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Abstract: Honeycomb structures are essentially constituted of a repetition of 

regularly-arranged and loaded sub-structures. The present study carries out a 

parametrically investigation of the behavior of a multi re-entrant honeycomb structure 

with variable stiffness and Poisson’s ratio effects. A refined analytical model is 

specifically developed and compared to full-scale numerical simulations. The 

analytical model developed is based on energy theorems and takes into full 

consideration bending, shearing and membrane effects. The influence of the cell walls 

thickness on the elastic homogenized constants is investigated. The results obtained 

show a good agreement between the refined analytical approach developed and the 

numerical computations carried out. 
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Notations: 

A : Wall base. 
A* : Shear section decrease. 
E1, E2 : Young's moduli in directions 1 and 2. 
Es : Young's modulus of basic material. 
l : Cell walls lengths. 
M : Bending moment. 
N : Normal force. 
P : Direction 1 concentrated load. 
T : Shear force. 
t : Cell wall thickness. 
U : Elastic strain energy. 
u1, u2 : Displacement in in directions 1 and 2. 
W : Direction 2 concentrated load. 

a : Cell aspect ratio, ÷
ø
ö

ç
è
æ =

l
ha . 

b : Wall base aspect ratio, ÷
ø
ö

ç
è
æ =

l
ab . 

g : Wall thickness ratio, ÷
ø
ö

ç
è
æ =

l
tg . 

ε1, ε2 : Plane deformation. 
θ : Cell internal angle. 
νs : Poisson's ratio of basic material. 
φ : Inclination of the base of the wall. 
ν12, ν21 : Poisson's ratio in the plane 1-2. 
 

 
 

I. Introduction 

Cellular materials technology has had a significant development during the past fifty 

years. Whether they are natural or synthetic, these low density and high specific 

rigidity materials have seen a widening of their use, in particular during the last twenty 

years when their production has increased significantly [1][2]. Cellular materials 

represent an important class of solids that may be used in a variety of engineering 

applications. Research studies on such systems have been carried out in recent years, 

particularly about tailored two-dimensional honeycombs [3][4][5][6][7][9]. In most 

cases, the Poisson’s ratio of cellular structures is positive, i.e. the material undergoes a 

contraction along the direction perpendicular to the one of the load application. 

However, a negative value of the Poisson's ratio means that the material would 

laterally expand when stretched, leading to an increase of its volume [8][10][11].   

A class of foams that exhibits negative Poisson's ratios has been manufactured and 

presented for the first time by Lakes [12] back in 1987.  The first model of re-entrant 

structures that shows a negative Poisson’s ratio ν = -1 was introduced back in 1985 by 

Almgren [13]. The structure was first made in 2D before being extended to 3D. The 



 3 

model; that may be applied to different geometric structures such as rods, hinges and 

springs; led to structures that show macroscopic isotropic elastic properties though 

anisotropic in its microscopic details. Noticing that the molecular dynamics methods 

with constant pressure or tension displays a fundamental limitation represented by 

their incapacity to be used to study discontinuous potentials, Wojciechowski [14] 

applied a constant thermodynamic tension Monte Carlo approach to study the elastic 

properties of a two-dimensional system of hard cyclic hexamers. His results confirmed 

the existence of a phase transition between a tilted and a straight phase. He obtained 

positive results for S12 which corresponds to a negative Poisson’s ratio. Furthermore, 

study the elastic properties of a two-dimensional lattice model has been carried out by 

the same author on triangular lattice hexagonal molecules [15] and shown to display a 

negative Poisson’s ratio at high densities when the anisotropy of the molecules is 

substantial. Thought using a completely different analysis, the results of 

Wojciechowski [4] have been achieved by Rothenburh et al [16] when they interest 

themselves to a class of microstructures that exhibits a negative Poisson’s ratio for 

large interpenetrations. This behavior is shown to be caused by a greater stiffness of 

the microstructural elements in shear than in compression. In 1991, Lakes [17] 

asserted that the Poisson's ratio is governed by aspects of the microstructure identified 

as the rotational degrees of freedom, the non-affine deformation kinematics or 

anisotropic structure. Several structures including the chiral microstructure with non-

central force interaction or non-affine deformation were examined can also exhibit a 

negative Poisson's ratio. Geometries that are commonly found in inorganic crystalline 

materials have been investigated. A model based on microscopic crystal structures was 

proposed by Ishibashi and Iwata [18], and resulted in a negative Poisson’s ratio. A 

new mechanism that achieves a negative Poisson's ratio has been developed by Grima 

and Evans [19]. This model has been based on an arrangement comprising rigid 

squares joined together at their apexes by joints, can be considered as a two-

dimensional arrangement or as a projection on a particular plane of a three-

dimensional structure. Triangles were also used and joined together in the same way. 
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Evans et al [20] were the first to term such materials as ‘auxetic’ (from the word 

"auxetos" that means ‘may be subjected to increase’).  The diverse analytical models 

developed to describe the in-plane and out-of-plane mechanical properties are based 

essentially on the theory of elastic engineering beams, combined to a series of 

assumptions related to boundary conditions and specific cell walls mechanisms. When 

two-dimensionally loaded, the honeycomb-shaped cells may be subjected to bending 

or stretching of their walls, as well as wall the rotations of the connecting junctions 

(nodes).  Several researchers have developed mathematical models based on these 

mechanisms. Gibson and Ashby [3] and Gibson et al [21] developed a 2-D model 

assuming a beam-like bending of the cell walls.  Nkansah and Hutchinson [22] 

however showed that models solely based on bending tend to produce elastic moduli 

values well over those produced by molecular modeling.  In order to improve the 

bending-based models, Gibson et al [21] and Masters and Evans [23] incorporated the 

phenomena of stretching and rotation of the cell walls. Lira et al. [24] describes the 

out-of-plane shear properties of the multi re-entrant honeycomb configurations. The 

out-of-plane shear represented by G13 et G23 affects the transverse deformation of a 

sandwich panel under a given load level the core providing the deformation 

contribution via out-of-plane shear, and the face skins via plate bending and 

tension/compression. In 2013, Pozniak et al. [25] simulated two simple models of two-

dimensional auxetic foams. In the first model, the ribs forming the cells of the foam 

were connected at points corresponding to sites of a disordered honeycomb lattice, 

while in the second, the connections were not point-like but spatial. Triangles centered 

at the honeycomb lattice points were used for simplicity. Soft, normal and hard joints 

were considered for each model respectively corresponding to materials with Young’s 

modulus ten times smaller than, equal to and ten times larger than that of the ribs. 

Recently, Li et al [26] designed a two-dimensional quadrilateral cellular structure 

made from bi-material strips. Its thermal deformation behaviors were studied via 

experimental, analytical and numerical approaches. It has been demonstrated that the 

temperature influences the cell shape and turn it from convex to concave (or vice 



 5 

versa) leading the Poisson's ratio to move from positive to negative (or vice versa). 

However, the structure proposed in the present work is made of a sole material, is 

initially hexagonal in shape, and subjected to mechanical stresses. The proposed new 

cell is modified to become double reentrant leading the structure. 

 

The present investigation tries to highlight the possibility of increasing the precision of 

the model through designing the novel honeycomb-shaped cell configurations 

represented in Figure 1 taking into account the contribution of different stress 

responses.  The analytical model developed is essentially based on the energy 

theorems along with taking into consideration the shearing and membrane impacts. It 

is an extension of a previous studies solely based on bending. 

 

2. Theoretical model 

An initial analytical model based on bending deformations only of the ribs has been 

presented in [5]. To take into account the strain energy associated to the shear and 

normal forces two different loadings are considered in this paper: one along the 

vertical direction, and the other on the horizontal direction.  They are noted 1 and 2 

respectively in Figure 2. The analytical model developed is essentially based on the 

theorem of Castigliano; the honeycomb cell walls are considered as beam elements 

and simultaneously subjected to the three types of loading - bending, membrane and 

shear (Fig. 2-a). 

 

The strain energy for the three deformation mechanisms is expressed by: 

ò ÷÷
ø

ö
çç
è

æ
++=++=

*

l

TNM dx
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T
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M
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NUUUU

0

222

 
222

 (1) 

According to the Castigliano’s theorem, the displacement of a beam under the 

influence of a force P may be expressed as: 
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P
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¶

=  (2) 

2.1. Direction 1 

For a solid subjected to a linear elastic deformation the energy theorem formulates the 

strain energy of the three beam elements of the unit cell as a function of the 

concentrated load P and bending moment M: 
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The displacement of the beams system under the concentrated load P can be expressed 

in the case of bending as: 
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For the membrane deformation: 
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For the shear deformation, the displacement amounts to: 
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The total displacement for all contributions along the vertical direction is given by: 
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For a rectangular cross section (b x t) of the cell walls, the stress and corresponding 

strain along the vertical direction are: 
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The homogenized Young’s modulus may be therefore computed as the ratio between 

the stress (8) and the uniaxial strain (9). After some mathematical manipulations lit is 

possible to identify the nondimensional homogenized Young’s modulus of the 

honeycomb E1: 
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The classical honeycomb configuration proposed by Gibson & Ashby [3] may be 

easily retrieved from (10) through imposing φ and β being equal to 0: 
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The Poisson's ratio n12 is defined as minus the ratio of the deformations in both 

directions.  Taking (u1-2) as the displacement in the direction 2 generated by that in the 

direction 1 noted (u1), the deformation produced by (u1) in the vertical direction would 

be: 

( ) ( )jq
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1

1 al
u
+

=  (15) 

In the horizontal direction, the deformation produced by (u1) is: 

( ) ( )jq
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u
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The horizontal displacement may then be expressed as: 
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The Poisson's ratio (ν12) is determined as from equations (10, 15 and 17): 
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If the wall base and the inclination are taken null (i.e. a=0 and φ=0), this leads to the 

regular cell relationship given by [2]: 
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2.2. Direction 2 

The system including three beam elements constituting the honeycomb cell quarter is 

simultaneously subjected to three strains represented by bending, membrane and shear 

(c.f. Fig. 2).  The material strain is assumed to be linear and elastic.  Applying the 

stored potential energy theorem and under the following loads: 

( ) ( )[ ]jq cos2cos
2

, aLWMW +=  

The total horizontal displacement for the three strains is represented by the sum of the 

displacements due to each one, i.e.: 

TNM uuuu 2222 ++=  (20) 
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The Young’s modulus (E2) is computed through following the same procedure 

presented in (§3.1.1). Consequently, the stress and the corresponding strain in the 

direction 2 are: 
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Again and similarly to what has been performed in the direction 1, the classical 

honeycomb configuration proposed by Gibson [2] may be easily retrieved through 

substituting φ and β by 0.  This leads to equation (26) expressed below: 
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2.2.1. Poisson’s coefficient ν21 

Noted (ν21), the Poisson's ratio is expressed as:
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Equation (28) corresponds to that of a regular cell if β and the angle φ are taken equal 

to 0 and 0o respectively.  This results in: 
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2.3. In-plane shear modulus G12 

The shear modulus in the plane G12 is evaluated by introducing the effects of the shear 

and axial deformations of the vertical and diagonal sides of dimensions ( )2h  and ( )la,  

respectively. The elements’ bending is characterized by a rotation of the node that 

links them, and the linear momentum vanishes at the segment’s mid-span section i.e. 

at ( )2, la (c.f. Figure 2.b). 

 

The horizontal displacement and the total shear deformations are thus expressed: 
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The deformation taking place in the oblique element is also expressed: 
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leading to the total strain: 
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And the shear modulus: 
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with: 
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In the case of a thin cell where (N) and (T) are neglected: 
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Setting (a=0) will get us back to the hexagonal cell modulus when taking into account 

the axial and shear impacts [2]: 



 12 

( )
( ) ( ) ( ) ( )[ ]{ }

( )[ ] ( ) ( )[ ] ( ){ }  sinsin  sin1             

 sin2  1
5
1221

1
cos
sin

2
2

2
2

3
12

qqaqqa
a

qan
a

ga
qa
qag

tg

EG

S

S

++++

+++++
´

+
=  (36) 

Moreover, and if the axial and shear impacts are neglected, the classical hexagonal cell 

is found: 
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For a regular cell: 
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3. The Finite Element Model 

The main objective of the computational part lies in the computation of the elastic 

parameters using an implicit finite element numerical approach under Abaqus 6.10 

[27] Commercial Code. The model is represented in figure 3. The computation of the 

various moduli necessitates to imposing a displacement on one side of the 

representative elementary volume in a given direction, the opposite side being 

unmoved. Symmetry is taken into account at the boundary conditions, and three 

simulations are needed to determine the five elastic moduli: the simulation of the 

tensile stress along the (x, y) direction leads to the determination of Young’s moduli 

E1 and E2 along with Poisson’s ratios v12 and v21 (figures 3-a and 3-b) while the 

simulation of the shear stress along the (xy) plane leads to determine the shear moduli 

G12 (figure 3-c). The periodic boundary conditions impose various bonds a simulation 

of auxetic foams was discussed by Pozniak et al. [25]. 

 

In order to highlight the influence of the cell numbers on the convergence of the 

results, computations have been undertaken starting by a number of 2 cells to a 
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maximum of 94 cells (figure 3-d). The convergence has been found to be achieved at a 

number of 49 cells. The authors used a number of 68 cells which is largely sufficient. 

 

Figure 3-e shows the honeycomb-shaped layout structure constituted by cells and 

representing the elementary volume investigated. Because of its symmetry, the moduli 

of elasticity (E1) and (E2), and the Poisson’s ratio (v12) are determined using one 

quarter of the volume structure. When using the finite element models, two elements 

have been used. The first is an elastic shell element with reduced integration (S4R). 

The mesh considered 68 cells and adopted to ensure convergence upon displacements.  

A second model was prepared using volume elements C3D8R to simulate the in-plane 

shear modulus versus the different cell geometry parameters (Figure 3-f). For this 

model 9600 elements were used to ensure convergence. Similarly to the elastic shell 

element described earlier, symmetry has been taken into account when considering the 

boundary conditions 

 

By keeping the cell aspect ratio constant (a=1), the longitudinal modulus of elasticity 

is calculated for different cell internal angles, wall base aspects ratios and thicknesses 

(i.e. from -25o<q<+25o, 0.01<b<0.05 and 0.2<g<0.4). In all cases, the finite element 

analysis showed that the analytical results correlate well with the numerical ones 

(figure 4-a for the Poisson’s ratio and figure 4-b for the longitudinal modulus of 

elasticity). In terms of Poisson’s ratio, the error is found to be of the order of 5% 

(figure 4-a) while for the moduli of elasticity, it is again close to 5% (figure 4-b). 

The shear modulus of elasticity (G12) is computed for different cell aspect ratios (a 

and b) and thicknesses (g=0.004 to 0.15). Also in this case the results show a good 

correlation between the analytical and finite element models (figure 4-c). The error is 

always lower than 7%. The various different cell geometry parameters considered for 

this benchmark are represented in table 1.  
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Within the range of parameters considered, the Poisson’s ratio reaches negative values 

in the vicinity of q=-15o. This is essentially due to the strong anisotropy of the 

medium, as also shown in figure 5 for different cell parameters.  This anisotropy is 

found to be accompanied by a decrease of the Poisson's ratio to a minimum of -5, and 

this is a,consequence of the bending-membrane-shear strong coupling together with 

the impact of the stresses along the neighboring walls and its distribution in the re-

entrant cell (i.e. for -15o ≤ q ≤ -5o). It is quite worth of notice that, contrary to classical 

centre-symmetric honeycomb structures, the peak of the anisotropy ratio is not at 

q=0o, but shifted by the presence of the base kink (a/l) with the interior angle f 

different from zero. Large anisotropy is confined in this case to the range of internal 

negative and small positive cell angles. On the other hand, for internal cell angles 

greater than 15o (q ≥ 15o) the domain becomes increasingly isotropic (i.e. E1 ≅ E2). 

Recall also that the peak of the anisotropy corresponds to a coefficient of Poisson zero. 

4. Parametric Results and Discussions 

4.1. Effects of the stretching force (N), shear force (T) and bending moment (M) 

The displacements, strains and stresses are determined by taking into account both the 

normal and shear forces along with the bending moment. The main geometry 

parameter affecting the homogenized engineering constants is the cross-section 

represented by the wall thickness defined as the non-dimensional ratio (γ=t/l). The 

influence of the three parameters (MNT) is represented through the variation of the 

effective modulus of elasticity (E1) for two values of the wall thickness ratio (tin with 

γ=0.04, ad thick for γ=0.4), and shown in figure 6.  

For the case of a thin wall, a slight difference is noticed between the various 

mechanisms of deformation with relatively low values for the angles exceeding 10o, 

and a maximum in the vicinity of θ= 0o.  For the thick wall case and for relatively 

small angles, the impact of the bending moment (M) is found to be seven times 

stronger than those of the forces (c.f. figure 6-b). 
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Because of their low contribution, the influence of the shear and axial strains dues to 

(N) and (T) are generally neglected [5][21]. The results obtained show that their effect 

becomes significant only when the thickness parameter exceeds 0.2 (i.e. γ=t/l > 0.2), 

the remaining non-dimensional parameters remaining constants (i.e. α=1, β=0.2 and 

φ=45o). 
 

The variation of the Poisson's ratio with the cell internal angle is represented in Figure 

7.  Two different behaviors of the cell are noticed. The conventional one (convex, q > 

0) provides positive values of the Poisson's ratio. High values of this parameter (ν12>4) 

are obtained in the vicinity of θ=0o for a cell with thin walls (i.e. γ=0.01) with the sole 

contribution coming from the bending moment (M). The Poisson's ratio then decreases 

significantly under the influence of the normal and shear forces N and T. The relative 

thickness (γ=t/l) seems to control the coefficient of Poisson (ν12); when it increases, 

this latter decreases accordingly (cf. Figure 8-c). Finally and for the different wall 

thicknesses (t), the impact of N and T on the modulus of elasticity along the 2-

direction (E2, cf. equation 25) is found to be relatively insignificant compared to the 

one of the bending moment.  

The effect of the shear and axial deformation is generally neglected because of their 

low contribution in evaluating the cell plane shear modulus. Refined modeling shows 

that their impact becomes significant for thick cells. As a consequence, it may be 

stated that the behavior of high specific density honeycombs cannot be described by a 

wall solely subjected to bending as proposed by earlier investigations introduced 

above. Indeed, for relative thickness values greater than 0.1 and when taking into 

account side effects generated by the axial and shear strains, a significant 

underestimation of the assessment of the in-plane shear modulus G12 may be obtained. 

Finally, it is observed that the hexagonal cells exhibit a much higher resistance to 

shear than the other configurations investigated. 
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The impact of the geometrical parameters on the mechanical behavior of the proposed 

new honeycomb-shaped cell is fundamental.  The effect of the relative thickness is 

represented in Figure 8.  The variation of the relative modulus of elasticity (E1/ES) as a 

function of the cell internal angle (q) for different values of the wall thickness ratio 

(g=t/l) is represented in figure 8-a. The non-dimensional geometric parameters α, β and 

φ are kept constant and equal to 1; 0.2 and 45o respectively.  For a wall thickness ratio 

(g) value of 0.4, the modulus of elasticity (E1) is found to be 5000 times greater than at 

g=0.01 and 2.5 times greater than at g=0.2. This indicates that g=0.4 is the boundary-

value separating a thin wall from a thick one. Maxima are situated in the vicinity of 

the cell angle value of θ=0o off-centered by the wall base aspect ratio (β=a/l). 

Keeping the non-dimensional geometric parameters constant (α=1, β=0.2 and φ=45o), 

the variation of the elastic modulus (E2) with the wall thickness ratio (g) is found to be 

quasi parabolic (cf. figure 5-b) particularly for cell internal angles q>0.  The elastic 

modulus (E2) reaches a maximum at q=30o for g=0.4 that corresponds to a thick cell 

wall, and corresponds to a conventional cell configuration [3]. 

Auxetic behavior is observed for negative angles, for which the Poisson’s ratio 

exceeds (-5) in thin reentrant cell walls. A negative value of (ν12=-6) for a thin wall 

(g=0.01) and positive internal cell angles is unusual in structural honeycomb 

applications. This is due, in this case, to both the geometry of the cell and the 

arrangement of the walls that produces a positive and perpendicular reaction when 

submitted to a positive traction. Poisson's ratio is found to become null at q=-5o; this 

could be considered as the symmetry position representing the intersection of all the 

curves (taking into account the small shift due to the aspect ratio b=0.2 and the 

inclination angle φ). 

The variation of Poisson's ratio with the wall thickness and internal cell angles 

(positive) is represented in figure 9.  It is shown to increase, while the thickness 

decreases.  
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In figure 9, the differences in the Poisson’s ratio values are essentially due to the wall 

base parameter.  The Poisson’s ratio ν12 is found to be proportional to the wall base 

dimension whatever the deformation mechanisms; the auxetic behavior is actually 

reduced when b increases, even for the case of negative internal cell angles. 

 

Figure 10 presents the variation of the normalized Young’s modulus in both directions 

(E1/ES and E2/ES) with the cell internal angle (q) for different values of the wall base 

aspect ratio (b) ranging from 0 to 0.4 and for g=0.3 and a=1. The normalized elasticity 

modulus along the 1-direction increases for increasing b values (c.f. figure 10-a).  It 

reaches its optimum between q=-13o and q=-3o for all the wall base aspect ratio values 

considered; that indicates the effect of the wall base on the stiffness of the cell under 

the membrane and shear loads. In the case of a null wall base aspect ratio parameter 

(b=0), the elastic modulus (E1/ES) match those of a classical hexagonal cell (Equation 

14). 

Figure 10-b shows the modulus of elasticity along the 2-direction (E2), which 

increases for increasing cell angles, in particular for positive ones. The curve 

representing the variation of (E2/ES) for a wall base aspect ratio β=0.4 indicates that 

this nondimensional Young’s modulus is approximatively eight times smaller than the 

one for β=0 (hexagonal cell). Minima of (E2) values are in the negative cell angles part 

(i.e., auxetic configurations). 

 

Figure 11-a shows that the shear modulus (G12) significantly decreases with the cell 

base ‘a’. It is almost 1.8 times lower when a=0.3l, leading the cell to be less resistant 

to shear. The variation of (G12) with the wall thickness is found to be quasi-parabolic 

(figure 10-a). In comparison to conventional cell configurations and negative cell 

angles the shear modulus decreases by 20 and 8 times for relative densities of 0.01 and 

0.6 respectively, and by 8 times for a relative density of 0.6. This is an aspect to 

consider as a disadvantage for structural applications for which a high shear modulus 
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in the plane is expected. It is however a feature potentially to exploit for compliance-

driven applications, like in the case of morphing skins with high shear deformability 

[28][28]. 

 

Figure 12 presents the cell angle dependence of the in-plane Poisson’s ratio (ν12) for 

different inclination angles of the wall base (φ) starting from 0o and up to 60o. It is 

found that the structure with φ=0 leads to the minimum value of ν12 corresponding to 

approximatively -6 at θ equal to -10. This dependence of the Poisson’s ratio on 

direction and the compliance tensor components for the most general case 

corresponding to the lowest symmetry crystalline structure along with the angular 

dependence of Poisson’s ratio and its mean value for hard disc (HD) system with hard 

cycle hexamers (HCH) layers have been investigated by Bilski and Wojciechowski 

[29] in a recent paper. 

 

5. Conclusions 

A multi-reentrant cellular honeycomb shaped cell is investigated with extended 

analytical models considering the different sets of deformation mechanisms occurring 

in the walls, along with numerical computations. The honeycomb structure topology is 

based on four main geometry parameters that may be in case optimized. Conventional 

modeling approaches for honeycomb structures neglect the axial and shear 

deformations because of their weak contribution in the evaluation of the in-plane 

stiffness for classical centre-symmetric topologies.  The present study shows instead 

that the impact of both the axial and shear deformations becomes significant for the 

thick-walled cells as well as those possessing complex geometries. The auxetic effect 

is essentially due to the geometrical arrangements of the reentrant cell walls, as well as 

the bending-membrane-shear strong coupling along the walls bases. This leads to a 

negative plane Poisson's ratio of the order of (-3), and this is particularly interesting 

for structures where an auxetic behavior is recommended. Quite importantly, one can 
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tune the Poisson’s ratio behavior in the design space and obtain, for example, positive 

Poisson’s ratio effects even in configurations that would have a baseline auxetic 

performance. 

References 

[1]. M. Laroussi, Modeling the behavior of solid foams porosity: a micro-mechanical 
approach, Ph.D., ENPC, Champs-sur-Marne, 2002. 

[2]. T. Bitzer, Honeycomb Technology. Chapman & Hall, London, 1997. 

[3]. L. J. Gibson, M. F. Ashby, Cellular solids structure and properties, 2nd Ed., 
Cambridge University press, UK, 1997. 

[4]. M. J. Silva, W. C.  Hayes and L. J. Gibson, The effects of non-periodic 
microstructure on the elastic properties of two-dimensional cellular solids, Int. J. 
Mech. Sci. 11 (1995) 61–77. 

[5]. Bezazi, F. Scarpa and C. A. Remillat, Novel centre symmetric honeycomb 
composite structure, Compos. Struct. 71 (3–4) (2005) 356–64. 

[6]. J N. Grima, R Cauchi, R Gatt, D Attard. Honeycomb composites with auxetic out-
of-plane characteristics. Compos. Struct. 106 (2013), 150-159 

[7]. C Körner, Y Liebold-Ribeiro. A systematic approach to identify cellular auxetic 
materials. Smart Mater. Struct. 24 (2015), 025013. 

[8]. J.P.M. Whitty, A. Alderson, P. Myler, B. Kandola. Towards the design of 
sandwich panel composites with enhanced mechanical and thermal properties by 
variation of the in-plane Poisson’s ratios. Compos. Part A 34 (2003), 525-534 

[9]. Y Sun, N M. Pugno. In plane stiffness of multifunctional hierarchical honeycombs 
with negative Poisson’s ratio sub-structures. Compos. Struct. 106 (2013), 681-689. 

[10]. AA Pozniak, H Kaminski Kedziora, P Kedziora, B Maruszewski, T Strek, T, 
KW Wojciechowski. Anomalous deformation of auxetic constrained square. 
Reviews on Advanced Materials Science, 23(2) (2010), 169-174. 

[11]. T C Lim. Auxetic Materials and Structures. Springer, Singapore, 2015. 
[12]. R. S. Lakes, Foam Structures with a NegativePoisson’s Ratio, Science 235 

(1987) 1038–1040. 
[13]. R. F. Almgren, An isotropicthree-dimensional structure withPoisson’s ratio = -1, 

Journal of Elasticity 15 (1985) 427–430. 
[14]. K.W. Wojciechowski. Constant thermodynamic tension monte carlostudies of 

elasticproperties of a two-dimensional system of hard cyclichexamers. 
MolecularPhysics, 61(5):1247–1258, 1987. 



 20 

[15]. KWWojciechowski. Two-dimensionalisotropic system with a negative poisson 
ratio. Physics Letters A, 137(1-2):60–64, 1989. 

[16]. Rothenburg, L., Berlin, A. A. & Bathurst, R. J. Microstructure of 
isotropicmaterialswithnegativePoisson's ratio. Nature 354, 470–472 (1991). 

[17]. R. S. Lakes, Deformationmechanisms in negativePoisson’s ratio materials: 
structural aspects, Journal of Materials Science 26 (1991) 2287–2292. 

[18]. Y. Ishibashi, M. Iwata, A microscopic model of a negativePoisson's ratio in 
somecrystals, Journal of the Physical Society of Japan 69 (2000) 2702–2703. 

[19]. N. Grima, K.E. Evans, Auxeticbehaviorfromrotating squares, Journal of 
Materials  Science Letters 19 (2000) 1563–1565. 

[20]. K. E. Evans, M. A. Nkansa, I. J. Hutchinson and S. C. Rogers, Molecular 
network design Nature 353 (1991) 124. 

[21]. L. J. Gibson, M. F. Ashby, J. Zhang and T. C. Triantafillou, Failure surfaces for 
cellular materials under multiaxial loads- I. Modelling, Int. J. Mech. Sci., 31 (9) 
(1989) 635-663. 

[22]. M. E. Nkansah, K. E. Evans and I. J. Hutchinson, Modelling the mechanical 
properties of an auxetic-molecular network, Model. Simul. Mater. SCI. Engin. 2 
(1994) 337. 

[23]. Masters and Evans, Models for the elastic deformation of honeycombs. 
Composite. Strut. 35 (1996) 403-422.  

[24]. C. Lira, P. Innocenti, F. Scarpa, Transverse elastic shear of auxetic multi re-
entrant honeycombs, Composite Structures 90 (2009) 314–322. 

[25]. A. A. Pozniak, J Smardzewski and K W Wojciechowski. Computer simulations 
of auxetic foams in two dimensions. Smart Mater. Struct. 22 (2013) 084009. 

[26]. Li, D. Ma, J., Dong, L., and Lakes, R. S., "A bi material structure with Poisson's 
ratio tunable from positive to negative via temperature control" Materials 
Letters, 181, 285-288 15 October (2016). 

[27]. ABAQUS, version CEA 6.10-1 reference manuals, Dassault Systems, 
Providence, R.I: Abaqus inc., 2010. 

[28]. L Asheghian, G Reich, A Enke  J Kudva, Shear Morphing Skins – Simulation 
and Testing of Optimized Design, Journal of Intelligent Materials Systems and 
Structures, Vol. 22, (2011), 945-960.  

[29]. M. Bilski, K. W. Wojciechowski, Physica Status Solidi B-Baic Solid State 
Physics 253, pp. 1318-1323 (2016). 

 



 21 

Figure captions 
 

Figure 1. Geometry of the new honeycomb cell: (a) Design of the re-entrant auxetic topology and (b) 
geometry parameters defining the unit cell 

 

Figure 2. Honeycomb cell models and loads used in the development of the refined model: (a) Global 
stress distribution for the evaluation of E1, E2 and v12; (b) Force distribution to evaluate G12. 

Figure 3. Numerical model description. (a) and (b) Boundary conditions taken in the simulation of the 
tensile along direction 1and 2 respectively.  (c) Boundary condition taken in order to 
determine G12. (d) Dependence of the Poisson’s ratio ν12 and relative modulus E1/Es on the 
computations number of cells. (e): Displacement distribution for a tensile simulation leading 
to the computation of E1, E2 and ν12. (f):  Model of half a cell and the volume elements used 
for the computation of G12.  

 

Figure 4. Poisson’s ratio, elasticity and shear moduli distribution for β=g=0.2 and φ=45°: (a) Poisson’s 
ratio (ν12) vs cell angle (q); (b) Modulus of elasticity in direction 1 (E1/ES) vs cell angle (q); 
(c) Shear modulus of elasticity (G12/ES) vs cell angle (q). 

 

Figure 5. Impact of the effect of the E1 / E2 ratio on the variation of the Poisson's coefficient 
v12.β=g=0.3and φ=30°. 

Figure 6. Impact of (MNT) on the effective modulus of elasticity (E1) for α=1, β=0.2 and φ=45o(a):  
γ=t/l=0.04     and     (b):  γ=t/l=0.4 

 
Figure 7. Poisson’s ratio and relative modulus of elasticity vs cell internal angle: (a) Influence of the 

cell internal angle on Poisson’s ratio for α=1, β=0.2 and φ=45o;(b) Influence of the cell 
internal angle on the relative shear modulus (G12/ES) for diverse cell configurations and 
deformation mechanisms (α=1, β=0.2 and φ=45o). 

 
Figure 8. Effect of the wall thickness: (a) Non-dimensional Young’s modulus (E1/ES) vs wall thickness 

ratio (g=t/l) for α=1, β=0.2 and φ=45o; (b) Non-dimensional Young’s modulus (E1/ES) vs 
internal cell angle (q) and wall thickness ratio (g=t/l) for α=1, β=0.2 and φ=45o. 

 
Figure 9. Poisson’s ratio (ν12) vs internal cell angle (q) and wall base aspect ratio (b=a/l). 
 
Figure 10. Effect of the wall base ‘a’ (β= a/l): (a) Non-dimensional Young’s modulus (E1/ES) vs wall 

base aspect ratio (β= a /l) for α=1, g=0.3 and φ=45o; (b) Non-dimensional Young’s modulus 
(E2/ES) vs wall base aspect ratio (β= a /l) for α=1, g=0.3 and φ=45o. 

 
Figure 11. Effect of the wall base ‘a’ (β= a/l) Non-dimensional shear modulus (G12/ES) vs internal cell 
angle for different wall base aspect ratios (β= a /l) for α=1, g=0.2 and φ=20o. 
 
Figure 12. Cell angle dependence of the in-plane Poisson’s ratio. 
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Figure 1 – Geometry of the new honeycomb cell. (a) Design of the re-entrant auxetic topology and (b) geometry parameters 

defining the unit cell 
 
 
 
	

	

	

	

	

	

	

	

	

																																									Figure	2-a																																																																																																																					Figure	2b	

Figure 2: Honeycomb cell models and loads used in the development of the refined model. 

(a): Global stress distribution for the evaluation of E1, E2 and v12. 
                                                      (b): Force distribution to evaluate G12. 
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Figure 3 – Numerical model description. 
(a) and (b) Boundary conditions taken in the simulation of the tensile along direction 1and 2 respectively 

 (c) Boundary condition taken in order to determine G12 
(d) Dependence of the Poisson’s ratio ν12 and relative modulus E1/Es on the computations number of cells. 

(e): Displacement distribution for a tensile simulation leading to the computation of E1, E2 and ν12. 
                                     (f):  Model of half a cell and the volume elements used for the computation of G12. 
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                                 Figure 4-a                                                                  Figure 4-b 
 

 
 

Figure 4-c 
 

Figure 4 – Poisson’s ratio, elasticity and shear moduli distribution for β=g=0.2 and φ=45°. 
                                        (a): Poisson’s ratio (ν12) and (ν21) vs cell angle (q). 
                                        (b): Modulus of elasticity in direction 1 (E1/ES) vs cell angle (q). 
                                        (c): Shear modulus of elasticity (G12/ES) vs cell angle (q). 

 



 25 

 

 

Fig.5 Impact of the effect of the E1 / E2 ratio on the variation of the Poisson's coefficient v12.β=g=0.3and φ=30°. 

 

 

 

 

 

 

 

 

                                 Figure 6-a                                                                                      Figure 6-b 

 

Figure 6 – Impact of (MNT) on the effective modulus of elasticity (E1) for α=1, β=0.2 and φ=45o 
(a):  γ=t/l=0.04     and     (b):  γ=t/l=0.4 
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a)                                                                                      b) 
 

Figure 7 – Poisson’s ratio and relative modulus of elasticity vs cell internal angle. 
(a): Influence of the cell internal angle on Poisson’s ratio for α=1, β=0.2 and φ=45o. 

(b): Influence of the cell internal angle on the relative shear modulus (G12/ES) for diverse cell configurations and deformation 
mechanisms (α=1, β=0.2 and φ=45o). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                   Figure 8-a                                                                                                           Figure 8-b 
 

Figure 8 – Effect of the wall thickness.  
(a): Non-dimensional Young’s modulus (E1/ES) vs wall thickness ratio (g=t/l) for α=1, β=0.2 and φ=45o. 

(b): Non-dimensional Young’s modulus (E1/ES) vs internal cell angle (q) and wall thickness ratio (g=t/l) for α=1, β=0.2 and 
φ=45o. 
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Figure 9 – Poisson’s ratio (ν12) vs internal cell angle (q) and wall base aspect ratio (b=a/l). 

 
 
 

 
                                          Figure 10-a                                                                                      Figure 10-b                                                              

 
Figure 10 – Effect of the wall base ‘a’ (β= a/l). 

(a): Non-dimensional Young’s modulus (E1/ES) vs wall base aspect ratio (β= a /l) for α=1, g=0.3 and φ=45o. 
(b): Non-dimensional Young’s modulus (E2/ES) vs wall base aspect ratio (β= a /l) for α=1, g=0.3 and φ=45o. 
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Figure 11 – Effect of the wall base ‘a’ (β= a/l).  Non-dimensional shear modulus (G12/ES) vs internal cell angle for different wall 

base aspect ratios (β= a /l)  for α=1, g=0.2 and φ=20o. 
	

	

 
Figure 12 – Cell angle dependence of the in-plane Poisson’s ratio.	
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Table 1 – In-plane shear modulus for different cell configurations 

	

	

Type	 Cell	configuration	
 

SHEAR 
MODULUS 

 G12 
 

POISSON’S 
RATIO     

 v12 
 

POISSON’S 
RATIO 

v21 
 

Refined F.E.A Refined F.E.A Refined F.E.A 

01 
a=1.341, b=0.317, g=0.017
8,  f= +45.00°, q=  -26.57° 

0.05140 0.0534 -2.582 -2.531 -0.303 -0.294 

02 
a=0.630, b=0.353, g=0.006
3,  f= +63.43°, q= + 21.00° 

0.013877 0.0140 1.281 1.2992 0.550 0.5715 

03 
a=1.370, b=0.430, g=0.003
0,  f= -53.10°, q= + 31.00° 

0.009508 0.0097 2.223 2.2555 0.239 0.2467 

04 
a=1.410, b=0.330, g=0.118
0,  f= -45.00°, q= + 45.00° 

18.63196 19.265 0.977 1.0138 0.828 0.8703 

05 
a=1.600, b=0.200, g=0.004
0,  f=   00.00°, q= - 36.87° 

0.000317 0.0003 -1.818 -1.773 -0.487 -0.468 

06 
a=1.330, b=0.470, g=0.006
0,  f=   45.00°, q=    00.00° 

0.002649 0.0027 2.718 2.7601 0.168 0.161 


