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ABSTRACT 7 

Modern infrastructure systems form complex networks that are organised hierarchically in communities of tightly 8 

integrated elements. This paper presents three new community-based metrics to identify the critical elements of 9 

a network system. Two of these metrics assess intracommunity and intercommunity behaviour for any 10 

community structure and the third metric accounts for the multiple levels of community structure. First, these 11 

metrics are studied to establish their characteristics with different community structures and then the Great 12 

Britain Railway Network is used as a case study to demonstrate the usefulness of these new metrics. The results 13 

show that an assessment of the system using these metrics leads to the identification of not only those elements 14 

that are critical at the global level, but also that greatly affect the local performance of the communities. Such 15 

identification of the critical components at the community level and global level would enable a better 16 

understanding of the system behaviour by the stakeholders with competing demands. 17 
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INTRODUCTION 19 

Infrastructure systems such as electricity, water and transportation form the backbone of modern societies 20 

(UNISDR 2015). These are organised in networks of assets which facilitate the flow of resources and the delivery 21 

of services (Zio 2016). To study the emerging behaviour of infrastructure systems, the graph-theoretic 22 

techniques, originally developed in the field of statistical mechanics (Barabasi & Albert 2002), are being used 23 

increasingly. In a graph model of an infrastructure network, the nodes represent the components where the 24 

service is generated or delivered and the edges represent the distribution channels (Table 1). The size of these 25 

networks varies considerably, for example, from potable water distribution networks which can be organised in 26 

small local networks (Dueñas-Osorio et al. 2007) with less than one hundred components, to the power grids 27 

with tens of thousands of nodes (Albert et al. 2004). A review of infrastructure systems analysis is given in 28 

(Ouyang 2014).  29 

Whilst large-scale analyses of infrastructure systems are important to assess systemic risks (Lorenz et al. 2009), 30 

these can mask local criticalities. Evaluating the behaviour of the system at different levels of granularities allows 31 

for local information to emerge. This is particularly important for infrastructure systems that have multiple 32 

stakeholders each concerned with the performance at a different scale as shown in Figure 1. These scales may 33 

be hierarchical but this is not necessarily true for all of the infrastructures; some infrastructures go beyond 34 

regional or national boundaries to serve multiple regions across different nations (as is the case of the European 35 

Gas Network (Poljansek et al. 2012)). Further, they may be of interest to consumer (or industry) associations that 36 

operate at any of the intermediate scales shown in Figure 1.  37 

As an example, the storm surge in February 2014 in the UK that washed away 80 meters of railway line in 38 

Dawlish (Network Rail 2014), could be considered a minor event from a whole-system perspective because the 39 

station represents only 0.02% of the annual network throughput (Office of Rail and Road 2015). From a local 40 

perspective, however, the damage was unacceptable, as it completely cut off the region from the rest of the 41 

national railway network. It is not unusual for each stakeholder to be concerned with the functionality of the 42 

system at a particular scale. Planning in a multi-stakeholder environment requires the right tools so that the 43 

performance of each of the parts can be assessed with clarity at the onset of the process (Blockley & Godfrey 44 

2000) and stakeholders are able to have a meaningful discussion about the system criticalities.  45 

The objective of this paper is to provide tools to foster such a discussion among stakeholders with a diverse 46 

range of priorities. To achieve this, new metrics to identify the critical elements of an infrastructure system at 47 

multiple scales are proposed. The paper is organised as follows: first, it reviews the approaches to identify 48 

communities in a infrastructure network; Then, it defines two new metrics to assess the performance of 49 

communities and explores their behaviour for different network parameters; in the following section, it introduces 50 

a third new metric to account for multiple levels of community structure within the system; a Case Study is then 51 
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presented to demonstrate the application of the new metrics to a model of the Great Britain railway system 52 

before conclusions are drawn in the final section. 53 

LITERATURE REVIEW 54 

COMMUNITY DETECTION  55 

In an effort to better map the behaviour of the system to the needs of its stakeholders, the concept of network 56 

community is used. Network communities can be defined as “locally dense connected subgraphs in a network” 57 

(Barabási 2014). In an infrastructure system, community structure emerges because it is required to achieve a 58 

thorough distribution of service at the local level, while guaranteeing whole-system connectivity through efficient, 59 

but scarce, long-range communication channels. The elements of an infrastructure system community are much 60 

more likely to interact with each other than with the rest of the system when delivering their service to society. 61 

Electric power, for example, is produced and distributed at the local level whenever possible, with long-range 62 

transmission (i.e. at a national scale or above) being the costly alternative to be used when local generation 63 

capacity cannot satisfy peaks in demand (Mureddu et al. 2015).  64 

Community detection is the process of identifying any partitions that may exist in a network, and a partition is a 65 

subdivision of a network in communities. Community detection on networks is a fertile research field and there 66 

exist several alternative procedures that can be used for this purpose  (Fortunato 2010). The Stability 67 

Optimisation (SO) method described in (Delvenne et al. 2010) and implemented in (Le Martelot & Hankin 2011) 68 

was selected here (see Appendix A).  69 

SO leverages the association between graphs and random walk processes. Any graph can be associated to a 70 

random walk process where the transition probabilities are proportional to the edge weights. The groups of 71 

nodes that a random walker is unlikely to leave, because of the number and the quality of the connections 72 

between them, become basins of attraction and are referred to as communities. Partitions are identified by 73 

maximising stability, which is the likelihood that a random walk of length t, referred to as scale parameter, 74 

terminates in the same community where it started (see (Lambiotte 2010) for the full derivation). When the length 75 

of the random walk is set to 1, SO corresponds to the widely used Modularity Optimisation methods (Newman & 76 

Girvan 2004) and by changing the length t of the random walk, it allows the discovery of partitions in which the 77 

size of communities is above or below the resolution limit of modularity (Fortunato & Barthelemy 2007). Each 78 

value of t can be associated to a different partition. To discern partitions between those actually characterising 79 

the system and those that are only a product of the algorithm sweeping through t values, it is necessary to 80 

assess their robustness against small perturbations such as small increments in the length of the random walk t 81 

in the algorithmic procedure (this is different from the robustness of operations within a network or community). 82 

Partitions identified for an adequate range of values of t are considered robust and used in the analysis. There 83 

are other methods sharing the features of SO, such as (Danon et al. 2006) and (Reichardt & Bornholdt 2006), 84 
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but they will not be discussed here. The choice of the community detection method does not affect the 85 

development of the metrics presented here, as long as it is able to deliver a sequence of partitions. 86 

TRANSPORTATION SYSTEMS AND NETWORK SCIENCE 87 

Network science methodologies, such as Community Detection, are powerful tools to examine the system-level 88 

performance of infrastructure networks (e.g. their robustness) or of their constituent elements (e.g. the criticality 89 

of individual nodes or edges). An infrastructure domain where network science has had significant success is 90 

that of transportation networks. 91 

For example, it has been shown that in road networks the betweenness centrality distribution of their nodes 92 

shows heavy tails (Lämmer et al. 2006). The betweenness centrality of a node is the fraction of shortest paths 93 

going through it (Borgatti 2005). As the cost of going from origin to destination is proportional to the distance 94 

travelled (in absence of congestion), shortest paths represent the preferred choice for the users of the network. 95 

As such, betweenness centrality has been used as an indicator of the flow of service going through the nodes of 96 

an infrastructure network. This is also supported by the correlation of betweenness centrality and economic 97 

activity identified by (Strano et al. 2007), as economic activity in urban areas is known to attract vehicle traffic. 98 

The fact that the betweenness centrality distribution is heavy-tailed highlights the disproportionate amount of 99 

traffic that some parts of the road network attract from the peripheral regions. Vulnerability analyses have also 100 

been performed using network science as the overarching framework: for example investigating the robustness 101 

of an Italian road network with respect to the loss of its road links (Zio et al. 2011) or assessing the systemic 102 

impact of multiple hazards on a transportation network in New Zealand (Dalziell & Nicholson 2001). 103 

Topological studies of railway networks investigated their structure both at the national (Dunn et al. 2016; Sen et 104 

al. 2003; Kurant & Thiran 2006) and continental (Kurant & Thiran 2006; Hong et al. 2015) scale, showing that 105 

their degree distributions are also compact, with little evidence of the heavy tails characterising scale-free 106 

networks (Barabási 2009). The vulnerability of these networks has been investigated (Kurant et al. 2007) using a 107 

dual network representation, building the model from the layout of the physical infrastructure network and the 108 

distribution of the train trips. By progressively removing larger fractions of edges from the network and 109 

investigating the consequences, it was found that both representations of the network provide similar results 110 

under random removal of nodes but if the attacks are targeted towards the most heavily loaded edges, the 111 

network built on the distribution of the train trips degraded much faster. This duality was not considered in 112 

subsequent research when the vulnerability of the Chinese railway network (Ouyang et al. 2014) was assessed 113 

by disconnecting randomly selected nodes and links, or when the Swedish railway network and its ancillary 114 

infrastructure systems were assessed against the removal of an increasingly large fraction of randomly selected 115 

nodes, for the removal of specific high criticality elements, and in the scenario of spatially-correlated set of 116 

contemporary failures (Johansson & Hassel 2010). 117 

The structure of the air transportation system as a complex network was examined at the national (Cai et al. 118 

2012; DeLaurentis et al. 2008), continental (Cardillo et al. 2013) and worldwide (Mossa et al. 2005) scales. While 119 
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at the national level, these networks show compact degree distributions, when the models are extended to the 120 

continental scale and beyond, the distribution becomes a power law, highlighting the role of hub airports in long 121 

distance connectivity. Further, as links do not represent physical entities but flight routes, two different 122 

representations can be used, as in the case of railway networks: models can be built either of the networks 123 

connecting the airports, or of the networks operated by single airlines (DeLaurentis et al. 2008).  124 

The vulnerability of these networks to disruptions has become of interest for the research community in the 125 

aftermath of the 2011 eruption of the Eyjafjallajökull volcano, which caused the inoperability of the northern part 126 

of the European Air Transportation network for six days, affecting 10 around million travellers (Bye 2011). 127 

Wilkinson et al. (Wilkinson et al. 2011) tackled directly the vulnerability of the European Air Transportation 128 

Network and found that it has a scale-free degree distribution with an exponential cut-off, with most of its hub 129 

nodes located in the northern part of the system. This makes the network vulnerable to spatially concentrated 130 

hazards, such as aforementioned eruption, as a relatively spatially concentrated disruptive event has the 131 

potential to affect airports outside of it, effectively having a much larger footprint.  132 

In general, there are two distinct traditions for vulnerability of transport networks - one, based on topological 133 

studies and the other based on demand and supply.  A review of both these approaches is provided in (Mattsson 134 

and Jenelius 2015) where they also highlight the importance of collaborations between authorities, operators and 135 

researchers to improve the resilience of transport networks. The role of connectivity has also been reviewed in 136 

(Reggiani et al. 2015). In this paper, we provide new perspectives on the identification of critical elements using 137 

the concept of communities while addressing the needs of a variety of stakeholders.  138 

COMMUNITY DETECTION AND INFRASTRUCTURE NETWORKS 139 

Community detection has mostly been used in the infrastructure systems research literature to reduce the 140 

computational complexity of the problem under scrutiny. In (Mena et al. 2014) an affinity-based community 141 

detection procedure was used to arrive at the most efficient configuration for an electric power system. In 142 

(Gómez et al. 2014) a version of Markov Chain clustering was used to provide coarser, yet faster, assessment of 143 

damage propagation through a highway system. A different point of view was taken in (Rocco & Ramirez-144 

Marquez 2011) and (Fang & Zio 2013) where modularity optimisation and hierarchical spectral partitioning were 145 

used respectively for the common goal of identifying system criticalities based on the position within the clusters 146 

of system elements. In these works (and those reported in Table 1), however, critical nodes are identified from 147 

the perspective of the whole system; the consequences of their impairment are never computed at the 148 

community level, the perspective taken in this paper. In this paper we also show how to integrate a global 149 

analysis with the information obtained at the community level. We assume that a community structure is present 150 

which is often the case with infrastructure systems. 151 

COMMUNITY-BASED METRICS 152 

In this section, we build new performance metrics for communities drawing upon the idea of node centrality in 153 

weighted graphs. 154 
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GLOBAL CENTRALITY 155 

The cost of delivering a service from generation to distribution is an important metric to assess the viability of an 156 

infrastructure. It is assumed here that such cost is univocal for an infrastructure network in its design state, and 157 

further that the design state of the system is characterised by the service being routed through the shortest paths 158 

between the generation and the distribution point. This represents a best-case scenario for agents operating 159 

infrastructure systems, as the cost incurred in running these networks is proportional to the distance over which 160 

the service is delivered. While it is not always possible to route the service along the shortest paths due to the 161 

finite capacity of the network components, this assumption provides a baseline to understand the structure of the 162 

system.  163 

Let G=(N,M) be the graph representing the network infrastructure of interest, with N being the node set and M 164 

being the edge set. The cardinalities of such sets are respectively n and m. The average shortest path D 165 

between two nodes of the system is equal to: 166 

𝐷 =
1

𝑛(𝑛−1)
∑ 𝑑𝑖𝑗
𝑛
𝑖,𝑗=1  (1) 167 

where dij is the shortest path between origin node i and destination node j. In the design state of the network the 168 

average cost of delivering service across the system is proportional to the average shortest path. However, when 169 

two nodes are disconnected the distance between them tends to infinity and the average cost diverges, too. In 170 

order to circumvent this issue, the average efficiency E of a network has been proposed in (Latora & Marchiori 171 

2007): 172 

𝐸 =
1

𝑛(𝑛−1)
∑

1

𝑑𝑖𝑗

𝑛
𝑖,𝑗=1  (2) 173 

With this formulation, when two nodes become disconnected and the distance between them tends to infinity, the 174 

efficiency between them 1/dij drops to zero, making it possible to account for disconnected components. 175 

Efficiency is thus a suitable indicator of infrastructure system performance; it contains information about the 176 

operability of the system while also being computable on disconnected graphs. Besides network efficiency, other 177 

performance indicators can be devised, such as the connectivity among the set of nodes where the service is 178 

produced and those where the service is delivered ( (Murray et al. 2008), (Johansson & Hassel 2014)) or the 179 

total network throughput (Ouyang et al. 2009), but in this paper the discussion is limited to efficiency and its 180 

application to a network partitioned in communities. 181 

When the system is stressed by removing a node (or an edge), the efficiency of the system reduces as shortest 182 

paths originally going through the removed node (or edge) become longer. This efficiency drop can be used to 183 

represent the degradation of the system performance. Computing the efficiency drop allows for a representation 184 

of performance that does not simply assess whether the nodes are connected, but also accounts for the quality 185 

of those connections. The efficiency drop associated to the removal of a node is defined Information Centrality 186 

(Latora & Marchiori 2007) and in this paper it is labelled as global centrality, GC, to underscore its global nature: 187 
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𝐺𝐶𝑘 =
𝐸0−𝐸𝑘

𝐸0
 (3) 188 

where E0 is the efficiency of the network in its original configuration and Ek is the efficiency of the network after 189 

the removal of node k. It has been shown for several systems (e.g. (Dunn & Wilkinson 2013), (Ouyang 2013) and 190 

(Fang et al. 2015)) that there is a good correlation between the critical elements identified with network metrics 191 

such as GC and more physically accurate engineering-based models.  192 

GC is an indicator that expresses the criticality of nodes for the operations of the whole infrastructure system. 193 

Therefore, it caters only to the need of stakeholders that are concerned with the operations of the entire network, 194 

such as the system operators. Next section provides them with new metrics to assess the local importance of 195 

infrastructure assets.  196 

INTRACOMMUNITY AND INTERCOMMUNITY CENTRALITIES  197 

DEFINITIONS  198 

Once the network is partitioned into network communities, it is possible to de-average network efficiency E and 199 

introduce a Community Efficiency matrix CE. The elements of CE are computed as follows: 200 

𝐶𝐸𝑖𝑗 =
1

𝑛𝐶𝑖(𝑛𝐶𝑗−𝛿𝑖𝑗)
∑ ∑

1

𝑑𝑘𝑙

𝑛𝐶𝑗
𝑙=1

𝑛𝐶𝑖
𝑘=1  (4) 201 

where dkl is the shortest path between origin node k and destination node l, nci and ncj are the number of nodes in 202 

communities i and j, and δij is the Kronecker delta function required to adjust the total number of (i,j) pairs when 203 

the origin and destination communities are the same. Each CEij element represents the efficiency of 204 

communication between community i and community j in the current configuration of the system. The diagonal 205 

elements of CE map the efficiency within communities, whereas the extra-diagonal elements reflect how efficient 206 

the connection of each community to the rest of the system is. This allows for a first comparison among 207 

communities; it is possible to assess whether any of them is underperforming its peers and, if necessary, 208 

improve its internal or external efficiency. We are not suggesting that all communities should have an equal level 209 

of efficiency, as their development at the local level is demand-driven, but the use of CE in conjunction with the 210 

requirements on the different communities of the system would allow for a transparent discussion among system 211 

stakeholders about what improvement each community needs.  212 

By removing each node in turn two new centrality indicators can be obtained from the change of the elements of 213 

the CE matrix. These two centrality indicators are called intracommunity centrality, IC, and intercommunity 214 

centrality, EC. For node k belonging to community i, they are defined as (Galvan & Agarwal 2015): 215 

𝐼𝐶𝑘 =
𝐶𝐸𝑖𝑖

0−𝐶𝐸𝑖𝑖
𝑘

𝐶𝐸𝑖𝑖
0    (5)  216 

𝐸𝐶𝑘 =
1

𝑐−1
∑

𝐶𝐸𝑖𝑗
0−𝐶𝐸𝑖𝑗

𝑘

𝐶𝐸𝑖𝑗
0

𝑐
𝑗=1
𝑗≠𝑖

 (6) 217 
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where CEij
k is the efficiency between communities i and j after the removal of node k, and c is the total number of 218 

communities in the system. These two indicators provide the same kind of information as GC, but at the local 219 

level. By leveraging the local average defined by Equation 4, the two indicators identify how much the node they 220 

refer to is important for the operations of those communities. IC expresses how critical a node is internally for the 221 

community where it belongs, whereas EC expresses how the removal of the same node influences the 222 

transactions between that community and the rest of the system. Figure 2 expresses the difference among the 223 

three indicators of centralities. Firstly, in order to assess the GC of Node k, the change in the efficiency is 224 

computed by considering all the residual pairs of origin and destination nodes within the network (Panel A). 225 

Secondly, when IC is under scrutiny, the change in efficiency is computed only among the nodes of the same 226 

community (violet nodes in Panel B). Thirdly, when EC is of interest, the efficiency drop is calculated between the 227 

community of Node k (violet nodes in Panel C) and the other communities (green and orange nodes).  228 

It should be noted that EC averages the impact of the node removal over all of the communities, rather than 229 

focusing only on the community where the disrupted node originally belonged to. This allows the criticality 230 

analysis to maintain a global perspective, as the disruption of a node within a community has the potential to 231 

affect other communities at the same time, in terms of their efficiency with respect to the rest of the system. The 232 

focus on the individual community could be restored whenever necessary by restricting the computation of EC 233 

exclusively to those paths between the nodes of the community under investigation and the rest of the system. 234 

Ranking the nodes of a community according to their IC and EC values highlights which of them are the most 235 

critical for its efficiency. Comparing the different values of IC and EC across different communities allows for an 236 

assessment of which communities are dependent on a few nodes and which are most robust to such 237 

perturbations. Further, since IC and EC are community level properties, these do not suggest where the node 238 

with highest value of IC or EC is located within a community. 239 

NUMERICAL EXPERIMENTS  240 

The IC and EC metrics depend on the local structure of the community, expressed by variables such as its size 241 

and edge density, as well as the global topological parameters such as the total number of communities and the 242 

number of connections between them. The behaviour of the newly proposed metrics was examined through 243 

synthetic networks with pre-defined community structure. The purpose was to explore which parameters affect 244 

the two metrics and thus understand which modifications to infrastructure networks would be the most favourable 245 

for maintaining the efficiency of the communities when their nodes are disrupted.  246 

The numerical experiments were carried out in a Matlab programming environment (Mathworks 2017), using the 247 

MatlabBGL library as a support for component identification, the Graph Theory Toolbox for shortest path 248 

computations and the Community Detection Toolbox for its implementation of the Stability Optimisation 249 

algorithm. 250 

The synthetic networks were generated with the Girvan-Newman (GN) model (Newman & Girvan 2004) for 251 

reasons given subsequently. The GN model requires the specification of the number of communities c, the 252 
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number of nodes in each community n1, the average number of edges each node has within the same 253 

community zi, and the average number of edges every node has outside of its community ze. The GN model 254 

assigns each node a community at the start of the process.  255 

In each realisation of the model, edges are generated with likelihood pi=zi/(n1-1) between nodes of the same 256 

community and with likelihood pe=ze/(n1*(c-1)) between nodes of different communities. The GN model generates 257 

communities which have an intercommunity degree distribution following that of the Erdos-Renyi (ER) random 258 

graph model (Erdos & Renyi 1959), with a few extra connections between the communities. Random graphs 259 

generated with the ER model have the desirable property of putting the least amount of assumptions on the 260 

connectivity pattern of the system, thus representing a suitable choice for a null model used to investigate the 261 

behaviour of the new metrics. 262 

Three sets of analyses were performed on graphs generated with the GN model. First, the size and the number 263 

of communities in the network were fixed to 25 nodes and 4 communities respectively, and the effects of the 264 

number of internal and external edges per node were investigated by varying the values of z i and ze. The 265 

parameters under scrutiny were varied in the [2:10] and [0.1:2] ranges respectively. Both variables were sampled 266 

at 20 points each in the respective intervals, thus 400 (zi, ze) combinations were tested. For every (zi, ze) pair 100 267 

realisations of the GN model were generated, IC and EC were computed for every node in each of these 268 

networks and the median values of the two variables were recorded. Then, the expected values of the median IC 269 

and EC were calculated by performing the average of the results obtained over the 100 networks. The results are 270 

plotted in Panel A and Panel B of Figure 3.  271 

In the second set of analyses, the number of communities c and the average number of external edges per node 272 

ze were fixed to 4 and 0.2 respectively and the effects of the community size n1 and the average number of 273 

internal edges per node zi were investigated. The parameters under scrutiny were varied in the [2:10] and [6:25] 274 

and ranges respectively. Both variables were sampled at 20 points each in the respective intervals: again, 400 275 

(n1, zi) combinations were tested. For each (n1, zi) pair 100 different graphs were generated, and expected values 276 

of the median IC and EC were computed using the same methodology as before. The results are plotted in Panel 277 

C and Panel D of Figure 3.  278 

The third set of analyses was designed to investigate the effects of the number of communities c and the 279 

average number of external edges ze. In this case, n1 and pi were fixed to 10 and 2, for each (c, ze) pair in the 280 

[2:12] and [0.1:2] ranges 100 different graphs were again generated at each of the 400 sampling point, and the 281 

same methodology as before was followed. The results are plotted in Panel E and Panel F of Figure 3. 282 

FINDINGS AND DISCUSSION 283 

Panel A and Panel B of Figure 3 show that IC and EC are both affected by the internal and the external average 284 

degree of the nodes. Increasing zi results in lower values of the median value of IC and EC: as the number of 285 

efficient paths through the communities increases with zi, the loss of any single node becomes decreasingly 286 

relevant for their internal operations, hence lower IC. This applies to EC as well, as higher levels of internal 287 
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connectivity allow the bypass of intra-community bottlenecks and maintain efficiency in the connection to the 288 

other communities. The same applies to ze: the median value of the EC decreases for increasing ze, as higher 289 

values imply that more nodes within each community are connected to other communities. The relation between 290 

IC and ze, however, may seem counter-intuitive: IC decreases with increasing ze. The external connectivity of a 291 

community mitigates its internal efficiency loss by allowing for communities the use of neighbouring external 292 

nodes to efficiently bridge their internal disruptions. This last finding is particularly significant: it means that, if 293 

network communities are considered in isolation from each other, the impact of disruptions to their internal 294 

operations is overstated by neglecting the possibility of using the neighbouring communities to compensate for 295 

the loss. This is most relevant for communities with low average internal degree: low zi can be efficiently 296 

compensated by increasing ze if zi < 4. Provided that many infrastructure systems (Barthélemy 2011) are only 297 

sparsely connected even at the local level, this finding represents an opportunity to improve the local 298 

performance of infrastructure networks while at the same time improving the efficiency of communication 299 

between different regions. 300 

Panel C and Panel D of Figure 3 highlight another aspect of IC and EC: their median value depends on the size 301 

of the system. The higher the number of nodes in each community, the lower the median value of intra- and 302 

inter-community centrality of its nodes, and this size effect is much stronger than the effect of the internal 303 

connectivity. For example, when zi = 2, the median value of IC obtained for communities with n1 = 12 is 0.54 304 

times the value obtained for communities with n1 = 6, i.e. upon doubling the size of the community, the median IC 305 

roughly halves. When the number of internal edges per node doubles, however, the median value IC stays about 306 

the same; for n1 = 6, doubling the average number of internal edges per nodes from 2 to 4 yields a reduction of 307 

IC of only 5.13%. Increasing the local connectivity of smaller communities is not a viable alternative to cope with 308 

their inherent lack of redundancy: the operations of these communities are much more susceptible to any 309 

disruption simply because of their small size, and as such they need to be treated carefully by the system 310 

owners.  311 

Panel E and Panel F allow for some final insights: first, as it would be expected, the total number of communities  312 

c in the system does not influence sensibly the median value of IC, while the average number of external edges 313 

per node ze does. The median value of EC, on the other hand, is influenced by both c and ze.  314 

CROSS-SCALE CENTRALITY 315 

The two new community metrics, IC and EC defined above, account for the criticality of a system component at 316 

one particular scale. However, the capacity of infrastructure systems to deliver service can be evaluated at 317 

multiple scales, each represented by the different partitions identified during community detection. A node found 318 

to be critical at most scales would be of interest to all stakeholders. In order to allow for an assessment of 319 

component criticality across scales, a third metric, cross-scale centrality XC, is introduced here. It is obtained for 320 

every node by averaging over all partitions a linear combination of its normalised IC and EC values. The 321 

normalisation is done with respect to the maximum value in the each community.  322 
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For node k belonging to communities i1, i2, …, inp in the np different partitions considered in the analysis, XC can 323 

be written as: 324 

𝑋𝐶𝑘 =
1

𝑛𝑝
∑ 𝛾𝑗 (𝛼

𝐼𝐶𝑘

max(𝐼𝐶)𝑖𝑗

+ (1 − 𝛼)
𝐸𝐶𝑘

max(𝐸𝐶)𝑖𝑗

)
𝑛𝑝
𝑗=1

 (7) 325 

where max(IC)ij is the maximum value of IC in community ij where node k belongs in the jth partition, and the 326 

same for EC. In order for XC to be bounded between 0 and 1, coefficient in Equation (7) varies between 0 and 327 

1 and the weights γj need to sum to one.  328 

Coefficient  can be used to weigh more heavily the internal or the external operations of the communities. The 329 

two extreme cases of  = 1 and  = 0 represent the choice of using only one of the two community centrality 330 

indicators to compute XC. Selecting  = 0.5, on the other hand, implies attributing the same value to nodes 331 

affecting the internal and external efficiency of communities.  332 

The weights γj can be applied to the results obtained at every scale to emphasize the information yielded by 333 

some partitions, reflecting the power dynamics between the stakeholders interested in functionality at that scale. 334 

For example, if a partition is of particular interest because budgeting for the infrastructure system is done at a 335 

comparable scale, then it can be weighted more heavily than others. 336 

XC has the highest values for those nodes that are critical at multiple scales of system description, while having 337 

low or average values otherwise. Once XC has been obtained, it can be used in conjunction with GC to express 338 

the criticality of the network elements from both a global and a local perspective. The advantage of using XC 339 

consists in having a clearer view of the different stakeholder needs. By accounting for all the scales at which the 340 

system delivers its service, XC facilitates the discussion among stakeholders about which sections of the network 341 

require additional investments. If it is considered sufficient, only one partition can be used (for example to 342 

represent the interplay between the national and regional performance of a railway system), and in that case XC 343 

reduces to a linear combination of the intra- and inter-community centralities.  344 

As noted previously, EC metric in its current form averages out the impact across all communities in a partition. 345 

However, our objective has been to capture both the local and global impacts of a disruptive event and metric XC 346 

enables the restoration of information that might not be fully considered at one level of system description.  347 

The identification of the most appropriate number of partitions np used to describe a system is an open research 348 

issue for multi-scale community detection methods (Fortunato & Barthelemy 2007) including Stability 349 

Optimisation used here. In the case of infrastructure systems, however, it is not an obstacle, rather it is an 350 

opportunity to tailor the analysis to the needs of the stakeholders. Community detection is used here to highlight 351 

the criticality of network components for multiple levels of system organisation. If the decision-maker requires 352 

accounting for a plurality of stakeholder needs, community detection can be used to yield a higher number of 353 

partitions by relaxing the requirements for a partition to be identified. Conversely, if too many partitions are 354 
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deemed to make the analysis too complex, then requirements that are more stringent can be set. An example of 355 

how Stability Optimisation can be tuned to yield a different number of partitions is provided when the Case Study 356 

is presented. Practical and system-dependent considerations might also guide the choice of the number of 357 

partitions to use in the analysis. For example, when assessing a water distribution network, the analysis can be 358 

limited to partitions characterised by communities not smaller than neighbourhoods served by the same pumping 359 

station. 360 

A final remark is about the normalisation of centralities in Equation 7. For each node, its centralities are 361 

normalised by the corresponding maximum value within the same community. This implies that all communities 362 

in every system partition are given the same importance, as multiple nodes in different communities can achieve 363 

a unitary contribution, based on their performance within the region. This assumption can be removed by 364 

normalising by the same value across different communities.  365 

A CASE STUDY – GREAT BRITAIN RAILWAY NETWORK 366 

THE MODEL 367 

A model of the Great Britain Railway System was built to demonstrate the application of the proposed community 368 

metrics. The topology of the model (Galvan & Agarwal 2015) was derived from the main stations and routes map 369 

available on the National Rail website (National Rail 2015) and includes a selected subset of the stations and 370 

routes constituting the system. The model is composed of n = 148 nodes representing the stations (see Table A1 371 

in Appendix A for a list of stations) and m = 270 edges connecting them through the railway lines. The weights 372 

assigned to the edges reflect the minimum travel time between the nodes they connect. Such a measure was 373 

chosen over the physical distance between two stations because it represents a more realistic proxy of the cost 374 

of travel: it implicitly includes non-spatial constraints such as the maximum speed of the vehicles and the 375 

capacity of the lines. Data regarding travel time between adjacent stations was obtained from the National Rail 376 

website. Figure 4 shows the frequency distribution of nodal degrees in Panel A, while Panel B shows the fit of the 377 

degree distribution to a Poisson Cumulative Distribution Function (CDF).  Table 2 illustrates the main topological 378 

features of the system. 379 

Table 3 reports the global centrality values for the ten highest-ranking nodes of the system and Figure 5 plots the 380 

distribution of GC on the whole system. Seven out of the ten most central nodes according to GC are located in 381 

the London region or in the immediate vicinity (Nodes 97, 98, 99, 100 101 and 109 are located in London, Node 382 

105 is adjacent to it), reflecting the role of the city in the national railway system. As a large number of shortest 383 

paths between the nodes of the system go through the London region, any disruption to these nodes has the 384 

potential to reduce significantly the efficiency of the network. The only three peripheral nodes that make it in the 385 

list, namely Exeter, Preston and York (Nodes 135, 32 and 38), are bottlenecks for their communities. Exeter is 386 

the node governing the accessibility to the whole of Devon and Cornwall, whereas Preston and York lie 387 

respectively on the East and West coastal paths from to the North of England and Scotland: the efficiency of 388 
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paths towards these three large regions of the system depend on them. These are the only peripheral nodes that 389 

rank as high as the London nodes in a global analysis: a global metric such as global information centrality 390 

discounts the importance that other nodes have at the community level.  391 

COMMUNITY DETECTION 392 

The communities on the railway network were identified using the Stability Optimisation: the results of community 393 

detection are presented in Figure 6, where the number of communities identified during each run of stability 394 

optimisation is plotted in Panel A against the value of the scale parameter t. The algorithm was run 100 times for 395 

values of t in the [0:1] interval and 100 times in the [1:100] interval. The value t = 1 was chosen as the threshold 396 

between the two regimes because for t = 1 the optimisation of stability and modularity are equivalent: below 1 397 

stability optimisation finds partitions finer than the resolution limit, while above it yields larger partitions.  398 

For every value of the scale parameter t, stability optimisation yields a partition. Plateaus in the stability plot 399 

correspond to partitions identified during consecutive runs of the community detection procedure. The larger the 400 

plateau, the more robust the partition. In order to discriminate between partitions that are simply a product of the 401 

algorithm sweeping through different t values and those that represent functional subsystems within the network, 402 

robustness threshold, the number nt of successive values of t for which a partition is identified, is used (Lambiotte 403 

2010). In Panel B of Figure 6 the number of partitions selected for analysis is plotted as a function of the nt 404 

robustness parameter. The two partitions persisting for the largest ranges of t values are the nine communities 405 

partition identified for t = 1 and the three communities partition identified for t > 40, each identified for nt  = 26 406 

consecutive runs of the algorithm. Progressively relaxing the nt threshold allows for the inclusion of other 407 

partitions in the analysis. In the following sections the six partitions persisting for nt = 5 are used to demonstrate 408 

the application of the new metrics. The choice of the most appropriate number of partitions (and therefore of the 409 

threshold nt value), is still an open research question and in practice will be led by high-level considerations 410 

about the objective of the analysis. The main characteristics of the six partitions identified are given in Table 4. 411 

The number of communities in each partitions varies from 26 to 3, and the average number of nodes goes from 5 412 

nodes in P1 to 49 nodes in P6.  413 

P1 is the first stable partition identified, and with 26 communities of an average size of 5.7 nodes sits at an 414 

intermediate scale between the county and the regional level. Some communities of P1 adhere perfectly to the 415 

county subdivision of Great Britain, as shown in Panel A of Figure 7: Community 23, for example, fits nicely 416 

within the boundaries of the Dorset County on the southern coast of Great Britain. The neighbouring Community 417 

17, however, is larger and includes nodes belonging to the counties of Somerset, Devon and Cornwall. Partition 418 

P6 is at the opposite end of the spectrum: it is the coarsest subdivision identified by stability optimisation, and 419 

consists of only three communities (Figure 7, Panel B). They are articulated around London, as the city is a 420 

gateway to access the North of England, and splits the South in a region that is extremely well connected to it 421 

(the South-East) and one where the network is sparser (the South-West). The remaining six partitions have sizes 422 

in between P1 and P6, and in the following P4 is examined in greater detail. Partition P4 is identified at t = 1 and by 423 
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inspecting its communities and the nodes belonging to them, it is possible to assess the similarity between the 11 424 

regions of Great Britain and the 9 communities of P4, both shown in Figure 8. The boundaries of Community C4, 425 

for example, largely correspond to those of Scotland (region 1), while Community C8 is constituted by the nodes 426 

that model the London (region 8) railway stations, and Community C7 covers the whole of the South-West of 427 

England (region 10).  428 

This correspondence can be quantified by the Normalised Mutual Information (NMI) (Danon et al. 2006). Given 429 

two partitions X and Y, NMI(X,Y) is the amount of information that is gained about one by knowing the other: in 430 

this case it is used to represent the overlap between the partition found by the algorithm (say, partition X) and the 431 

regional structure of the network (say, partition Y). NMI is computed as: 432 

𝑁𝑀𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦    (8) 433 

where the summation is performed over all communities represented by x and y, p(x,y) is, for each community in 434 

partition X, the number of nodes belonging to the corresponding community in partition Y, and p(x) and p(y) the 435 

number of the nodes in those communities according to the two partitions. NMI is bounded between 0 and 1. 436 

Between Partition P4 and the regional subdivision of Great Britain a value of NMI = 0.714 is obtained. The 1% 437 

significance value of NMI computed with a permutation test is equal to 0.189. Such a test was performed by 438 

generating 104 random partitions for a network with 148 nodes and 11 communities, and computing the 99th 439 

percentile of the distribution of NMI between each of the synthetic partitions and P4. A value of 0.714 reflects the 440 

high level of similarity between the two partitions: the community detection algorithm is thus able to detect the 441 

regional structure of the railway system.  442 

Where the partitions do not overlap, however, additional insight can be gained on the functionality of the system 443 

by inspecting it. One example is the North of Wales. While it is operated as part of the Welsh railway network, 444 

community detection shows that it belongs to the same basin of attraction as the North East of England. 445 

Community detection highlights the fact that for its operations this part of Wales depends on the North East of 446 

England, and therefore it might be more effectively managed as part of the adjacent community. 447 

INTRACOMMUNITY AND INTERCOMMUNITY CENTRALITIES 448 

The community efficiency matrix CE of the railway network for the 9-community partition P4 is shown in Figure 9. 449 

The diagonal elements are the internal efficiencies of the communities: by comparing them between each other 450 

the dramatic difference between the London community C8 and the rest of the system becomes apparent. The 451 

London community has an efficiency of 0.079 while the other communities have an average efficiency of 0.016. 452 

Further, by comparing the off-diagonal elements of a column or row to the corresponding diagonal element it is 453 

possible to assess the relative efficiency between the internal and external operations of a community and how 454 

this ratio compares with the other communities. While for all other communities the ratio between the internal and 455 
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the average external efficiency is between 2 and 3, the London community scores a value of 8.2, highlighting 456 

once again its superior level of internal connectivity. 457 

Table 5 provides, for each community, the nodes with the highest values of IC and EC. The results for the whole 458 

system are presented in Figure 10. The differences and the analogies in the outcome of the global and the 459 

community-based analyses can be assessed by comparing the elements of Table 5 to the most critical nodes 460 

according to GC (Table 3 and Figure 5, or GC rank column in Table 5). Some nodes critical at the global level, 461 

for example, also emerge as local hubs. These are King’s Cross in London, Preston in the North-West of 462 

England and Exeter in the South-West. Further, the community centrality analysis also embeds system-wide 463 

information: the nodes of Reading and Stratford show the highest EC in their respective communities because of 464 

their vicinity to the London community C8, which is a hub for the long-range efficient transport.  465 

The community centrality analysis however, yields new information: nodes such as Ashford (128) in the South or 466 

Newcastle (22) in the North are the most central for the internal operations of their communities, although they 467 

only rank 41st and 57th in terms of global information centrality. Disruptions to these two nodes have serious 468 

consequences at the local level: disregarding those means neglecting the needs of the stakeholders that operate 469 

at the community level. It is also interesting to note that in South-East, South-West and North-West communities 470 

(C1, C7 and C9) the nodes ranking the highest in terms of IC (Nodes 128, 135 and 135 respectively) are also the 471 

most critical node when assessed for EC. Not only any disruption to those nodes would markedly reduce the 472 

internal performance of the community where they belong, but it would also impair the efficiency of service 473 

delivery between those communities and the rest of the system. 474 

The EC results highlight the role of the London community C8 as a hub of whole-system connectivity: the highest-475 

ranking node in all of the adjacent communities is a direct neighbour to the London community. In absolute 476 

terms, the highest value of EC is obtained for Node 100, at the interface between communities C8 and the East 477 

of England community C5. This community has a single point of connection with the rest of the system, and this 478 

situation is unique in the network, as all other communities are connected in several positions due to the meshed 479 

structure of the railway system. The result is a value of EC = 8.41% for the London community and 6.88% for the 480 

East of England community, both substantially above those obtained for the other communities. The opposite is 481 

true for the station of Darlington in the Scotland community C4: the community is very remote and presents two 482 

equally valid alternative group of paths (on the East and West coast) to reach the southern regions of the 483 

network. This means any disruption to either has very little consequences on the efficiency of communication 484 

with the rest of the system, with EC = 1.7%. 485 

CROSS-SCALE CENTRALITY AND CRITICAL ELEMENTS 486 

The community centrality analysis performed for partition P4 and illustrated above was replicated for the other 487 

five partitions identified with community detection, and the results were combined in the cross-scale centrality 488 

indicator XC in an effort to trace the criticality of the different infrastructure assets at multiple scales. The relative 489 
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contributions of IC and EC towards XC depends on the  coefficient and the partition weights. Every partition 490 

was equally weighted, while three different values of , equal to 0, 0.5 and 1, were considered.  491 

Table 6 provides the results of a cross-scale centrality analysis by reporting the 10 nodes reaching the highest 492 

XC values for three different values of. Some nodes attain high levels of XC independently of the  value 493 

selected for the assessment. This is the case of nodes 135, 98, 32 and 105: these nodes represent true 494 

criticalities within the system, governing its efficiency at multiple scales of description, within and across 495 

communities. As a whole, however, the list of the top 10 nodes by XC presented in Table 6 inevitably changes 496 

for different . Higher values rank more heavily the nodes governing local efficiency of communities, such as 497 

nodes 16, 22 or 49. The opposite is true for nodes such as 55, 52 or 28, which are not central for the efficiency of 498 

connections within their community, but reach high levels of EC across different partitions, and this results in high 499 

XC scores for lower values of . 500 

The use of XC in a multi-stakeholder environment is exemplified in the following. Let us assume that there are 501 

three stakeholders concerned with the assessment of the railway network. The first consists of municipal 502 

authorities (A) interested with the functionality of the network at the County scale (P1), because that maps to the 503 

needs of their constituencies. The second is Network Rail (B), which manages the network by routes that 504 

coarsely correspond to the regions of Great Britain (P4) and needs to allocate resources to each of them. The 505 

third and last one is the Office of Rail and Road (C), which needs to assess the performance of the system as a 506 

whole. When evaluating the criticality of every asset within the network, the stakeholders in Group A use XC that 507 

is the weighted average of IC and EC computed on the communities of P1 to assess the impact on the 508 

functionality of communities from the impairment of each node. Stakeholder B uses the same metrics but 509 

computed on the communities of P4, while Stakeholder C, concerned with the whole system, uses the outcome 510 

of a global analysis: GC. This produces a different ranking for the criticality of the individual network components, 511 

because stakeholders defined criticality at different scales. The Spearman correlation coefficient of the three 512 

rankings are, respectively AB = 0.82, AC = 0.81 and BC = 0.85, indicating that while there is disagreement in 513 

the prioritisation of the different nodes, there also are some converging interests. Aggregating the local analyses 514 

using cross-scale centrality XC and comparing these values with their GC score (Fig. 11) allows for a transparent 515 

evaluation of the needs of the three stakeholders, identifying the assets that are of interest to all of them and the 516 

ones where there is disagreement.  517 

The horizontal axis of Fig. 11 expresses how much every node affects the global behaviour of the system, while 518 

the vertical one synthesises the importance of nodes across the (possibly many) local descriptions of the network 519 

performance yielded by IC and EC at different scales. This way, no information is neglected and this can be used 520 

to facilitate discussion about resource allocation among the three stakeholder groups. 521 

It is possible to identify nodes such as Exeter or King’s Cross (Nodes 135 and 99) which fall into a high-priority 522 

class (red nodes – Q1) for everyone, as they achieve high values of both GC and XC. Not only these are critical 523 

at the global level, but their removal jeopardises the efficiency of their communities at multiple scales. The 524 
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opposite is true for nodes falling in the low GC – low XC group (purple nodes – Q3): nodes such as 31 525 

(Blackpool) are peripheral for the whole system and smaller communities are not dramatically affected by any 526 

disruption to them.  527 

Nodes in the low GC – high XC quadrant (green nodes – Q2), represent a more interesting case. Nodes such as 528 

117, representing the station of Ramsgate, do not attain high scores in a global analysis, due to the 529 

redundancies of the system that can cope well with their removal. If they are evaluated from a local perspective, 530 

however, they stand out as those nodes that can compromise the efficiency of the communities they belong to. 531 

The system owner (in this case, the Office of Rail and Road) should treat these elements with caution, as 532 

stakeholders concerned with local operations may consider them to be of the highest importance. Those nodes 533 

falling in the high GC – low XC region (blue nodes – Q4), represent the final case: elements such as Node 58, 534 

which models the station of Sheffield, are a concern for the system operator, but their importance can be 535 

downplayed by local stakeholders such as municipal authorities. 536 

CONCLUSION 537 

Global assessments of criticality fail to identify the system elements governing the service delivery performance 538 

at the local level, as this is governed by short-range interactions between neighbouring elements. Community 539 

detection forms the basis of new metrics that play a central role in the new approach. The first metric, 540 

intracommunity centrality, IC, accounts for the efficiency loss within a community that follows the removal of a 541 

node. The second, intercommunity centrality, EC, maps the efficiency loss between that community and the rest 542 

of the network.  543 

Larger communities generate lower values of IC and EC for individual nodes indicating that the nodes are more 544 

disposable. IC is influenced by both the internal average degree of its communities, as well as by their external 545 

average degree. For sparse networks, adding edges between communities can be more efficient than adding 546 

edges within communities, if the objective is to reduce IC across the board. EC is influenced by the number of 547 

communities within the network and the external average degree of their nodes. At the same time, the internal 548 

average degree plays a role as it allows for the bypassing of internal bottlenecks.  549 

A third metric, cross-scale centrality, XC, combines the IC and EC scores obtained by the network nodes to 550 

enable an assessment of their criticality accounting for the role they play at all the meaningful scales of system 551 

description. XC can be tuned to account more heavily for IC or EC, depending on the objective of the specific 552 

analysis. Used in conjunction to global indicators such as GC, cross-scale centrality allows for a synthesis of the 553 

information for decision-making. 554 

A global analysis of the railway network of Great Britain reveals that most of the high-centrality nodes are located 555 

in London or immediately around it. The application of the new community centrality metrics, however, shows 556 

that, at the local level, some peripheral nodes can be just as critical. This information was suppressed by the 557 
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global average used to compute GC, but is restored with the use of IC. EC, on the other hand, accounts for long-558 

range interaction within communities, thus restoring a global perspective in the community-based assessment. IC 559 

and EC obtained at different scales are then combined in the XC indicator. By using XC in conjunction with the 560 

outcome of the global analysis some low GC nodes, although neglected by global assessments, emerge as 561 

having the potential to be mission-critical for a wide variety of stakeholders concerned with local performance.  562 

While the approach presented in this paper facilitates the identification of critical elements and provides decision-563 

makers with tools to explore the local behaviour of infrastructure systems at multiple scales, in future work it will 564 

be expanded to include multiple contingencies, other indicators of service delivery and interactions with the 565 

natural hazards threatening the performance of the network and that of its communities. 566 
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TABLES 710 

Table 1. Infrastructure systems modelled as networks in the scientific literature 711 

System Nodes Edges Reference 
Electric Power Transmission Generators and Substations Power Lines (Vugrin et al. 2011) 
Water Distribution Pumping Stations, Storage Tanks,  Pipelines (Yazdani & Jeffrey 2011) 
Natural Gas Distribution Pumping Stations, Storage Tanks Pipelines (Carvalho et al. 2014) 
Roads Systems Origins and Destination, Intersections  Roads (Grubesic T. H. 2006) 
Railway Networks Railway Stations Railway Lines (Ouyang et al. 2014) 
Telecommunications  Routers Signal Channels (Zio & Sansavini 2013) 
Airport Networks Airports Flight Routes (Wilkinson et al. 2011) 
Structures Joints Beams (England et al. 2008) 

 712 

Table 2. Topological features of the Great Britain Railway Network model 713 

Network Properties 

Nodes n 148 
Edges m 270 
Average node degree 〈k〉 3.64 
Degree distribution  P(k) Poisson-like 
Average edge weight 〈w〉 38.97 

Efficiency E 0.0138 

 714 

Table 3. Nodes with the 10 highest GC values, and the Region of Great Britain to which they belong 715 

Rank Node Station GC Region 

1 98 St. Pancras 6.43% London 
2 99 King’s Cross 6.33% London 
3 100 Liverpool Street 5.85% London 
4 135 Exeter 5.06% South West 
5 97 London Euston 4.88% London 
6 32 Preston 4.41% North West 
7 105 Didcot Parkway 4.28% South West 
8 109 Paddington 4.27% London 
9 38 York 4.13% Yorkshire and the Humber 
10 101 Stratford 4.00% London 

 716 

Table 4. Number of communities in each of the stable partitions (for nt = 5) and their average size 717 

Partition Communities Mean Community Size (number of nodes) 

P1 26 5.69 
P2 12 12.33 
P3 10 14.80 
P4 9 16.44 
P5 6 24.67 
P6 3 49.33 

 718 

 719 

 720 
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Table 5. Nodes with the highest IC and EC values and their ranking in the global assessment 721 

 
 
Community 

Highest IC Highest EC 

Node Station IC GC 
rank 

Node Station EC GC 
rank 

C1 – South East 128 Ashford  30.73% 41 128 Ashford  4.66% 41 
C2 – Wales  91 Newport 26.94% 19 106 Reading 4.07% 11 
C3 – Yorkshire  49 Doncaster 28.04% 14 61 Grantham 4.05% 18 
C4 – Scotland  22 Newcastle 23.39% 57 28 Darlington 1.77% 40 
C5 – East of England 102 Colchester 32.76% 38 101 Stratford 6.88% 10 
C6 – West Midlands 76 Rugby 30.64% 24 96 Watford 5.35% 23 
C7 – South West 135 Exeter 31.42% 4 135 Exeter 4.34% 4 
C8 – London 99 King’s Cross 34.01% 2 100 Liverpool St. 8.41% 3 
C9 – North West 32 Preston 37.26% 6 32 Preston 4.12% 6 

Table 6. Results of XC analyses obtained with different  values  722 

Cross-Scale Analyses  Global Analysis 

  = 1.00   = 0.50   = 0.00 (normalised GC) 

Node XC Node XC Node XC Node GC 
135 1.00 135 0.98 106 1.00 98 1.00 
98 1.00 98 0.96 105 0.97 99 0.98 
32 0.95 32 0.95 135 0.97 100 0.91 
99 0.94 105 0.94 32 0.94 135 0.79 
91 0.92 99 0.88 98 0.93 97 0.76 

105 0.91 128 0.87 100 0.92 32 0.69 
49 0.89 76 0.84 52 0.91 105 0.67 
16 0.88 100 0.84 128 0.90 109 0.66 
22 0.87 55 0.84 28 0.89 38 0.64 

120 0.86 52 0.82 101 0.88 101 0.62 

 723 

  724 



24 
 

LIST OF FIGURES 725 

Fig. 1. Diagram illustrating the relationships between stakeholders: not all of them are necessarily 726 

subordinated to the layer above, as their domains of interest may only intersect.  727 

Fig. 2. A simple network with the three communities of nodes used to calculate the centralities of 728 

Node k. (A) For the computation of GC, every node i ≠ k is an origin and a destination in order to 729 

assess the efficiency of the configuration obtained by removing k. (B) For IC, only nodes within the 730 

same community of k are origins and destinations in the efficiency calculation. (C) For EC, the nodes 731 

in the same community of k are origins while nodes in the other communities are the destinations.  732 

Fig. 3. The effect of network parameters on the median values of IC and EC. (A) and (B) median 733 

values of IC and EC obtained by varying the average number of internal zi and external ze edges per 734 

node. (C) and (D) median values of IC and EC obtained by varying the number of nodes N1 per 735 

community and the average number of internal edges zi per node. (E) and (F) median values of IC and 736 

EC obtained by varying the number of communities Kc and the average number of external edges ze 737 

per node.  738 

Fig. 4. The degree distribution of the model of the Railway Network of Great Britain. (A) Histogram 739 

representing the frequency distribution of nodal degrees. (B) Cumulative Distribution Function CDF of 740 

the system nodal degrees (solid line), with the Poisson distribution obtained for  = <k> = 3.64 (dash-741 

dotted line).  742 

Fig. 5. The distribution of GC on the network nodes. The minimum value of GC is equal to 0.33% and 743 

is achieved by the station of Wick, represented by Node 1 in the northernmost part of the network, 744 

whereas the maximum is equal to 6.43% and is obtained by the station of St. Pancras in London, 745 

which is modelled by Node 98. (Top ten nodes and node 1 with the least value labelled) 746 
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Fig. 6. The results of stability optimisation on the model of the railway network. (A) The number of 747 

communities c identified for every value of t. (B) The number of partitions np as a function of the 748 

value of nt.  749 

Fig. 7. Partitions P1 and P6 (for nt = 5). (A) The detail of the South-West of England in partition P1: 750 

while Community formed by brown nodes corresponds to the Dorset country (identified by the 751 

number 4), the neighbouring Community formed by light blue nodes includes nodes from the 752 

Cornwall (1), Devon (2) and Somerset (3) countries. (B) Partition P6: three large communities 753 

articulated around London. 754 

Fig. 8. Partition P4 and the regional subdivision of Great Britain. The colours represent the nine 755 

communities identified by stability optimisation for t =1 and nt = 5. The solid lines correspond to the 756 

boundaries of the regions of Great Britain: 1.Scotland, 2.North East, 3.North West, 4.Yorkshire and 757 

the Humber, 5.East Midlands, 6.West Midlands, 7.East of England, 8.London, 9.South East, 10.South 758 

West, 11.Wales.  759 

Fig. 9. The Community Efficiency matrix CE of partition P4 of the railway network. Each CEij element 760 

was calculated using Equation 4: the diagonal elements (solid lines) represent the internal efficiency 761 

of communities, whereas the off-diagonal terms (dashed lines) reflect the efficiency of transport 762 

between different communities.  763 

Fig. 10. The distributions of IC and EC on the nodes of the network (nodes with the highest value in 764 

each community labelled). A) Distribution of intracommunity centrality IC on the system: nodes 765 

located in the periphery of the system are able to reach high centrality values because of their local 766 

importance. B) Distribution of intercommunity centrality EC: only nodes near the London community 767 

C8 achieve high centrality values.   768 

Fig. 11. The results of a XC analysis on the railway network for  = 0.5 and three stakeholders. 769 

Mapping of the nodes of the network in the (GC, XC) plane. The dash-dotted lines represent the 770 
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median of the distribution of the two variables, and were used to separate the nodes in four 771 

quadrants. Q1 includes nodes critical in local and global assessments, Q2 nodes which are critical 772 

only in local assessments, Q3 contains the peripheral nodes, while Q4 hosts those nodes that are 773 

critical for global efficiency but not at the local level. 774 
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APPENDIX A: SUPPLEMENTARY MATERIAL 809 

STABILITY OPTIMISATION 810 

Stability Optimisation (Delvenne et al. 2010) is a Community Detection technique which leverages the 811 

relationship between graphs and Markov chains. This section provides a brief overview of the technique, but the 812 

reader is encouraged to refer to the original paper for a detailed explanation. 813 

Every network can be associated a random walk, and thus a Markov chain, in which the states of the stochastic 814 

process are represented by the nodes, while edges describe the possible transitions between these states. The 815 

transition probabilities are proportional to the weight of the edges between the nodes, normalised by their sum of 816 

the weight of all the outgoing edges.  817 

The transition matrix M of the Markov chain defined by this random walk is: 818 

𝑴 = 𝑫−𝟏𝑨 819 

where D is the diagonal matrix of node degrees, and A is the adjacency matrix of the network. 820 

The Markov chain is hence described as: 821 

𝒑𝒕+𝟏 = 𝒑𝒕𝑴 822 

where pt is the normalised probability vector, expressing the likelihood of the random walker being in each node 823 

at step t of the process. Under these simple assumptions, the Markov chain is ergodic and reversible, with 824 

stationary distribution: 825 

𝝅 = 𝒅/2m 826 

where d is the vector of node degrees, and m is the sum of the weight of all the edges. 827 

This Markov Chain can be analysed in terms of transitions between communities, rather than between nodes. 828 

When a network with n nodes is partitioned in c communities, this partitioning can be encoded in the n x c 829 

indicator matrix H, in which the elements of each columns are zero if the node belongs to the community 830 

associated to the column, and one otherwise.  831 

The probability of transition from a community to another during the random walk can be then quantified using 832 

the clustered auto-covariance matrix of the network, expressed as: 833 

𝑹𝒕 = 𝑯𝑻(𝑷𝑴𝒕 − 𝝅𝑻𝝅)𝑯 834 

where P is the diagonal matrix of transition probabilities. 835 

According to the standard definition of community used in network science (Newman 2010), its elements should 836 

be better connected to each other than to the rest of the system. Therefore, a partition of a network in 837 

communities should maximise the likelihood that the random walks which start in a community end up in the 838 
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same community. This is expressed by the trace of the clustered auto-covariance matrix, which is labelled 839 

stability: 840 

𝑟(𝑡,𝑯) = 𝑚𝑖𝑛0≤𝑠≤𝑡𝑡𝑟𝑎𝑐𝑒(𝑹𝒔) 841 

and in order to ensure that the partition is indeed robust, Stability Optimisation prescribes that the minimum value 842 

of stability over all times up to t is taken as the value of its stability. The partitions achieving the highest levels of 843 

stability are those which encode the underlying community structure of the network. 844 

By varying the length t of the random walk this method is able to explore the quality of partitions of different size: 845 

as the random walk lengthens, the clustered auto-covariance matrix changes and therefore different partitions 846 

will emerge as the most appropriate subdivisions of the network in communities. 847 

The numerical implementation of the method used in this paper is the one provided in (Le Martelot & Hankin 848 

2011), which utilises a greedy optimisation heuristic to identify the partitions which maximise stability: at the 849 

beginning of the process, each node is originally assigned to its own individual community, and then the stability 850 

of different configurations is then explored in order to converge to an approximation of the maximum. 851 

 852 

Table A1. List of nodes and corresponding station names 853 

Node ID Station Name Node ID Station Name Node ID Station Name 

1 Thurso 51 Cleethorpes 101 Stratford 

2 Wick 52 Stattford 102 Colchester 

3 Helmsdale 53 Sheffield 103 BristolParkway 

4 KyleOfLochalsh 54 Retford 104 Swindon 

5 Inverness 55 Newark 105 Didcot 

6 Elgin 56 Lincoln 106 Reading 

7 Mallaig 57 Aberystwyth 107 HeathrowAirport 

8 Aviemore 58 Shrewsbury 108 Marylebone 

9 Aberdeen 59 Derby 109 Paddington 

10 FortWilliam 60 Nottingham 110 Victoria 

11 Perth 61 Grantham 111 FenchurchStreet 

12 Dundee 62 Wolverhampton 112 CharingCross 

13 Oban 63 Birmingham 113 Waterloo 

14 Stirling 64 Nuneaton 114 LondonBridge 

15 Kirkcaldy 65 Leicester 115 Chatham 

16 Glasgow 66 Peterborough 116 Margate 

17 Edinburgh 67 Ely 117 Ramsgate 

18 BerwickUponTweed 68 Norwich 118 SouthendAirport 

19 Stranraer 69 GreatYarmouth 119 WestonSuperMare 

20 PrestwickAirport 70 BirminghamIntl 120 BristolTempleMeads 

21 Carlisle 71 Bedford 121 Bath 

Node ID Station Name Node ID Station Name Node ID Station Name 
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22 Newcastle 72 Cambridge 122 Westbury 

23 Windermere 73 Ipswich 123 Basingstoke 

24 Durham 74 Llandridod 124 Woking 

25 Sunderland 75 Coventry 125 GatwickAirport 

26 Barrow 76 Rugby 126 Canterbury 

27 Oxenholme 77 LutonAirport 127 Dover 

28 Darlington 78 Stevenage 128 Ashford 

29 Middlesbrough 79 StanstedAirport 129 Barnstaple 

30 Lancaster 80 Hereford 130 Taunton 

31 Blackpool 81 Worcester 131 Yeovil 

32 Preston 82 Banbury 132 Salisbury 

33 Skipton 83 MiltonKeynes 133 SouthamptonAirport 

34 Scarborough 84 Harwich 134 Newquay 

35 Southport 85 Fishguard 135 Exeter 

36 Bradford 86 PembrokeDock 136 Penzance 

37 Harrogate 87 Carmarthen 137 Falmouth 

38 York 88 Swansea 138 Truro 

39 Liverpool 89 Cardiff 139 Plymouth 

40 Manchester 90 Valleys 140 Paignton 

41 Leeds 91 Newport 141 Weymouth 

42 Hull 92 Chelthenham 142 Poole 

43 ManchesterAirport 93 Gloucester 143 Bournemouth 

44 Wakefield 94 Oxford 144 SouthamptonCentral 

45 Holyhead 95 HighWycombe 145 Porthsmouth 

46 Chester 96 Watford 146 Brighton 

47 Crewe 97 LondonEuston 147 Eastbourne 

48 StokeOnTrent 98 SaintPancras 148 Hastings 

49 Doncaster 99 KingsCross   

50 Grimsby 100 LiverpoolStreet   

 854 
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