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Abstract 
 
Vitamin D insufficiency is common, correctable and influenced by genetic factors, and it has been associated 

with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increased the 

risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low 

vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K 

program and deep imputation data from 39,655 genome-wide genotyped individuals. Meta-analysis of the 

summary statistics from 19 cohorts identified a low-frequency synonymous coding p.Asp120Asp variant 

(rs117913124[A], minor allele frequency=2.5%) in CYP2R1 which conferred a large effect on 25-hydroxyvitamin 

D (25OHD) levels (-0.43 standard deviations of standardized natural log-transformed 25OHD, per A allele, P-

value = 1.5 x10-88). The effect on 25OHD was four-times larger and independent of the effect of a previously 

described common variant near CYP2R1. By analyzing 8,711 individuals we showed that heterozygote carriers 

of this low-frequency variant have an increased risk of vitamin D insufficiency (OR=2.2, 95% CI 1.78-2.78, 

P=1.26 x 10-12). Individuals carrying one copy of this variant had also an increased odds of multiple sclerosis 

(OR=1.4, 95%CI 1.19-1.64, P=2.63 x 10-5) in a sample of 5,927 cases and 5,599 controls. In conclusion, we 

describe a low-frequency coding variant in CYP2R1, which exerts the largest effect upon 25OHD levels 

identified to date in the general European population and implicates vitamin D in the etiology of multiple 

sclerosis.   (235 words) 
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Introduction 
 
Vitamin D insufficiency affects approximately 40% of the general population in developed countries 1. This 

may have important public health consequences, since vitamin D insufficiency has been associated with 

musculoskeletal consequences and several common diseases, such as multiple sclerosis (MIM:126200), 

types 1 and 2 diabetes (MIM:222100 and MIM:125853) and several cancers 2. Further, repletion of vitamin D 

status can be achieved safely and inexpensively. Thus, understanding the determinants of vitamin D 

insufficiency, and their effects, can provide a better understanding of the role of vitamin D in disease 

susceptibility with potentially important public health benefits. 

 

Approximately half of the variability in the concentration of the widely accepted biomarker for vitamin D 

status, 25-hydroxyvitamin D (25OHD), has been attributed to genetic factors in twin and family studies 3; 4. 

Four common genetic variants (minor allele frequency [MAF] >5%) in loci near four genes known to be 

involved in cholesterol synthesis (DHCR7 [MIM;602858]), hydroxylation (CYP2R1 [MIM:608713]), vitamin D 

transport (GC [MIM:139200]) and catabolism (CYP24A1 [MIM:126065]) are strongly associated with 25OHD 

levels, yet explain little of its heritability 5. Low-frequency and rare genetic variants (defined as variants with a 

MAF of ≤5% and ≤1% respectively) have recently been found to have large effects on clinically relevant traits  

6-8 providing an opportunity to better understand the biologic mechanisms influencing disease susceptibility in 

the general population. 

 

Therefore, the principal objective of the present study was to detect low-frequency and rare variants with 

large effects on 25OHD levels, through a large-scale meta-analysis and describe their biological and clinical 

relevance. Similar to an earlier genome-wide association study (GWAS) studying common genetic variation 

(MAF ≥5%) by the SUNLIGHT Consortium 5, we sought to increase understanding of the genetic etiology of 

vitamin D variation within the general population, however, our current study focused on genetic variation 

with a MAF <5%. This has only recently been made possible through whole-genome sequencing and the use 

of improved genotype imputation for low frequency and rare variants, with the recent availability of large 

whole genome sequencing reference panels 9. The second objective of this study was to better understand if 

low-frequency genetic variants with large effects on 25OHD could predict a higher risk of vitamin D 

insufficiency in their carriers, and whether vitamin D intake through diet may interact with such genetic 

factors to prevent, or magnify, vitamin D insufficiency. Finally, we sought to understand whether these 
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genetic determinants of 25OHD levels are implicated in multiple sclerosis, a disease influenced by low 

25OHD levels10.  

 

To do so, we first undertook an association study of whole-genome sequence data and deeply imputed 

genome-wide genotypes to identify novel genetic determinants of vitamin D in 42,274 individuals. We next 

tested if these genetic variants conferred a higher risk of vitamin D insufficiency in 8,711 subjects and 

whether this insufficiency showed effect modification by dietary intake. Last we assessed their effect on 

multiple sclerosis in a separate sample of 5,927 cases and 5,599 controls. 
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Material and Methods 

Cohorts 

All human studies were approved by each respective institutional or national ethics review committees, and 

all participants provided written informed consent. To investigate the role of rare and low-frequency genetic 

variation on 25OHD levels in individuals of European descent, we used whole genome sequencing (WGS) 

data at mean read depth of 6.7x in 2,619 subjects from two cohorts in the UK10K project 11 with available 

25OHD phenotypes (Table 1). We also used imputation reference panels to impute variants that were 

missing, or poorly captured, from previous GWAS in 39,655 subjects (Table 1 and Figure 1). The 

participating individuals were drawn from independent cohorts of individuals of European descent. Detailed 

description of each of the participating studies is provided in Table S1.  

 

25OHD Measurements 

The methods applied to measure 25OHD levels differed among the participating cohorts (Tables S1 and 

S6). The four methods used were tandem mass spectrometry (in BMDCS, MrOS and BPROOF), combined 

high-performance liquid chromatography with mass spectrometry (in ALSPAC, BPROOF, CHS, ULSAM, 

NEO, Generation R), chemiluminescence immunoassay (DiaSorin, Inc, Stillwater, MN) (in TUK, PIVUS, 

FHS, MrOS Malmo, MrOS GBG and GOOD) and an electrochemiluminescence immunoassay (COBAS, 

Roche Diagnostics GmbH) (in RSI, RSII and RSIII). Detection limits for the different methods are provided in 

the Table S6. 

 

Whole-Genome Sequencing, Genotyping and Imputation 

ALSPAC WGS and TUK WGS cohorts had been sequenced at an average read depth of 6.7x through the 

UK10K consortium (www.UK10K.org) using the Illumina HiSeq platform, and aligned to the GRCh37 human 

reference using Burrows-Wheeler Aligner (BWA)3112. Single-nucleotide variant (SNV) calls were completed 

using samtools/bcftools13,  and VQSR14 and GATK were used to recall these variants. The whole genome 

sequencing for the ALSPAC and TwinsUK cohorts has been described in detail in a previous publication 

from our group7. Table S8 summarizes the data generation method for sequencing-based cohorts. 

 

Participating studies separately genotyped samples and imputed them to WGS-based reference panels.  The 

most recent imputation panels, such as the UK10K and 1000Genomes Project (v3) combined panel, which in 

total contained 7,562 haplotypes from the  UK10K Project and 2,184 haplotypes from the 1000 Genomes 

Project 9, and the Haplotype Reference Consortium (HRC) panel, with 64,976 haplotypes15, enabled more 
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accurate imputation of low frequency variants, when compared to the UK10K or the 1000Genomes reference 

panel alone9. Specifically, 11 out of the 17 participating cohorts were imputed to the UK10K and 1000 

Genomes reference panel (total number of imputed individuals included in the meta-analysis N=25,589). 

Three of the participating cohorts were imputed using the HRC panel (total number of imputed individuals 

N=5,717). Finally, 2 cohorts were imputed to the 1000Genomes panel (N=7,536), and 1 cohort was imputed 

to the UK10K panel (N=863). (Table S1). Details on genotyping methods and imputation for the 17 

participating cohorts are presented in Table S6. Info scores for the imputed SNVs per participating cohort 

are presented in Table S7. To assess the quality of imputation, we tested the non-reference discordance 

rate for the low frequency genome-wide significant SNVs and found this to be 0% (Table S9).  

 

Association Testing for 25OHD levels and Meta-analysis 

A GWAS was conducted separately by each cohort using an additive genetic model for 25OHD levels. 

Because 25OHD concentrations were measured using different methods, log-transformed 25OHD levels 

were standardized to z-scores, after being adjusted for age, sex, BMI, and season of measurement. 

Specifically, the phenotype for each GWAS study was prepared according to the following steps:1) 25OHD 

levels were log-transformed to ensure normality 2) Linear regression models were used to generate cohort-

specific residuals of log transformed 25OHD levels adjusted for covariates (age, sex, BMI and season). 

Season was treated as a non-ordinal categorical variable (summer: July to September, fall: October to 

December, winter: January to March, and spring: April to June). 3) The mean of log transformed 25OHD 

levels was added to the residuals to create the adjusted 25OHD phenotype. 4) The above phenotype was 

then normalized within each cohort (mean of zero with SD of one) to make the phenotype consistent across 

cohorts, since 25OHD levels have been measured in different cohorts in our consortium using different 

methods. 5) Finally, outliers beyond 5 standard deviations were removed from step (4).  

 

For comparison purposes, we computed the average 25OHD levels, adjusted for age, sex, BMI and season 

of measurement, in one cohort of our meta-analysis (TUK WGS) in carriers and non-carriers of the lead 

SNV(s). 

 

The software used by each cohort to perform a GWAS is listed in Table S1. Single variant tests were 

undertaken for variants with MAF>0.1%, using an additive effect of the minor allele at each variant in each 

cohort. The type of software employed for single variant testing for each cohort is shown in Table S1. 
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Studies with related individuals used software that accounted for relatedness. Cohort-specific genomic 

inflation factors (lambdas) are also shown in Table S1 (the mean lambda was 1.015).  

 

We then meta-analyzed association results from all discovery cohorts (N total = 42,274).  This stage included 

validation of results file format, filtering files by the above QC criteria, comparison of trait distributions among 

different studies, identification of potential biases (large betas and/or standard errors, inconsistent effect 

allele frequencies, extreme lambdas). Meta-analysis quality control of the GWAS data included the following 

SNV-level exclusion criteria: i) Info score <0.4, ii) HWE P-value <10-6 iii) Missingness >0.05, and iv) MAF 

<0.5%. Alignment of the SNVs across studies was done using the chromosome and position information for 

each variant according to genome build hg19. SNVs in the X chromosome were not included in the meta-

analysis.  Fixed–effects meta-analysis was performed using the software package GWAMA16 adjusting for 

genomic control. We tested bi-allelic SNVs with MAF ≥ 0.5% for association, declaring genome-wide 

statistical significance at P ≤ 1.2 × 10−8 for variants present in more than one study. This stringent p-value 

threshold was set to adjust for all independent SNVs above the MAF threshold of 0.5%.17  

 

Conditional analysis was undertaken for the four previously described lead vitamin D SNVs from the 

SUNLIGHT consortium using the GCTA package 18. This method uses an approximate conditional analysis 

approach from summary-level statistics from the meta-analysis and linkage disequilibrium corrections 

between SNVs estimated from a reference sample. We used UK10K individuals as the reference sample to 

calculate the linkage disequilibrium information of SNVs. The associated regions flanking within 400kb of the 

top SNVs from SUNLIGHT were extracted and the conditional analyses were conducted within these 

regions. Conditional analyses of individual variants presented in Table 2 and Table S5 were conducted 

using GCTA v 0.93.9 using default parameters.  

 

 Haplotype block analyses were used for the candidate variants of interest by deriving phased haplotypes 

from 1013 individuals from the TUK WGS cohort using a custom R package. 

 

Effects on Vitamin D insufficiency 

To investigate the effect of genome-wide significant SNVs on vitamin D insufficiency (defined as 25OHD 

levels below 50 nmol/L), we used data from 4 cohorts: TUK Imputed, TUK WGS, BPROOF and MrOS 

(ntotal=8,711). Logistic regression of this binary phenotype was performed against the SNVs, adjusting for the 



 10 

following covariates: age, sex, BMI, and season of measurement. Meta-analysis of cohort-level summary 

statistics was performed in R 19 using the epitools 20 and metafor packages21. 

 

Interaction analysis with Vitamin D intake 

We undertook an interaction analysis of our candidate SNV(s) with vitamin D dietary intake (continuous and 

tertiles) in 9,224 individuals from five of the cohorts participating in our discovery phase (Framingham, 

PIVUS, ULSAM, BPROOF and RSIII). A detailed description of the method to capture vitamin D intake in 

each one of the participating cohorts appears in Table S6. Linear regression was conducted in each of these 

studies under an additive genetic model. The following variables and co-variables were included in the 

model: log-transformed serum 25OHD as the dependent variable; SNV genotype (coded as 0, 1 or 2) as an 

independent variable; SNV (genotype)* dietary vitamin D intake (continuous or tertiles respectively) as an 

interaction term; age, sex, BMI, season of 25OHD measurement, dietary vitamin D intake (continuous or 

tertiles), supplemented vitamin D (yes/no), and total energy intake as covariates. The results from the 5 

studies were meta-analyzed using a fixed-effects model using the metafor tool of the R statistical package. 

 

Effects on Multiple Sclerosis 

We tested the effect of the genome-wide significant SNVs on the risk of multiple sclerosis in 5,927 cases and 

5,599 controls, assuming an additive genetic model. Controls were obtained from the UK Biobank 22  by 

random selection of participants without multiple sclerosis. The cases were obtained from UK Biobank22, 

previously published MS GWAS23; 24  and newly genotyped UK patients. Prior to genotype imputation of the 

genotyped cases, numerous quality control criteria were applied to ensure unbiased genotype calls between 

cohorts. These included retaining only SNVs with MAF > 1% and excluding SNVs or samples with high 

missingness 25. Further, samples were assessed for population stratification using EIGENSTRAT 26; 27 and 

outliers were removed.  Genotype data was then imputed using the Sanger Imputation Service15  with the 

combined UK10K and 1000 Genomes Phase 3 reference panels9; 28, the same reference panel used for the 

UK Biobank controls. Genotype data was phased using EAGLE229 and imputed using PBWT30.  Association 

testing was undertaken using SNPTEST31  on the combined case/control dataset, testing the additive effect 

of each allele on multiple sclerosis status, and including the top 10 principal components from EIGENSTRAT 

26; 27  to adjust for population stratification and batch effects. 

 

Results 
 
GWAS 
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After strict quality control, the genomic inflation factor for the meta-analysis of 19 GWAS studies was 0.99, 

suggesting lack of bias due to population stratification (Figure 2). Through meta-analysis of 11,026,511 

sequenced and imputed variants from our discovery cohorts (Table 1), we identified a signal at the 

chromosome 11p.15.2 locus, harboring variants associated with 25OHD levels (lead low-frequency SNV 

p.Asp120Asp [rs117913124(A)], MAF = 2.5%, allelic effect size = -0.43 standard deviations of the 

standardized log-transformed 25OHD levels [SD], P = 1.5×10−88, Figure 3 and Table 2). The direction of 

effect was consistent across all discovery cohorts (Table 3 and Figure 3A) and the mean imputation 

information score for the imputed studies was 0.97. This low-frequency synonymous coding variant is in exon 

4 of the CYP2R1 and is ~14 kb from the previously identified common CYP2R1 variant, rs10741657 (r2 

between these two SNVs= 0.03) (Figure 4). To our knowledge, the rs117913124 SNV has not previously 

been associated with any vitamin D-related traits in humans.  

 

A comparison of the average 25OHD levels, adjusted for age, sex, BMI and season of measurement, in non-

carriers and heterozygote carriers of the A allele of rs117913124 in the TUK WGS appears in Figure S1. 

The average 25OHD levels, adjusted for age, sex, BMI and season of measurement were computed in 542 

individuals from the Twins UK WGS cohort, among which 510 were no carriers and 32 were heterozygote 

carriers of the A allele of rs117913124 (no homozygote carriers present in this cohort). After removing 

outliers (adjusted 25OHD levels below and above 3 SD from the mean), we included in our analysis 449 non-

carriers and 30 heterozygote carriers (for a total of 479 individuals). A linear regression model with the 

adjusted 25OHD levels as the dependent variable and the dose of the “A” allele of rs117913124 (numeric 

factor, 1 or 0) as the independent variable demonstrated a 8.3 nmol/L decrease in the adjusted 25OHD 

levels per “A” allele. The mean adjusted 25OHD levels were 64.3 nmol/L in non-carriers vs 56.0 nmol/L in 

heterozygote carriers.  

 

Two-way conditional analysis between the CYP2R1 common (rs10741657) and low-frequency 

(rs117913124) variants revealed that the two association signals are largely independent. Specifically, after 

conditioning on rs10741657, rs117913124 remained strongly associated with 25OHD level (Pcond = 2.4x10-

78); after conditioning on rs11791324, the effect of rs10741657 on 25OHD level remained significant (Pcond= 

4.0 x10-33 versus Ppre-cond= 8.8 X 10-45) (Table 2 and Table S5). Further, no other low frequency variant in the 

region remained significant when conditioning on rs117913124 (Table 2). To further disentangle the role of 

rs117913124 from rs10741657 on 25OHD levels, we undertook a haplotype analysis based on WGS data 

from 3,781 individuals from the TUK WGS and ALSPAC WGS cohorts. We found that the 25OHD 
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decreasing allele A of rs117913124 was always transmitted in the same haplotype block with the 25OHD 

decreasing allele G of the common CYP2R1 variant rs10741657. By using 25OHD data from the TUK WGS 

cohort, we compared the 25OHD levels among carriers of the various haplotype blocks. We observed 

evidence of decrease in the 25OHD levels in carriers of the A allele of the rs117913124 compared to non-

carriers independent of the presence of the effect allele G of the common CYP2R1 variant (Table 4).
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No other low-frequency or rare variants were identified in the three previously described vitamin D-related 

loci at DHCR7, GC and CYP24A1. The mean effect size of the four previously reported common genome-

wide significant SNVs (MAF ≥ 5%) from the SUNLIGHT consortium was -0.13 SD and the largest effect size 

was -0.25 SD (for the GC variant) in our meta-analysis (Table S3 and Figure 3B). The effect size of 

rs10741657(G), the known common CYP2R1 variant, was -0.09 SD. Hence, the observed effect size of 

rs117913124 is 3-fold larger than the above mean, 4-fold larger that of the common CYP2R1 variant and 

almost twice that of the largest previously reported effect of the GC variant. Last, the percentage of the 

variance of the 25OHD phenotype explained by the low-frequency CYP2R1 variant was more than double 

than the percentage of the variance explained by the CYP2R1 common variant (0.9% vs 0.4%). 

 

We also identified 18 genome-wide significant low-frequency and rare SNVs on the same chromosome 11 

region as rs117914124 located in the neighboring PDE3B (MIM:602047) (Table 2, Table S4 and Figure 

4B). Signals from these SNVs in PDE3B were independent of the common variant at CYP2R1 (Table 2). We 

then created haplotype blocks with rs117913124 and SNVs at PDE3B based on haplotype information from 

the 3,781 individuals from the TUK WGS and ALSPAC WGS cohorts (Table S2). We found that the 25OHD 

decreasing allele (A) of the rs117913124 was always inherited with the 25OHD decreasing allele (A) of its 

perfect proxy rs116970203 (r2=1). Therefore, rs116970203 is not likely to have a distinct effect from 

rs117913124 on 25OHD levels. On the other hand, the 25OHD decreasing alleles of the remaining four low-

frequency variants (all having a MAF of approximately 1.4%) were not always inherited in the same 

haplotype block as the rs117913124 and rs116970203 and were in moderate linkage disequilibrium with the 

rs117913124 (all r2< 0.6, Figure 4B and Figure 4C). Each of the four alleles is in almost perfect linkage 

disequilibrium with the remaining three (all r2 >0.96). This implied that these four SNVs might influence 

25OHD levels independently of the rs117913124. Nevertheless, as mentioned above, when conditioning on 

the lead low-frequency CYP2R1 SNV rs117913124, the P-values of the 4 PDE3B SNVs became non-

significant and their betas decreased substantially (Table 2), demonstrating that they likely do not represent 

an independent signal at the chromosome 11 locus. 

 

rs117913124 and risk of vitamin D insufficiency 

To further investigate the clinical significance of the low-frequency CYP2R1 variant rs117913124, we tested 

its effect on a binary outcome for vitamin D insufficiency (defined as 25OHD levels < 50 nmol/L) in 8,711 

individuals from 4 studies (TUK WGS, TUK IMP, BPROOF and MROS). rs117913124 was strongly 

associated with an increased risk of vitamin D insufficiency (OR = 2.20, 95% CI 1.8-2.8, P =1.2 x 10-12) 
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(Figure 5), after control for relevant covariates as described in the Methods section.  

 

Common 25OHD-associated SNVs 

We report two additional loci associated with 25OHD levels (Table 5). Variants leading these associations 

were common and exerted a rather small effect on 25OHD: first, a variant in chromosome 12 (rs3819817[C], 

intronic to HAL [MIM:609457]), with a MAF of 45%, a beta of 0.04 and a P-value of 3.2 x 10-10. Second, a 

variant in chromosome 14 (rs2277458[G], intronic to GEMIN2 [MIM:602595]), with a MAF of 21%, a beta of -

0.05 and a P-value of 6.0 x 10-9. Both variants were present in all 19 studies, and the direction of the effect 

was the same among the 19 studies (Figure 6). Neither the HAL nor the GEMIN2 loci are previously known 

to be associated with 25OHD levels. Of note, neither variant was present in the HapMap imputation 

reference used in the SUNLIGHT study. 

 

Interaction analysis 

CYP2R1 encodes the enzyme responsible for 25-hydroxylation of vitamin D in the liver 32, a necessary step 

in the conversion of dietary vitamin D and vitamin D oral supplements to the active metabolite, 1,25 

dihydroxy-vitamin D. Therefore, we hypothesized that individuals heterozygous or homozygous for 

rs117913124 in CYP2R1 would not show a response in their 25OHD levels to vitamin D intake compared to 

non-carriers. In other words, we expected carriers of the effect allele of rs117913124 to have steadily lower 

25OHD levels, independently of their vitamin D intake. To investigate this hypothesis, we tested the 

presence of interaction of rs117913124 with vitamin D dietary intake (continuous values and tertiles) on 

25OHD levels in 9,224 individuals from 5 studies (Figure S2). We found no interaction between 

rs117913124 and dietary vitamin D intake (beta = -0.0002; P-value for interaction = 0.41 for continuous 

vitamin D intake and beta = 0.012;  P-value = 0.60 for tertiles of vitamin D intake). Since the two common 

25OHD-associated SNVs are located in genes (HAL and GEMIN2) with no known role in the processing of 

dietary vitamin D, we found no biological rationale for undertaking a gene-diet interaction analysis for these 

variants. 

 

25OHD-assosiated variants and risk of multiple sclerosis 

We tested whether the CYP2R1 low-frequency variant rs117913124 and the common variants rsrs3819817 

and rs2277458 in HAL and GEMIN2, respectively, influenced the risk of multiple sclerosis. In a sample of 

5,927 multiple sclerosis cases and 5,599 controls, we found that the 25OHD decreasing allele at 

rs117913124[A], was associated with an increased odds of multiple sclerosis: OR = 1.40 (95%CI: 1.19-1.64); 
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P-value = 2.6 x 10-5. By way of comparison, the OR of multiple sclerosis for the common CYP2R1 variant 

was 1.03 (95%CI: 0.97-1.08); P-value 0.03 in the same multiple sclerosis study, and has previously been 

reported to be 1.05 (95%CI: 1.02-1.09); P-value 0.004 in a separate study 33. Thus, the effect per allele of 

rs117913124 on multiple sclerosis was 12.4-fold larger than that attributed to the already known common 

variant at CYP2R1. With regards to the two common SNVs, the 25OHD decreasing allele [T] at the HAL 

variant rs3819817 was not clearly associated with risk of multiple sclerosis, however there was a trend in the 

expected direction: OR = 1.05 (95%CI: 1.00-1.11); P-value = 0.07.  We found no association between the 

25OHD decreasing allele [G] at the GEMIN2 variant rs2277458 and risk of multiple sclerosis: OR = 1.03 

(95%CI: 0.96-1.11); P-value = 0.34. 
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Discussion 
 

Through the largest meta-analysis of genome-wide association studies for 25OHD levels in European 

populations to date, we have identified a low-frequency, synonymous coding genetic variant of large effect 

that strongly associates with 25OHD levels. This variant has an effect size four-fold larger than that 

described for the common variant in the same gene (CYP2R1) and is associated with two-fold increase in 

risk of vitamin D insufficiency and a 40% increase in the odds of developing multiple sclerosis. The biologic 

plausibility of these findings is supported by the fact that the low-frequency variant is located in CYP2R1, the 

major hepatic 25-hydroxylase for vitamin D 32. These findings are of clinical relevance since 5% of the 

general European population carry this variant in either the homozygous or heterozygous state, and it is 

associated with a clinically relevant increase in the risk of multiple sclerosis.   

 

Our study was enabled by large imputation reference panels (UK10K/1000 Genomes and HRC), which offer 

at least 10-fold more European samples than the 1000 Genomes reference panel alone. We did not identify 

genome-wide significant variants of large effect on 25OHD in novel genes in Europeans, although we found 

variants with smaller effects in two loci not previously known to be associated to 25OHD. Yet we did identify 

low-frequency variants in a known vitamin D related-gene with much larger effects than the previously 

described common variants.  

 

CYP2R1 encodes the enzyme responsible for 25-hydroxylation of vitamin D, and is one of the two main 

enzymes responsible for vitamin D hepatic metabolism 32 (Figure 7). Rare mutations in CYP2R1 have 

already been described to cause rickets (MIM: 27744) 32; 34. Due to the important role of CYP2R1 in the 

conversion of dietary vitamin D and vitamin D oral supplements to the active form of vitamin D, we 

hypothesized that carriers of the low-frequency CYP2R1 variant might respond poorly to vitamin D 

replacement therapy. We tested this hypothesis by undertaking an interaction analysis between the CYP2R1 

low frequency variant and dietary vitamin D intake, which showed no clear interaction. However, we note that 

gene by environment interaction studies are generally underpowered, measurement error in dietary data is 

common, and this interaction was further limited by time differences between dietary intake assessment and 

measurement of 25OHD levels. Therefore, whether this genetic variant influences 25OHD response to 

vitamin D administration requires further study. 
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Although the aim of the present study was to describe variants of low MAF and large effect on 25OHD, we 

report two common genetic variants of small effect size on chromosome 12 (HAL gene) and chromosome 14 

(GEMIN2 gene) that reached genome-wide level significance in our meta-analysis. Although there is no 

existing evidence of implication of GEMIN2 in vitamin D related physiologic pathways, HAL is expressed in 

the skin and is involved in formation of urocanic acid, a “natural sunscreen” 35; 36. Thus, this could constitute a 

plausible pathophysiologic mechanism implicating HAL in vitamin D synthesis in the skin. Additional 

functional follow-up of the signals in chromosomes 12 and 14 is needed to characterize the genes and/or 

mechanisms underlying these associations.   

 

Our findings may have clinical relevance for several reasons: First, individuals carrying at least one copy of 

the low-frequency CYP2R1 variant have lowered levels of 25OHD by a clinically relevant degree. 

Specifically, the risk of vitamin D insufficiency is doubled in these individuals. Second, their risk of multiple 

sclerosis is also increased in accordance with previous evidence supporting a causal role for vitamin D in the 

risk of multiple sclerosis10. Third, these findings affect ~5% of individuals of European descent. And last, 

rs117913124 could be used as an additional genetic predictor of low 25OHD levels, along with the previously 

identified common vitamin D-related variants, in Mendelian randomization studies investigating the causal 

role of low vitamin D levels in human disease. 

 

Our study also has its limitations. First, although the scope of our study was detection of low-frequency and 

rare variants, we opted to include in our meta-analysis two whole genome sequencing studies with a 

relatively low read depth of 6.7x, as well as three studies imputed to older imputation panels (1000Genomes 

and UK10K). These studies have a limited capacity to capture very rare variants, which might explain why 

we failed to identify such associations. The gene-diet interaction analysis, as mentioned above, may have 

lacked statistical power, in addition to the limitations arising from the time-difference between dietary vitamin 

D intake assessments and 25OHD measurements. Since our analysis is restricted to populations of 

European ancestry, we cannot make any assumptions concerning the effect of rs117913124 in non-

European populations. Nonetheless, based on the 1000Genomes reference, this variant is rare in Africans 

(MAF = 0.3%) and has not been described in East Asians (MAF = 0%). Therefore, large sample sizes of 

these populations will be required to describe with any certainty the effect of this variant on 25OHD level in 

these populations.  Finally, in the absence of functional experiments showing the exact function of the 

rs117913124 on CYP2R1 and given that this synonymous polymorphism does not affect protein sequence, 

we cannot unequivocally confirm that this low-frequency variant is causal, however, given that this is a 
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coding variant in a well-documented 25OHD-associated gene, it seems most likely that it exerts its effect on 

CYP2R1. 

 

In conclusion, our findings demonstrate the utility of whole-genome sequencing-based discovery and deep 

imputation to enable the characterization of genetic associations, offering an improved understanding of the 

pathophysiology of vitamin D, an enriched set of genetic predictors of 25OHD levels for future study, and 

enabling the identification of groups at increased risk for vitamin D insufficiency and multiple sclerosis. 
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Figure legends 

 

Figure 1: Schematic of the discovery single variant meta-analysis 
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Figure 2: Discovery single-variant meta-analysis. 

Legend: A. Quantile-quantile plot for the single SNV meta-analysis. B. Manhattan plot of the meta-analysis. 

The plot depicts variants with MAF > 0.5% across the 22 autosomes against the –log10 p-value from the 

meta-analysis of 19 cohorts, which included 42,274 individuals. 

 

Figure 3: Forest Plot by Cohort for rs117913124 and Forest Plot of the rs117913124 and the 

Previously Described Common 25OHD-related Variants from Discovery Meta-analysis 

Legend: A. Forest plot of estimates from all 19 studies for the low-frequency CYP2R1 variant rs117913124 

B. Forest-plot of the effect of the four common SUNLIGHT variants and of the CYP2R1 low-frequency 

variant rs117913124 on log-transformed 25OHD levels. 

 

Figure 4: Association Signals from 11p.15.2   

Legend: A. Snapshot from the UCSC genome-browser including the top low-frequency SNVs (see Table 2) 

and the lead common variant rs10741657 at the CYP2R1 locus. The position of rs117913124 is highlighted 

in light blue. B. Regional disequilibrium plot showing the rs117913124 (purple dot), its perfect proxy 

rs11670203 (red dot) and the other genome-wide significant SNVs in the same locus (blue and green dots). 

The plot depicts SNVs within 1 Mb of a locus’ lead SNV (x-axis) and their associated meta-analysis p value 

(-log10) (for more details see Table S10). SNVs are color coded according to r2 with the lead SNV (labelled, 

r2 calculated from UK10K whole genome sequencing dataset). Recombination rate (blue line), and the 

position of genes, their exons and the direction of transcription are also displayed (below plot). C. Linkage 

disequilibrium plot indicating the r2 values between the SNVs of Table 2 (top low-frequency variants) and 

between these low-frequency SNVs and the lead common variant (rs107416570) at the same CYP2R1 locus 

(r2 calculated from the 1000 Genomes dataset). 

 

Figure 5: Effect of the rs117913124 on Vitamin D Insufficiency 

Legend: Forest-plot of the effect of the low-frequency CYP2R1 variant rs117913124 on vitamin D 

insufficiency in 4 studies.  

 

Figure 6: Association Signals from Chromosomes 12 and 14 
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Legend: Forest plots with A. estimates for the chromosome 12 common variant rs3819817 and B. estimates 

for the chromosome 14 common variant rs2277458 from all 19 studies of the meta-analysis where both 

variants were present. 

 

Figure 7: Schematic of the Vitamin D Metabolic Pathway  

Legend: UVB: ultraviolet B rays. 
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Table 1. Participating cohorts and number of DNA samples per cohort. WGS: Whole-Genome 

Sequenced 

 

Study Acronym* Imputed WGS TOTAL 

ALSPAC 3,679 1,606   

TUK  1,919 1,013   

Generation R 1,442     

BPROOF 2,514     

FHS 5,402     

MrOS 3,265     

RSI 3,320     

RSII 2,022     

RSIII 2,913     

CHS 1,792     

BMDCS 863     

MrOS GBG 945     

GOOD 921     

MrOS Malmo 893     

PIVUS 943     

ULSAM 1,095     

NEO 5,727     

TOTAL 39,655 2,619 42,274 

 

*For full names of the studies see Table S6 
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Table 2: Association results for genome-wide significant low-frequency variants from discovery 25OHD meta-analysis, before and after conditioning on 1 

the lead common CYP2R1 SNP, rs10741657, and the lead low-frequency CYP2R1 variant, rs117913124. 2 

SNV Chr Position EA* EAF# 
Candidate 

Gene 
Function Beta$ P-value 

 

Beta$  P -value 

 

Beta$ 
P-

value 
N 

                  
 Conditional on 

rs10741657 

 Conditional on 
rs117913124 

  

rs117913124 

11 
  
  
  
  
  

14900931 A 0.025 CYP2R1 
exon 4 

(synonymous 
codon) 

-0.43 1.5 x10-88 
 

-0.39 2.4 x10-78 
 

NA NA 41336 

rs116970203 14876718 A 0.025 CYP2R1 
(nearest 

gene: 
PDE3B) 

  
  
  

Intron 11 
variant 

-0.43 2.2 x10-90 
 

-0.40 3.3 x10-80 
 

NA NA 41138 

rs117361591 14861957 T 0.014 
Intron 11 
variant 

-0.44 9.1 x10-51 
 

-0.40 2.2 x10-44 
 

-0.05 0.017 38286 

rs117621176 14861320 G 0.014 
Intron 11 
variant 

-0.44 8.7 x10-51 
 

-0.40 2.1 x10-44 
 

-0.05 0.016 38273 

rs142830933 14838760 C 0.014 
Intron 5 
variant 

-0.44 1.4 x10-48 
 

-0.40 1.7 x10-42 
 

-0.05 0.03 37541 

rs117672174 14746404 T 0.014   
Intron 1 
variant 

-0.43 2.8 x10-45 
 

-0.39 2.9 x10-39 
 

-0.04 0.062 37209 

*Effect allele is the 25OHD decreasing allele 3 

# Effect allele frequency 4 

$ Betas represent changes in standard deviations of the standardized log-transformed 25OHD levels5 
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Table 3. Summary statistics results for the CYP2R1 low-frequency variant, rs117913124, from 19 studies.  

 

STUDY 
25OHD 

measurement 
method# 

N 
Effect Allele A* 

Frequency  
Beta$ 

Standard 
Error 

P-value 
Information 

score 

ALSPAC Imputed 
MS 

3675 0.028 -0.59 0.07 3.43x10-18 0.99 

ALSPAC WGS 
MS 

1606 0.028 -0.65 0.11 8.23x10-10 NA 

BPROOF 
MS 

2512 0.027 -0.4 0.09 4.99x10-6 0.97 

BMDCS 
MS 

863 0.019 -0.11 0.06 0.058 0.98 

CHS 
MS 

1581 0.022 -0.55 0.11 5.15x10-7 0.88 

FHS 
CLIA 

5402 0.021 -0.45 0.07 2.32x10-10 0.97 

GenerationR 
MS 

1442 0.033 -0.66 0.1 1.78x10-6 1 

GOOD 
CLIA 

921 0.028 -0.14 0.14 0.31 0.96 

MrOS 
MS 

3265 0.018 -0.76 0.09 5.63x10-16 0.96 

MrOS Malmo 
CLIA 

893 0.033 -0.33 0.14 0.016 0.94 

MrOS GBG 
CLIA 

945 0.026 -0.61 0.14 7.87x10-6 1 

NEO 
MS 

5727 0.025 -0.54 0.06 2.73x10-19 1 

PIVUS 
CLIA 

943 0.028 -0.66 0.14 2.56x10-6 0.99 

RSI 
ECLIA 

3320 0.025 -0.19 0.08 0.019 0.98 

RSII 
ECLIA 

2022 0.033 -0.37 0.09 2.38x10-5 0.99 

RSIII 
ECLIA 

2913 0.027 -0.51 0.08 4.61x10-10 0.98 

TUK Imputed 
CLIA 

1919 0.021 -0.1 0.11 0.35 0.98 

TUK WGS 
CLIA 

1013 0.025 -0.39 0.14 0.006 NA 

ULSAM 
MS 

1095 0.025 -0.33 0.14 0.02 1 

*Effect allele is the 25OHD decreasing allele 

# MS: mass spectrometry, CLIA: chemiluminescence immunoassay, ECLIA: electrochemiluminescence immunoassay 

$ Betas represent changes in standard deviations of the standardized log-transformed 25OHD levels
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Table 4. Effect of different haplotype combinations of the low frequency (rs117913124) and the common (rs10741657) CYP2R1 variants on 25OHD levels. 

Results are based on individuals from the Twins UK Whole Genome Sequenced cohort (the first allele in each block is the rs117913124, the second allele is the 

rs10741657 for both chromatids). The two “AG” blocks in bold contain the 25OHD decreasing allele (A) of the low-frequency variant, which is always inherited with 

the 25OHD decreasing allele (G) of the common variant. 

 

Haplotype 
Beta$ P-value N 

rare/common*   rare/common* 

GA                      GA -0.02 0.79 156 

AG                       GA -0.49 0.02 23 

AG                       GG -0.3 0.13 27 

GA                      GG 0.01 0.87 477 

GG                       GG 0.05 0.58 330 

* The first allele in each chromatid corresponds to the low-frequency variant rs117913124; the second allele corresponds to the common variant 

rs10741657. 25OHD decreasing alleles appear in bold for both variants. 

$ Betas represent changes in standard deviations of the standardized log-transformed 25OHD levels
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Table 5. Main findings of the GWAS meta-analysis 

 

SNP Chr Candidate Gene Effect allele Effect allele frequency Beta$ P-value N 

rs117913124 11 CYP2R1 A 0.025 -0.43 1.5 x10-88 41,336 

rs3819817 12 HAL 
C 

0.45 0.04 3.2 x10
-10

 41,071 

rs2277458 14 GEMIN2 
G 

0.21 -0.05 6.0 x10
-09

 39,746 

$ Betas represent changes in standard deviations of the standardized log-transformed 25OHD levels, while 

controlling for age, sex, BMI and season of measurement   


