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Development of an efficient bifurcation tracking method
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Abstract

The buffet onset boundary is associated with a change in stability of the
flow solution. The buffet onset boundary has been computed for a NACA
0012 aerofoil using a modified bifurcation tracking method. The algorithm
combines the projection aspect of the Recursive Projection Method with two
different direct bifurcation tracking methods. This considerably reduces the
cost of the bifurcation tracking methods by solving for the bifurcation point
on a small subspace of the system containing only the least stable dynamics.
The method has been extended to allow the boundary to be computed as
geometrical parameters, camber and thickness, are changed. This enables
rapid evaluation of the effect of different aerofoil designs on the boundary.
Results are presented comparing the full bifurcation tracking methods to
their projected equivalent and show that although the projected methods lack
the numerical accuracy of the full counterpart, the trends of the boundaries
agree well.

Keywords: buffet, bifurcation, continuation, flow stability, Navier-Stokes

1. Introduction

The behaviour of flow that is inherently non-linear in nature is dependent
on the values of certain parameters. At critical parameter values this can
result in a change in stability, known as a bifurcation point. Identification
of bifurcation points is necessary to understand these non-linearities and
tracking the path of the bifurcation point as it varies with two parameters
allows the behavioural response of the system under a range of different
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conditions to be determined. Algorithms to compute a bifurcation point can
be categorised as one of two types: an indirect method or a direct method.

In the literature, the most common approach is to use an indirect method.
This is usually the cheapest way of finding a bifurcation point. An indirect
method typically involves applying a test function at each equilibrium point
calculated by a continuation method. The test function must be defined so
that it has a value of zero at the bifurcation point and is continuous in an
interval of parameter values around this point [1, 2]. It is also beneficial to
define a test function that invokes a change of sign as a bifurcation point is
passed [3]. As an example, a test function could be the maximum value of
the real parts of all the eigenvalues of the Jacobian [4, 5].

One alternative to using a test function to indirectly detect a bifurca-
tion is to perform a time-accurate simulation at each equilibrium within the
continuation method. This is done by applying a small perturbation to the
steady solution. If the solution is unstable then this perturbation will cause
the system to diverge. There are a number of drawbacks to this approach
as the divergence can be slow when close to the bifurcation, which results in
long run times and the perturbation size must be controlled to ensure it is
not so large that the system converges onto a different, nearby stable solution
[6].

The other category of algorithms used to compute a bifurcation are
termed direct methods. Indirect methods are useful for monitoring the pres-
ence of a bifurcation and can give an approximation to the bifurcation point,
however when it is important to locate the bifurcation accurately it is neces-
sary to use a direct method as the chances of computing a bifurcation point
exactly during the continuation method is small [3]. With direct methods, a
bifurcation is computed by defining a system whose solution is a bifurcation
point. This results in a more accurate solution than the indirect methods
achieve but has a higher computational cost. The defining system will be
dependent on the type of bifurcation to be computed and on how the un-
derlying system is discretised in time. Most systems come under one of two
categories: the “augmented system” and the test function.

The augmented system works by adding equations that define the bifur-
cation of interest to the base or flow equations [4]. For a Hopf bifurcation,
which is the focus of this work, there are four additional equations corre-
sponding to the complex eigenvalue equation (which is two equations using
real-valued variables); an equation to fix the phase of the eigenvector and one
to fix the amplitude [7]. There are several existing algorithms to solve the
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augmented system for a Hopf bifurcation such as the method of Griewank
and Reddien [8], Roose and Hlavacek [9] and Poliashenko and Aidun [5]. A
direct method involving test functions utilizes the same test functions as for
the indirect method but in a different way. In a direct method they are used
in combination with a bordered matrix [4] to create a system, whose solution
is a bifurcation. This type of system is also known as a minimally augmented
systems [3]. Both of these direct methods use an iterative solver and as such
need an accurate initial value. This involves finding an initial guess to the
critical eigenvalue, which can be difficult as usually the evolution of eigen-
values with a parameter is not linear [10]. We compute an initial guess for
the direct bifurcation methods by employing a continuation method until a
bifurcation has been detected.

Direct methods increase the size of the system by adjoining extra equa-
tions onto the mean flow equations. For systems that are already large, this
increase means that solving the full system in a direct manner would be
infeasible. Bordering algorithms can be employed to reduce the size of the
solve required such as is implemented in the LOCA package [7]. For a Hopf
bifurcation, this results in the minimum solve being twice the size of the
Jacobian of the flow variables, although the matrix is sparse. This means
that it is possible to take advantage of existing direct solvers designed for
sparse systems such as the sparse unsymmetric multifrontal method called
Umfpack [11, 12, 13, 14]. Furthermore, using a bordering algorithm means
that matrix-vector products can be used to reduce the storage requirements
rather than constructing the full Jacobian and Hessian matrices.

Studies concerned with the stability of transonic flows associated with
aircraft aerodynamics mainly use a method known as global-stability anal-
ysis. Examples of this in the literature include the studies by Crouch et

al. [15, 16, 17], where global stability analysis is used to investigate the
shock-buffet problem. Global stability analysis requires linearization around
a basic state, the choice of which can be complicated [18]. Furthermore, com-
putations involving the linearized Navier-Stokes equations are expensive and
investigations into changes in design variables cannot be easily performed
using global stability analysis unlike for direct bifurcation tracking methods.
Therefore the use of a computationally efficient direct bifurcation tracking
method would be a desirable alternative. The application of direct bifur-
cation tracking methods to large systems in aerodynamics has mainly been
limited to enclosed or internal flows. However, a few studies do exist, pri-
marily concerned with bifurcation tracking of transonic flows of aeroelastic
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systems such as those by Badcock et al. [19, 20, 21, 22]. These studies fo-
cused on the computation of the stability limit of aeroelastic systems. They
used analytical Jacobians and performed simulations on systems that were
smaller in size than those used in this work.

In this work both time-independent systems of the form

R∗(Y) = 0, (1)

where R is the residual and Y is the vector of unknowns, and time-discrete
systems given by

Yν+1 = F(Yν), (2)

where F is the fixed point iteration function and ν is the iteration counter,
are investigated. This means that two different continuation methods are
required to compute the initial guess for the bifurcation tracking methods
depending on whether the system is discretised in time or not. For the time-
independent case the continuation method used is the one described by Wales
et al. [23]. For the time-discrete system, the Recursive Projection Method
[24] is used to compute the solution branch as a parameter is varied. The
RPM has been used to accelerate the convergence of steady state simulations
[25, 26] and to perform coarse stability analysis using microscopic evolution
rules [27, 28]. However, the application of the RPM as a means to facilitate
a continuation method for large systems is limited. Its application as a
stabilisation method for large systems is typically limited to single solutions,
such as its use by Campobasso and Giles [29], whilst its use in a continuation
method has been applied to small systems only.

This paper presents a new, computationally inexpensive method to di-
rectly locate and track bifurcation points. This is accomplished by combining
aspects of the Recursive Projection Method with existing direct bifurcation
tracking methods. Initially, the Recursive Projection Method has been tested
as a continuation method for cases involving a NACA 0012 aerofoil display-
ing shock oscillations. The Recursive Projection Method allows continuation
to be performed with a large time-discrete RANS system. This extends the
applicability of the underlying time integration scheme and improves conver-
gence rate.

For the bifurcation tracking methods, results are presented using the
Spalart-Allmaras turbulence model and a number of different aerofoils that
are known to exhibit the flow behaviour of interest. The results show that
the new, inexpensive bifurcation tracking methods developed in this work
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offer a low-cost way of understanding the dependency of bifurcation points
as two parameters are varied.

2. CFD Model

The CFD model forms the basis for the continuation method and sub-
sequently the bifurcation tracking methods implemented in this work. This
section describes the formulation of the Reynolds Averaged Navier-Stokes
(RANS) equations along with the Spalart-Allmaras turbulence model for the
Reynolds stresses that was used to model the CFD. This follows the method
used in [30] which has been verified for similar problems to those of interest
in this work. However, as the primary focus of this work is to compare the
computationally inexpensive bifurcation tracking methods to their standard
counterpart, the accuracy of the computed stability boundary is not of major
concern and, as such, a detailed validation of the solver and numerical setup
was not necessary.

2.1. Governing equations

The governing equations are the two-dimensional RANS equations. These
are written in conservative form as

∂Y

∂t
+

∂C

∂x
+

∂D

∂y
= 0 (3)

where Y is the vector of unknowns, t is time, C and D are flux vectors and
x and y are the Cartesian coordinates.

The vector of unknowns, Y, is given by

Y = (ρ, ρu, ρv, ρE)T . (4)

Here ρ is the density, u and v are the velocity components in the x and y
direction respectively and E is the total energy calculated by

E = e+ 1/2(u2 + v2) (5)

where e is the internal energy.
The flux vectors C and D are made up of inviscid and viscid components.

C = CI −CV, D = DI −DV. (6)
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The inviscid flux vectors are given by

CI =









ρu
ρu2 + p
ρvu

(ρE + p)u+ p









, DI =









ρv
ρuv

ρv2 + p
(ρE + p) v + p









(7)

and the viscous flux vectors are given by

CV =









0
τxx
τxy

uτxx + vτxy − qx









, DV =









0
τyx
τyy

uτyx + vτyy − qy









. (8)

In the preceding equations p is the pressure and is related to the internal

energy by p = (γ − 1)
(

ρE − ρ(u2+v2)
2

)

. The components of the stress tensor

are given by

τxx =
2

3Re
(µ+ µt)

(

2
∂u

∂x
−

∂v

∂y

)

,

τyy =
2

3Re
(µ+ µt)

(

2
∂v

∂y
−

∂u

∂x

)

,

and

τxy = τyx =
1

Re
(µ+ µt)

(

∂u

∂x
+

∂v

∂y

)

.

The heat flux vectors are given by

qx = −

(

µ

Pr
+

µt

PrT

)

1

[γ − 1]M2
∞
Re

∂T

∂x
,

and

qy = −

(

µ

Pr
+

µt

PrT

)

1

[γ − 1]M2
∞
Re

∂T

∂y
.

Re is the Reynolds number, T is the temperature, M∞ is the freestream
Mach number, Pr and PrT are the laminar and turbulent Prandtl number,
respectively, and µ and µt are the laminar and turbulent eddy viscosity. The
laminar eddy viscosity is calculated using Sutherland’s law

µ = T
2

3

(

1 + S

T + S

)

(9)

where S = 110
T∞

and T∞ is the freestream temperature. The turbulent eddy
viscosity is given by the Spalart-Allmaras tubrulent model described below.
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2.2. Spalart-Allmaras turbulence model

The Spalart-Allmaras one-equation turbulence model has been used to
compute the turbulent eddy viscosity. The turbulent viscosity is described
by the scalar transport equation, which is given as

∂ν

∂t
+Ui·∇ν−

1

σRe
(∇·((ν̃+ν)∇ν)+cb2 |∇ν|

2)−cb1ω̃(ν)ν+cw1fw(ν)
(ν

d

)2

= 0.

(10)
where ν̃ is the molecular viscosity. This equation solves for the variable ν,
which is related to the turbulent eddy viscosity by νT = νfv1(ν/ν̃). Other
relevant equations are:

ω̃(ν) = ω+
ν

κ2d2
fv2(ν/ν̃), fv2(x) = 1−

x

1 + xfv1(x)
, fv1(x) =

x3

x3 + c3v1
, x =

ν

ν̃
,

ω = ||∇ × Ui||
2 , fw(g) = g

(

1 + c6w3

g6 + c6w3

)1/6

, g(r) = r+cw2(r
6−r), r(ν) =

ν

ω̃κ2d2

The constants [31] are given by:

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cw1 =
cb1
κ2

+
1 + cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1

(11)
The Spalart-Allmaras model is a widely used turbulence model and has
proved to provide good results for separated flows [32] and drag predictions
[33] whilst being robust with respect to the grid spacing.

2.3. Solution method

The RANS equations are spatially discretised using a cell-centred finite
volume scheme. A central difference scheme is used to approximate the
convective flux of the mean flow equations. Scalar numerical dissipation is
included to stabilize the scheme by suppressing odd-even decoupling of the
cell-centered scheme and oscillations near shocks. The dissipation used is
the one proposed by Jameson [34]. A modification to the scaling factor has
been employed to prevent excessive dissipation as suggested by Swanson and
Turkel [35].

A finite volume scheme is used to discretise the Spalart-Allmaras equation
and the turbulence model convective flux is approximated using an upwind
scheme, which prevents the flowfield from becoming negative [36]. The source
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terms in the Spalart-Allmaras equation are evaluated using the mid-point
rule.

Combining the RANS equations and the turbulence equations gives the
system

dY

dt
+R = 0 (12)

where Y is the vector of unknowns, which now includes both flow variables
for the RANS equations and turbulence model variable. The residual, R,
has also been modified to include the turbulence terms.

Applying equation (12) to steady flows reduces it to a system of algebraic
equations given by

R = 0. (13)

This non-linear equation, (13), can then be solved directly using an itera-
tive solver to give a steady-state solution. However, a steady-state solution
can also be computed by applying a time-integration technique to the un-
steady formulation, (12). These two methods of computing a steady solution
produce two systems which are different in a dynamical sense. Following the
convention used in dynamical systems, the first is termed a time-discrete sys-
tem given by a temporal discretisation of the non-linear equation (13), which
is known as a time-independent system. As this work focuses on tracking
bifurcations of both types of systems, the distinction is made clear although
it has been shown that the results of the two systems should agree [37]. For
the computation of flow solutions Newton’s method is used for the time-
independent system, whilst an explicit Runge-Kutta method is used for the
time-discrete system.

3. Continuation methods

In order to compute a starting solution for the bifurcation tracking al-
gorithms, a continuation method was employed. This computed the system
equilibria as a parameter, λ, was varied. At each equilibrium the correspond-
ing stability information was also computed. This process was continued until
a bifurcation had been detected. The formulation of the continuation method
is different for the time-independent and time-discrete systems and both are
described separately below.

However, for both methods an arclength continuation method is applied
using a predictor-corrector algorithm. The solution branch is found by cal-
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culating an initial solution, (Y0, λ0), then changing the value of the con-
tinuation parameter, λ, by a small amount and finding the solution at this
new parameter value. Arclength continuation is used in order to allow the
continuation to continue through a fold bifurcation. The solution curve is
parameterized in terms of its arclength, which ensures that a singular point
is not encountered. The arclength is given as the distance between two con-
secutive solution points along the curve.

3.1. Time-independent continuation method

For the time-independent system, the predictor-corrector algorithm works
by computing an approximate solution in the predictor stage and then iter-
ating on this value using Newton’s method in the corrector stage to find the
system equilibrium point converged to acceptable accuracy.

In this work a secant predictor is used. This requires the first two solutions
on the branch, (Y0, λ0) and (Y1, λ1), to be generated. An approximate
solution at the next parameter value is then generated using

X̄n+1 = Xn + htn (14)

where X = (Yn, λn) and

t =
Xn −Xn−1

‖Xn −Xn−1‖
. (15)

This value is then used as the starting point for the Newton solver, which
iterates on this value to find the actual solution at the current parameter
value. In arclength continuation the parameter is allowed to vary which
means there is one extra unknown, which requires an extra equation. This
extra equation is the arclength equation used to parametrise the curve.

g(Y, λ, ς) =

[

∂Y

∂ς

]

∆Y +

[

∂λ

∂ς

]

∆λ−∆ς = 0, (16)

This process works by restricting the Newton updates to a hyperplane
normal to the direction taken for the predictor. The complete augmented
system which must be is solved is

[

J ∂R
∂λ

∂g
∂Y

∂g
∂λ

][

∆Y

∆λ

]n

=

[

−R

−g

]n

, (17)
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where J = ∂R
∂Y

is the Jacobian of the flow variables. The system, Equation
(17), was solved using a bordered solver known as block elimination mixed
(BEM) [38] bordering algorithm. This requires only solves involving the
sparse Jacobian, which were accomplished using Umfpack [11, 12, 13, 14], a
direct solver designed for sparse systems.

The Jacobian was calculated numerically using first order differencing of
the residual as in the work of Wales [6].

3.2. Time-discrete continuation method using the Recursive Projection Method

A continuation method computes the equilibrium solution of a dynamical
system. In order to implement the arclength continuation method described
in Section 3.1, an iterative solver, such as Newton’s method, must be avail-
able. However, it is common practice in CFD to perform fixed point iterations
such that

dY

dτ
= R(Y, λ) (18)

is solved using some form of time-stepping in τ , such as the Runge-Kutta
method [34]. Solving this system for a range of parameter values would
only be possible if the solution was guaranteed to be stable at every point.
This is typically not the case, especially in this work as we are concerned
with bifurcation points which indicate a change in stability. For unstable
solutions, time-integration methods such as the Runge-Kutta method do not
converge. In these cases they may oscillate about a point or even diverge
[24]. If the result is an oscillatory solution then a common but costly way of
computing a steady solution is to average out the oscillatory values over a
certain number of time-steps.

A method that overcomes the convergence issues displayed by time-integration
techniques in the unstable parameter range is the Recursive Projection Method
(RPM) [24]. The RPM works as it is a small number of eigenvalues leaving
the unit disk that cause the convergence problems [24]. Shroff and Keller
therefore suggest that this part of the system can be extracted and solved
using Newton’s method whilst the large remainder of the system continues
to be solved using the time-integration method. Using this technique enables
fixed point iterations to converge onto unstable solutions and therefore be
used within a continuation method. This occurs with minimal additional
computational cost.

The RPM separates the unstable part of the system from the stable part
by identifying a subspace that corresponds to the unstable eigenvalues and
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spans their eigenvectors. This unstable subspace is denoted by P and its
orthogonal complement, the stable subspace, is Q. The solution vector Y is
then projected onto each of the subspaces giving p = PY and q = QY and
the total solution vector is a sum of the two parts,

Y = p+ q. (19)

The two subspaces are given by, P = ZZT and Q = I− ZZT , where Z is an
orthonormal basis for P . The unstable part, PY, is solved using Newton’s
method and the stable part, QY, is solved using the original time-stepping
method.

3.2.1. Increasing the basis.

Computing the orthonormal basis, Z, is perhaps the most important as-
pect of the RPM as it dictates the effectiveness of the method. In order to
know when to increase the basis, the past iterates of the stable solution part
are monitored as it is known that when the convergence rate of this part of
the solution degrades, at least one eigenvalue must be approaching the unit
disk [24]. The past iterates of the stable part of the solution form a second
order approximation to a power iteration for the stable Jacobian. In other
words, the past iterates will form the dominant eigenspace for the stable
part of the solution and can therefore be used to not only dictate when to
increase the basis but also be used to create the basis itself. This is achieved
by collecting the last kv + 1 iterates of the stable solution part (which will
initially be the entire solution), every νmax iterations, into a matrix, {∆q}.

{∆qi} = {(qνmax − qνmax−1), (qνmax−1 − qνmax−2), . . . , (qνmax−kv+1 − qνmax−kv)}
for i = νmax − kv + 1, . . . , νmax

(20)
A modified Gram-Schmidt procedure is then performed on this matrix to
construct a QR-factorisation. If

D = {∆qνmax−kv+1, . . . ,∆qνmax} (21)

then performing a QR-factorisation gives

D = D̂T (22)

where T is a kv × kv upper triangular matrix and D̂ is orthogonal. A test is
then performed on the matrix T. For the largest j satisfying

∣

∣

∣

∣

Tj,j

Tj+1,j+1

∣

∣

∣

∣

≥ KA, j = 1, . . . , kv − 1 (23)
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where KA is the Krylov Acceptance ratio and defines how dominant the eigen-
values must be for the eigenvectors to be added to the basis. The values for
νmax, kv and KA are user-defined and problem dependent. The first j vectors
of D̂ are then added to the basis Z.

3.2.2. Maintaining the basis.

When this technique is used within a continuation method, occasionally
the basis must be re-orthogonalised as the dominant eigenspace of the Jaco-
bian of the time-integration method, G, changes, causing the basis to become
inaccurate. Re-orthogonalisation is achieved by completing one step of an
orthogonal power iteration [39] on the columns of Z, which is achieved by
performing a Gram-Schmidt orthogonalisation on GZ. This step requires
minimal extra work; in particular, no additional function evaluations are
needed because an approximation to the quantity GZ is required for execut-
ing the stabilised iteration [24].

3.2.3. Decreasing the basis.

Sometimes, during the continuation process, it is necessary to reduce the
size of the basis as some eigenvalues may move back towards the origin of
the disk. This is a necessary step as it is not sufficient for the basis to
contain an invariant subspace but the basis must span an invariant subspace
[24]. Therefore, at the end of each continuation step the eigenvalues and

eigenvectors of H = ZTG∗Z are computed, where G∗ = ∂F(Y∗)
∂Y

. The matrix,
H, corresponds to the projection of G∗ on the unstable subspace and the
eigenvalues of H are therefore a subset of those of G∗. This is relatively
inexpensive operation to perform as H is only an m × m matrix, where m
is the size of the basis Z. A new basis is then formed corresponding to
the eigenvectors, V, that relate to the eigenvalues that are outside the disk
Kδ of radius (1− δ). The basis is then updated by replacing Z with the
Gram-Schmidt orthogonalisation of ZV.

3.2.4. Practical implementation.

In order to reduce the computational cost of the method, coordinate
variables, z, are used for the representation of p in the basis Z [24]. This
gives

z ≡ ZTp (24)

The Newton iteration for p can then be written as

zν+1 = zν +
(

I− ZTGZ
)

−1 (
ZTF(Yν , λ)− zν

)

. (25)
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This allows the Newton step to be performed on a low-dimensional subspace
of size m×m. To avoid large computational costs and ensure that the RPM
can be used with a “blackbox” timestepper, the matrix GZ is computed
using finite differences. The jth row is given by

{GZi}j ≈
Fj (Yj + ǫjZi,j , λ)− Fj (Yj, λ)

ǫj
i = 1, 2, . . . , m; j = 1, 2, . . . , N

(26)
Here ǫ is a small, user-defined number and is case specific. In this work a
value of 1× 10−5 is used.

The derivative of F with respect to the continuation parameter, λ denoted
as Fλ must also be computed in order to perform arclength continuation.
This is also computed using finite differencing and is given by

Fλ ≈
F(Y, λ+ ǫλ)− F(Y, λ)

ǫλ
(27)

where ǫλ is a small perturbation and is taken to be 1× 10−7 in this work. As
Newton’s method is only applied to the unstable part of the system and this
is small, bordering algorithms such as that used for the time-independent
case are not necessary. This minimises the computational complexity of the
method. The process for one arclength continuation step using the RPM is
given in Algorithm 1.

The knowledge obtained from the application of RPM to enable con-
tinuation on a large RANS system around an aerofoil in conjunction with
the bifurcation tracking algorithms described in Section 4 was used to help
develop the bifurcation tracking methods presented in Sections 5 and 6.

4. Bifurcation tracking

In this work the continuation methods have been used primarily as a way
of calculating an initial guess for the bifurcation tracking methods. The first
unstable solution computed by the continuation method is used as the initial
guess for the first bifurcation point. Once this first bifurcation point has
been computed then a second parameter, γ, can be freed and the bifurcation
can be tracked as both γ and the original continuation parameter, λ, vary.
This enables the problem’s stability boundary to be traced in two-parameter
space.
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Algorithm 1 Recursive Projection Method - Arclength Continuation

Define {Y−1,Y0, λ−1λ0, tol, νmax}

Z = [ ]

Secant Predictor: (Ȳ, λ̄)

Runge-Kutta: F(Ȳ, λ)

ν = 0

while ‖Y − F‖2 > tol do

z← ZTY; ζ ← ZTF; q← Y − Zz;
∂Y
∂ς
← ZT (Ȳ−Y0)

∆ς
; ∂λ

∂ς
← (λ̄−λ0)

∆ς
;

z
λ
← ZTF

λ
; q← F− Zζ ;

∆Y ← (z− ZT Ȳ ); ∆λ← λ− λ̄;

g(Y, λ, ς)←
[

∂Y
∂ς

]

∆Y +
[

∂λ
∂ς

]

∆λ−∆ς
(

δz

δλ

)

←

[

Im −H −z
λ

∂Y
∂ς

∂λ
∂ς

]−1 [
ζ − z

−g

]

q← Y − Zζ + (F
λ
− Zz

λ
)δλ; Y ← Zz+ q; λ← λ+ δλ;

Runge-Kutta: F(Y, λ)

ν = ν + 1

if ν > νmax then

Update Z

compute H← ZT [GZ]

ν = 0

end if

end while
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Two different methods were used to firstly locate and then to track a
bifurcation. In this work the type of bifurcation encountered was always of
the Hopf type, therefore the bifurcation tracking methods employed were set
up to locate and track a Hopf bifurcation, although for both methods an
alternative formulation for tracking other simple bifurcations is possible.

4.1. Augmented system

Firstly, the augmented system was considered. This requires the solution
to a system that defines the bifurcation of interest. For a Hopf bifurcation
the augmented system requires four additional equations to be solved. These
correspond to the complex eigenvalue equation, which when expressed in
terms of real-valued variables can be split into two equations, and the two
scalar equations which fix the phase and amplitude of the eigenvector. This
set of equations can be written as [7]













R

Jv1 + ωv2

Jv2 − ωv1

φ · v1 − 1
φ · v2













= 0. (28)

This system has a size of 3N + 2 and solves for the five unknowns: the flow
solution vector, Y, the real and imaginary parts of the complex eigenvector,
v1 and v2, the eigenvalue, ω, and the first parameter, λ. The first equation in
system (28) specifies that the solution must be on the flow solution branch,
the second and third ensure that the point has a purely imaginary eigenvalue
and the final two fix the phase and amplitude of the eigenvectors. The last
two equations can be formulated differently and have been done so in other
papers [8, 5, 40]. Newton’s method is applied to this system to give

























J 0 0 0 ∂R
∂λ

∂Jv1

∂Y
J ωI v2

∂Jv1

∂λ

∂Jv2

∂Y
−ωI J −v1

∂Jv2

∂λ

0 φT 0 0 0

0 0 φT 0 0















































∆Y

∆v1

∆v2

∆ω

∆λ























= −























R

Jv1 + ωv2

Jv2 − ωv1

φ · v1 − 1

φ · v2























(29)
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The underlying vector of flow equations is of size N and the continuation
method used to produce the initial guess also involved solves of an N×N sys-
tem. Therefore, increasing the system to a size of 3N +2 can be prohibitive.
However, following the method used by LOCA [7] the computational expense
of this method can be reduced by using a bordering algorithm. Employing
this algorithm requires a maximum solve of size 2N × 2N . One iteration of
the algorithm is given by:

Ja = −R, (30)

Jb = −
∂R

∂λ
(31)

[

J ωI

−ωI J

][

c

d

]

=

[

v2

−v1

]

(32)

[

J ωI

−ωI J

][

e

f

]

=

[

−∂Jv1

∂Y
a

−∂Jv2

∂Y
a

]

(33)

[

J ωI

−ωI J

][

g

h

]

=

[

−∂Jv1

∂Y
b− ∂Jv1

∂λ

−∂Jv2

∂Y
b− ∂Jv2

∂λ

]

(34)

∆λ =
(φ · c)(φ · f)− (φ · e)(φ · d) + (φ · d)

(φ · d)(φ · g)− (φ · c)(φ · h)
(35)

∆ω =
(φ · h)∆λ+ (φ · f)

φ · d
(36)

∆Y = a+∆λb (37)

∆v1 = e+∆λg −∆ωc− v1 (38)

∆v2 = f +∆λh−∆ωd− v2 (39)

The most expensive part of this algorithm is the three solves involving the

2N×2N matrix,

[

J ωI
−ωI J

]

however the algorithm also requires two solves

involving J, an N×N matrix. These two matrices are sparse so it is possible
to employ the Umfpack solver as used for the continuation method. This also
has the advantage that only the first solve with each matrix is a significant
cost due to its use of symbolic factorisation methods. The choice of the vec-
tor φ is relatively free and in this work φ was chosen to be a vector of ones for
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simplicity. The derivatives that appear on the right-hand sides of equation
(33) and equation (34) are calculated using second order differences. Equa-
tions (40)-(42) show the derivatives involving v1. The derivatives involving
v2 are calculated in a similar manner.

∂Jv1

∂Y
a =

R(Y + σ1v1 + ǫ1a, λ)−R(Y + σ1v1 − ǫ1a, λ)−R(Y − σ1v1 + ǫ1a, λ) +R(Y − σ1v1 − ǫ1a, λ)

4σ1ǫ1
(40)

∂Jv1

∂Y
b =

R(Y + σ1v1 + ǫ2b, λ)−R(Y + σ1v1 − ǫ2b, λ)−R(Y − σ1v1 + ǫ2b, λ) +R(Y − σ1v1 − ǫ2b, λ)

4σ1ǫ2
(41)

∂J

∂λ
v1 =

R(Y + σ1v1, λ+ ǫ3)−R(Y + σ1v1, λ− ǫ3)−R(Y − σ1v1, λ+ ǫ3) +R(Y − σ1v1, λ− ǫ3)

4σ1ǫ3
(42)

Here ǫ1, ǫ2, ǫ3, and σ1 are small perturbations. The size of these perturbations
effects the efficiency and robustness of the algorithm. They are calculated
using the following equations as they were found to perform well in the work
of Salinger et al. [7]

ǫ1 = δ

(

‖Y‖

‖a‖
+ δ

)

, (43)

ǫ2 = δ

(

‖Y‖

‖b‖
+ δ

)

, (44)

ǫ3 = δ (|λ|+ δ) , (45)

σ1 = δ

(

‖Y‖

‖v1‖
+ δ

)

. (46)

The value of δ can be chosen by the user to be any small number. A value
of 1× 10−6 proved to work well in this work.
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4.2. Test function

An alternative way of locating a bifurcation is by using a test function.
Test functions are continuous around the bifurcation point and have the
condition that at a bifurcation point the solution is zero. Many different
test functions exist which all have the same result but varying methods [38].
The most common test function for Hopf bifurcations works by noting that
at a Hopf bifurcation the matrix J2 + ω2I has rank defect 2. This method
was considered initially, however although the matrix J2 + ω2I has the same
dimensions as J it is a lot more dense, which slows down the computation
considerably. Therefore an alternative method was implemented that works
on the basis that at a Hopf bifurcation point the matrix J− iωI is singular.
This matrix is then appended with elements to make it non-singular. This
gives a bordered matrix of

M =

[

J− iωI W

VT 0

]

(47)

Here V is the right complex eigenvector, where V = v1 + iv2 and W is the
left complex eigenvector, W = w1 + iw2. This system can be split into real
and imaginary components. This increases the size of the system from N +1
to 2N + 2 but allows a real-valued solver to be applied to the system. The
bordered matrix written in terms of real-valued variables is

M =









J ωI w1 −w2

−ωI J w2 w1

vT
1 −vT

2 0 0
vT
2 vT

1 0 0









(48)

This matrix is then used to define the test function, which in this case has
two components (h1 and h2), by









J ωI w1 −w2

−ωI J w2 w1

vT
1 −vT

2 0 0
vT
2 vT

1 0 0

















p1

p2

h1

h2









=









0

0

1
0









. (49)

In order for Equation (48) to have rank defect 1 it must be true that h1 =
h2 = 0. This means the defining system s = (Y, λ, ω) is then given by





R = 0
h1 = 0
h2 = 0



 . (50)
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A single Newton iteration then solves the system











J ∂R
∂λ

0

∂h1

∂Y
∂h1

∂λ
∂h1

∂ω

∂h2

∂Y
∂h2

∂λ
∂h2

∂ω





















∆Y

∆λ

∆ω











= −











R

h1

h2











(51)

The partial derivatives of h1 and h2 with respect to s can be computed
efficiently by considering the solution of transpose of the system

[

qT
1 qT

2 g1 g2
qT
3 qT

4 g3 g4

]

M =

[

0T 0T 1 0
0T 0T 0 1

]

(52)

By differentiating Equation (49) and substituting Equation (52) into the
result, the derivatives for Y, λ, and ω are shown to be:

h1Y = −qT
1 JYp1 − qT

2 JYp2 (53)

h2Y = −qT
3 JYp1 − qT

4 JYp2 (54)

h1λ = −qT
1 Jλp1 − qT

2 Jλp2 (55)

h2λ = −qT
3 Jλp1 − qT

4 Jλp2 (56)

h1ω = −qT
1 p2 + qT

2 p1 (57)

h2ω = −qT
3 p2 + qT

4 p1 (58)

where JY is the Hessian matrix and Jλ is the derivative of the Jacobian
matrix, J, with respect to the parameter, λ. For a two-dimensional system
the Hessian matrix is a large three-dimensional system and its computation
is expensive. However, in the current implementation the Hessian is only
required when post-multiplied by two vectors, as in equations (61) and (62)
which allows it to be computed using a finite difference formulation such as
that given in (40). The system was solved by a block elimination algorithm
that requires only two solves of the matrix J as shown below.

Ja = −R (59)

Jb =
∂R

∂λ
(60)
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∆λ =

(

h1ω

h2ω

h2 − h1 − h1Ya+ h1ω

h2ω

h2Ya
)

(

h1Yb+ h1λ −
h1ω

h2ω

(h2Yb+ h2λ)
) (61)

∆ω =
−h2 − h2Ya− (h2Yb+ h2λ)∆λ

h2ω

(62)

∆Y = a+ b∆λ (63)

5. Bifurcation tracking using projected methods

A drawback of the bifurcation tracking methods, described in Section
4, is that they are computationally very expensive. Taking the Recursive
Projection Method developed in Section 3.2 and applying it to one of the
bifurcation tracking methods described in Section 4 results in a new and
innovative bifurcation tracker that is very inexpensive. Assuming initial con-
ditions that are close to a bifurcation point, the unstable subspace found by
the RPM should be sufficiently accurate that the bifurcation point is con-
tained within that subspace. Then by solving the equations that define a
bifurcation on this subspace means solving a relatively small system. The
greatest restriction of this method is the accuracy of the basis extracted via
the RPM.

As the system being solved is the fixed point iteration, (12) and not the
linear system, (13), this means the equations that define the bifurcation are
different. As for the original bifurcation trackers, only the Hopf bifurca-
tion is discussed here but the technique is equally applicable to all types of
bifurcations.

5.1. Augmented system

The equations that define a Hopf bifurcation for a fixed point iteration
of the form

Yν+1 = F (Yν, λ) (64)

are given by [41]
F (Y, λ, µ)−Y = 0, (65)

Gv − eiβv = 0, (66)

vφ− 1 = 0, (67)

where v = v1 + iv2 is the eigenvector of the time-discrete system that cor-
responds to the eigenvalue crossing the unit disk, G is the Jacobian matrix
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of the time-discrete system, β is the imaginary part of the eigenvalue that
is crossing the unit disk and φ is a constant vector. If these equations are
projected onto the unstable subspace found through RPM and within which
the bifurcation should lie, the equations become

ζ − z = 0, (68)

Hṽ− eiβṽ = 0, (69)

ṽΦ− 1 = 0. (70)

where ṽ is the projection of the eigenvector v onto the unstable subspace and
is given by ṽ = ZTv and ζ , z and H are as given in Section 3.2. Writing this
system in real form to allow existing solver methods to be used the equations
to be solved become

ζ − z = 0, (71)

Hṽ1 − ṽ1 cos(β) + ṽ2 sin(β), (72)

Hṽ2 − ṽ1 sin(β)− ṽ2 cos(β), (73)

Φ · ṽ1 − 1 = 0, (74)

Φ · ṽ2 = 0. (75)

As can be seen these equations have a similar form to those of the time-
independent system. However, the size of this system is (3m+2)× (3m+2),
where once again m is the size of the basis extracted by RPM and m << N .
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In this work these equations are solved using Newton’s method, which gives

























H− I 0 0 0 ∂ζ
∂λ
− ∂z

∂λ

∂Hṽ1

∂z
H− cos(β) sin(β)I ṽ1 sin(β) + ṽ2 cos(β)

∂Hṽ1

∂λ

∂Hṽ2

∂z
− sin(β)I H− cos(β) ṽ2 sin(β)− ṽ1 cos(β)

∂Hṽ2

∂λ

0 ΦT 0 0 0

0 0 ΦT 0 0















































∆z

∆ṽ1

∆ṽ2

∆β

∆λ























=

−























ζ − z

Hṽ1 − ṽ1 cos(β) + ṽ2 sin(β)

Hṽ2 − ṽ1 sin(β)− ṽ2 cos(β)

φ · ṽ1 − 1

φ · ṽ2























(76)

At each iteration the system (76) is solved in exactly the same way as the
original augmented system described in Section 4.1. The reason for this being
that the bordering algorithm makes the evaluation of the partial derivatives
easier and allows the use of easily implementable finite differences to achieve
this.

5.2. Test function

For the time-discrete system, the same test function was applied as used
in the time-independent system, detailed in Section 4.2, with the transfor-
mation to a time-discrete system made. Although it would now be com-
putationally viable to use the square of the Jacobian in a test function,
the complex form was preferred to allow more meaningful comparison. The
complex test function for a time-independent system works on the basis that
the matrix J − iωIN is singular, for a time-discrete system this becomes
G− IN cos(β)− iIN sin(β). Then following the same method as for the time-
independent system but projecting the system onto the unstable basis, the
bordered matrix, M, can be written as

M =

[

H− Im cos(β)− iIm sin(β) w̃

ṽT 0

]

(77)
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Where ṽ and w̃ are the right and left complex eigenvectors of H, respectively
and can be written as ṽ = ṽ1+iṽ2 and w̃ = w̃1+iw̃2. In terms of real-valued
variables the bordered matrix becomes

M =









H− Im cos(β) Im sin(β) w̃1 −w̃2

−Im sin(β) H− Im cos(β) w̃2 w̃1

ṽT
1 −ṽT

2 0 0
ṽT
2 ṽT

1 0 0









(78)

and the bordered system for the test functions, h1 and h2 becomes









H− Im cos(β) Im sin(β) w̃1 −w̃2

−Im sin(β) H− Im cos(β) w̃2 w̃1

ṽT
1 −ṽT

2 0 0
ṽT
2 ṽT

1 0 0

















ũ1

ũ2

h1

h2









=









0m

0m

1
0









. (79)

It is still the case that in order for equation (78) to have rank defect 2 it must
be true that h1 = h2 = 0. This means the defining system after projection is
then given by





ζ − z = 0
h1 = 0
h2 = 0



 . (80)

A single Newton iteration then solves the system











H− Im
∂ζ
∂λ
− ∂z

∂λ
0

∂h1

∂z
∂h1

∂λ
∂h1

∂β

∂h2

∂z
∂h2

∂λ
∂h2

∂β





















∆z

∆λ

∆β











= −











ζ − z

h1

h2











(81)

This is solved using the bordered algorithm approach used for the time-
independent case as it makes the partial derivatives easier to calculate using
the same finite difference formulation.

6. Projection methods for time-independent case

Taking the principles used in the previous section for the time-discrete
case it is possible to develop a computationally inexpensive method for track-
ing a bifurcation on large time-independent dynamical systems. By devel-
oping a way of extracting a basis, either the augmented system or the test
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function equations could be projected onto this basis in order to reduce its
size. The process of forming a projected augmented system is presented here,
the process of projection for the test function initially presented in Section
4.2 follows similarly.

6.1. Fully projected augmented system

The concepts developed in the Recursive Projection Method can also be
applied to the original time-independent augmented system. The primary
principle of RPM is that a basis is formed that spans the unstable subspace.
In the original RPM this basis is created by performing a QR decompo-
sition on the past iterates. The past iterates were used as an approxima-
tion to the dominant eigenvectors, which were unavailable. In the original
time-independent continuation method an approximation to the dominant
eigenvectors is available from ARPACK. The eigenvectors computed using
ARPACK, once an unstable flow solution has been found, can be used to
form the basis, by performing a QR decomposition on them. The original
time-independent augmented equations, can then be projected onto this basis
in the same way the time-discrete bifurcation equations were projected. This
reduces the system from a size of (3N +2)× (3N +2) to (3m+2)× (3m+2),
where m is the size of the basis and results in a novel bifurcation tracking
method that has a low computational cost.

If all of the equations are projected onto this basis then the set of equa-
tions to be solved becomes

ZTR = 0, (82)

ZTJZZTv1 + ωZTv2 = 0, (83)

ZTJZZTv2 − ωZTv1 = 0, (84)

φ · ZTv1 − 1 = 0, (85)

φ · ZTv2 = 0. (86)

Setting Ỹ = ZTY, R̃ = ZTR, J̃ = ZTJZ, ṽ1 = ZTv1 and ṽ2 = ZTv2, the
equations can be written as

R̃ = 0, (87)

J̃ṽ1 + ωṽ2 = 0, (88)

J̃ṽ2 − ωṽ1 = 0, (89)
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φ · ṽ1 − 1 = 0, (90)

φ · ṽ2 = 0. (91)

Following the same process as described in Section 4 and applying Newton’s
method to this set of equations gives






























J̃ 0 0 0
∂R̃

∂λ

∂J̃ṽ1

∂Ỹ
J̃ ωIm ṽ2

∂J̃ṽ1

∂λ

∂J̃ṽ2

∂Ỹ
−ωIm J̃ −ṽ1

∂J̃ṽ2

∂λ

0 φT 0 0 0

0 0 φT 0 0























































∆Ỹ

∆ṽ1

∆ṽ2

∆ω

∆λ

























= −

























R̃

J̃ṽ1 + ωṽ2

J̃ṽ2 − ωṽ1

φ · ṽ1 − 1

φ · ṽ2

























. (92)

Then applying the bordering algorithm to solve this matrix system, not in
this case to reduce the computational burden, but to allow differencing tech-
niques to be used to compute the Hessian terms gives the following algorithm
defined by equations (93) to (102).

J̃ã = −R̃, (93)

J̃b̃ = −
∂R̃

∂λ
, (94)





J̃ ωIm

−ωIm J̃









c̃

d̃



 =

[

ṽ2

−ṽ1

]

, (95)





J̃ ωIm

−ωIm J̃









ẽ

f̃



 =









−
∂J̃ṽ1

∂Ỹ
ã

−
∂J̃ṽ2

∂Ỹ
ã









, (96)





J̃ ωIm

−ωIm J̃









g̃

h̃



 =









−
∂J̃ṽ1

∂Ỹ
b̃−

∂J̃ṽ1

∂λ

−
∂J̃ṽ2

∂Ỹ
b̃−

∂J̃ṽ2

∂λ









, (97)
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∆λ =
(φ · c̃)(φ · f̃)− (φ · ẽ)(φ · d̃) + (φ · d̃)

(φ · d̃)(φ · g̃)− (φ · c̃)(φ · h̃)
, (98)

∆ω =
(φ · h̃)∆λ + (φ · f̃)

φ · d̃
, (99)

∆Ỹ = ã+∆λb̃, (100)

∆ṽ1 = ẽ +∆λg̃ −∆ωc̃− ṽ1, (101)

∆ṽ2 = f̃ +∆λh̃−∆ωd̃− ṽ2. (102)

The algorithm requires the computation of quantities such as

∂J̃

∂Ỹ
ṽ1ã. (103)

It is not clear how quantities such as this would be computed and initial in-
vestigations using this for the RANS system proved unsuccessful with ã and b̃

proving to be the cause of the problem as the inaccuracies in the basis meant
that the values computed for ã and b̃ were not accurate enough for con-
vergence to be achieved. Also preliminary investigations with a simple test
case showed that as the number of unknowns increased, using this method
with a small basis provided less accurate results even though the eigenvalues
computed using the projected Jacobian continued to match those of the full
Jacobian. Therefore, a compromise between computational efficiency and
accuracy was sought and is discussed below.

6.2. Partially projected augmented system

The compromise to this situation arose by way of projecting all but the
first equation onto the basis. This was decided upon based on the fact that
the projected Jacobian remained fairly accurate, therefore it was assumed
that the eigenvalue equations were correct and the problems were caused by
the projection of the flow equations onto the unstable basis. This resulted in
a new bifurcation tracking method that was computationally less expensive
than the original, unprojected methods but with a similar robustness and
accuracy level.
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The equation set to be solved in this case is

R = 0, (104)

J̃ṽ1 + ωṽ2 = 0, (105)

J̃ṽ2 − ωṽ1 = 0, (106)

φ · ṽ1 − 1 = 0, (107)

φ · ṽ2 = 0. (108)

and Newton’s method for this system is






























J 0 0 0
∂R

∂λ

∂J̃ṽ1

∂Y
J̃ ωIm ṽ2

∂J̃ṽ1

∂λ

∂J̃ṽ2

∂Y
−ωIm J̃ −ṽ1

∂J̃ṽ2

∂λ

0 φT 0 0 0

0 0 φT 0 0























































∆Ỹ

∆ṽ1

∆ṽ2

∆ω

∆λ

























= −

























R̃

J̃ṽ1 + ωṽ2

J̃ṽ2 − ωṽ1

φ · ṽ1 − 1

φ · ṽ2

























.

(109)
The algorithm then changes as the derivatives with respect to the pro-

jected flow-variable vector, ZTY, are no longer necessary, instead these terms
become derivatives with respect to the original flow variable vector, Y. This
can be achieved using the existing differencing techniques. The resulting
bordering algorithm is defined as follows.

Ja = −R, (110)

Jb = −
∂R

∂λ
, (111)





J̃ ωIm

−ωIm J̃









c̃

d̃



 =

[

ṽ2

−ṽ1

]

, (112)





J̃ ωIm

−ωIm J̃









ẽ

f̃



 =









−
∂J̃ṽ1

∂Y
a

−
∂J̃ṽ2

∂Y
a









, (113)
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J̃ ωIm

−ωIm J̃









g̃

h̃



 =









−
∂J̃ṽ1

∂Y
b−

∂J̃ṽ1

∂λ

−
∂J̃ṽ2

∂Y
b−

∂J̃ṽ2

∂λ









, (114)

∆λ =
(φ · c̃)(φ · f̃)− (φ · ẽ)(φ · d̃) + (φ · d̃)

(φ · d̃)(φ · g̃)− (φ · c̃)(φ · h̃)
, (115)

∆ω =
(φ · h̃)∆λ + (φ · f̃)

φ · d̃
, (116)

∆Y = a+∆λb, (117)

∆ṽ1 = ẽ +∆λg̃ −∆ωc̃− ṽ1, (118)

∆ṽ2 = f̃ +∆λh̃−∆ωd̃− ṽ2. (119)

The partial derivative then becomes

∂J̃

∂Y
ṽ1a = ZT ∂J

∂Y
(Zṽ1)a. (120)

which is more straightforward to compute, as differencing can be used. The
system has had to be increased to a size of (N + 2m+ 2)× (N + 2m+ 2) to
allow the current solution method to be employed however this is still much
smaller than the original system and the whole solution process using the
algorithm given in the equations above requires only two solves of the N×N
Jacobian matrix J.

7. Results

7.1. Validation of the Recursive Projection Method

The ability of the Recursive Projection Method to allow time integration
methods to converge onto unstable solutions is shown here. This is something
that the usual explicit CFD solver would not usually be able to do thus
increasing its range of applicability and allowing its use within a continuation
method. As the RPM works by extracting the part of the solution that
is causing convergence difficulties it has the greatest effect in the unstable
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parameter range and also in the stable parameter range that is close to the
bifurcation point. The theory behind the RPM was presented in Section 3.2.

Shown in Figure 1 is the comparison of the convergence history of the four-
stage, second order Runge-Kutta method both on its own and supplemented
with the RPM applied to a NACA 0012 aerofoil at an angle of attack of 4.7◦,
a Mach number of 0.7 and a Reynolds number of 1× 107. These parameter
values give a solution which is just stable as shown by the eigenvalues in
Figure 3. For this case the inputs used for RPM were: νmax = 50, KA = 1000
and kv = 10. The Jacobian was calculated every νmax iterations and the basis
was re-orthogonalised at these points also, irrespective of whether any new
vectors were added. As can be seen, the effect of the Recursive Projection
method in this case is to increase the convergence rate by extracting the
part of the solution that is hindering the convergence. On convergence of
the solution the total size of the basis is four, m = 4. This was done in four
separate extractions, meaning that the basis was increased by one vector on
four separate occasions. This can be seen by the four sudden drops in the
residual, although the second time this occurs, at 1800 iterations, the drop is
immediately reversed. The reason for an upward spike in the residual at the
time of basis extraction is usually caused by an inaccurate basis, meaning the
vector extracted did not correspond to the least stable part of the solution.
This suggests the value used for KA in equation (23) is too small as this
parameter controls the accuracy required for acceptance of a vector into the
basis. However, care must be taken not to set it too high as the criteria may
never be met and no vectors would be added. Whilst this would not prevent
convergence in this case, as the solution is stable and the time integration
method converges anyway, for unstable solutions this becomes important as
evidenced in the next test case. There are also several other inputs which are
user dependent and can affect the effectiveness of the method such as νmax

which indicates how often new vectors are sought and kv which is the number
of past iterates used to search for new basis vectors and as such limits the
maximum number of new vectors that can be extracted. Although the basis
was only increased by a single vector each time, by the time the solution is
converged calculation of the eigenvalues of the solution projected onto the
basis indicates two complex pairs of eigenvalues.

Although the RPM enables convergence acceleration, this is not its pri-
mary use and the comparison is made here with a non-preconditioned solver
without convergence acceleration. Shown in Figure 2, is the comparison of
the convergence history between the Runge-Kutta method with and without
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Figure 1: Comparison of convergence history for a NACA 0012 aerofoil at an α = 4.7◦,
M = 0.7, Re = 1× 107 with and without RPM.

RPM applied to a NACA 0012 aerofoil at an angle of attack of 7.0◦, a Mach
number of 0.7 and a Reynolds number of 1 × 107. This is a point well into
the unstable regime as shown by the eigenvalues in Figure 3. As can be seen
the underlying time integration technique does not converge on its own but
through the addition of the RPM convergence can be achieved. The values
for the RPM inputs used were νmax = 50 and KA = 100. Again, the Jacobian
was calculated every νmax iterations and the basis was re-orthogonalised at
these points also, irrespective of whether any new vectors were added. The
reason for lowering the value of KA, which is the criterion which dictates when
a new vector is added to the basis is to allow a vector to be extracted before
the residual stalls, as after this point the vectors do not become any more
accurate as the Jacobian is not increasing in accuracy. This is a key param-
eter in many cases as it must be set to a value that allows the Jacobian to
converge far enough that the vectors are not so inaccurate the cause a mas-
sive rapid divergence but must also be low enough to allow a vector to be
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found before the convergence stalls. The final size of the basis on convergence
of the solution was six, m = 6. This was achieved through three separate
extractions. Firstly, two vectors were extracted after 2000 iterations, then a
further three vectors were added to the basis at 3500 iterations and one final
vector was added at 5000 iterations. The low value of KA needed to start the
RPM is the reason for the large oscillations when the final vector is added,
as its addition renders the basis inaccurate and it is only after a certain num-
ber of re-orthogonalisations and further convergence that the oscillations are
overcome.
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Figure 2: Comparison of convergence history for a NACA 0012 aerofoil at an α = 7.0◦,
M = 0.7, Re = 10.0× 106 with and without RPM.

Figure 4 shows an excerpt from the continuation run for this test case. In
this case the angle of attack was used as the continuation parameter, λ = α.
Figure 4 shows the number of iterations needed to converge at each step
during the continuation run both with and without RPM and also the lift
coefficient for each angle of attack. Without RPM it is not possible to trace
the complete continuation curve as there are intervals where the unmodified
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Figure 3: Largest magnitude eigenvalues computed by RPM for NACA 0012 aerofoil at
α = 4.7◦ and α = 7.0◦ with M = 0.7, Re = 10.0× 106.

Runge-Kutta method does not converge. The RPM inputs for this case were
νmax = 50, KA = 1000 and kv = 10. It is possible to use a larger value for
KA in this case as the final basis and solution is reused from the previous
continuation step meaning that there is no need to set a lower value of KA to
extract a basis. This also explains the greater number of iterations needed
on the first step as in both cases (with and without RPM) the solution is
started from a constant initial flow field and for the RPM case there is no
basis. There is a noticeable increase in the number of iterations needed to
converge on the parameter values around the bifurcation point, which occurs
between 4.92◦ and 4.93◦. This is expected as this is the region of parameter
values where there will be a complex pair of eigenvalues with a magnitude
close to or greater than unity.

Although not shown here the above case and cases involving different flow
conditions around the same aerofoil were computed for different KA, νmax and
kv values. It was found that the only requirement for kv was that it should
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Figure 4: Comparison of convergence history for a NACA 0012 aerofoil for continuation
in angle of attack with and without RPM.

be a value larger than 2 to ensure that a complex pair of eigenvectors was
not missed, however, at no point was more than two eigenvectors extracted
at any one time. The results presented in this section suggest that the basis
extracted by the RPM is a good representation of the subspace containing
the least stable dynamics. This provides confidence that the bifurcation can
be located by solving the equations on this subspace alone. However, if,
as expected, it is necessary for the subspace to represent the least stable
part of the eigenspectrum as opposed to the unstable part alone in order to
allow movement of the solution as the bifurcation is tracked; then it may be
necessary to manipulate the value of KA during the continuation process to
ensure that extra vectors are added to the basis. This does not appear to
affect the accuracy of the final basis.

7.2. Bifurcation tracking of shock induced oscillations

The onset of shock induced oscillations is associated with a Hopf bifurca-
tion and, as such, continuation methods can be used to identify the parame-
ter values where this unsteady flow regime begins. The original continuation
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methods described in section 3.1 can be used to calculate rough values where
this bifurcation occurs and the accuracy of the bifurcation point will depend
on the step length used as it is unlikely that the step will give the exact
parameter value where the bifurcation occurs. Furthermore, computing the
stability boundary for a range of second parameters would require a contin-
uation run to be performed for a selection of second parameter values. This
method was used in [6]. Before this, the previous computational evaluation
of stability used standard time integration and inspection of time histories
to decide on the stability. Through the use of bifurcation tracking methods
the stability boundary can be computed directly, giving the exact bifurcation
point without the need for multiple continuation runs.

Calculations were carried out for the flow past a NACA 0012 aerofoil
using the Spalart-Allmaras turbulence model. The angle of attack was used
as the first continuation parameter, λ = α, and Mach number was used as the
second continuation parameter, γ = M with a Reynolds number of 1× 107.
Figure 5 shows the predicted boundary of the flow stability in terms of angle
of attack and Mach number. The required converged solution tolerance was
set at 10−8 for the time-independent methods and 10−4 for the time-discrete
methods.

All six methods show fairly good agreement and whilst the time-independent
methods fail to find any solutions in certain areas, the time-discrete methods
do not suffer from this failure. The time-discrete methods and the projected
time-independent methods do begin to diverge from the solutions found us-
ing the full time-independent methods as the continuation progresses. The
most likely reason for this is the current inability to update the basis accu-
rately coupled with the previous solutions not being converged sufficiently.
The inability to accurately update the basis in the current implementation
means that the as the solution evolves at the next parameter values the basis
will not be an accurate representation of the unstable subspace. This has
the knock-on effect of preventing the subsequent solution from converging as
much, and as the previous solution is used as an initial guess for the next
bifurcation point, means that convergence onto the next solution is more
difficult. This results in the irregular boundary that is seen for the projected
methods. Convergence issues also result in the bifurcation tracking methods
involving a test function producing an irregular boundary.

The experimental buffet boundary is also shown in Figure 5 as computed
by McDevitt and Okuno [42]. Clearly, this shows that the buffet boundary
computed in this work does not match the experimental results. This will be
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Figure 5: Shock induced oscillations for a NACA 0012 aerofoil Re = 1 × 107. AS: Aug-
mented System, TF: Test Function, PPAS: Partially Projected Augmented System, PPTF:
Partially Projected Test Function

due to the underlying solver and mesh. However, as previously stated, the
primary goal of this work is the development of a computationally efficient
bifurcation tracking method. Therefore, the main concern is the accuracy
of the projected methods with respect to the original, unprojected, methods
and not with respect to the experimental results.

The CPU time taken for all the methods applied to this test case are given
in Table 1. Again, the cost of the augmented system and test functions for a
given projection level are similar, as would be expected given the size of the
system is the same. The partially-projected methods show a similar decrease
in computational cost as for bifurcation tracking in Reynolds number and
angle of attack however the fully-projected methods cost half as much as
they did for that case. This is probably due to the fact the gradient of the
stability boundary is more constant for this case meaning the basis does not
change greatly between any two bifurcation points.
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Method CPU Time (s) % time of Time-independent AS

Time-independent AS 3.06× 105 100

Time-independent TF 3.19× 105 104.1

Time-independent PPAS 1.37× 104 4.5

Time-independent PPTF 1.39× 104 4.5

Time-discrete AS 300 0.10

Time-discrete TF 277 0.09

Table 1: Time taken for the bifurcation tracking methods for shock induced oscillations.

The following results present bifurcation tracking of the flutter stability
boundary with a shape parameter. This reflects the idea of how a change in
design could move the unwanted bifurcation outside the operating range.

7.3. Bifurcation tracking in camber and angle of attack

The partially-projected bifurcation tracking methods was not implemented
for the test cases involving bifurcation tracking with shape parameters be-
cause for the time-independent methods ARPACK, which was used to com-
pute the basis, had difficulty converging. This meant that although it found
the critical eigenpair to sufficient accuracy more vectors, which are needed
to perform bifurcation tracking were unobtainable.

This section compares the performance of the bifurcation tracking meth-
ods at mapping the stability boundary in a parameter space defined by both
angle of attack and camber. The results were carried out for the flow past a
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NACA 4-digit aerofoil with a thickness of 12% chord, with the initial aerofoil
being a NACA 0012. The Spalart-Allmaras turbulence model was used and
the partially-projected time-independent methods were not applied to this
case.
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Figure 6: Stability limit of camber and angle of attack for a NACA 4-digit aerofoil with a
thickness of 12% of the chord at M = 0.7 and Re = 1× 107.

The first continuation parameter used was the angle of attack whilst the
second continuation parameter was camber. The tracking was performed for
a range of cambers between 0% chord and 0.4% chord with the maximum
camber location being kept constant at 40% chord. It was found that some
of the methods required a smaller step size in order to progress with tracking
the bifurcation. The two time-discrete methods used an initial step size of
0.01% chord whilst the time-independent augmented system method used
a step size of 0.04% chord and the time-independent test function method
used a step size of 0.02% chord The Mach number was fixed at 0.7 and the
Reynolds number was fixed at 1 × 107. The required converged solution
tolerance was set at 10−8 for the time-independent methods and 10−4 for the
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time-discrete methods.
The results, shown in Figure 6, show less of an agreement in value between

the time-independent and time-discrete methods compared with the previous
test cases but the general trend of the time-discrete methods agree with the
trend of the time-independent methods. Tracking a bifurcation in camber
proved difficult for all the methods with no method being able to track the
bifurcation beyond a camber of 0.4% chord. This figure highlights the fact
that the initial solutions for the time-independent and time-discrete systems
do not match. Although this is true for all the test cases presented so far,
it is more apparent for this case due to the scale of the axes. The initial
solutions are always the same where the starting conditions define a flow
with a Mach number of 0.7 and a Reynolds number of 1 × 107 around a
NACA 0012 aerofoil.

7.4. Bifurcation tracking in thickness and angle of attack

This section compares the performance of the bifurcation tracking meth-
ods at mapping the stability boundary in a parameter space defined by both
angle of attack and thickness. The results were carried out for the flow past a
symmetric NACA 4-digit aerofoil, again starting with the NACA 0012 aero-
foil. For this case the Spalart-Allmaras turbulence model was implemented
and the partially-projected time-independent methods were not applied.

The first continuation parameter used was the angle of attack whilst the
second continuation parameter was thickness. The tracking was performed
for a range of thicknesses between 12% chord and 15% chord with a constant
step size for all methods of 0.1% chord. The Mach number was fixed at
0.7 and the Reynolds number was fixed at 1 × 107. The required converged
solution tolerance was set at 10−8 for the time-independent methods and
10−4 for the time-discrete methods.

All four tracking methods were initialised by performing continuation in
angle of attack at a thickness of 12% chord, giving the NACA 0012 aerofoil,
using the Newton arclength continuation method for the time-independent
systems and the Recursive Projection Method for the time-discrete systems.
The continuation was performed until the eigenvalue solver had detected that
a bifurcation had occurred. Again, the results, shown in Figure 7, show less
of an agreement between the time-independent and time-discrete methods
compared with the first two test cases but the general trend of the time-
discrete methods agree with the trend of the time-independent methods.
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Figure 7: Stability limit of thickness and angle of attack for a NACA 4-digit symmetric
aerofoil at M = 0.7 and Re = 1× 107.

7.5. Bifurcation tracking in thickness and Mach number

This section compares the performance of the full time-independent and
fully-projected time-discrete bifurcation tracking methods at mapping the
stability boundary in a parameter space defined by both Mach number and
thickness. The results were carried out using the Spalart-Allmaras turbu-
lence model for the flow past a symmetric NACA 4-digit aerofoil with the
initial aerofoil being a NACA 0012. The first continuation parameter used
was the Mach number whilst the second continuation parameter was thick-
ness. The tracking was performed for a range of thicknesses between 12%
chord and 15% chord. It was necessary to use a smaller step size for the time-
discrete methods in order for the tracking to progress beyond the first point.
Therefore a step size of 0.1% chord has been used for the time-discrete meth-
ods whilst a step size of 0.25% chord has been used for the time-independent
methods. The angle of attack was fixed at 4.8◦ and the Reynolds number was
fixed at 1 × 107. The required converged solution tolerance was set at 10−8
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for the time-independent methods and 10−4 for the time-discrete methods.
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Figure 8: Stability limit of thickness and Mach number for a NACA 4-digit symmetric
aerofoil at an angle of attack of 4.8◦ and Re = 1× 107.

As before, all four tracking methods were initialised by performing con-
tinuation in Mach number at a thickness of 12% chord, giving the NACA
0012 aerofoil, using the Newton arclength continuation method for the time-
independent systems and the Recursive Projection method for the time-
discrete systems. The tracking methods were implemented once the con-
tinuation method had detected that a bifurcation had occurred, which was
achieved by computing the eigenvalues. The results, shown in Figure 8, show
a good agreement between the time-independent and time-discrete methods
especially at the start of the tracking methods. However, as continuation in
the second parameter progresses, the results begin to diverge more as the
basis for the time-discrete methods is not updated accurately enough. The
overall trend of all the methods agree.
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8. Conclusions

This work has presented the development of some computationally inex-
pensive bifurcation tracking methods and compared them to existing direct
bifurcation tracking methods. These bifurcation tracking methods were de-
veloped with varying degrees of computational cost and accuracy. The full
methods were applied to the time-independent RANS system and followed
the stability limit that corresponded to the initial bifurcation from the con-
tinuation methods. The projected methods were applied to the RANS time-
independent and time-discrete systems. These were computationally cheap
but suffered from a degradation in the achievable accuracy. Despite this they
proved successful in predicting the general trend of the stability limit. All
of the direct methods solve a bifurcation system and locate exactly the bi-
furcation point for the given problem conditions but are limited, for a given
implementation, to a single type of bifurcation, which in this case is a Hopf
bifurcation although similar systems can be implemented that follow other
types of bifurcation, such as a fold bifurcation.
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