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SUMMARY

Predator-prey dynamics are an important evolu-
tionary driver of escalating predation mode and
efficiency, and commensurate responses of prey
[1–3]. Among these strategies, camouflage is
important for visual concealment, with counter-
shading the most universally observed [4–6]. Extant
terrestrial herbivores free of significant predation
pressure, due to large size or isolation, do not
exhibit countershading. Modern predator-prey dy-
namics may not be directly applicable to those
of the Mesozoic due to the dominance of very
large, visually oriented theropod dinosaurs [7].
Despite thyreophoran dinosaurs’ possessing exten-
sive dermal armor, some of the most extreme ex-
amples of anti-predator structures [8, 9], little direct
evidence of predation on these and other dinosaur
megaherbivores has been documented. Here we
describe a new, exquisitely three-dimensionally
preserved nodosaurid ankylosaur, Borealopelta
markmitchelli gen. et sp. nov., from the Early Creta-
ceous of Alberta, which preserves integumentary
structures as organic layers, including continuous
fields of epidermal scales and intact horn sheaths
capping the body armor. We identify melanin in
the organic residues through mass spectroscopic
analyses and observe lighter pigmentation of
the large parascapular spines, consistent with
display, and a pattern of countershading across
the body. With an estimated body mass exceeding
1,300 kg, B. markmitchelli was much larger than
modern terrestrial mammals that either are counter-
shaded or experience significant predation pres-
sure as adults. Presence of countershading sug-
gests predation pressure strong enough to select
for concealment in this megaherbivore despite
Current Biology 27, 1–8,
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possession of massive dorsal and lateral armor,
illustrating a significant dichotomy between Meso-
zoic predator-prey dynamics and those of modern
terrestrial systems.

RESULTS AND DISCUSSION

Systematic Paleontology
Dinosauria Owen, 1842 [10].

Ornithischia Seeley, 1888 [11].

Ankylosauria Osborn, 1923 [12].

Nodosauridae Marsh, 1890 [13].

Borealopelta markmitchelli gen. et sp. nov. (Figures 1 and 2).

Etymology
The generic name Borealopelta is derived from ‘‘borealis’’ (Latin,

‘‘northern’’) and ‘‘pelta’’ (Greek, ‘‘shield’’), in reference to the

northern locality and the preserved epidermal scales and dermal

osteoderms. The specific epithet markmitchelli honors Mark

Mitchell for his more than 7,000 hours of patient and skilled

preparation of the holotype.

Holotype
The holotype is Royal Tyrrell Museum of Palaeontology (TMP)

2011.033.0001: an articulated specimen preserving the head,

neck, most of the trunk and sacrum, a complete right and a

partial left forelimb and manus, partial pes (Figure 1). In situ

osteoderms and nearly complete soft tissue integument are

preserved across dorsal and lateral surfaces of the

axial skeleton, posterodorsal surface of forelimbs, and plantar

surfaces of a manus and a pes. Specimen is preserved in

multiple large blocks, including slabs and counter-slabs in

the sacral region.

Locality and Horizon
Suncor Millennium Mine, Fort McMurray, Alberta, Canada.

Wabiskaw Member, Clearwater Formation, Aptian stage.

Detailed locality data are available at Royal Tyrrell Museum of

Palaeontology.
August 21, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 1
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Figure 1. Photographs of the Holotype of Borealopelta markmitch-
elli, TMP 2011.033.0001

Top: anterodorsolateral view; bottom: anterodorsal view. Scale bar, 10 cm.

See also Figure S1.
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Diagnosis
A nodosaurid ankylosaur characterized by the following autapo-

morphies (*) and suite of characters [character/state]: cranial:

dorsal skull ornamentation expressed as a large hexagonal

dermal plate in frontoparietal region [52:1] and multiple (>20)

small dermal plates in frontonasal region [21:2]*; external nares

excluded from view dorsally (shared with Pawpawsaurus)

[16:1]; supraorbital ornamentation forming sharp lateral rim dor-

sal to orbits (shared with Gargoyleosaurus and Kunbarrasaurus)

[38:2]; jugal (suborbital) horn triangular with pointed apex (shared

with Gastonia, Gargoyleosaurus, and Polocanthus) [47:2]; jugal

(suborbital) horn base longer than orbit length [49:2]*; osteo-

derms: cervical and thoracic osteoderms form continuous

(abutting) transverse rows completely separated by continuous

transverse rows of polygonal basement scales; parascapular

spine is the largest osteoderm, recurved, and projects postero-

laterally and horizontally (potentially shared with Sauropelta);

osteoderm count for transverse rows: cervicals: C1-3, C2-3,

C3-3, transition: TR-2, thoracic: T1-6*; third and sixth transverse

thoracic osteoderm rows expressed medially but pinch out

laterally*.

The new taxon can be further differentiated from Pawpawsau-

rus based on: dermal plate in frontonasal region (central dermal

plates) flat [22:1]; absence of ciliary osteoderm [41:0]. Can be
2 Current Biology 27, 1–8, August 21, 2017
further differentiated from Sauropelta based on: parietals flat to

slightly convex [51:0]; cervical half ring has 4–6 osteoderms

only [164:1]; medial cervical osteoderms subequal, hexagonal,

and bear prominent median ridge with posterior margin projec-

ting beyond the basal footprint.

Morphological Description
For a morphological description of the head, osteoderms,

epiosteodermal scales (osteoderm/spine horn sheaths), and

epidermal basement scales, see the Supplemental Morpholog-

ical Description.

Phylogenetic Analysis
To determine the phylogenetic position of Borealopelta mark-

mitchelli, we scored it into themorphological character/taxonma-

trix of Arbour et al. [14] (see also STAR Methods for full phyloge-

netic methods, Data S1 for data, and Supplemental Phylogenetic

Results). The resultingstrict consensus treepositionsBorealopelta

in a clade with other Albian-aged nodosaurids Pawpawsaurus

campbelli and Europelta carbonensis, with the Santonian-aged

Hungarosaurus tormai as a sister taxon (Figures 3 and S2).

Deposition and Preservation History
The specimen was discovered in the Suncor Millennium Mine

(open pit, oil sands) in northeastern Alberta, Canada during over-

burden removal and was subsequently collected by staff of the

Royal Tyrrell Museum and Suncor. The hosting rock is the Al-

bian-agedWabiskawMember of the Clearwater Formation over-

lying the bitumen-rich McMurray Formation. Several plesiosaurs

and ichthyosaurs have been recovered from the Wabiskaw pre-

viously [15–17], but never a dinosaur. This member records a

lower shoreface or proximal offshore marine environment [15].

The carcass arrived at the seabed on its back and with sufficient

force to impact and deform the immediately underlying sedimen-

tary layers. Despite the trace fossils left by burrowing animals in

the hosting sediments, implying at least a partially oxygenated

environment, the specimen lacks any evidence of scavenging.

When found, the fossil was completely encased in a very dense

and strong but brittle siderite concretion that ranged in thickness

around the carcass from 20 cmon the upper side to 40 cm on the

lower, seabed side. Broken surfaces through the concretion

reveal sedimentary features above the fossil that allow for infer-

ring the natural collapse of the body after burial and before

consolidation (Figure S4i). About 15 cm of sediment was laid

down prior to release of internal body fluids and collapse (Fig-

ure S4i), evidenced from a collapse/fluid escape structure in

the sacral region (Figure S4i). The body cavity was injected

with almost homogeneous sand, with no apparent sedimentary

features. Formation of the concretion must have commenced

shortly after the carcass arrived at the seabed, preventing any

scavenging and allowing all of the scales and osteoderms to

retain their original configurations and morphology, with minimal

dorsoventral compression.

The dorsal integument is well preserved as an organic film

derived from the keratin sheaths over the osteoderms, integu-

mentary scales, and the epicuticle of hinge regions between

scales. The distribution of the film correlates well to the expected

distribution of melanin, a pigment that has been found to

preserve in a number of vertebrate integumentary structures



Figure 2. Schematic Line Drawing of TMP 2011.033.0001, the Holotype of Borealopelta markmitchelli, Illustrating Preservation of the

Different Tissue Types

(A) Schematic of complete specimen in dorsal view.

(B and C) Skull in dorsal (B) and left lateral (C) views.

(D) Close-up view of the neck, illustrating alternating cervical osteoderm bands (and preserved keratinous sheaths) and polygonal scales.

(E) Close-up view of flank illustrating lateral thoracic osteoderms (with keratinous coverings) and polygonal scales.

(F) Close-up view of sacral shield counterpart illustrating osteoderms and scales.

(G) Close-up view of antebrachium including osteoderms and keratinous coverings.

(D’–G’) Interpretive line drawings of the corresponding panels (D)–(G).

Scale bars in (B)–(G), 10 cm. See also Figure S1.
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[6, 18, 19]. Scanning electron microscopy (SEM) and energy-

dispersive X-ray spectroscopy (EDAX) analyses reveal that the

organic material is present as solid to finely granular material

with desiccation cracks scattered in a matrix largely composed

of siderite cement (Figure S3ii; see also STARMethods and Sup-

plemental Observations Under the Electron Microscope). No

apparent melanosomes are preserved. Time-of-flight secondary

ion mass spectrometry (TOF-SIMS) reveals spectra of negative

secondary ions that have an overall relative secondary ion inten-

sity similar to previously studies of fossil melanins (Figure S3iiiA;

see also STARMethods and Supplemental Results from the TOF

SIMS). Principal-component analyses demonstrate that there is

a significant contribution of sulfur-bearing secondary ions to the

organic material in TMP 2011.033.0001, which spread the

nodosaur samples distinctly from other fossil melanin samples

(Figure S3iiiB). These secondary ions have been identified for

sulfur-bearing pheomelanin (benzothiazole) previously [19]. Py-

rolysis-gas chromatography-mass spectroscopy (py-GC-MS)

afforded pyrolysates with assemblages of small nitrogen-, oxy-

gen- and sulfur-containing heterocyclic and aromatic molecules

characteristic of eumelanin (e.g., pyrrole, indole, N-methylpyr-

role, and methylphenol). Of special note is the presence of

significant amounts of benzothiazole (Figure S3iv), which is diag-

nostic for pheomelanin. Although sulfur may be incorporated into

melanin secondarily [20] to yield thiophenes, which are also

observed and could similarly be derived from pheomelanin,

this process is not known to give rise to benzothiazoles [20]

(see also STAR Methods and Supplemental Results of Pyrolysis

GC-MS).

Hence, we argue that the integument was pigmented reddish-

brown by pheomelanin-rich melanin. This may also explain the

lack of melanosome preservation, as pheomelanin-rich melano-

somes have been shown to be less stable in heat/pressure

autoclave experiments [18], as well as in enzymatic extraction

procedures [21].

Pigment Distribution
Hardened keratinous tissues such as claws, scales, and feathers

have reinforcing calcium phosphate deposits [22], which often

preserve well in fossil tissues and can be identified using fluores-

cence imaging [6, 23]. However, the keratinized tissues in TMP

2011.033.0001 are heavily pigmented, which masks calcium

phosphate fluorescence [6]. These keratinous sheaths are inert

(non-fluorescing and non-reflecting) under UV light, with two

major exceptions.

Several cervical osteodermsheaths showunderlying longitudi-

nal ridges that appear to have been unpigmented, as they are

dramatically lighter in visible light and exhibit strong fluorescence

in UV (Figures S4iiiA–D). These unpigmented longitudinal striae
Figure 3. Time-Calibrated Strict Consensus Tree Showing Position of B

Well-Preserved Ankylosaurs Shown Above

Bottom: time-calibrated strict consensus tree illustrating position of Borealopelta

Top: line drawings of representative well-preserved ankylosaur specimens with

(A) Kunbarrasaurus, QM F18101.

(B) Euoplocephalus, NHMUK 5161.

(C) Sauropelta, AMNH 3035 and 3036 composite.

(D) Borealopelta, TMP 2011.033.0001 (this study).

(E) Edmontonia, AMNH 5665.
lie in the same plane as the inferred direction of growth of

the sheath (i.e., parallel to the stratum germinativum) and may

represent somepreservedartifact of appositional growthof these

epiosteodermal scales, as seen in living crocodilians [24, 25].

The largest of the horn sheaths, the parascapular spines, are

distinct from the remaining sheaths and epiosteodermal scales

in being both lighter colored in visible light and slightly fluo-

rescing under UV light (Figures S4iiiE–H). This is most simply in-

terpreted as having lower concentrations of melanin incorpo-

rated into the horn sheath and likely reflects a distinct lighter

color of these spines in life.

The contrast in fossilization between the ventral and dorsal

surface provides a further case for melanin preservation, as

this transition is best interpreted as countershading. Other

epidermal structural molecules such as keratin [26, 27] or

collagen [28] would have had a very similar distribution in the

epidermis on both top and bottom surfaces, and no unique pro-

tein markers (amides, succinimides, diketopiperazines) were

recovered in the py-GC-MS data to the exclusion of markers

overlapping with melanins [29] (Figure S3iv).

The countershading transition can be traced from cross-

sectional views of the sacrum (Figure S4ii) and neck. The organic

film terminates a little beyond the ventralmost lateral osteo-

derms. Projecting the melanin distribution to a retrodeformed

body outline suggests a transition from highly pigmented to

less pigmented integument on the lateral flank (Figure S4ii; see

also Supplemental Discussion on the Chemical Preservation of

Melanin).

Implications for Paleobiology
The discovery of a three-dimensionally preserved ankylosaurian

provides new evidence for understanding the anatomy, soft tis-

sue outline, and arrangement of dermal armor in thyreophoran

dinosaurs.

The preservation of the nearly complete integument, along

with a suite of in situ pre-caudal osteoderms and their horn

sheaths, allows multiple novel inferences regarding the

epidermis of the ancient animal. Across all preserved regions,

the epidermal covering (‘‘epiosteodermal scales’’ sensu [30])

associated with the osteoderms is highly congruous in having

a 1:1 correlation in count and basal shape between epidermal

scale and underlying osteoderm. This epidermal scale/osteo-

derm association is most analogous, and potentially deeply

homologous, to that observed in extant crocodilians [31, 32].

The epidermal coverings for the thoracic and sacral osteo-

derms are best interpreted as single, sub-centimeter-thick, ker-

atinized scales (scutes) that slightly exaggerate the keels and

spines. In contrast, the epidermal components of the spine-

like cervical, transitional, and parascapular osteoderms are
orealopelta markmitchelli within Ankylosauria, with Representative

markmitchelli within Ankylosauria scaled to Jurassic and Cretaceous stages.

in situ armor and/or skin. Scale bars, 1 m. See also Figure S2 and Data S1.

Current Biology 27, 1–8, August 21, 2017 5
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Figure 4. Chart Illustrating the Loss of

Countershading as Body Mass Increases in

Terrestrial Mammal Herbivores

Chart includes pooled data for artiodactyls,

perissodactyls, and proboscideans divided into

body-mass bins, showing relative proportion of

species that exhibit countershading. The diago-

nally hatched area represents the mass above

which significant predation of adults does not

occur. Animals illustrated above chart are repre-

sentative taxa within each mass bin; species

names in italics at top indicate body masses of the

largest carnivores. See also Data S2.
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sheath-like, being thick, pointed, and extending significantly

beyond the bony core, substantially increasing the length of

the spine. The macroscopic structure and incorporation of

hardening calcium phosphate into the spine-like epiosteoder-

mal scales is broadly similar to the keratinized horn sheaths

in Bovidae.

Historically, the function of osteoderms within Ankylosauria

has largely been discussed within the context of anti-predator

defense, with the term ‘‘armor’’ used ubiquitously to describe

these dermal components of the skeleton [9, 33]. More recently,

other potential functions including thermoregulation [34–36] and

intraspecific combat and display [37] have been proposed, often

to augment the seemingly default function as defensive armor.

Preserved evidence of countershading suggests that the preda-

tion pressure on Borealopelta, even at large adult size, was

strong enough to select for camouflage from visual predators

(see also Supplemental Discussion of Countershading and

Body Mass and Data S2). This offers support to the idea that

many of the osteoderms functioned in a defensive role, even in

adults of large species. In contrast, the distinct pigmentation

and enlarged keratinous sheath of the parascapular spine

suggest that this particular spine may have functioned more

predominantly in display. When combined with data indicating

highly species-specific morphology of the parascapular spines

of other taxa, this suggests that the extensive elaboration of

these spines may be attributable to sociosexual display.
6 Current Biology 27, 1–8, August 21, 2017
The presence of countershading in a

large, heavily armored herbivorous dino-

saur provides a unique insight into the

predator-prey dynamic of the Cretaceous

Period. With an estimated length of 5.5 m

and a conservative body mass estimate

of�1,300 kg (similar to estimates for other

nodosaurids, i.e., Sauropelta [38], but

also see higher estimates [39, 40]), Borea-

lopelta is much larger than any modern

terrestrial animal exhibiting counter-

shading. Modern mammalian predators

do not represent a significant predatory

risk to the largest mammalian herbivores

(>1,000 kg) [41, 42], and herbivores above

this size threshold generally do not exhibit

countershading or other types of camou-

flage (Figure 4). Additionally, herbivores

below this threshold that also possess
defensive weapons (e.g., horn, quills) experience lower preda-

tion than those that do not [42]. Similarly, large primates are

less likely to be countershaded due to lower predation risk

[43]. A parallel pattern is also seen in Testudinidae, where island

forms, which are free of significant adult predation, consistently

become large [44, 45] and lose the cryptic pattern seen in smaller

relatives.

The terrestrial predator guild for most of the Mesozoic

was dominated by large non-avian theropod dinosaurs [46].

Although the present specimen is not preserved in the

context of its accompanying fauna, the consistent occurrence

of large theropod footprints (e.g., Irenesauripis) in coeval

and nearby formations in northern Alberta and British

Columbia [47, 48], and allosauroid/carcharodontosaurid taxa

(i.e., Acrocanthosaurus) in equivalent formations farther south

[49, 50], suggests that the ecosystem of which Borealopelta

was a part would have included one or more large, multi-ton

predatory theropods. Given modern birds’ possession of tri-

and tetrachromatic vision [51, 52] and the visual acuity of extant

crocodilians [53], theropod carnivores would have been highly

visual predators [54, 55]. This is in contrast to modern systems

in which top predators of large herbivores are dichromatic

mammalian carnivores [56]. Active predation on large and

heavily armored herbivorous dinosaurs highlights how distinct

the predator-prey dynamics of the Cretaceous were from

those of today. The greater size and deep visual reliance of
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analogs, may have produced an evolutionary arms race result-

ing in a combination of armor, crypsis, and other visual defense

strategies in even the largest dinosaurs.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Borealopelta markmitchelli holotype specimen This paper TMP 2011.033.0001

Deposited Data

Character/taxon matrix for cladistic analysis This paper (modified from [14]) Data S1

Mammal body mass/coloration data compiled from [57] and [58] Data S2

Software and Algorithms

TNT software Willi Hennig Society, https://cladistics.org/tnt/ N/A

R software https://www.r-project.org/ N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Caleb

Brown (caleb.brown@gov.ab.ca).

EXPERIMENTAL MODELS AND SUBJECTS

The experimental subject is the fossilized holotype of the nodosaurid dinosaur Borealopelta markmitchelli (TMP 2011.033.0001),

curated at the Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, Canada. The sex and developmental state are unknown,

although an adult (or nearly adult age) is inferred.

METHOD DETAILS

Computer Tomography Scanning
The skull was CT scanned in an attempt to reveal its internal structure. CT scanswere performed atWestern Veterinary Specialist and

Emergency Centre in Calgary, Alberta, using a Toshiba Aquilion Scanner. A variety scanning parameters were tested, verifying the

voltage and current (initial settings: 120 kV, 185 mA), and slice thickness (0.5-2 mm). Across all tested scanning parameters, the

massive and radio-opaque nature of the host rock did not allow for extraction of useful data.

Sampling for Scanning Electron Microscopy and Geochemical Analysis
The specimenwas sampled extensively (total of 147 samples) across varying regions and tissues, largely concentrating on epidermal

structures, but also including rock matrix, dermal bone (osteoderm), endochondral bone, gut contents, and fossil wood (Figure S3i).

Samples we taken at three different intervals between Dec. 2016 and April 2017. The majority of the specimen was treated with ad-

hesives (Paraloid B-72 and Paleobond penetrate stabilizer) during the preparation process, but several sections of the sacral region

were collected as split blocks and were kept untreated. 103 samples were taken for electron microscopy from across the body, while

44 sampleswere taken for geochemical analyses. The geochemical samples largely concentrating on the untreated sacral region, but

did also include samples from the main body of the animal. Samples for both analyses were taken with a scalpel by chipping/prying

off small fragments. Those destined for SEMwere carefully transferred over with a moistened tip onto an aluminum 12mmSEM stub

with double sided carbon tape, while geochemical samples were transferred on a clean scalpel blade onto sterilized aluminum foil.

Samples were kept in plastic boxes for transport.

Scanning Electron Microscopy
Samples were coated with gold and analyzed in a Zeiss Sigma HD VP field emission SEM with an EDAX EBSD attached. Secondary

Electron images were taken off the horn sheath and skin from a representative set of samples to search for melanosomes and to

investigate the mode of preservation and the composition of the rock matrix (See also Figure S3ii and Supplemental Observations

Under the Electron Microscope).

Time-of-Flight Secondary Ion Mass Spectroscopy
The samples for ToFSIMS analysis were mounted directly onto a sample holder using double-sided carbon tape or clean stainless

steel screws and clips as appropriate.
Current Biology 27, 1–8.e1–e3, August 21, 2017 e1

mailto:caleb.brown@gov.ab.ca
https://cladistics.org/tnt/
https://www.r-project.org/


Please cite this article in press as: Brown et al., An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and
Cretaceous Predator-Prey Dynamics, Current Biology (2017), http://dx.doi.org/10.1016/j.cub.2017.06.071
Static SIMS analyses were carried out using an ION-TOF ‘TOF-SIMS IV – 200’ instrument (ION-TOF GmbH, Münster, Germany) of

single-stage reflectron design [59]. Positive and negative ion spectrawere obtained using aBi3
+ focused liquidmetal ion gun at 25 keV

energy, incident at 45� to the surface normal and operated in ‘bunched’mode for highmass resolution. Thismode used 20nswide ion

pulses at 10kHz repetition rate. Charge compensation was effected by low-energy (ca. 20 eV) electrons provided by a flood gun. The

total ion dosedensitywas 53 1016 ionsm-2. The topography of the sample surface and the ion gunmodeof operation limited themass

resolution in this work to ca. m/Dm = 2000. The spatial resolution was limited by the primary ion beam diameter to ca. 4 mm.

Positive and negative ion static SIMS spectra were recorded from the outermost ca. 1nm of the sample surface at room temper-

ature. Raw data containing the secondary ions recorded at each pixel was acquired with a 1283 128 pixel raster and a field of view of

50 mm 3 50 mm (see also Figure S3iii and Supplemental Results from the TOF SIMS).

Pyrolysis Gas Chromatography-Mass Spectrometry
Pyrolysis experiments were performed using a CDSAnalytical 5250 pyroprobe equippedwith an autosampler and coupled directly to

an Agilent 6890Ngas chromatograph interfacedwith aWatersMicromass Autospec-Ultimamass spectrometer. Approximately 300-

700 mg of each sample was placed in a CDS quartz sample tube packed with a quartz wool plug followed by a quartz filler rod and a

second plug of quartz wool. Internal standards comprising 50ng each of decafluorobiphenyl (DFB) and pyrene in pentane were then

added to the samples immediately prior to analysis. Once loaded in the autosampler, the quartz tubeswere dropped into the pyrolysis

chamber where they were kept at 50�C for 5 s and then heated at 10�C/ms to 600�C and held for 20 s. The valve oven and transfer line

were held at 300�C throughout the analysis. The thermal degradation products were transferred directly to aGC column held at 40�C.
TheGCwas equippedwith aDB-5MScolumn (60mx0.25mmx0.25 mm) andwasoperated in split modewith a 5:1 split and 1mL/min

He flow rate. The GCwas held at 40�C for 2 min and then programmed to 310�C at 4�C/min where it was held for 20min. TheMSwas

operated in electron impact mode at 70 eV and scanned m/z 50–600 once per second. Analyses were conducted in duplicate with

regularly interspersed blanks. Mass Lynx mass spectrometry software version 4.0 was used for data collection and processing.

The identification of pyrolysis products was based on comparison of their mass spectra with library spectra (NIST MS Search 2.0)

and by comparisons to data gathered previously [20] (see also Figure S3iv and Supplemental Results of Pyrolysis GC-MS).

Photography
Cross-Polarized Light Photography

In order to enhance color contrast formapping the preservation and distribution of soft tissues across the specimen, a Lowell totalight

equipped with a 750W tungsten bulb was set up with a polarizing gel filter in front [60]. The specimen was then wetted with water and

photographedwith aNikon d800 dSLR camera and a 60mm f 2.8Macro Nikkor lens with a polarizing filtermounted. Photoswere then

taken so that the polarizing filter is perpendicular to the orientation of the polarizing gel. This configuration ensures the filtering of any

light that bounced off the surface of the specimen in resulting glare (see also Figures S4i and ii).

UV Fluorescence Photography

To identify any fluorescing minerals, such as calcium phosphate deposits, from the degraded keratin matrix the specimen was photo-

graphed illuminated with a short wave Superbright 2 (UV systems inc.) UV lamp using the same camera as for the cross-polarized light

photography.Due to the faintnessof the fluorescence, photoswere takenwith a long exposure - between20-30 s (see also FigureS4iii).

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic Methods
To determine the phylogenetic position of Borealopelta markmitchelli, it was scored into the morphological character/taxon matrix of

Arbour et al. [14]. Although B. markmitchelli is known from a remarkably complete specimen, the majority of both cranial characters

and postcranial endoskeletal characters are obscured by preserved integument. As a result, only 41/91 (45%) cranial and 4/62 (6%)

postcranial could be coded along with 13/24 (54%) osteoderm characters, for a total of 58/177 (33%).

Several of the more incomplete and unstable, taxa included in the previous analysis [14] were removed: Ahshislepelta minor, Alec-

topelta coombsi, ‘‘Argentinian ankylosaur,’’ Hoplitosaurus marshi, ‘‘Paw paw scuteling,’’ Struthiosaurus languedocensis, Struthio-

saurus transylvanicus, Taohelong jinchengensis, Texasestes pleurohalio, Zarapelta sanjuanensis, and Zhejiangosaurus luoyangensis.

The resulting taxon character matrix consisted of 47 OTUs and 177 characters (Datafile S1 and S2). The character/taxon matrix was

analyses in TNT (version 1.1) [61]. All characters we treated as unordered and equally weighted. The traditional search optionwith one

random seed and 1000 replicates and tree bisection algorithm (TBR) was used to identify most parsimonious trees. A new technology

search was also performed. Bootstrap analysis (1000 replicates) using TBR, and Bremer support values (from suboptimal trees) were

also obtained to indicate clade support (see also Supplemental Phylogenetic Results and Figures 3 and S2).

DATA AND SOFTWARE AVAILABILITY

Specimen
The holotype of Borealopelta is deposited at the Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta, under the accession

number: TMP 2011.033.0001. Samples for SEM analyses and TOF SIMS are held at the TMP under the same accession number.

Samples for py-GC-MS were consumed.
e2 Current Biology 27, 1–8.e1–e3, August 21, 2017



Please cite this article in press as: Brown et al., An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and
Cretaceous Predator-Prey Dynamics, Current Biology (2017), http://dx.doi.org/10.1016/j.cub.2017.06.071
Nomenclature
This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the

International Commission on Zoological Nomenclature. ZooBank LSIDs (Life Science Identifiers) can be viewed by appending the

LSID to the prefix http://zoobank.org/. The LSID for this publication is urn:lsid:zoobank.org:pub:39B2603A-CEF7-4657-B5D8-

71CE295AA2E4. The electronic edition of this work was published in a journal with an ISSN and will be archived and made available

from the following digital repository: CLOCKSS (http://www.clockss.org/clockss/Home).
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