components is 10%, that is, only the frequency components higher than 10%
of the peak value of the spectrum are used, and others are discarded. With
this threshold, 11 components around the center frequency are kept.

One important requisite to validate the frequency domain model is that
the whole model must be linear. This requirement poses difficulty considering
the following formulations of the Lorentz force in an EMAT,

FL = J×B = J× (B0 + Bd) (5)

in which J is the current density, B is the total magnetic flux density com-
posed of the static flux density B0 of the bias magnet, and the dynamic flux
density Bd generated by the excitation coil. In a frequency domain model,
J and Bd are complex phasors, while B0 is constant, so the first part of the
Lorentz force J × B0 is still a complex phasor, but the second part of the
Lorentz force J×Bd is not a valid phasor, because two complex phasors can-
not be multiplied to obtain another phasor. This means that the frequency
model cannot handle the second part of the Lorentz force originating from
the dynamic magnetic field and the current density, so we have to specify a
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small value of the input current so that the Lorentz force component from
the dynamic magnetic field could be ignored.

Since we are mostly concerned with the amplitudes of the u and w wave-
forms, yet another approach exists, where only one single-frequency is used
in the frequency model. That is, we only consider the center frequency of
the burst signal (50 kHz for the EMAT on the steel plate), and use the ab-
solute values of the complex phasors to approximate the amplitudes of the
waveforms. This process could be formulated as,{

|u̇| = |Hu(ωc, RM , lM)|
|ẇ| = |Hw(ωc, RM , lM)| (6)

in which ωc is the center frequency in radian, u̇ is the complex phasor of u,
and ẇ is the complex phasor of w.

It’s still necessary to prove that Approach 3 is an acceptable approxima-
tion of Approach 2. By carefully observing equation (6), we can see that
|u̇| is the system function evaluated at the center frequency. While in equa-
tion (4), the spectrum of the tone burst signal F [x(t)] is bell-shaped, i.e.
narrow-banded, so the result of F−1[·] operation is mainly decided by the
value of the system function Hu(ω,RM , lM) at the center frequency ωc, if
the system function is smooth (slowly changing with frequency) with respect
to the spectrum of the input burst signal. Then a higher Hu(ωc, RM , lM)
means higher amplitude of the time waveform, and thus higher peak value
of its envelope. So the phasors could be used to approximate the objective
functions. Corresponding to Fig. 3, the u and w system functions are shown
in Fig. 4. The spacing between two adjacent frequency components is 3.1187
kHz. These functions are indeed slowly changing with frequency compared
with the spectrum of the input signal which is around 50 kHz.

The amplitudes of u, w and u
w

from Approach 2 and 3 are solved numer-
ically with fixed lM = 1 mm and different RM values, to further validate
Approach 3. The results are shown in Fig. 5. pu is the peak value of enve-
lope of u waveform solved with the frequency domain model and FFT/IFFT,
while |u̇| is the magnitude of u phasor solved with one single frequency in
the frequency domain model. It could be observed that the amplitudes from
these two approaches are similar. In fact, the curves from the two approaches
are not required to be the same. What’s important is that they have sim-
ilar shape and reach respective maximum values at the same set of design
variables.
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Figure 4: u and w system functions.
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Figure 5: u, w and u
w amplitudes at different RM values, from Approach 2 and 3. lM = 1

mm is fixed.
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The third approach is the fastest, since only one frequency is used. In
the later optimizations, we will mainly use this approach, although we will
also compare it with the second approach, when necessary.

4. Single objective optimization of the EMAT

Firstly, we consider one objective function only. Just similar to [13], we
want to selectively generate the A0 mode Lamb waves while at the same time
suppress the S0 mode. So the objective function is selected as the ratio of
amplitudes of the S0 mode and the A0 mode, and we need to minimize this
objective function. In [13], the authors proposed to solve the displacement
components at the middle plane of the plate, then from the displacement
wave structures of Lamb waves, the in-plane component (u) corresponds
to the S0 mode only while the out-of-plane component (w) corresponds to
the A0 mode only. So the single objective optimization problem could be
formulated as,

minimize f(RM , lM) =
Au
Aw

(7)

in which Au is the amplitude of u and Aw is the amplitude of w. The design
variables RM and lM have upper and lower bounds as, RM ∈ [2.5, 15] mm,
lM ∈ [1, 3] mm.

For optimization, we choose the genetic algorithm (GA), a kind of global
optimization algorithm without requirement to calculate gradients. We de-
veloped a genetic algorithm program in Matlab to optimize the parameters
of the EMAT, i.e. the design variables. In this program, we implement bi-
nary coding and real coding, with or without constraints. The program is
implemented with object-oriented programming (OOP) technique, exploit-
ing the fact that the concepts like individual, population, generation, etc.
in GA are naturally modelled with objects in OOP programming paradigm.
An advantage of this program is that the total number of evaluations of the
objective function is reduced, compared with the code shipped with Mat-
lab itself. This was realized by carefully tracking the internal status of the
program and avoid any unnecessary evaluations. For optimization problems
involving complex numerical models, the bottleneck of the optimization pro-
cedure is the evaluation of the objective function, or running of the FEM
model, so this advantage helps us reduce the total time consumed greatly.

Firstly, single frequency model is used for calculation of the objective
function value in the GA program (Approach 3). The number of genera-
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tions is 50, and the number of individuals is 30. Ten runs of the GA pro-
gram are conducted, and the best one (with minimum value among the ten
solved minimized objective function values) is that the design variables are
RM =10.82 mm and lM =1.14 mm, and the corresponding objective func-
tion value is 0.00545.These results are very close to [13] where 2RC =21.05
mm and lM =1.47 mm. The number of evaluations of the objective function
(number of runs of the frequency domain model) is 1382, and the total time
consumed is 56256 s, on a PC running Windows operating system, installed
with Intel Xeon CPU @ 2.60 GHz, and a RAM of 32 GB.

Then the approach using peak values of envelopes of the time waveforms,
calculated from the frequency domain model (Approach 2), is applied for
comparison. The number of generations is 20, and the number of individuals
is 10. Ten runs of the GA program are conducted, and the best one is
that the design variables are RM =10.70 mm and lM =1.19 mm, and the
corresponding objective function value is 0.00594. The number of evaluations
of the objective function (number of runs of the frequency domain model with
multiple frequencies and the FFT/IFFT processing) is 158, and the total
time consumed is 29955 s, on the same computer. Through comparison, it
could be observed that these two approaches could give similar results, so it’s
completely valid to use the single frequency approach in the optimizations.

5. Multi-objective optimization of the EMAT

In the previous section, only one objective function is considered, so this
single objective optimization is only preliminary. In this section, two objec-
tive functions are considered simultaneously. One objective function is the
ratio of the amplitudes of the S0 and A0 modes, just like in the previous sec-
tion. The other objective function is the negative amplitude of the A0 mode.
These two objective functions are minimized at the same time, that is, we
want S0 mode to be as small as possible compared with the A0 mode, while
concurrently keeping the A0 mode as big as possible. With Au representing
the amplitude of u (S0 mode) and Aw representing the amplitude of w (A0
mode), the multi-objective optimization problem is,{

minimize f1(RM , lM) = Au

Aw

minimize f2(RM , lM) = −Aw
(8)

The concepts relating to multi-objective optimizations are more complex
than those of single objective optimizations, because the multiple objective
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functions are often contradictory. The concept of Pareto front is necessary, in
which we generally obtain a set of optimal non-dominated solutions instead
of a single optimal solution. A solution x(1) (a vector of design variables) is
said to dominate the other solution x(2), if [20],

1. x(1) is no worse than x(2) in all objectives,

2. x(1) is strictly better than x(2) in at least one objective.

If x(1) dominates x(2), then x(2) is dominated by x(1), and x(1) is non-
dominated by x(2). Pareto front is just a set of solutions in which any one
solution is non-dominated by any other solutions in the set of all feasible so-
lutions. Without further information, we can’t say one solution on the Pareto
front is better than another. For problems with two objective functions, we
can draw a criterion space on the 2D coordinate system, in which the x axis
is the value of the first objective function, and the y axis is the value of the
other objective function. The Pareto front could be plotted in this criterion
space.

5.1. Data on the discrete grid of the design variables

Before truly considering the problem in the point of view of multi-objective
optimization, we can obtain insight of the problem by sampling the design
variables RM and lM on a discrete grid and obtaining data including |u̇|, |ẇ|
and |u̇|/|ẇ| on this grid. They are drawn as surfaces in Fig. 6. The two
design variables are sampled on a 60×60 grid, which implies 3600 runs of
the frequency domain model. Fortunately, with the approach only using one
single frequency in the frequency domain model (Approach 3), the data on
the grid is attainable in terms of time consumed. The |u̇|, |ẇ| and |u̇|/|ẇ|
curves in Fig. 5 are just cut lines of these surfaces with fixed lM = 1 mm.

From Fig. 6, it could be observed that the |u̇| surface has a special shape.
The surface seems like a paper squeezed along the x axis (RM), i.e. if we cut
the surface with planes y = lM at different lM values, the obtained curves
in 3D space have similar shapes, like in Figure 5(a). On the contrary, the
curves cut with planes x = RM at different RM values are almost constant
curves. This shape indicates that RM is the dominating variable for the |u̇|
surface, while lM is not. The same situation exists for the |ẇ| surface and
the derived |u̇|/|ẇ| surface.

There is a valley in the |u̇|/|ẇ| surface. In this valley, the |u̇|/|ẇ| value
(the original single objective function) doesn’t change too much. This valley
is approximately along the y axis (representing the design variable lM), so the
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Figure 6: |u̇|, |ẇ| and |u̇|/|ẇ| surfaces on the discrete grid of the design variables.
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Figure 7: Scattered points corresponding to the objective function values evaluated on the
discrete grid of the design variables.

|u̇|/|ẇ| value is sensitive to the variation of RM , but not that of lM . This is
consistent with the previous observation that RM is the dominating variable
for the surfaces.

The scattered points in the criterion space corresponding to the two ob-
jective function values evaluated on the discrete grid are drawn in Fig. 7.
It could be observed that the points form a smooth distribution composed
of some small branches, and the shape of this distribution is also special.
From this figure, we already could estimate qualitatively the Pareto front,
which should be the tangent curve of the branches at the bottom of the plot,
formed by closely distributed scattered points.
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5.2. Optimization with the multi-objective genetic algorithm (MOGA)

Although the distribution of the scattered points can already give us an
idea of what the Pareto front of the multi-objective optimization problem will
look like, a dedicated optimization program is still necessary. We developed
specially a multi-objective genetic algorithm program in Matlab1 to optimize
the parameters of the EMAT using two objective functions. In this program,
the NSGA-II algorithm [21, 20] is implemented, and with one run of the
program, the set of solutions on the Pareto front is obtained. A test case
of the MOGA program is included in Appendix A. Similar to the single
objective optimization program, we implemented a mechanism to track the
internal status of the multi-objective optimization program, to reduce the
total number of evaluations of the objective functions.

The result of one run of the multi-objective optimization is shown in Fig.
8. From the figure, the discrete solutions (marked with×) on the Pareto front
could be clearly observed. They are close to what we expect from the data on
the discrete grid. If we have no further information about the problem helping
us to make the decision, the Pareto front is the final result of this multi-
objective optimization problem. While considering the special structure of
this particular Pareto front, one possible and reasonable choice is the left
most solution of the Pareto front (left most × in Fig. 8 corresponding to
RM =10.84 mm and lM =1.15 mm) where the first objective function reaches
its minimum. The reason is that although the first objective function value
changes greatly on this Pareto front, the second objective function doesn’t
change that much (from around -1.09×10−12 to -1.16×10−12), so even if we
select the solution corresponding to a minimum first objective function value,
the second objective function value is not compromised too much. Note that
if we select the left most solution on the Pareto front, this multi-objective
optimization problem is effectively reduced to the original single-objective
optimization problem.

For the optimization result corresponding to the selected solution on the
Pareto front (left most solution in Fig. 8), we can feed this particular com-
bination of the design variables (RM =10.84 mm and lM =1.15 mm) into
the numerical models of the EMAT and obtain time waveforms or the pha-

1Note that a multi-objective optimization package implemented in Matlab is desired,
because it must be linked to COMSOL where the FEM model is built. COMSOL could
be linked to Matlab with ease through its LiveLink feature.
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Figure 8: Pareto front solved with the MOGA. Part of the scattered points from the
discrete grid of the design variables are also shown for comparison.

sors and the objective function values in the forward direction, to compare
the three proposed approaches under these design variables. In Table 1, ob-
jective function values at the design variables corresponding to the selected
solution on the Pareto front in the criterion space are summarized, from the
three approaches. The first row is from the most time-consuming time do-
main simulation, and Au and Aw are peak values of the envelopes of the S0
mode and A0 mode wave packets. The second row is also from the envelops
of the time waveforms, but the waveforms are from the frequency-domain
model combined with the FFT/IFFT processing. The third row is from the
least time-consuming single frequency model, which is used in the MOGA
program. |u̇| and |ẇ| are the absolute values of the complex phasors of the
displacement components. It could be seen that with the three approaches,
similiar objective function values are achieved.

5.3. Optimization of an EMAT on an aluminium plate

Besides the above EMAT used for steel plate inspection (with linear sim-
plification), an optimization is also conducted for a similar EMAT for in-
spection of an aluminium plate. This time the frequency is 150 kHz, and
the thickness of the plate is 3 mm. The calculated phase velocity of the
A0 mode is 1808.39 m/s. From a simple calculation, we can find that the
resulted A0 mode wavelength is around 12 mm, then if we stick with the rule
that the average radius of the coil (RC) is 1

4
of the A0 mode wavelength, i.e.

n = 1 in equation (1), the radius will be around 3 mm, which is too small
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Table 1: Objective function values at the solution selected from the Pareto front

Approaches adopted f1 = Au/Aw f2 = −Aw (m)

(1) Peaks of envelopes of time wave-
forms from time-dependent simulation,
Au = pu and Aw = pw

0.005432 -1.143×10−12

(2) Peaks of envelopes of time wave-
forms from frequency model combined
with FFT/IFFT, Au = pu and Aw = pw

0.005715 -1.142×10−12

(3) Absolute values of phasors from
frequency-domain model with single
frequency, Au = |u̇| and Aw = |ẇ| (used
in the MOGA)

0.005493 -1.097×10−12

for practical application. As a possible workaround, we propose to select the
average radius of the coil to be (1/4+1/2) wavelength of the desired A0 mode
Lamb waves (n = 2 in equation (1)). A time-domain simulation is conducted
in which the waveforms of displacement components at two different points
in the plate are recorded and used to calculate the propagation velocities of
the wave packets. These velocities are compared with the group velocities to
validate this special design. Waveforms from frequency-domain model com-
bined with FT/IFT also give similar results. Details are not shown here for
simplicity.

Similar to the case of EMAT on a steel plate, we obtain objective function
values evaluated on a discrete grid of the design variables. The bounds of
the design variables are RM ∈ [0.5, 15] mm, lM ∈ [1, 3] mm. The MOGA
program is also applied. The results are shown in Fig. 9. Clearly the solved
Pareto front could again be estimated from the data on the discrete grid.
While this time, the structure of the Pareto front is very different from that
of the previous case. When the first objective function value approaches 0
(what we desire), the second objective function value also approaches 0 (what
we don’t want). This time, no easy decision could be made on selecting one
particular solution on the Pareto front. A further investigation shows that
the main reason of this difference is that with the proposed parameters of
the EMAT, the |u̇| surface (corresponding to S0 mode) no longer has a valley
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Figure 9: Pareto front solved with the MOGA, for an omnidirectional EMAT on an
aluminium plate with a thickness of 3 mm at 150 kHz. The scattered points corresponding
to the objective function values evaluated on the discrete grid of the design variables are
also shown for comparison.

so that the derived |u̇|/|ẇ| surface doesn’t have a valley, and |ẇ| and |u̇|/|ẇ|
both (almost) increase monotonically with increasing RM at fixed lM . The
surfaces of this case are not shown here.

This situation indicates that in optimizations of EMATs, with many pa-
rameters like testing frequency, structural properties of the transducer, ma-
terial properties, etc. having influences on the problem, it will be difficult
to predict what the multi-objective optimization result looks like until we
actually do it, unless we can build something like an analytical model to
completely describe the behaviours of the transducers and the optimization
procedures.

6. Conclusion

In this work we introduced an axisymmetric model of an omnidirectional
EMAT composed of a spiral coil and a cylindrical magnet used to generate
Lamb waves in both a steel plate (assumed to have linear magnetic property)
and an aluminium plate. The model was divided into two geometries and
three sub-models. This design has a clear structure, and could ensure that
different physics can have different meshing rules, thus reducing the total
number of elements.

The quantities we’re concerned with are the amplitudes of the S0 mode
and A0 mode Lamb waves, since these amplitudes are used in the opti-
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mizations of the EMAT. To obtain the amplitudes, three approaches were
explored. The first approach is calculating the peaks of the envelopes of
the time waveforms from time-domain simulations, which is the most time-
consuming. The second less time-consuming approach is also about calculat-
ing the peaks, but the time waveforms are from a frequency domain model,
combined with FFT and IFFT processing. The third approach, which is
the fastest, is only considering the center frequency in the frequency domain
model. This approach was selected for later optimizations implemented with
genetic algorithms, so as to greatly reduce the total time of optimization.

The |u̇|, |ẇ| and |u̇|/|ẇ| surfaces are solved for discrete grid of the design
variables RM and lM to obtain insight of the problem. The surfaces have
shapes like paper squeezed along the x axis (RM), indicating that RM is the
dominating variable of the surfaces. For testing steel plate, the |u̇|/|ẇ| surface
has a valley along the y axis (lM), while for the EMAT on an aluminum plate,
there is no valley in the |u̇|/|ẇ| surface.

A single objective genetic algorithm program and a multi-objective ge-
netic algorithm program were developed to tackle the problem of optimizing
the EMAT. Compared with the code shipped with Matlab, the number of
evaluations of the objective functions is reduced. For the single objective
optimization, the objective function to minimize is the ratio of amplitudes
of the S0 mode and the A0 mode, meaning we want to selectively generate
the A0 mode. Results from the second and third approaches are compared.
For the multi-objective optimization in which the other objective function is
the negative amplitude of the A0 mode, the Pareto front was obtained. This
set of discrete solutions were compared with scattered points in the criterion
space corresponding to the objective function values evaluated on a discrete
grid of the design variables. For the case of EMAT on a steel plate, the spe-
cial structure of the Pareto front allowed us to select the point corresponding
to the minimum ratio of the amplitudes of the S0 and A0 modes. While for
the case of EMAT on an aluminium plate, no solution on the Pareto front
was more superior than the other solutions, without further information to
help us make a decision. These differences in the two cases stem from the fact
that for the case of steel plate, a valley exists in the |u̇| surface corresponding
to the S0 mode Lamb waves, while there’s no valley in the |u̇| surface for the
case of EMAT on an aluminium plate.
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Appendix A. Test case of the multi-objective GA

The KUR problem with 3 design variables and 2 objective functions was
tested on the MOGA program developed.{

minimize f1(x) =
∑n−1

i=1

[
−10e−0.2

√
x2i+x

2
i+1

]
minimize f2(x) =

∑n
i=1 (|xi|0.8 + 5 sinx3i )

(A.1)

with n = 3. The lower bound vector is [−5,−5,−5], and the upper bound
vector is [5, 5, 5]. The result of the MOGA program is in Fig. A.10. The
number of generations is 200, and the number of the individuals is 50. For this
run, the number of evaluations of the objective functions is 9984. The Pareto
front of this problem is not continuous and divided into several branches.
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