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S1 Supplementary figures
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Supplementary Figure S1: Percentage change and responsive region in the
GFP expression levels after signal computation. A) Observed responsive re-
gion for the wide range characterization (solid lines) and model simulations
(dashed lines). ±S.E.M. of three independent experiments is indicated by
shaded area. B) Percentage of change between GFP values measured at the
indicated time points.

1



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

G
F

P
 F

lu
o 

(n
.u

.)

0
10

-6
5*

10
-6

5*
10

-5

10
-5

5*
10

-4

5*
10

-3

5*
10

-2

10
-4

10
-3

10
-2

10
-1

IPTG [mM]

0

10-4

10-3

10-2

10-1

1

10-5

A
H

L 
[m

M
]

3h

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

G
F

P
 F

lu
o 

(n
.u

.)

0
10

-6
5*

10
-6

5*
10

-5

10
-5

5*
10

-4

5*
10

-3

5*
10

-2

10
-4

10
-3

10
-2

10
-1

IPTG [mM]

0

10-4

10-3

10-2

10-1

1

10-5

A
H

L 
[m

M
]

4h

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

G
F

P
 F

lu
o 

(n
.u

.)

0
10

-6
5*

10
-6

5*
10

-5

10
-5

5*
10

-4

5*
10

-3

5*
10

-2

10
-4

10
-3

10
-2

10
-1

IPTG [mM]

0

10-4

10-3

10-2

10-1

1

10-5

A
H

L 
[m

M
]

5h

Supplementary Figure S2: Signal computation is not achieved without anti-
σ. GFP expression profile, for the system lacking the anti-σ gene (MG1655
trasnformed with pLuSb and pVRb_ssrA plasmids), at the indicated time
points post-treatment with the indicated concentrations of AHL and IPTG.
Data are averages of three independent experiments. GFP values are shown
as a heatmap of scaled value across the entire dynamical range of expression
levels.
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Supplementary Figure S3: Model simulation steady-state error, relative to
wide-range characterisation data. Percentage absolute error between the
model predictions (Figure 1-C) and the wide-range characterisation (Figure 1-
B) are plotted at the indicated time points as heat maps. Data from the
wide-range characterisation were filtered as described in Section S4 prior to
computation of the error, so that the model predictions were directly com-
parable to the data used for parameter identification. Data points for AHL
≤ 10−4 mM were set to zero for the parameter identification: the (normalised)
error was not computed for these values of AHL input, since it would have
been infinitely large, and consequently this region is coloured white.
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Supplementary Figure S4: Combination of concentrations used in experiments
from Figure 2 (Main Matter). A–G) Combination of concentrations used in
experiment from Figure 2 (Main Matter) mapped on the 4h heatmap from
Figure 1 (Main Matter).
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Supplementary Figure S5: Combination of concentrations used in experiments
from Figure 3 (Main Matter). A–F) Combination of concentrations used in
experiment from Figure 3 (Main Matter) mapped on the 4h heatmap from
Figure 1 (Main Matter).
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Supplementary Figure S6: Further in-silico experiments of the coupled
comparator-target consortium. A) and B) show in-silico experiments our pro-
posed controller consortium (Figure 4), using the IPTG input signals shown in
Figure 3A and Figure 3B. The desired multi-step output is plotted in the top
panels as a dashed line; the actual target output tracking this desired signal,
as controlled by the computation module, is plotted as a solid black line. The
central panel indicates the actual comparator output over time (green). Fi-
nally, the lower panel shows that actual IPTG reference signals corresponding
to those in Figure 3A (A), and Figure 3B (B), that are fed to the comparator
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Supplementary Figure S7: Computational module model sensitivity analysis
corresponding to input signals shown in Figure 2. In each panel, the time-lapse
data are plotted as green lines, with sampling points indicated by circles, and
the filled green region indicating corresponding s.e.m. over the experiments.
Solid black lines indicate the baseline model output, using our final version
of the fitted parameters (Table S6), as plotted in Figure 2. The dashed lines
show the mean of 7000 Monte-Carlo simulations (per each condition), with
each simulation using a perturbed set of parameters; surrounding dotted lines
indicate the corresponding region of ±SD. In each realisation of the Monte-
Carlo simulations, the seven parameters that we had optimised by fitting to
wide-range characterisation data were perturbed and the remaining param-
eters were kept constant. Perturbed parameters’ values were chosen from
a Normal distribution centred on the fitted value (Table S6) with standard
deviation of 20% of that value.
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Supplementary Figure S8: Computational module model sensitivity analysis
corresponding to input signals shown in Figure 3. In each panel, the time-lapse
data are plotted as green lines, with sampling points indicated by circles, and
the filled green region indicating corresponding s.e.m. over the experiments.
Solid black lines indicate the baseline model output, using our final version
of the fitted parameters (Table S6), as plotted in Figure 3. The dashed lines
show the mean of 7000 Monte-Carlo simulations (per each condition), with
each simulation using a perturbed set of parameters; surrounding dotted lines
indicate the corresponding region of ±SD. In each realisation of the Monte-
Carlo simulations, the seven parameters that we had optimised by fitting to
wide-range characterisation data were perturbed and the remaining param-
eters were kept constant. Perturbed parameters’ values were chosen from
a Normal distribution centred on the fitted value (Table S6) with standard
deviation of 20% of that value.
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Plasmid Promoter/genes Replication
origin

Selection Source

pLuSb Nter-6xHis-HRV-3Csite-HMNETDP(linker)-σ20_992-
AANDENYALAA(ssrA)-Cter expressed from the lux promoter;
LuxR expressed from a constitutive promoter

p15A Chloramphenicol This study

pLacASb-Flag Nter-Anti-σ20_992-AANDENYALAA(ssrA)-Flag-Cter expressed
from the lacUV5 promoter;
LacI expressed from the lacI promoter

pBR322 Ampicillin This study

pVRb-ssrA Nter-sfGFP-AANDENYALAA(ssrA)-Cter expressed from the
20_992 promoter (σ20_992 responsive)

pSC101 Kanamycin This study

Supplementary Table S1: Plasmids used in this study.
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3h

Means SEMs

0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM 0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM
0 nM 0.0 0.0 0.0 0.0 0.0 28983.1 0.0 15303.7 0.0 0.0 0.0 9751.1 316.4 751.6 181.3 319.3 75.5 19097.5 806.2 11703.2 996.8 410.6 437.9 8315.7
10 nM 0.0 0.0 0.0 0.0 0.0 1026.6 0.0 11101.7 0.0 0.0 17.6 0.0 206.9 465.2 292.2 107.4 116.7 5754.9 620.5 12149.2 544.6 597.4 4843.9 928.3
100 nM 0.0 0.0 293.7 474.6 677.2 9300.2 1797.5 6343.4 5627.4 4190.6 3855.7 7139.3 2581.3 1024.1 2993.3 2559.7 2176.7 7604.5 2287.2 2034.3 5827.0 5154.3 3713.0 4445.5
1000 nM 54708.4 47243.1 58014.6 61731.9 61868.6 56108.7 52455.3 49046.6 38123.6 26158.2 16676.8 20813.9 7775.0 7372.3 5024.8 6664.9 6722.5 4074.0 3769.5 4666.3 9004.1 8107.7 6593.9 4235.1
10 uM 90574.9 74233.9 80222.7 89364.7 95957.8 90064.5 82142.3 78149.1 62128.1 58742.2 32567.1 33928.0 12315.6 6817.6 6519.9 2944.0 7334.8 7078.6 4984.8 10899.6 8538.0 19681.0 6905.8 4460.2
100 uM 101364.0 89709.1 105300.3 104549.3 104964.5 100579.3 87586.2 85914.9 73552.1 73138.4 41226.6 43010.0 4902.2 10899.3 3424.3 2261.5 3351.8 6440.0 9148.3 8689.8 7494.6 20406.8 6294.5 3763.7
1000 uM 128450.1 121477.8 132212.8 147044.3 146186.6 136736.7 134099.0 120736.2 104212.1 114062.1 65283.8 67441.8 9072.1 12397.8 6864.7 10185.6 5645.2 4338.4 16975.9 9759.9 11794.6 28292.2 7756.1 7084.4

4h

Means SEMs

0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM 0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM
0 nM 0.0 0.0 0.0 0.0 0.0 22578.5 0.0 12646.2 0.0 0.0 0.0 9035.2 362.4 487.0 355.3 340.0 448.5 16344.6 365.2 10651.5 266.6 672.1 675.6 7181.0
10 nM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8994.1 0.0 0.0 0.0 0.0 316.1 294.9 57.4 186.6 225.1 4550.0 26.2 11317.4 127.5 692.7 3704.3 358.5
100 nM 0.0 0.0 0.0 0.0 0.0 6916.2 0.0 2937.0 1760.0 1060.6 1341.6 4194.4 1504.7 519.8 2065.3 1676.7 1856.4 7101.3 1203.2 1285.6 4404.2 3797.5 3476.7 3276.9
1000 nM 45075.8 41762.1 52974.9 54892.4 57302.2 50281.1 48297.1 49688.2 33094.6 21345.0 12840.9 15657.5 4984.7 4111.8 4754.5 5427.3 5937.9 1607.5 2890.9 1749.1 7321.9 5655.3 4174.7 2982.5
10 uM 80229.7 74040.4 81562.3 80367.4 87154.6 80308.5 76784.7 82243.9 56087.3 52392.0 26532.5 28548.7 8392.1 1945.2 5331.0 3508.3 6649.2 5585.0 2578.9 9226.5 6484.3 16070.4 4067.7 1964.7
100 uM 91004.6 88770.5 96525.2 97212.3 97516.6 93729.0 86281.0 82967.5 67726.1 60644.7 33363.5 34550.2 5711.4 4771.0 4965.7 3661.3 5062.7 3385.8 5230.0 2046.0 6546.4 12677.8 3527.2 1515.0
1000 uM 107618.5 111163.0 114218.2 125281.6 126065.3 120370.7 123413.7 111590.9 93942.4 92865.0 47482.5 47222.0 10874.6 5101.8 7440.3 11235.1 5975.8 1174.0 11607.3 4650.9 9865.7 21785.0 5334.3 3214.3

5h

Means SEMs

0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM 0 1 nM 5 nM 10 nM 50 nM 100 nM 500 nM 1 uM 5 uM 10 uM 50 uM 100 uM
0 nM 0.0 0.0 0.0 0.0 0.0 19095.2 0.0 11030.7 0.0 0.0 0.0 8325.2 385.9 492.8 318.5 403.1 390.2 15575.9 547.7 9022.4 367.1 320.8 443.0 6600.7
10 nM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7761.2 0.0 0.0 0.0 0.0 379.1 420.0 294.2 218.7 181.2 2677.7 357.9 10288.2 257.2 430.9 2312.8 562.3
100 nM 0.0 0.0 0.0 0.0 0.0 3573.0 0.0 1576.3 410.4 0.0 0.0 2204.5 914.8 324.0 1241.4 960.9 970.4 4584.9 1004.0 938.0 3343.7 2720.1 2325.7 2911.2
1000 nM 37196.9 36651.6 45365.0 46586.7 47838.0 43228.4 43388.2 45574.8 29116.6 18759.0 10975.1 12943.0 1859.3 1325.9 2558.8 3433.0 2343.8 2049.3 4128.5 1382.9 5415.8 3130.9 2528.6 1792.8
10 uM 73966.2 73557.3 78741.3 74207.5 79469.5 76909.8 74585.6 85943.9 56559.2 49079.5 26880.7 25831.1 1837.4 1873.6 3563.2 1747.0 2016.3 1716.4 3226.8 8455.1 3933.4 9931.3 3058.0 107.3
100 uM 82650.0 86424.1 87061.4 89079.2 89368.4 89274.5 88438.5 86787.0 69196.1 55066.2 34030.6 33353.4 1457.5 1583.8 2002.4 4186.3 3325.5 2139.8 3518.8 1856.0 3943.3 4222.5 832.4 217.3
1000 uM 96657.8 102958.8 100793.1 103398.7 102888.2 104714.4 107165.5 101869.7 88877.0 71975.1 42738.8 40117.2 4674.5 848.8 2925.2 3232.0 3869.4 5354.7 5398.5 1388.5 1912.8 4869.9 526.9 270.7

AHL

IPTG IPTG

AHL

IPTG IPTG

AHL

IPTG IPTG

Supplementary Table S2: Absolute values and S.E.M. for the wide range characterization experiments. Absolute values
and S.E.M. for the wide range characterization experiments. Data normalized by subtracting the background intensity and
normalizing on the OD600 measurements. After normalization, data from three independent experiments from each time
point are averaged and scaled across the full dynamical range ((measured value - min value)/(max value - min value)).
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Name Sequence

Sigma_FW 5’-ATAGGATTAATCCATGGGCAGCAGCCATCATCATCATCATCACAGCAGCGG-3’

Sigma_ssrA_RW 5’-ATTTAAGGATCCTCACGCTGCAAGGGCGTAATTTTCGTCGTTCGCTGCACTAGTCGGTTTGCGACGA
CCGCTCAGATCTGCACC-3’

LacIASb_Vector_F 5’-AGAAGATTTTCAGCCCACCACCACCACTGAGATCC-3’

LacIASb_Vector_R 5’-TGCCTAATGGAATTCGGGATCGAGATCTCGATCCT-3’

LacIASb_Frag1_F 5’-CGAGATCTCGATCCCGAATTCCATTAGGCATTAGGCACCC-3’

LacIASb_Frag1_R 5’-TTCCGGTGTGCCCATCTTTACCTCCTCTATCGCGGA-3’

LacIASb_Frag2_F 5’-ATAGAGGAGGTAAAGATGGGCACACCGGAACGT-3’

LacIASb_Frag2_R 5’-TCAGTGGTGGTGGTGGGCTGAAAATCTTCTCTCATCCGC-3’

ASb_Flag_F 5’-GACGACGATAAGATCGATTACAAGGATGACGACGATAAGTAAGGATCCAAGCTTGGCTGTTTTGGCGG-3’

ASb_Flag_R 5’-ATCCTTGTAATCTCCCTTATCGTCGTCATCCTTGTAATCCGCTGCAAGGGCGTAATTTTCGTC-3’

GFPssrA_F 5’-CTTGCAGCGTAATCCAGACCTGCAGGCATGCAAGCCTCTAGAG-3’

GFPssrA_R 5’-GGCGTAATTTTCGTCGTTCGCTGCTTTGTAGAGCTCATCCATGCC-3’

AntiSigma_FW 5’-TTATTCCATGGGCACACCGGAACGTTTTGTTCATCTGGCAGATGCC-3’

AntiSigma_ssrA_RW 5’-TAGCCAAGCTTGGATCCTTACGCTGCAAGGGCGTAATTTTCGTCGTTCGCTGCACTAGTCTGTTC
TGCTTCTTCTGCATTAATGC-3’

Supplementary Table S3: Primers used in this study.
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S2 Model Derivation
In this section we describe the features and derivation of the ODE-based math-
ematical model of our proposed signal computation system GRN (Figure 1-a).

S2.1 Model assumptions
• We use a continuous and deterministic ordinary differential equation

(ODE) model to represent the system dynamics. Reactions are repre-
sented through mass-action kinetics, and we do not explicitly account for
population growth since the number of cells is kept constant throughout
experiments.

• For all species in the system, we assume that the variation in plasmid
copy number is not large enough to significantly affect the dynamics and
can be neglected from the model.

• Diffusion of IPTG into the population is assumed to occur instanta-
neously (the internal concentration instantaneously reaches the desired
signal reference concentration within the population when modified ex-
ternally)12.

• Similarly we assume the internal AHL concentration instantaneously
assumes the externally applied concentration13.

• For the AHL, we assume that there is a steady equilibrium concentra-
tion of the relevant proteins (LuxR for the activation of AHL), that is
sufficiently high to consider any AHL in the cell to be bound as the
LuxR:AHL complex and thus act directly on the AHL responsive pro-
moter2. Possible aggregated effects of saturation and competition are
subsumed under the (fitted) co-operativity coefficient of this promoter
(see Section S4).

• We assume that interactions between sigma and RNA polymerase can be
neglected, and therefore in the model the p20_992 promoter is driven
directly by the concentration of free sigma. In other words, ancillary
dynamics of the sigma factor (e.g., possible competition with endogenous
sigma factors, see9) are aggregated in the parameters and equation of
the p20_992 promoter governing transcription of GFP (Equation S20).
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S2.2 Summary of dynamical variables in the full
model

State variable Description
[Mσ] mRNA concentration for sigma factor.
[Mσα] mRNA concentration for anti-sigma.
[MGFP] mRNA concentration for GFP.
[PGFP] Mature GFP concentration.
[σfree] Concentration of free sigma factor.
[σα,free] Concentration of free anti-sigma.
[σ:σα] Concentration of the sigma:anti-sigma complex

(bound sigma and anti-sigma).

Supplementary Table S4: Overview of the seven dependent variables defined
in the full model. Here, for σ and σα, the subscript ‘free’ denotes the fact
that these species are not in complex with each other (denoted σ:σα); it is
unrelated to binding with RNA polymerase, which is not considered in our
model (see Section S2.1, ‘Model assumptions’).
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S2.3 Reactions considered in the full model

Reaction Description
H+([A])−−−−−→ Mσ Transcription of sigma (σ) mRNA.
H+([I])−−−−−→ Mσα Transcription of anti-sigma (σα) mRNA.
H+([σ])−−−−−→ MGFP Transcription of GFP mRNA.

Mσ
γMσ−−−→ ∅ Degradation of σ mRNA.

Mσα
γMσα−−−−→ ∅ Degradation of σα mRNA.

MGFP
γMGFP−−−−→ ∅ Degradation of GFP mRNA.

Mσ
kσ−→ σfree Translation of σ from its mRNA.

Mσα
kσα−−→ σα,free Translation of σα from its mRNA.

MGFP
kGFP−−−→ PGFP Translation and maturation of GFP.

σfree
f(X)−−−→ ∅ Degradation of σ (ssrA tagged).

σα,free
f(X)−−−→ ∅ Degradation of σα (ssrA tagged).

PGFP
f(X)−−−→ ∅ Degradation of mature GFP (ssrA tagged).

σfree
γ−→ ∅ Dilution of σ due to cell division.

σα,free
γ−→ ∅ Dilution of σα due to cell division.

PGFP
γ−→ ∅ Dilution of mature GFP due to cell division.

σfree + σα,free
k+
σ:σα−−−→ σ:σα σ:σα complex formation from one σ and one σα.

σ:σα

k−
σ:σα−−−→ σfree + σα,free

Dissociation of one σ:σα complex into one σ and one
σα.

σ:σα
f(X)−−−→ ∅ Degradation of one σ:σα complex.

σ:σα
γ−→ ∅ Dilution of σ:σα complex due to cell division.

σtotal = σfree + σ:σα
Conservation of σ: total sigma is the sum of concen-
trations in its free and bound forms.

σα,total = σα,free + σ:σα
Conservation of σα: total anti-sigma is the sum of
concentrations in its free and bound forms.

Supplementary Table S5: A summary of all major reactions considered in our
full model of the σ:σα system, before simplification of the equations.
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S2.4 Dynamics of the full model
We begin by specifying the dynamics of intracellular mRNA through a saturat-
ing Hill curve parametrised by an input concentration of some transcription
factor, a half-maximal activation concentration, and a Hill coefficient1,4,6,8.
The general form of the dynamical equations for an mRNA species Mi is
therefore defined as

d[Mi]

dt
= α0,i + α1,iH(Px)− γMi[Mi] , (S1)

where [X] denotes the concentration of species X, γi is the rate of mRNA
degradation, α0,i and α1,i are the basal and maximal transcription rates and
H(Px) is an activation, or inhibition, of the promoter regulated by the tran-
scription factor Px. The function regulating activation of the promoter for
transcription of mRNA species Mi by species Px is

H(Px) = H+(Px) =
[Px]

nx

Kx
nx + [Px]

nx
, (S2)

and likewise for inactivation/inhibition by species Px

H(Px) = H−(Px) =
Kx

nx

Kx
nx + [Px]

nx
, (S3)

where αi is the maximal transcription rate, Kx is the microscopic dissociation
constant, and nx is a Hill coefficient defining cooperativity of binding to the
promoter (steepness of the response curve).

mRNA dynamics
The transcription of sigma factor mRNA, Mσ, is determined by the activity
of the pLux promoter, which is activated by the presence of AHL (whose
concentration is [A]):

d[Mσ]

dt
= α0,σ +

α1,σ[A]
nA

KA
nA + [A]nA

− γMσ[Mσ]. (S4)

Transcription of the corresponding anti-sigma mRNA, Mσα, is determined by
the intracellular concentration of IPTG, I:

d[Mσα]

dt
= α0,σα +

α1,σα[I]
nI

KI
nI + [I]nI

− γMσα[Mσα]. (S5)

Finally, the transcription of GFP mRNA is driven by the p20_992 promoter
(see11). This promoter’s activity is regulated directly by our sigma factor:

d[MGFP]

dt
= α0,GFP +

α1,GFP[σfree]
nσ

Kσ
nσ + [σfree]nσ

− γMGFP[MGFP]. (S6)
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Translation dynamics
Dynamics of proteins in then system consist of linear first order reactions,
similar to typical models in the literature (e.g.,4,6,8). We explicitly account for
different kinetics for all interactions, by including these as unique parameters
unless otherwise specified.

In general, a protein species Pi evolves in time relative to its corresponding
mRNA quantity Mi as

d[Pi]

dt
= ki[Mi]− γPi[Pi], (S7)

where ki is the forward rate constant for translation of mRNA Mi to protein
Pi, and γPi is the rate of first order degradation of Pi. In our model, we
consider enzymatic degradation through the ssrA tag mechanism to be the
dominant form of degradation for all Pi; for this, we later include an extra
term for each species and therefore here γPi = γ i.e., a constant dilution for
all protein species (discussed in the next section).

ssrA-tagged proteins: enzymatic degradation
In order to implement enzymatic degradation of ssrA tagged proteins (free
and bound sigma and anti-sigma, GFP), we define a nonlinear ssrA tag based
degradation rate, f(X), of the form previously used in3,10,12 among others:

f(X) =
γD

ce +X
, (S8)

where γD (molecules min-1) defines the maximal rate of enzymatic degradation,
ce (molecules) defines the half-activation threshold of the degradation, and

X = [σfree] + [σα,free] + [σ:σα] + [GFP] (S9)

is the total number of ssrA tagged proteins present in the system (Table S4).
The value of X is dynamic and so this equation implements a form of compe-
tition between available ssrA tag selecting proteases, since there is physically
a limit on the number of available proteases.

Sigma factor
Dynamics of the concentration of the free sigma factor, σfree, are defined as

d[σfree]

dt
=

(i)︷ ︸︸ ︷
kσ[Mσ]−

(ii)︷ ︸︸ ︷
k+σ:σα

[σfree][σα,free] +

(iii)︷ ︸︸ ︷
k−σ:σα

[σ:σα]

− f(X)[σfree]︸ ︷︷ ︸
(iv)

− γ[σfree]︸ ︷︷ ︸
(v)

.
(S10)

The various components of Equation S10 represent a number of chemical in-
teractions, as follows:

15



(i) generation of σfree with translation rate kσ, governed by the concentra-
tion of its mRNA;

(ii) protein-protein interaction (association) representing the loss of σfree
through reversible binding, at rate k+σ:σα

, with the anti-sigma σα,free to
form the complex σ:σα;

(iii) increase in σfree resulting from dissociation of the σ:σα complex, with
dissociation rate k−σ:σα

;
(iv) degradation of σfree via ssrA tag mechanism;
(v) dilution of σfree through cell division.

Anti-sigma
The dynamics of the free anti-sigma, denoted by σα,free, following a similar
process as those of the sigma, are defined in Equation S11 below:

d[σα,free]

dt
=

(i)︷ ︸︸ ︷
kσα[Mσα]−

(ii)︷ ︸︸ ︷
k+σ:σα

[σfree][σα,free] +

(iii)︷ ︸︸ ︷
k−σ:σα

[σ:σα]

− f(X)[σα,free]︸ ︷︷ ︸
(iv)

− γ[σα,free]︸ ︷︷ ︸
(v)

.
(S11)

with
(i) the translation of σα,free from its mRNA, at rate kσα;
(ii) loss of σα,free as it reversibly binds to σfree with rate k+σ:σα

, forming the
σ:σα complex;

(iii) increase in free σα,free from dissociation of σ:σα at rate k−σ:σα
;

(iv) degradation of σα,free via ssrA tag mechanism;
(v) dilution of σα,free through cell division.

The term (iv) was initially specified in a modified form

γFlagf(X)[σα,free] ,

where γFlag < 1 represents a loss of enzymatic degradation efficiency resulting
from the presence of the Flag tag. However preliminary model analysis, via
both manual parameter adjustment and global optimisation, indicated that
the system output did not conform to observed measurements on inclusion of
the factor γFlag. This scaling was therefore not included in the final model.

Sigma:anti-sigma complex
We denote the sigma:anti-sigma complex by σ:σα. Its dynamics consist of
the formation, dissociation, and degradation (independent of the individual
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degradation of its constituents) of the complex, as follows:

d[σ:σα]
dt

= k+σ:σα
[σfree][σα,free]︸ ︷︷ ︸

(i)

− k−σ:σα
[σ:σα]︸ ︷︷ ︸

(ii)

− f(X)[σ:σα]︸ ︷︷ ︸
(iii)

− γ[σ:σα]︸ ︷︷ ︸
(iv)

, (S12)

with
(i) the interaction between σ and σα with binding (association) at rate

k+σ:σα
;

(ii) the dissociation, at rate k−σ:σα
, of the complex σ:σα;

(iii) the enzymatic degradation of sigma/anti-sigma bound in complex;
(iv) dilution of the complex concentration resulting from cell division.

Output
Production of the GFP from its mRNA is straightforward:

d[PGFP]

dt
= kGFP[MGFP]− f(X)[PGFP]− γ[PGFP]. (S13)

The GFP is translated with rate kGFP and diluted at rate γ. Furthermore,
since it is also tagged for degradation, we include the enzymatic degradation
term f(X).
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S3 Model simplification
In order to reduce the number of parameters required for subsequent model
identification and parameter fitting, we simplified the original model. Through
initial simulations, we determined that it was necessary to include the full
dynamics of the complex formation and dissociation as these would be slow
relative to the dynamics of the rest of the system. However, the separate
dynamics of the mRNA and proteins could be merged.

If we consider the dynamics of mRNA transcription as being fast compared
to the translation process, we can extend the quasi-steady-state approxima-
tion to the mRNA (Equations S4–S6) and the protein dynamics (Equations
S10,S11 and S13). We consider mRNA dynamics to effectively be at steady
state so that

d[Mσ]

dt
≈ 0,

d[Mσα]

dt
≈ 0,

d[MGFP]

dt
≈ 0.

Consequently, from Equations S4–S6, we obtain the following relationships for
the mRNA concentrations:

[MGFP] =
1

γMGFP

(
α0,GFP +

α1,GFP[σfree]
nσ

Kσ
nσ + [σfree]nσ

)
, (S14)

[Mσ] =
1

γMσ

(
α0,σ +

α1,σ[A]nA

KA
nA + [A]nA

)
, (S15)

[Mσα] =
1

γMσα

(
α0,σα +

α1,σα[I]
nI

KI
nI + [I]nI

)
. (S16)

We can substitute Equations S14–S16 into the relevant protein dynamics
(Equations S10,S11 and S13) to obtain the following equations for the sim-
plified GFP dynamics

d[PGFP]

dt
=

kGFP
γMGFP

(
α0,GFP +

α1,GFP[σfree]
nσ

Kσ
nσ + [σfree]nσ

)
− f(X)[PGFP]− γPGFP[PGFP].

(S17)

The sigma and anti-sigma can be treated in a similar manner:

d[σfree]

dt
=

kσ
γMσ

(
α0,σ +

α1,σ[A]nA

KA
nA + [A]nA

)
− k+σ:σα

[σfree][σα,free]

+ k−σ:σα
[σ:σα]− f(X)[σfree]− γσ[σfree], (S18)
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d[σα,free]

dt
=

kσα
γMσα

(
α0,σα +

α1,σα[I]
nI

KI
nI + [I]nI

)
− k+σ:σα

[σfree][σα,free]

+ k−σ:σα
[σ:σα]− f(X)[σα,free]− γσα[σα,free]. (S19)

Finally, in order to aid the identification process, we combine parameters
related to transcription, translation, and mRNA degradation by introducing
the variables

χ0,i =
kiα0,i

γMi

χ1,i =
kiα1,i

γMi
,

where the subscript i indicates a particular chemical species (GFP, σ, and σα).
Finally, introducing the lumped parameters χ0,i and χi into Equations S17,
S18 and S19, gives us the final form of the protein dynamics as follows:

d[PGFP]

dt
= χ0,GFP +

χ1,GFP[σfree]
nσ

Kσ
nσ + [σfree]nσ

− f(X)[PGFP]− γPGFP[PGFP], (S20)

d[σfree]

dt
= χ0,σ +

χ1,σ[A]nA

KA
nA + [A]nA

− k+σ:σα
[σfree][σα,free]

+ k−σ:σα
[σ:σα]− f(X)[σfree]− γσ[σfree], (S21)

d[σα,free]

dt
= χ0,σα +

χ1,σα[I]
nI

KI
nI + [I]nI

− k+σ:σα
[σfree][σα,free]

+ k−σ:σα
[σ:σα]− f(X)[σα,free]− γσα[σα,free], (S22)

and complex dynamics

d[σ:σα]
dt

= k+σ:σα
[σfree][σα,free]− k−σ:σα

[σ:σα]− f(X)[σ:σα]− γ[σ:σα]. (S23)

Equations S20–S23 comprise the fully simplified system used for parameter
identification and system simulation.
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S4 Parameter identification
Based on the wide-range characterisation of the reference comparator module
(steady-state data indicated in the main material, Figure 1-B), we performed
an identification to obtain an estimate of our unknown parameters. Matlab
2016b1 was used for all simulations.

The identification of unknown parameters was performed using the particle
swarm optimisation routine built into Matlab. This optimisation algorithm
is a population-based technique, similar to a genetic algorithm, that attempts
to find a globally optimal solution to an optimisation problem, therefore gen-
erating a set of parameters that are the most likely to correspond to the best
possible solution for a given set of problem constraints.

Particle swarm optimization experiments were performed only on the data
obtained at the 4-hour time point, as at this point we determined the experi-
mental system had converged to a steady state response. Prior to optimisation,
the data were filtered using a 2D Gaussian filter (Matlab’s imgaussfit()
routine, with σ = 1.0); the full range of points obtained across all IPTG
and AHL inputs were used for the fitting. The objective function used for
global optimisation computed the sum of squared errors between all model
and data points, where each point’s contribution to the total objective error
was weighted according to the experimentally measured S.E.M. at that point
(Supplementary Table S2).

We performed an exhaustive set of optimization experiments by changing
weights in the objective function, selecting those parameter values that were
observed heuristically to better match the time lapse experimental data.

Final values of optimised parameters obtained from the wide-range char-
acterisation are shown in Table S6.

1MATLAB Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States.
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Parameter Description Baseline value Optimised value Source (baseline)

χ0,i Basal transcription rate for mRNA species i. 54 molecules min-1
12

χ1,i Maximal transcription rate for mRNA species i. 1080 molecules min-1
12

γMi Rate of decay of mRNA species i. 0.54 min-1
12

γMGFP Rate of decay of GFP mRNA. 0.288 min-1
7

Kσ ** Microscopic dissociation constant for σ-regulated promoter. 3000 molecules 1.98×104 molecules *
KI ** Microscopic dissociation constant for IPTG-regulated promoter. 35 µM 90 µM

12

KA Microscopic dissociation constant for AHL-regulated promoter. 10 nM
2

nσ ** Hill coefficient for σ-regulated promoter. 2 1.93
1

nA ** Hill coefficient for AHL-regulated promoter. 2 0.31
1

nI ** Hill coefficient for IPTG-regulated promoter. 2 0.46
1

ki Rate of translation of protein species i from its mRNA. 81 min-1
12

kGFP Total rate of translation and maturation of GFP. 1.797 min-1
7

γPi Rate of dilution of protein species i. 0.0277 min-1 25 min generation time.
γD ** Maximal rate of degradation through ssrA tags. 1080 molecules min-1 701.2 molecules min-1

12

ce ** Half-maximal concentration for kinetics of ssrA tag based degradation. 0.1 molecules 0.01 molecules
12

k+
σ:σα

Rate of complex formation (association of σ and σα) 0.018 min-1molecules-1
12

k−
σ:σα

Rate of complex dissociation (σ:σα into its constituents) 0.00018 min-1
12

Supplementary Table S6: Kinetic parameters of the GRN model and their meaning, along with baseline values (used where
a parameter was not being optimised/fitted to experimental data), the final optimised value after identification procedure
described in Section S4 and sources for the baseline parameter values. N.b., the units for KA and KI are specified as µM
corresponding to the experimental AHL and IPTG input signals used in the study; in contrast Kσ is specified in units of
molecules since this promoter is directly activated by σ, a state variable that is itself specified in units of molecules. All
parameter values are quoted as essentially being ‘per cell’, on average, in our aggregate model i.e., rates implicitly incorporate
an assumed effect of a plasmid copy number ≫ 1.
*The initial value of Kσ was estimated via a preliminary model identification on the data presented in11.
**This subset of the parameters were optimised according to the identification procedure described in Section S4.
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S5 Cellular consortium and comparator model
In order to validate the performance of our signal computation module, as well
as test the fitted parameters (Table S6), we integrated it into a more complex
system. This ‘extended model’ consisted of the proposed signal computation
module acting as a reference comparator in a negative feedback control loop
on a target population of cells, as proposed in5.

The target cells’ GRN was modelled as follows:

d[C]

dt
= χ0,C +

χ1,C [Qt]
nQ

KQ
nQ + [Qt]nQ

− g(X)[C]− γ[C], (S24)

d[D]

dt
= χ0,D +

χ1,DK
nC
C

KnC
C + [C]nC

− g(X)[D]− γ[D], (S25)

where the parameters have the same meaning as those in the comparator GRN
discussed in the previous sections: all χ and γ take the same values as in the
comparator GRN (χ0,i = 54 molecules min-1; χ1,i = 1080 molecules min-1;
γ = 0.0277 min-1), while the target GRN specific parameters nQ = nC =
2, KQ = 9 molecules, and KC = 900 molecules. The nonlinear enzymatic
degradation function g(X) is analogous to f(X) (Equation S8), and is defined
as

g(X) =
γD

ce +X
, (S26)

where in the target GRN
X = [C] + [D], (S27)

and where γD = 701.2 molecules min-1 and ce = 0.01 molecules are defined as
above in S26, with the same values as those used in the comparator GRN.

In the extended model, we consider only a single external input, the IPTG
corresponding to our external reference signal. AHL ([A]) that is sensed by
the reference comparator is generated from the target GRN; likewise, the
reference comparator generates an orthogonal quorum molecule [Q] that is
sensed by the target population. The equations for dynamics of the AHL
molecule [A] concentration, for the comparator GRN (subscript c), the target
GRN (subscript t) and external to the cells (subscript e), are defined as

d
[
Ac

]
dt

= νA
[
PGFP

]
+ η

([
Ae

]
−
[
Ac

])
− γA,i

[
Ac

]
, (S28)

d
[
At

]
dt

= η
([
Ae

]
−
[
At

])
− γA,i

[
At

]
, (S29)

∂
[
Ae

]
∂t

= η
([
Ac

]
−
[
Ae

])
+ η

([
At

]
−
[
Ae

])
− γA,e

[
Ae

]
+Θ∇2[Ae

]
; (S30)
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Note that in this extension of the model, the static AHL input [A] to the
comparator GRN (in Equation S18, for example) is replaced by the dynamical
variable [Ac]. Likewise the dynamics of Q, the signalling pathway from the
comparator to the target, are defined as:

d
[
Qc

]
dt

= η
([
Qe

]
−
[
Qc

])
− γQ,i

[
Qc

]
, (S31)

d
[
Qt

]
dt

= νQ
[
D
]
+ η

([
Qe

]
−
[
Qt

])
− γQ,i

[
Qt

]
, (S32)

∂
[
Qe

]
∂t

= η
([
Qc

]
−
[
Qe

])
+ η

([
Qt

]
−
[
Qe

])
− γQ,e

[
Qe

]
+Θ∇2[Qe

]
. (S33)

Finally, it is crucial to note that Equations (S30) and (S33) are PDEs de-
scribing the spatio-temporal dynamics of the concentrations of A and Q in
the extra-cellular environment. Parameters for the internal and external sig-
nalling molecule dynamics were taken from5, and are summarised in Table S7.
For the solution of the spatial dynamics (PDEs in Equations (S30) and (S33)),
a distance of 20µm was chosen between the points corresponding to compara-
tor and target cells.

Parameter Value Description

νA, νQ 0.05 min−1 Synthesis rate of A and Q

η 2 min−1 Cell wall diffusion rate of A and Q

γA,i, γQ,i 0.4 min−1 Internal degradation of A and Q

γA,e, γQ,e 0.2 min−1 External A and Q degradation

Θ 4.9e− 10 m2 sec−1 external diffusion rate of A and Q

Supplementary Table S7: Parameter values for signalling molecules.
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