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VINOGRADOV SYSTEMS WITH A SLICE OFF

JULIA BRANDES AND TREVOR D. WOOLEY

In memoriam Klaus Friedrich Roth

Abstract. Let Is,k,r (X) denote the number of integral solutions of the modified
Vinogradov system of equations

x j
1 + · · · + x j

s = y j
1 + · · · + y j

s (1 6 j 6 k, j 6= r),

with 1 6 xi , yi 6 X (1 6 i 6 s). By exploiting sharp estimates for an auxiliary
mean value, we obtain bounds for Is,k,r (X) for 1 6 r 6 k − 1. In particular, when
s, k ∈ N satisfy k > 3 and 1 6 s 6 (k2

− 1)/2, we establish the essentially diagonal
behaviour Is,k,1(X)� X s+ε.

§1. Introduction. Systems of symmetric diagonal equations are, by orthog-
onality, intimately connected with mean values of exponential sums, and
consequently find numerous applications in the analytic theory of numbers. In
this paper we consider the number Is,k,r (X) of integral solutions of the system
of equations

x j
1 + · · · + x j

s = y j
1 + · · · + y j

s (1 6 j 6 k, j 6= r), (1.1)

with 1 6 xi , yi 6 X (1 6 i 6 s). This system is related to that of Vinogradov in
which the equations (1.1) are augmented with the additional slice

xr
1 + · · · + xr

s = yr
1 + · · · + yr

s ,

and may be viewed as a testing ground for progress on systems not of Vinogradov
type. Relatives of such systems have been employed in work on the existence of
rational points on systems of diagonal hypersurfaces as well as cognate paucity
problems (see for example [2–4]). The main conjecture for the system (1.1)
asserts that whenever r, s, k ∈ N, r < k and ε > 0, then

Is,k,r (X)� X s+ε
+ X2s−(k2

+k−2r)/2. (1.2)

Here and throughout, the constants implicit in Vinogradov’s notation may
depend on s, k, and ε. It is an easy exercise to establish a lower bound for
Is,k,r (X) that shows the estimate (1.2) to be best possible, save that when k > 2

Received 23 April 2017.
MSC (2010): 11L15, 11D45, 11L07, 11P55 (primary).
c© 2017 University College London. This article is distributed with Open Access under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided that the original
work is properly cited.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579317000134
Downloaded from https://www.cambridge.org/core. University of Bristol Library, on 04 Dec 2017 at 16:20:30, subject to the Cambridge Core

http://creativecommons.org/licenses/by/4.0/
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579317000134
https://www.cambridge.org/core


798 J. BRANDES AND T. D. WOOLEY

one may expect to be able to take ε to be zero. Our focus in this memoir is
the diagonal regime Is,k,r (X) � X s+ε, and this we address with some level of
success in the case r = 1.

THEOREM 1.1. Let s, k ∈ N satisfy k > 3 and 1 6 s 6 (k2
− 1)/2. Then for

each ε > 0, one has Is,k,1(X)� X s+ε.

In view of the main conjecture (1.2), one would expect the conclusion of
Theorem 1.1 to hold in the extended range 1 6 s 6 (k2

+ k − 2)/2. Previous
work already in the literature falls far short of such ambitious assertions. Work
of the second author from the early 1990s shows that Is,k,r (X)� X s+ε only for
1 6 s 6 k (see [7, Theorem 1]). Meanwhile, as a consequence of the second
author’s resolution of the main conjecture in the cubic case of Vinogradov’s
mean value theorem [9, Theorem 1.1], one has the bound Is,3,1(X) � X s+ε

for 1 6 s 6 4 (see [8, Theorem 1.3]). This conclusion is matched by that
of Theorem 1.1 above in the special case k = 3. The ideas underlying recent
progress on Vinogradov’s mean value theorem can, however, be brought to bear
on the problem of estimating Is,k,r (X). Thus, it is a consequence of the second
author’s work on nested efficient congruencing [10, Corollary 1.2] that one has
Is,k,r (X) � X s+ε for 1 6 s 6 k(k − 1)/2. Such a conclusion could also be
established through methods related to those of Bourgain, Demeter and Guth
[1], though the necessary details have yet to be elucidated in the published
literature. Both the aforementioned estimate I4,3,1(X) � X4+ε, and the new
bound reported in Theorem 1.1 go well beyond this work based on efficient
congruencing and l2-decoupling. Indeed, when r = 1 we achieve an estimate
tantamount to square-root cancellation in a range of 2s-th moments extending
the interval 1 6 s 6 k(k − 1)/2 roughly half way to the full conjectured range
1 6 s 6 (k2

+ k − 2)/2.
Our strategy for proving Theorem 1.1 is based on the proof of the estimate

I4,3,1(X) � X4+ε in [8, Theorem 1.3], though it is flexible enough to deliver
estimates for the mean value Is,k,r (X) with r > 1, as we now outline. For
each integral solution x, y of the system (1.1) with 1 6 x, y 6 X , one has the
additional equation

s∑
i=1

(xr
i − yr

i ) = h, (1.3)

for some integer h with |h| 6 s Xr . We seek to count all such solutions with
h thus constrained. For each integer z with 1 6 z 6 X , we find that whenever
x, y, h satisfy (1.1) and (1.3), then one has

s∑
i=1

(u j
i − v

j
i ) = ω j hz j−r (1 6 j 6 k), (1.4)

where ω j is 0 for 1 6 j < r and
( j

r

)
for r 6 j 6 k, and in which we write ui =

xi+z and vi = yi+z (1 6 i 6 s). If we are able to obtain significant cancellation
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VINOGRADOV SYSTEMS WITH A SLICE OFF 799

in the number of solutions of the system (1.4), now with u, v constrained only
by the conditions 1 6 ui , vi 6 2X (1 6 i 6 s), then the overcounting by z
may be reversed to show that there is significant cancellation in the system (1.1)
underpinning the mean value Is,k,r (X). This brings us to consider the number of
solutions of the system

2t∑
i=1

hi z
j−r
i = 0 (r 6 j 6 k), (1.5)

with |hi | 6 s Xr and 1 6 zi 6 X (1 6 i 6 2t). This auxiliary mean value may
be analysed through the use of multiplicative polynomial identities engineered
using ideas related to those employed in [7].

The reader may be interested to learn the consequences of this strategy when
r is permitted to exceed 1. The conclusion of Theorem 1.1 is in fact a special case
of a more general result which, for r > 2, unfortunately fails to deliver diagonal
behaviour.

THEOREM 1.2. Let r, s, k ∈ N satisfy k > r > 1 and

1 6 s 6
k(k + 1)

2
−

k(k + 1)− r(r − 1)
4κ

,

where κ is an integer satisfying 1 6 κ 6 (k − r + 2)/2. Then for each ε > 0,
one has

Is,k,r (X)� X s+(r−1)(1−1/(2κ))+ε.

When r > 1, although we do not achieve diagonal behaviour, we do improve
on the estimate Is,k,r (X) � X s+r+ε that follows for 1 6 s 6 k(k + 1)/2
from the main conjecture in Vinogradov’s mean value theorem via the triangle
inequality. When r > 2, the bound for Is,k,r (X) obtained in the conclusion
of Theorem 1.2 remains weaker than what could be obtained by interpolating
between the aforementioned bounds Is,k,r (X) � X s+ε (1 6 s 6 k(k − 1)/2)
and Is,k,r (X)� X s+r+ε (1 6 s 6 k(k + 1)/2). The former bound is, however,
yet to enter the published literature.

In §2 we speculate concerning what bounds might hold for a class of mean
values associated with the system (1.5). In particular, should a suitable analogue
of the main conjecture hold for this auxiliary mean value, then the conclusion of
Theorem 1.2 would be valid with a value of κ now permitted to be as large as

κ =

⌊
(k − r)(k + r + 1)+ 2

4

⌋
.

We refer the reader to Conjecture 2.2 below for precise details, and we note
in particular the constraint (2.4). When r = 1 and k ≡ 0 or 3 modulo 4, this
would conditionally establish the estimate Is,k,1(X) � X s+ε in the range 1 6
s 6 (k2

+ k − 2)/2, and hence the main conjecture (1.2) in full for these cases.
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800 J. BRANDES AND T. D. WOOLEY

When r > 1, this conditional result establishes a bound slightly stronger than
Is,k,r (X)� X s+r−1 when 16 s 6 (k2

+k−4)/2, which seems quite respectable.
We begin in §2 by announcing an auxiliary mean value estimate generalizing

that associated with the system (1.5). This we establish in §§3–6, obtaining
a polynomial identity in §3 of appropriate multiplicative type, establishing a
lemma to count integral points on auxiliary equations in §4, and classifying
solutions according to the vanishing of certain sets of coefficients in §5. In §6
we combine these ideas with a divisor estimate to complete the proof of this
auxiliary estimate. Finally, in §7, we provide the details of the argument sketched
above which establishes Theorems 1.1 and 1.2.

Throughout, the letters r , s and k will denote positive integers with r < k,
and ε will denote a sufficiently small positive number. We take X to be a large
positive number depending at most on s, k and ε. The implicit constants in
the notations of Landau and Vinogradov will depend at most on s, k, ε, and
the coefficients of fixed polynomials that we introduce. We adopt the following
convention concerning the number ε. Whenever ε appears in a statement, we
assert that the statement holds for each ε > 0. Finally, we employ the non-
standard convention that whenever G : [ 0, 1 )k → C is integrable, then∮

G(α) dα =

∫
[0,1)k

G(α) dα.

Here and elsewhere, we use vector notation liberally in a manner that is easily
discerned from the context.

§2. An auxiliary mean value. Our focus in this section and those following
lies on the system of equations (1.5), since this is intimately connected with the
Vinogradov system missing the slice of degree r . Since little additional effort is
required to proceed in wider generality, we establish a conclusion in which the
monomials z j−r (r 6 j 6 k) in (1.5) are replaced by independent polynomials
f j (z). We begin in this section by introducing the notation required to state our
main auxiliary result.

Let t be a natural number. When 1 6 j 6 t , consider a non-zero polynomial
f j ∈ Z[x] of degree k j . We say that f = ( f1, . . . , ft ) is well-conditioned when
the degrees of the polynomials f j satisfy the condition

0 6 kt < kt−1 < · · · < k1, (2.1)

and there is no positive integer z for which f1(z) = · · · = ft (z) = 0.
Let X be a positive number sufficiently large in terms of t , k and the

coefficients of f . We define the exponential sum g(α; X) by putting

g(α; X) =
∑
|h|6Xr

∑
16z6X

e(h( f1(z)α1 + · · · + ft (z)αt )).

Finally, we define the mean value

As,r (X; f ) =
∮
|g(α; X)|2s dα. (2.2)
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VINOGRADOV SYSTEMS WITH A SLICE OFF 801

By orthogonality, the mean value As,r (X; f ) counts the number of integral
solutions of the system of equations

2s∑
i=1

hi f j (zi ) = 0 (1 6 j 6 t), (2.3)

with |hi | 6 Xr and 1 6 zi 6 X (1 6 i 6 2s). The system (2.3) plainly
generalizes (1.5). Our immediate goal is to establish the mean value estimate
recorded in the following theorem.

THEOREM 2.1. Let r , s and t be natural numbers with t > 2s − 1.
Then whenever f is a well-conditioned t-tuple of polynomials having integral
coefficients, one has As,r (X; f )� Xr(2s−1)+1+ε.

Note that when r = 1, the conclusion of this theorem is tantamount to
exhibiting square-root cancellation in the mean value (2.2), so is essentially
best possible. Indeed, even in situations wherein r > 1, the solutions of (2.3)
in which z1 = z2 = · · · = z2s make a contribution to As,r (X; f ) of order
X · (Xr )2s−1, and so the conclusion of Theorem 2.1 is again essentially best
possible. Henceforth, we restrict our attention to the situation described by the
hypotheses of Theorem 2.1. Thus, we may suppose that t > 2s − 1, and that f is
a well-conditioned t-tuple of polynomials f j ∈ Z[x] with deg( f j ) = k j > 0.

It seems not unreasonable to speculate that the estimate claimed in the
statement of Theorem 2.1 should remain valid when s is significantly larger
than (t + 1)/2. The total number of choices for the 2s pairs of variables hi ,

zi occurring in the system (2.3) is of order (Xr+1)2s . Meanwhile, the t equations
comprising (2.3) involve monomials having typical size of asymptotic order
Xr+k j (1 6 j 6 t). Thus, for large s, one should expect that

As,r (X; f )� (Xr )2s−t X2s−k1−···−kt .

Keeping in mind the diagonal solutions discussed above, one is led to the
following conjecture.

CONJECTURE 2.2. Let r , s and t be natural numbers, and suppose that f
is a well-conditioned t-tuple of polynomials having integral coefficients, with
deg( f j ) = k j (1 6 j 6 t). Then one has

As,r (X; f )� Xε(Xr(2s−1)+1
+ X2s(r+1)−tr−k1−···−kt ).

In the special case in which t = k−r+1 and k j = j−1 (1 6 j 6 t) relevant
to the system (1.5), this conjectural bound reads

As,r (X; f )� Xε(Xr(2s−1)+1
+ X2s(r+1)−(k+r)(k−r+1)/2).

In such circumstances, one finds that

As,r (X; f )� Xr(2s−1)+1+ε,
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802 J. BRANDES AND T. D. WOOLEY

provided that s is an integer satisfying

4s 6 (k − r)(k + r + 1)+ 2. (2.4)

We finish this section by remarking that the estimate As,r (X; f ) � X2rs is
fairly easily established when t > 2s, a stronger condition than that imposed in
Theorem 2.1, as we now sketch. We may suppose that t = 2s without loss, and
in such circumstances the equations (2.3) may be interpreted as a system of 2s
linear equations in 2s variables hi . There are O(X2s) choices for the variables zi ,
contributing O(X2s) to As,r (X; f ) from those solutions with h = 0. Meanwhile,
if h 6= 0 one must have

det( f j (zi ))16i, j62s = 0. (2.5)

By applying the theory of Schur functions (see Macdonald [5, Ch. I]) as in the
proof of [6, Lemma 1], one finds that

det( f j (zi ))16i, j62s = 2(z; f )
∏

16i< j62s

(zi − z j ),

where the polynomial2(z; f ) is asymptotically definite, meaning that whenever
zi is sufficiently large for 1 6 i 6 2s, then |2(z; f )| > 1.

The contribution to As,r (X; f ) arising from the solutions of (2.3) with zi =

O(1), for some index i , is O((Xr )2s). For if zi = O(1), then we may fix hi , and
interpret the system as a mean value of exponential sums, applying the triangle
inequality. An application of Hölder’s inequality reveals that if such solutions
dominate, then

As,r (X; f )� Xr
∮
|g(α; X)|2s−1 dα � Xr As,r (X; f )1−1/(2s),

and the desired conclusion follows. Meanwhile, if zi is sufficiently large for each
index i , then |2(z; f )| is strictly positive and hence (2.5) can hold only when
zi = z j for some indices i and j with 1 6 i < j 6 2s. By symmetry we may
suppose that i = 2s − 1 and j = 2s, and then we obtain from (2.3) the new
system of equations

2s−1∑
i=1

h′i f j (zi ) = 0 (1 6 j 6 2s),

with h′i = hi (1 6 i 6 2s − 2) and h′2s−1 = h2s−1 + h2s . This new system
is of similar shape to (2.3), and we may apply an obvious inductive argument
to bound the number of its solutions. Here, we keep in mind that given h′2s−1,
there are O(Xr ) possible choices for h2s−1 and h2s . Thus we conclude that if
this second class of solutions dominates, then one has

As,r (X; f )� Xr
· Xr(2s−1)

� X2rs .

This completes our sketch of the proof that when t = 2s, the total number
of solutions counted by As,r (X; f ) is O(X2rs). The reader will likely have no
difficulty in refining this argument to deliver the conclusion of Theorem 2.1 when
t = 2s.
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VINOGRADOV SYSTEMS WITH A SLICE OFF 803

§3. A polynomial identity. The structure of the polynomials h f j (z) underlying
the mean value As,r (X; f ) permits polynomial identities to be constructed of
utility in constraining solutions of the underlying system of equations (2.3). In
this section we construct such identities.

For the sake of concision, when n is a natural number and 1 6 j 6 t , we
define the polynomial σ j,n = σ j,n(z;h) by putting

σ j,n(z;h) = h1 f j (z1)+ · · · + hn f j (zn).

LEMMA 3.1. Suppose that n > 1 and that f = ( f1, . . . , f2n+1) is a well-
conditioned (2n + 1)-tuple of polynomials having integral coefficients. Then
there exists a polynomial 9n(w) ∈ Z[w1, . . . , w2n+1] whose total degree and
coefficients depend at most on n, k and the coefficients of f, having the property
that

9n(σ1,n(z;h), . . . , σ2n+1,n(z;h)) = 0 (3.1)

identically in z and h, and yet

9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)) 6= 0. (3.2)

Proof. We apply an argument similar to that of [7, Lemma 1] based on a
consideration of transcendence degrees. Let K = Q(σ1,n, . . . , σ2n+1,n). Then
K ⊆ Q(z1, . . . , zn, h1, . . . , hn), so that K has transcendence degree at most
2n over Q. It follows that the 2n + 1 polynomials σ1,n(z;h), . . . , σ2n+1,n(z;h)
cannot be algebraically independent over Q. Consequently, there exists a non-
zero polynomial 9n ∈ Z[w1, . . . , w2n+1] satisfying the property (3.1).

It remains now only to confirm that a choice may be made for this non-
trivial polynomial 9n in such a manner that property (3.2) also holds. In order
to establish this claim, we begin by considering any non-zero polynomial 9n of
smallest total degree satisfying (3.1). Suppose, if possible, that 9n(σ1,n+1, . . . ,

σ2n+1,n+1) is also identically zero. Then the polynomials

∂

∂zi
9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)) (3.3)

and
∂

∂hi
9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)) (3.4)

must also be identically zero for 1 6 i 6 n + 1. Write

u j =
∂

∂w j
9n(w1, . . . , w2n+1) (1 6 j 6 2n + 1),

in which we evaluate the right-hand side at wi = σi,n+1(z;h) (1 6 i 6 2n + 1).
Then it follows from an application of the chain rule that the vanishing of the
polynomials (3.3) and (3.4) implies the relations

2n+1∑
j=1

hi f ′j (zi )u j = 0 (1 6 i 6 n) (3.5)
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804 J. BRANDES AND T. D. WOOLEY

and
2n+1∑
j=1

f j (zi )u j = 0 (1 6 i 6 n + 1). (3.6)

Notice here that we have deliberately omitted the index i = n + 1 from the
relations (3.5), since this is superfluous to our needs.

In order to encode the coefficient matrix associated with the system of linear
equations in u described by the relations (3.5) and (3.6), we introduce a block
matrix as follows. We define the n × (2n + 1) matrix

An = (hi f ′j (zi )) 16i6n
16 j62n+1

and the (n + 1)× (2n + 1) matrix

Bn = ( f j (zi )) 16i6n+1
16 j62n+1

,

and then define the (2n + 1)× (2n + 1) matrix Dn via the block decomposition

Dn =

(
An
Bn

)
.

We claim that det(Dn) is not identically zero as a polynomial. The confirmation
of this fact we defer to the end of this proof.

With the assumption det(Dn) 6= 0 in hand, one sees that the system of
equations (3.5) and (3.6) has only the trivial solution u = 0 over K . However,
since 9n(w) is a non-constant polynomial, at least one of the derivatives

∂

∂w j
9n(w1, . . . , w2n+1) (1 6 j 6 2n + 1)

must be non-zero. Suppose that the partial derivative with respect to wJ is non-
zero. Then there exists a non-constant polynomial

9∗n (w) =
∂

∂wJ
9n(w1, . . . , w2n+1)

having the property that, since u J = 0, one has

9∗n (σ1,n(z;h), . . . , σ2n+1,n(z;h)) = 0.

But the total degree of 9∗n is strictly smaller than that of 9n , contradicting our
hypothesis that9n has minimal total degree. We are therefore forced to conclude
that the relation (3.2) does indeed hold.

We now turn to the problem of justifying our assumption that det(Dn) 6= 0.
We prove this assertion for any well-conditioned (2n + 1)-tuple of polynomials
f by induction on n. Observe first that when n = 0, one has det(D0) = f1(z1).
Since f1(z) is not identically zero, it follows that det(D0) 6= 0, confirming the
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VINOGRADOV SYSTEMS WITH A SLICE OFF 805

base case of our inductive hypothesis. We suppose next that n > 1 and that
det(Dn−1) 6= 0 for all well-conditioned (2n−1)-tuples of polynomials f, and we
seek to show that det(Dn) 6= 0.

Denote by I the set of all 2-element subsets a = {a1, a2} contained in N =
{1, 2, . . . , 2n + 1}. When a = {a1, a2} ∈ I , we define the matrices

A(a) = (hi f ′j (zi ))26i6n
j∈N \a

and B(a) = ( f j (zi ))26i6n+1
j∈N \a

.

Equipped with this notation, we define the minors

U (a) = det
(

h1 f ′a1
(z1) h1 f ′a2

(z1)

fa1(z1) fa2(z1)

)
and V (a) = det

(
A(a)
B(a)

)
.

In this way, we discern that for appropriate choices of σ(a) ∈ {1,−1}, the precise
nature of which need not detain us, one has

det(Dn) =
∑
a∈I

σ(a)U (a)V (a).

By relabelling indices and then applying the inductive hypothesis for the
(2n − 1)-tuple ( f3, . . . , f2n+1), it is apparent that V ({1, 2}) is not identically
zero. In view of (2.1), moreover, if the leading coefficients of f1 and f2 are c1
and c2, respectively, then the leading monomial in U ({1, 2}) is

(k1 − k2)c1c2h1zk1+k2−1
1 6= 0.

It follows that U ({1, 2}) is also not identically zero. Also, since no other minor
of the shape U (a), with a ∈ I and a 6= {1, 2}, has degree k1 + k2 − 1 or greater
with respect to z1, we deduce that det(Dn) is not identically zero. This confirms
the inductive hypothesis for the index n and completes the proof of our claim for
all n. �

Henceforth, when n > 1, we consider a fixed choice for the polynomials
9n(w) ∈ Z[w1, . . . , w2n+1], of minimal total degree, satisfying the conditions
(3.1) and (3.2). It is useful to extend this definition by taking 90(w) = w. We
may now establish our fundamental polynomial identity.

LEMMA 3.2. Suppose that n > 0 and the (2n + 1)-tuple f = ( f1, . . . ,

f2n+1) of polynomials in Z[x] is well-conditioned. Then there exists a non-zero
polynomial 8n(z;h) ∈ Z[z,h] with the property that

9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h))
= 8n(z;h)h1 · · · hn+1

∏
16i< j6n+1

(zi − z j ). (3.7)

Proof. In the case n = 0, the product over i and j on the right-hand side of
(3.7) is empty, and by convention we take this empty product to be 1. In such
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806 J. BRANDES AND T. D. WOOLEY

circumstances, we see that 90(σ1,1(z1; h1)) = h1 f1(z1), and the conclusion of
the lemma is immediate.

Suppose next that n > 1. Then, when hn+1 = 0, we have

σi,n+1(z;h) = σi,n(z;h) (1 6 i 6 2n + 1),

and thus we deduce from property (3.1) of Lemma 3.1 that in this situation, one
has

9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)) = 0. (3.8)

It follows that hn+1 divides 9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)), and by
symmetry the same holds for h1, . . . , hn . Meanwhile, when zn = zn+1, we have

σi,n+1(z;h) = σi,n(z; h1, . . . , hn−1, hn + hn+1),

and again we find from property (3.1) of Lemma 3.1 that in this special
situation one has (3.8). We thus conclude that zn − zn+1 divides the polynomial
9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)), and by symmetry the same holds for
zi − z j whenever 1 6 i < j 6 n + 1.

In light of these observations, it is apparent that

9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h))

is divisible by
h1 · · · hn+1

∏
16i< j6n+1

(zi − z j ).

The quotient of the former polynomial by the latter cannot be zero, since this
former polynomial is non-zero, by virtue of property (3.2) of Lemma 3.1. We
therefore conclude that a non-zero polynomial 8n(z;h) ∈ Z[z,h] does indeed
exist satisfying (3.7). This completes the proof of the lemma. �

It seems quite likely that additional potentially useful structure might be
extracted from the polynomial identities provided by Lemma 3.2. For example,
the relation

(h1 + h2)(h1z2
1 + h2z2

2)− (h1z1 + h2z2)
2
= h1h2(z1 − z2)

2

plays a prominent role in the proof of [8, Lemma 2.1]. Meanwhile, writing

s j = h1z j
1 + h2z j

2 + h3z j
3 (0 6 j 6 4),

one may verify that

(s1s4 − s2s3)
2(s0s2 − s2

1)− (s0s4 − s2
2)(s1s3 − s2

2)
2

= h1h2h3(z1 − z2)
2(z2 − z3)

2(z3 − z1)
2 F6,3(z;h),

for a suitable bihomogeneous polynomial F6,3(z;h) ∈ Z[z,h], of degree 6 with
respect to z and degree 3 with respect to h.
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VINOGRADOV SYSTEMS WITH A SLICE OFF 807

§4. Counting integral solutions pairwise. The polynomial identity furnished
by Lemma 3.2 is of multiplicative type, and particularly powerful when
9n(σ1,n+1, . . . , σ2n+1,n+1) is non-zero for a fixed integral choice of z and h, for
then we may exploit elementary estimates for the divisor function. However, it
is possible that the latter quantity vanishes. This brings us into the domain of the
classification of solutions according to the vanishing or non-vanishing of various
intermediate coefficients. We begin with an elementary lemma concerning
polynomials in two variables similar to [7, Lemma 2], the proof of which we
include for the sake of completeness.

LEMMA 4.1. Let ψ ∈ Z[z, h] be a non-trivial polynomial of total degree d.
Then the number of integral solutions of the equation ψ(z, h) = 0 with |z| 6 X
and |h| 6 Xr is at most 2d(2Xr

+ 1).

Proof. We may write ψ(z, h) = ad(z)hd
+ · · · + a1(z)h + a0(z), with

ai ∈ Z[z] of degree at most d for 0 6 i 6 d . The solutions to be counted are of
two types. Firstly, one has solutions (z, h) with |z| 6 X for which ai (z) 6= 0 for
some index i , and secondly one has solutions for which ai (z) = 0 (0 6 i 6 d).
Given any fixed one of the (at most) 2X +1 possible choices of z in a solution of
the first type, one finds that h satisfies a non-trivial polynomial equation of degree
at most d , to which there are at most d integral solutions. There are consequently
at most d(2X + 1) solutions of this first type. On the other hand, whenever
(z, h) is a solution of the second type, then z satisfies some non-trivial
polynomial equation ai (z) = 0 of degree at most d . Since this equation has
at most d integral solutions and there are at most 2Xr

+ 1 possible choices for
h, one has at most d(2Xr

+ 1) solutions of the second type. The conclusion of
the lemma now follows. �

We now announce an initial classification of intermediate coefficients. We
define sets Tn,m ⊆ Z[z1, . . . , zm, h1, . . . , hm] for 0 6 m 6 n + 1 inductively as
follows. First, let Tn,n+1 denote the singleton set containing the polynomial

9n(σ1,n+1(z;h), . . . , σ2n+1,n+1(z;h)). (4.1)

Next, suppose that we have already defined the set Tn,m+1, and consider an
elementψ ∈ Tn,m+1. We may interpretψ as a polynomial in zm+1 and hm+1 with
coefficients φ(z1, . . . , zm; h1, . . . , hm). We now define Tn,m to be the set of all
non-zero polynomials φ ∈ Z[z1, . . . , zm, h1, . . . , hm] occurring as coefficients
of elements ψ ∈ Tn,m+1 in this way. Note in particular that since the polynomial
(4.1) is not identically zero, it is evident that each set Tn,m is non-empty.

This classification of coefficients yields a consequence of Lemma 4.1 of
utility to us in §6.

LEMMA 4.2. Let m and n be natural numbers with 1 6 m 6 n 6 t . Suppose
that zi and hi are fixed integers for 1 6 i 6 m with 1 6 zi 6 X and |hi | 6 Xr .
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808 J. BRANDES AND T. D. WOOLEY

Suppose also that there exists φ ∈ Tn,m having the property that

φ(z1, . . . , zm; h1, . . . , hm) 6= 0.

Then the number Nm(X) of integral solutions of the system of equations

ψ(z1, . . . , zm+1; h1, . . . , hm+1) = 0 (ψ ∈ Tn,m+1),

with 1 6 zm+1 6 X and |hm+1| 6 Xr , satisfies Nm(X)� Xr .

Proof. It follows from the iterative definition of the sets Tn,m that any element
φ ∈ Tn,m occurs as a coefficient polynomial of an element ψ ∈ Tn,m+1, when
viewed as a polynomial in hm+1 and zm+1. Fixing any one such polynomial
ψ , we find that for the fixed choice of z1, . . . , zm, h1, . . . , hm presented by the
hypotheses of the lemma, the polynomial ψ(z;h) is a non-trivial polynomial in
zm+1, hm+1. We therefore conclude from Lemma 4.1 that Nm(X) � Xr . This
completes the proof of the lemma. �

§5. Classification of solutions. We now address the classification of the set S
of all solutions of the system of equations

σ j,2s(z;h) = 0 (1 6 j 6 2s − 1), (5.1)

with 1 6 z 6 X and |h| 6 Xr . This we execute in two stages. Our discussion is
eased by the use of some non-standard notation. When (i1, . . . , im) is an m-tuple
of positive integers with 1 6 i1 < · · · < im 6 2s, we abbreviate (zi1, . . . , zim ) to
zi and (hi1, . . . , him ) to hi.

In the first stage of our classification, when 0 6 n < s, we say that (z,h) ∈ S
is of type Sn when:
(i) for all (n + 1)-tuples (i1, . . . , in+1) with 1 6 i1 < · · · < in+1 6 2s, one

has
9n(σ1,n+1(zi;hi), . . . , σ2n+1,n+1(zi;hi)) = 0;

and
(ii) for some n-tuple ( j1, . . . , jn) with 1 6 j1 < · · · < jn 6 2s, one has

9n−1(σ1,n(zj;hj), . . . , σ2n−1,n(zj;hj)) 6= 0.

Here, we interpret the condition (ii) to be void when n = 0. Finally, we say that
(z,h) ∈ S is of type Ss when the condition (ii) holds with n = s. It follows that
every solution (z,h) ∈ S is of type Sn for some index n with 0 6 n 6 s. We
denote the set of all solutions of type Sn by Sn .

In the second stage of our classification, when 1 6 n < s we subdivide the
solutions (z,h) ∈ Sn as follows. When 0 6 m 6 n, we say that a solution
(z,h) ∈ Sn is of type Tn,m when condition (ii) holds for the n-tuple j, and:
(iii) for all (m + 1)-tuples (i1, . . . , im+1) with 1 6 i1 < · · · < im+1 6 2s

and il 6∈ { j1, . . . , jn} (1 6 l 6 m + 1), and for all ψ ∈ Tn,m+1, one has
ψ(zi;hi) = 0; and
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VINOGRADOV SYSTEMS WITH A SLICE OFF 809

(iv) for some m-tuple (ι1, . . . , ιm) with 1 6 ι1 < · · · < ιm 6 2s and ιl 6∈
{ j1, . . . , jn} (1 6 l 6 m), and for some φ ∈ Tn,m , one has φ(zι;hι) 6= 0.

Here, we interpret the condition (iv) to be void when m = 0. It follows that
whenever (z,h) ∈ Sn with 1 6 n < s, then it is of type Tn,m for some index m
with 0 6 m 6 n. As before, we introduce the notation Sn,m to denote the set of
all solutions of type Tn,m . We thus have the decomposition

S = S0 ∪ Ss ∪

s−1⋃
n=1

n⋃
m=0

Sn,m . (5.2)

§6. A divisor estimate. Having enunciated our classification of solutions in
the previous section, we are equipped to estimate the number of solutions of the
system (5.1) with 1 6 z 6 X and |h| 6 Xr . This will establish Theorem 2.1,
since by discarding superfluous equations if necessary, we may always suppose
that t = 2s − 1. Before embarking on the main argument, we establish a simple
auxiliary result.

LEMMA 6.1. Suppose that f ∈ Z[x] is a polynomial of degree k > 1. Let u
be an integer with 1 6 u 6 k, and let hi and ai be fixed integers for 1 6 i 6 u
with h 6= 0 and ai 6= a j (1 6 i < j 6 u). Then for any integer n, the equation

u∑
i=1

hi f (z + ai ) = n (6.1)

has at most k solutions in z.

Proof. It suffices to show that the polynomial in z on the left-hand side
of (6.1) has positive degree. We therefore assume the opposite and seek a
contradiction. Suppose that f is given by

f (z) = ck zk
+ ck−1zk−1

+ · · · + c1z + c0,

where ck 6= 0. The polynomial on the left-hand side of (6.1) takes the shape

F(z) = dk zk
+ dk−1zk−1

+ · · · + d1z + d0,

with

di =

k∑
j=i

c j

(
j
i

)
(h1a j−i

1 + · · · + hua j−i
u ) (0 6 i 6 k).

In particular, we see directly that dk can vanish only if h1 + · · · + hu = 0. Let i
be a positive integer with i < k, and suppose that one has

h1ak− j
1 + · · · + huak− j

u = 0 (6.2)

for all integers j with i < j 6 k. Then the vanishing of di implies that (6.2)
holds also for j = i . Proceeding inductively in this way, we deduce that (6.2) is
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810 J. BRANDES AND T. D. WOOLEY

satisfied for the entire range 1 6 j 6 k. Restricting attention to the system of
equations with indices k − u + 1 6 j 6 k, we find that this system of equations
can hold simultaneously only when either h = 0, or else

0 = det(a j−1
i )16i, j6u =

∏
16i< j6u

(ai − a j ).

In the latter case, one has ai = a j for some indices i and j with 1 6 i < j 6 u.
Both these cases are excluded by the hypotheses of the statement of the lemma,
so the system of equations (6.2) cannot hold for all 1 6 j 6 k, and hence the
polynomial F is non-trivial of positive degree. Consequently, the equation (6.1)
has at most deg(F) 6 k solutions in z. �

The proof of Theorem 2.1. We begin by examining the solutions of (5.1) of
type S0, recalling that 1 6 z 6 X and |h| 6 Xr . When (z,h) ∈ S0, one has
hi f1(zi ) = 0 for 1 6 i 6 2s. Suppose that the indices i for which hi = 0 are
i1, . . . , ia , and the indices j for which h j 6= 0 are j1, . . . , jb. In particular, one
has a+b = 2s. By relabelling variables, if necessary, there is no loss of generality
in supposing that j = (1, . . . , b) and i = (b + 1, . . . , 2s). There are O(X2s−b)

possible choices for hi and zi with b+1 6 i 6 2s, since hi = 0 for these indices
i . Meanwhile, for 1 6 j 6 b, one has f1(z j ) = 0, and so there are at most
k1 possible choices for z j . For each fixed such choice, since the polynomials
f1, . . . , ft are well-conditioned, we find that fl(z j ) 6= 0 for some index l with
2 6 l 6 t . Thus, the variables h1, . . . , hb satisfy a system of t linear equations in
which there are non-vanishing coefficients. We deduce that when b > 1, there are
O((Xr )b−1) possible choices for h j and z j with 1 6 j 6 b. Finally, combining
these estimates for all possible choices of i and j, we discern that

cardS0 � X2s
+

2s∑
b=1

X2s−b
· Xr(b−1)

� X (2s−1)r+1. (6.3)

Next we consider the solutions of (5.1) of type Ss . When (z,h) ∈ Ss , there is
an s-tuple i with 1 6 i1 < · · · < is 6 2s for which one has

9s−1(σ1,s(zi;hi), . . . , σ2s−1,s(zi;hi)) 6= 0.

Write i′ for the s-tuple (i ′1, . . . , i ′s) with 1 6 i ′1 < · · · < i ′s 6 2s for which

{i1, . . . , is} ∪ {i ′1, . . . , i ′s} = {1, 2, . . . , 2s}.

It follows from (5.1) that σ j,s(zi;hi) = σ j,s(zi′;−hi′) (1 6 j 6 2s − 1), and
hence there is a non-zero integer N = N (zi′;hi′) for which

9s−1(σ1,s(zi′;−hi′), . . . , σ2s−1,s(zi′;−hi′)) = N (6.4)

and
9s−1(σ1,s(zi;hi), . . . , σ2s−1,s(zi;hi)) = N .
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VINOGRADOV SYSTEMS WITH A SLICE OFF 811

By relabelling variables, if necessary, there is no loss of generality in supposing
that i = (1, 2, . . . , s) and i′ = (s + 1, s + 2, . . . , 2s).

Fix any one of the O(X (r+1)s) possible choices for zi′ , hi′ with 1 6 zi′ 6 X ,
|hi′ | 6 Xr , and satisfying (6.4). Then we infer from Lemma 3.2 that

h1 · · · hs
∏

16i< j6s

(zi − z j ) divides N (zi′;hi′). (6.5)

Moreover, one has N (zi′;hi′) 6= 0. Since the latter integer is fixed, we see by
means of an elementary divisor function estimate that there are O(Xε) possible
choices for h1, . . . , hs and integers a2, . . . , as equipped with the property that
zi = z1 + ai (2 6 i 6 s). With the exception of the undetermined variable z1, it
follows that there are at most O(X (r+1)s+ε) possible choices for all the variables
in question. However, the integer z1 satisfies the system of equations

h1 f j (z1)+

s∑
i=2

hi f j (z1 + ai ) = n j (1 6 j 6 2s − 1), (6.6)

in which hi , ai and n j are all fixed for all indices i and j . Consider the
polynomial with index j = 1 of largest degree k1 > 2s − 2. If ai is zero for
any index i , then we have z1 = zi . Meanwhile, if ai = a j for any indices i
and j with 2 6 i < j 6 s, one sees that zi = z j . Consequently, in either of
these scenarios, and also in the situation with h = 0, one finds via (6.5) that
N (zi′;hi′) = 0, contradicting our assumption that N (zi′;hi′) 6= 0. We may thus
safely assume that the conditions of Lemma 6.1 are satisfied for the polynomial
f1 with a1 = 0. By the conclusion of the lemma, it follows that there are at most
k1 choices for z1 satisfying (6.6), and hence

cardSs � X (r+1)s+ε. (6.7)

Next we consider the set Sn,m for a given pair of indices n and m with
1 6 n < s and 0 6 m 6 n. For any (z,h) ∈ Sn,m , condition (ii) holds for
some n-tuple j. By relabelling variables, if necessary, we may suppose that j =
(1, . . . , n). Write j′ for the (2s − n)-tuple (n + 1, . . . , 2s). Then given any one
fixed choice of the variables zj′ , hj′ , we have

9n−1(σ1,n(zj;hj), . . . , σ2n−1,n(zj;hj))

= 9n−1(σ1,2s−n(zj′;−hj′), . . . , σ2n−1,2s−n(zj′;−hj′)) 6= 0.

Thus, there is a fixed non-zero integer N with the property that

9n−1(σ1,n(zj;hj), . . . , σ2n−1,n(zj;hj)) = N ,

and we deduce from Lemma 3.2 that

h1 · · · hn
∏

16i< j6n

(zi − z j ) divides N .
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812 J. BRANDES AND T. D. WOOLEY

From here, the argument applied above in the case n = s may be employed
mutatis mutandis to conclude that there are O(Xε) possible choices for h1, . . . ,

hn , z1 − z2, . . . , z1 − zn . If we put ai = zi − z1 (2 6 i 6 n) and a1 = 0, then
we find just as in our earlier analysis that z1 satisfies a non-trivial polynomial
equation of degree at most k1, whence there are at most k1 choices for z1. We
therefore conclude that, given any one fixed choice of zj′,hj′ , the number of
choices for zj,hj is O(Xε).

It thus remains to count the number of choices for zj′ and hj′ . Note in
particular that, since (z,h) ∈ Sn,m , we have the additional information that
conditions (iii) and (iv) are satisfied. We may therefore suppose that there exists
some φ ∈ Tn,m , and some m-tuple (ι1, . . . , ιm) with n+1 6 ι1 < · · · < ιm 6 2s,
for which

φ(zι;hι) 6= 0. (6.8)

With a fixed choice of ι, we may suppose further that for all i satisfying n+ 1 6
i 6 2s and i 6∈ {ι1, . . . , ιm}, and for all ψ ∈ Tn,m+1, one has

ψ(zι1, . . . , zιm , zi ; hι1, . . . , hιm , hi ) = 0. (6.9)

Given any such ι and φ, there are O(X (r+1)m) possible choices for zι,hι, with
1 6 zι 6 X and |hι| 6 Xr , satisfying (6.8). We claim that for any fixed
such choice, the number of possible choices for the integers zi and hi with
n + 1 6 i 6 2s and i 6∈ {ι1, . . . , ιm} is O((Xr )2s−n−m). In order to confirm this
claim, observe that there is a polynomial ψ ∈ Tn,m+1 having the property that
some coefficient of ψ(z1, . . . , zm+1; h1, . . . , hm+1), considered as a polynomial
in zm+1 and hm+1, is equal to φ(z1, . . . , zm; h1, . . . , hm). It then follows from
(6.8) that the equation (6.9) is a non-trivial polynomial equation in zi and hi . We
therefore deduce from Lemma 4.2 that for each fixed choice of zι and hι under
consideration, and for each i with n+ 1 6 i 6 2s and i 6∈ {ι1, . . . , ιm}, there are
O(Xr ) possible choices for zi and hi satisfying (6.9). Thus we infer that there
are O(Xr(2s−n−m)) possible choices for zi and hi with n + 1 6 i 6 2s for each
fixed choice of zι,hι. Since the number of choices for ι and φ ∈ Tn,m is O(1), the
total number of choices for zj′ and hj′ available to us is O(X (r+1)m

·Xr(2s−n−m)).
Furthermore, our discussion above showed that for each fixed such choice of
zj′ , hj′ , the number of possible choices for zj,hj is O(Xε). Thus altogether we
conclude that

cardSn,m � Xr(2s−n)+m+ε. (6.10)

By combining our estimates (6.3), (6.7) and (6.10) via (5.2), we discern that

cardS � X (2s−1)r+1
+ X (r+1)s+ε

+

s−1∑
n=1

n∑
m=0

Xr(2s−n)+m+ε
� Xr(2s−1)+1+ε,

and the conclusion of Theorem 2.1 follows. �
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§7. The proof of Theorems 1.1 and 1.2. Our preparations now complete, we
establish the mean value estimates recorded in Theorems 1.1 and 1.2. Let X be a
large positive number, and suppose that s and k are natural numbers with k > 2
and 1 6 s 6 (k2

− 1)/2. We define the exponential sum gr (α; X) by putting

gr (α; X) =
∑
|h|6s Xr

∑
16z6X

e
((

r
r

)
hαr +

(
r + 1

r

)
hzαr+1+· · ·+

(
k
r

)
hzk−rαk

)
.

(7.1)
Also, when 1 6 d 6 k, we put

hd(α; X) =
∑

16x6X

e(α1x + · · · + αd xd).

Then, with the standard notation associated with Vinogradov’s mean value
theorem in mind, we put

Jσ,d(X) =
∮
|hd(α; X)|2σ dα. (7.2)

We note that the main conjecture in Vinogradov’s mean value theorem is now
known to hold for all degrees. This is a consequence of work of the second
author for degree 3, and for degrees exceeding 3 it follows from the work of
Bourgain, Demeter and Guth (see [9, Theorem 1.1] and [1, Theorem 1.1]). Thus,
one has

Jσ,d(X)� Xσ+ε (1 6 σ 6 d(d + 1)/2). (7.3)

In addition, one finds via orthogonality that for each integer κ , one has∮
|gr (α; X)|2κ dα 6 Aκ,r (s X; f ),

where f j (z) = zk−r+1− j (1 6 j 6 k − r + 1).

LEMMA 7.1. When s is a natural number, one has

Is,k,r (X)� X−1
∮
|hk(α; 2X)|2sgr (−α; X) dα.

Proof. Define δ j to be 1 when j = r , and 0 otherwise. We start by noting that
the mean value Is,k,r (X) counts the number of integral solutions of the system
of equations

s∑
i=1

(x j
i − y j

i ) = δ j h (1 6 j 6 k), (7.4)

with 1 6 xi , yi 6 X (1 6 i 6 s) and |h| 6 s Xr . We remark that the constraint
on

s∑
i=1

(xr
i − yr

i ) (7.5)
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814 J. BRANDES AND T. D. WOOLEY

imposed by the equation of degree r in (7.4) is void, since the range for
h automatically accommodates all possible values of the expression (7.5)
within (7.4).

We next consider the effect of shifting every variable by an integer z with
1 6 z 6 X . By the binomial theorem, for any shift z, one finds that (x, y) is a
solution of (7.4) if and only if it is also a solution of the system

s∑
i=1

((xi + z) j
− (yi + z) j ) = ω j hz j−r (1 6 j 6 k),

where ω j is 0 for 1 6 j < r and
( j

r

)
for r 6 j 6 k. Thus, for each fixed integer

z with 1 6 z 6 X , the mean value Is,k,r (X) is bounded above by the number of
integral solutions of the system

s∑
i=1

(u j
i − v

j
i ) = ω j hz j−r (1 6 j 6 k),

with 1 6 u, v 6 2X and |h| 6 s Xr . On applying orthogonality, we therefore
infer that

Is,k,r (X)� X−1
∑

16z6X

∮
|hk(α; 2X)|2sf(−α; z) dα,

where

f(α; z) =
∑
|h|6s Xr

e(ωr hαr + ωr+1hzαr+1 + · · · + ωkhzk−rαk).

The proof of the lemma is completed by reference to (7.1). �

The proof of Theorem 1.2. Let s, k and r be integers with k > r > 1. Also, let
κ be a positive integer with κ 6 (k− r + 2)/2. Observe that it suffices to restrict
attention to the special case

s =
⌊

k(k + 1)
2

−
k(k + 1)− r(r − 1)

4κ

⌋
,

since one may interpolate via Hölder’s inequality to recover the conclusion of
the theorem for smaller values of s. Put

v =
r(r − 1)

4κ
and u = s − v.

Furthermore, set

w =

(
1−

1
2κ

)
k(k + 1)

2
,

so that s = bv + wc. In particular, we have w > u.
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On applying Hölder’s inequality in combination with Lemma 7.1, we find that

Is,k,r (X)� X−1U 1−1/(2κ)
1 U 1/(2κ)

2 , (7.6)

where

U1 =

∮
|hk(α; 2X)|(u/w)k(k+1) dα (7.7)

and

U2 =

∮
|hk(α; 2X)r(r−1)gr (α; X)2κ | dα. (7.8)

A comparison of (7.7) with (7.2) leads us via (7.3) to the estimate

U1 � X (u/w)k(k+1)/2+ε. (7.9)

Meanwhile, by orthogonality, we discern from (7.8) that U2 counts the number
of integral solutions of the system of equations

r(r−1)/2∑
i=1

(x j
i − y j

i ) =

(
j
r

) 2κ∑
l=1

hl z
j−r
l (r 6 j 6 k) (7.10)

r(r−1)/2∑
i=1

(x j
i − y j

i ) = 0 (1 6 j < r), (7.11)

with 16 x, y6 2X , 16 z6 X and |h|6 s Xr . By interpreting (7.11) through the
prism of orthogonality, it follows from (7.2) that the number of available choices
for x and y is bounded above by Jr(r−1)/2,r−1(2X). For each fixed such choice
of x and y, it follows from (7.10) via orthogonality and the triangle inequality
that the number of available choices for z and h is at most Aκ,r (s X; f ). Thus we
deduce from (7.3) and Theorem 2.1 that

U2 6 Jr(r−1)/2,r−1(2X)Aκ,r (s X; f )� Xr(r−1)/2+r(2κ−1)+1+ε. (7.12)

On substituting (7.9) and (7.12) into (7.6), we infer that

Is,k,r (X)� Xε−1(X (u/w)k(k+1)/2)1−1/(2κ)(X2rκ+1+r(r−3)/2)1/(2κ) � X s+1+ε,

where

1 = (r − 1)−
r − 1

2κ
.

This completes the proof of Theorem 1.2. �
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816 J. BRANDES AND T. D. WOOLEY

The proof of Theorem 1.1. The conclusion of Theorem 1.1 is an immediate
consequence of Theorem 1.2 in the special case r = 1. Making use of the
notation of the statement of the latter theorem, we note that when k = 2l + 1 is
odd, one may take κ = b(k+1)/2c = l+1, and we deduce that Is,k,1(X)� X s+ε

provided that s is a natural number not exceeding

k(k + 1)
2

−
k(k + 1)
4(l + 1)

=
k(k + 1)

2
−

k
2
.

Meanwhile, when k = 2l is even, one may instead take κ = l, and the same
conclusion holds provided that s is a natural number not exceeding

k(k + 1)
2

−
k(k + 1)

4l
=

k(k + 1)
2

−
k + 1

2
.

The desired conclusion therefore follows in both cases, and the proof of
Theorem 1.1 is complete. �
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4. J. Brüdern and O. Robert, Rational points on linear slices of diagonal hypersurfaces. Nagoya Math. J.
218 (2015), 51–100.

5. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs
(Oxford, 1979).

6. S. T. Parsell and T. D. Wooley, A quasi-paucity problem. Michigan Math. J. 50 (2002), 461–469.
7. T. D. Wooley, A note on symmetric diagonal equations. In Number Theory with an Emphasis on

the Markoff Spectrum (Provo, UT, 1991) (eds A. D. Pollington and W. Moran), Dekker (New York,
1993), 317–321.

8. T. D. Wooley, Rational solutions of pairs of diagonal equations, one cubic and one quadratic. Proc.
Lond. Math. Soc. (3) 110(2) (2015), 325–356.

9. T. D. Wooley, The cubic case of the main conjecture in Vinogradov’s mean value theorem. Adv. Math.
294 (2016), 532–561.

10. T. D. Wooley, Nested efficient congruencing and relatives of Vinogradov’s mean value theorem.
Preprint, 2017, arXiv:1708.01220.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579317000134
Downloaded from https://www.cambridge.org/core. University of Bristol Library, on 04 Dec 2017 at 16:20:30, subject to the Cambridge Core

http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
http://www.arxiv.org/abs/1708.01220
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579317000134
https://www.cambridge.org/core


VINOGRADOV SYSTEMS WITH A SLICE OFF 817

Julia Brandes,
Mathematical Sciences Research Institute,
17 Gauss Way,
Berkeley,
CA 94720-5070,
U.S.A.
and
Mathematical Sciences,
Chalmers Institute of Technology and

University of Gothenburg,
412 96 Göteborg,
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