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Summary. Many mechanisms have been proposed for the termination of regenerative calcium-

induced calcium release (CICR). Robust termination of CICR by ‘induction decay’ is made possible 

by significant local depletion of the sarcoplasmic reticulum (albeit underestimated in imaging 

experiments) decreasing RyR (re)activation.  
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Introduction 

Cardiac excitation-contraction (E-C) coupling is a transduction cascade that results in muscle 

contraction and relaxation. In ventricular myocytes, the arrival of an action potential activates 

sarcolemmal L-type Ca2+ channels (LCCs) and the subsequent inward Ca2+ current (ICa), in turn, 

activates the Ca2+ release unit (CRU), which incorporates several ryanodine receptors (RyRs) in the 

sarcoplasmic reticulum (SR) membrane. Activation of a CRU causes more Ca2+ to be released into the 

local cytoplasm in a process called Ca2+-induced Ca2+ release (CICR) (Fabiato, 1983), and is observed 

as a Ca2+ spark (Cannell et al., 1994). The spatio-temporal summation of these elementary events 

forms the Ca2+ transient that enables cross-bridge cycling. The rise in cytosolic Ca2+ is short-lived, as 

removal mechanisms such as the Na+-Ca2+ exchange (NCX) and SR Ca2+ ATPase (SERCA) restore 

Ca2+ back to resting conditions -once SR Ca2+ release stops by one or more mechanism(s) whose 

relative contributions remain unclear (Stern and Cheng, 2004; Hinch, 2004).  

 

CICR as an amplifier needs local control 

CICR amplifies a small trigger Ca2+ flux by about an order of magnitude by inducing Ca2+ 

release from the SR. While the trigger is provided (mostly) by L-type Ca2+ channel gating during the 

action potential, the SR Ca2+ release is mediated by Ca2+-dependent gating of RyRs that are the SR 

Ca2+ release channels. As soon as it became possible to measure Ca2+ levels inside voltage-clamped 

cardiac cells it became apparent that regenerative CICR never escaped tight control by the timing and 

amplitude of the trigger Ca2+ influx, although the RyRs should been regeneratively activated by their 

own Ca2+ release (as both sources feed the adjacent cytoplasm or the “common pool”) (Cannell et al., 

1987). Stern’s mathematical analysis showed that common pool CICR models should operate in an 

“all or none” fashion at realistic flux amplification levels (Stern, 1992) which was clearly at odds with 

the graded SR Ca2+ release seen in numerous single cell voltage clamp experiments (e.g. (Cannell et 

al., 1987; Barcenas-Ruiz and Wier, 1987). The solution to this problem was provided by “local 

control” (Stern, 1992; Cannell et al., 1995; Stern et al., 1999) wherein small groups of RyRs and L-

type Ca2+ channels form an autonomous calcium release unit (CRU) in the micro-anatomical dyad 



structure (Franzini-Armstrong et al., 1998). The physical separation of CRUs by ~700 nm prevents 

cell-wide regenerative behavior and gives rise to microscopic packets of Ca2+ release which were first 

detected in the form of “Ca2+ sparks” (Cheng et al., 1993) . Thus activation of one or a small number 

of RyRs within a CRU leads rapid recruitment of the adjacent RyRs within that CRU to produce a 

Ca2+ spark, but RyRs in adjacent CRUs are not normally activated because of the diffusion and 

buffering of Ca2+ outside the source dyad. Graded cell-wide Ca2+ release is then provided by the time- 

and trigger-dependent recruitment of Ca2+ sparks whose amplitude depends on SR Ca2+ levels 

(Cannell et al., 1995; Soeller and Cannell, 2004). 

However, the regenerative problem inherent in CICR was not solved at the scale of the CRU 

by the discovery of Ca2+ sparks. Once a CRU is activated, a Ca2+ spark should still progress 

independently of the trigger due to regenerative CICR within the dyad junction itself (Cannell et al., 

1995). Put another way, the dyad space should (essentially) recapitulate the original common pool 

problem. Mathematical analysis has shown that most proposed mechanisms can contribute to stability 

(Hinch, 2004) but, the question is: which is most important or key? 

To date, the mechanism(s) responsible for the control of SR release termination remain 

unclear, although evidence for several mechanisms that may contribute to RyR closure have been 

obtained: (1) Time-dependent inactivation and/or “adaptation” of the RyR channel (Györke and Fill, 

1993; Zahradnikova and Zahradnik, 1996; Velez et al., 1997). (2) Stochastic attrition, which describes 

the probabilistic event that all (n) RyR channels within a CRU close at the same time to allow the 

local Ca2+ to dissipate and thus terminate regenerative CICR (Stern, 1992). (3) Allosteric coupling 

between RyRs so that spontaneous closure of one RyR promotes closure of the others (Stern, 1992; 

Marx et al., 2001; Sobie et al., 2002). (4) SR Ca2+-dependent RyR gating changes due to the presence 

of a RyR luminal Ca2+ sensor either on the RyR itself (Gyorke and Györke, 1998; Ching et al., 2000) 

or via an accessory protein such as calsequestrin (CSQ, (Qin et al., 2008)). (5) ‘Induction decay’ 

(Laver et al., 2013) or ‘pernicious attrition’ (Gillespie and Fill, 2013) wherein a decreasing RyR 

release flux leads to local cytoplasmic Ca2+ levels becoming insufficient to maintain CICR. All of 

these mechanisms with the exception of 5 have been discussed in previous focused reviews, e.g. (Fill 

and Copello, 2002; Stern and Cheng, 2004; Cannell and Kong, 2012), so this perspective will not 



exhaustively examine their literature except to raise problems in their sufficiency for CICR 

termination. 

 

SR lumen control and SR Ca2+ depletion  

Ca2+ in the lumen of the SR is highly-buffered and CSQ appears to be able to explain most of the 

measured buffering power (Shannon and Bers, 1997). In addition to this important role, CSQ may 

also directly modulate RyR gating –an idea supported by the Ca2+ handling abnormalities associated 

with CSQ mutants and CSQ expression changes (see (Knollmann et al., 2006; Terentyev et al., 

2011)). In addition, histidine-rich Ca2+ binding proteins (HRC) are also present in the SR and may 

modulate SERCA Ca2+ uptake as well as RyR gating (for review see (Arvanitis et al., 2011)). The 

amount of HRC present in the SR is uncertain but seems capable of supplanting Ca2+ binding in CSQ 

knockout mice (Murphy et al., 2011). However, most (if not all) Ca2+ transport/balance models have 

focused on CSQ as the principal SR Ca2+ buffer and not included HRC. Finally, it should be noted 

that SERCA also buffers Ca2+ in the lumen of the SR and this buffer can modify Ca2+ cycling 

(Higgins et al., 2006).  

Eventual termination of CICR would be assured if the SR ran out of buffered Ca2+ (Fig. 1A), 

however measurements of SR content using caffeine as a probe of releasable Ca2+ suggested that less 

than 50% of the SR Ca2+ content was released in a single twitch (Bassani et al., 1993). Thus extensive 

SR wide Ca2+ depletion is unlikely to explain release termination. Since CICR is a local control 

phenomenon in the dyad (Stern et al., 1999; Cannell et al., 1995), attention has turned naturally to 

evaluating Ca2+ levels in the jSR. Measurements with low affinity Ca2+ indicators trapped within the 

SR also showed that jSR Ca2+ depletion was far from complete (Shannon et al., 2003; Brochet et al., 

2005) and it was suggested that depletion by itself could not explain CICR termination (Sobie et al., 

2002). However, a more moderate depletion could (possibly) be augmented by SR luminal control of 

RyR gating (Fig. 1B).  

RyR gating appears to be sensitive to the level of Ca2+ in the SR lumen (Sitsapesan and 

Williams, 1994; Lukyanenko et al., 1996; Gyorke and Györke, 1998). Varying luminal Ca2+ over the 

likely physiological range (0.5 -2 mM) alters RyR open probability (PO) approximately 2-fold 



(Gyorke and Györke, 1998) and, although weaker than cytoplasmic regulation, could be important in 

adjusting CICR gain. A large part of RyR luminal Ca2+ sensitivity may be related to CSQ binding as, 

when CSQ is stripped from the RyR complex, RyR luminal Ca2+ sensitivity is reduced by a factor of 

~2, as is the maximum PO (Qin et al., 2008) (see also (Ching et al., 2000)). Such a moderate change in 

RyR gating would not seem capable of terminating SR Ca2+ release without augmentation by 

additional mechanisms. Our modeling suggests that such luminal control is only a weak modifier of 

Ca2+ release during Ca2+ sparks (Cannell et al., 2013) and produces effects that are hard to distinguish 

from modifiers of the cytoplasmic Ca2+ sensitivity of RyRs. 

 

RyR inactivation/adaptation 

Time-dependent inactivation and/or “adaptation” (Györke and Fill, 1993) may be seen under some 

conditions and many models of CICR include RyR inactivation to achieve stability. However, 

adaptation appears to be too slow (in the order of ~100 ms see (Valdivia et al., 1995)) to be 

responsible for Ca2+ spark termination and, on the ~30 ms time scale of the Ca2+ spark, significant 

adaptation/inactivation is not seen (Zahradnikova et al., 1999). Furthermore, direct evidence against 

adaptation as a primary termination mechanism was provided by local Ca2+ release measurements 

(Sham et al., 1998). However, this does not mean that adaptation-type mechanisms are incapable of 

adding some modulation to other CICR termination (and activation) processes. In connection with this 

point, it has been suggested that resting Ca2+ spark rate can increase slowly during rest with Ca2+ 

influx blocked and no change in SR Ca2+ load (Satoh et al., 1997) –a phenomenon that would be 

compatible some weak time dependent process. In addition, RyRs may undergo modal gating 

behavior with a slow transition between a high availability mode and other states (Zahradnikova and 

Zahradnik, 1995). Again, while such gating changes could contribute to longer term changes in RyR 

responses, the rate of mode shifting appears to be too slow for this process to play a major role in Ca2+ 

spark termination. 

 

Stochastic attrition 



Stochastic attrition (Fig. 1C) also appears to be too slow to explain normal Ca2+ spark 

termination for typical RyR open times, open probabilities and likely number of RyR in a CRU (see 

(Cannell and Kong, 2012; Stern and Cheng, 2004)). However, recent super-resolution data is 

indicating that the number of RyRs in each junctional cluster may be lower than originally inferred 

from junctional area and the assumption of tight RyR packing within circular clusters (Baddeley et al., 

2009; Hou et al., 2014). Previous EM and confocal imaging studies suggested that up to several 

hundred RyRs might form a functional CRU in each junction (Franzini-Armstrong et al., 1999; 

Soeller et al., 2007), but the organization of the RyRs in the CRU is highly variable and occupy an 

average area that would correspond to 40-60 RyRs per CRU if tightly packed (Hou et al., 2014). Since 

RyRs may not be tight packed (see below), the number of RyRs inferred from junctional image area 

should probably be reduced by about 30-50% to give ~30-40 RyRs in each functional CRU. From this 

we can calculate that the maximum release flux would be ~7 pA (from a single channel current of 

~0.4 pA (Gillespie and Fill, 2008) and peak PO of 0.5 (Cannell et al., 2013)), which is close to that 

estimated from Ca2+ spark model fitting (Soeller and Cannell, 2002). However, with an open time of 

~2 ms, the time constant of stochastic attrition would still be too long for attrition to play a key role 

unless PO is reduced to <0.1 (Stern and Cheng, 2004), which seems unlikely for junctional Ca2+ levels 

>10 μM being associated with a release flux as low as a 0.2 pA (Soeller and Cannell, 1997).  

A key defining feature of the stochastic attrition mechanism is the near simultaneous closure 

of all currently open RyRs in the CRU to allow local cytoplasmic Ca2+ to decline to a level that does 

not reopen them. Stochastic attrition should be associated with a rather abrupt cessation of release flux 

but our detailed release flux calculations suggested a rather smooth decrease in release flux during the 

Ca2+ spark (Soeller and Cannell, 2002)(see also (Kong et al., 2013)), although this is not a very strong 

argument against stochastic attrition in the face of uncertainties due to noise and microscope blurring 

(see below). 

For CICR to stop fatefully under stochastic attrition, local Ca2+ levels in the dyad must 

decline to a level that prevents any RyRs from reopening. It takes local Ca2+ about 5 ms to decrease to 

near average cytoplasmic levels after SR release stops (Soeller and Cannell, 1997). If this is much 

shorter than the number of RyRs divided by their mean closed time, CICR would not be able to 



reignite the Ca2+ spark and release would be terminated. Therefore, while stochastic attrition might be 

an initiating event for termination of CICR, full termination still requires that RyR closed time times 

the number of RyRs in a cluster be >5 ms. For a cluster of ~35 RyRs, this would imply a RyR closed 

time of  >~165ms and this is seen at cytoplasmic Ca2+ < 4-40 μM (depending on species) (Cannell et 

al., 2013). Such levels are likely to be achieved within ~5 ms of CRU closure, so stochastic attrition 

by itself could terminate CICR, although its is unclear that stochastic attrition would happen quickly 

enough.  

Timescale-based arguments against stochastic attrition being the mechanism for Ca2+ spark 

termination do not apply when the availability of RyRs is reduced with tetracaine as long lasting Ca2+ 

sparks can occur (Zima et al., 2008a).  This is associated with an apparently steady level of SR Ca2+ 

and so SR release termination cannot be due to changes in luminal Ca2+ (or a luminal SR Ca2+ sensing 

site) in these conditions (Zima et al., 2008b).  However, the termination of such long lasting release 

events lasting ~300ms (or more) would, we suggest, be compatible with the stochastic attrition 

mechanism. 

 

Allosteric coupling 

The equation for the time constant for stochastic attrition (Stern and Cheng, 2004) depends on 

the assumption of independent RyR gating, but it has been suggested that RyR gating might not be 

independent (‘X’ in Fig. 1C). When RyRs are reconstituted in bilayers, RyRs can show coupled 

gating (Marx et al., 2001) and RyRs are closely packed in the junctional space (Franzini-Armstrong et 

al., 1999) suggesting the possibility of allosteric interactions between RyRs. Such allosteric coupling 

could produce positive cooperativity which would cause a CRU to behave as if there were fewer 

RyRs in the cluster (Stern, 1992; Sobie et al., 2002; Stern and Cheng, 2004) (and in the limit of very 

strong coupling causes the cluster to gate as one). Although a viable mechanism to produce reliable 

Ca2+ sparks and spark termination (Stern and Cheng, 2004; Groff and Smith, 2008), how possible 

physical interaction (as distinct from effects mediated by changes in Ca2+ ) might occur is unclear. 

FK506 binding protein (FKBP) was initially identified as a protein modifier of RyR1 interactions 

(Marx et al., 1998) but its possible role in coupled RyR gating is controversial with conflicting 



evidence for roles in determining Ca2+ spark frequency and properties (see (Guo et al., 2010) for 

references). A protein that acts as a linker between RyR tetramers might be expected to have 1:1 or 

1:2 stoichiometry with RyR but <20% of RyR have FKBP12.6 (the isoform that appears to modify 

RyR gating) bound although RyR binds nearly all the FKBP12.6 in the cell (Guo et al., 2010). 

Allosteric interactions require RyR to be very closely apposed, if not actually touching. Recent high 

resolution tomographic data suggests that RyRs in cardiac dyads do not exhibit a regular geometric 

organization with only ~50% actually touching each other (Asghari et al., 2014). This result, while 

compatible with the low fraction of RyR actually having FKBP bound, would place an important limit 

on the extent to which RyR allosteric interactions (and consequent increase in likelihood of stochastic 

attrition) can help eventual Ca2+ spark termination by attrition(Hinch, 2004). This conclusion is 

supported by experiments in FKBP12.6 null mice which show only modest increases in spontaneous 

Ca2+ spark frequency and duration (Xin et al., 2002). Recently, high resolution electron micrographs 

of purified RyRs appear to show that there may be some preferred regions of RyR interaction that can 

cause them to form dimers (Cabra et al., 2016), but this interaction is likely weak as most RyRs did 

not dimerize or form higher number assemblies. We suggest that, if coupled gating via physical 

interactions occurs, it is neither central to the spark termination problem nor a major modifier of Ca2+ 

release during Ca2+ sparks.  

 

Induction decay 

None of the above mechanisms, in isolation, appears to be capable of providing a sufficient 

explanation for Ca2+ spark termination (Stern and Cheng, 2004). However, most prior models for 

CICR did not include realistic geometry for the RyRs in the dyad nor an accurate description for RyR 

gating under physiological conditions. These shortcomings were addressed in a new ‘induction decay’ 

model (Fig. 1D) which included a simplified RyR gating model (based on actual RyR gating 

measured in planar lipid bilayers) as well as dyad geometry (Laver et al., 2013). The mechanism of 

Ca2+ spark termination that appeared as an emergent property of the model was called ‘induction 

decay’ because it reflected the gradual loss of the regenerative capacity (or gain) within Ca2+ induced 

Ca2+ release (CICR). In the model, a gradual decline in local Ca2+ due to a decreasing open RyR Ca2+ 



flux resulted in an increase in the closed time of adjacent RyRs so it became increasingly unlikely for 

CICR to continue (as also shown in the mathematical analysis of (Hinch, 2004)). The decline in RyR 

release flux was entirely due to the local Ca2+ depletion in the jSR which refilled, once release was 

finished, from the network SR. Importantly, the model also explained the time course of Ca2+ spark 

restitution described by Sobie and co-workers (Sobie et al., 2005) without additional free parameters. 

That a decreasing RyR flux could affect SR release was shown directly in cotemporaneous 

experiments using RyR permeation blockers (Guo et al., 2012). While these observations were 

subsequently incorporated into a termination mechanism called ‘pernicious attrition’(Gillespie and 

Fill, 2013), the idea of induction decay is central to both the computational and conceptual models. 

The strength of the computer model (Cannell et al., 2013) resides in its ability to show that the 

measured Ca2+-dependence of RyR closed times is sufficient to terminate CICR, as well as reproduce 

other effects such as Ca2+ spark refractoriness.  However, it remains unclear whether any SR load-

dependent RyR gating effects might also be present to modulate induction decay (see above). The 

coupling of jSR load to the ability to support CICR via the dyad cytoplasmic space provides an 

effective “use-dependence” that was observed by Sham et al. in “Ca2+ spike” recordings that give a 

measure of local release fluxes (Sham et al., 1998).  

While various alternative models can be tuned to control CICR under a fixed set of conditions 

(Stern, 1992), the induction decay model produced similar Ca2+ sparks with variable numbers of RyRs, 

RyR organization and RyR Ca2+ sensitivity and this remarkable property was due to the extent of local 

jSR depletion associated with the CRU. The relative insensitivity to the number of RyRs in the dyad 

in the induction decay model is unlike models that rely on simple attrition schemes and would be an 

advantage for variable RyR expression in dyads. Similarly, a significant increase in RyR sensitivity 

(as seen in sheep RyRs) does not prevent Ca2+ spark termination because the jSR simply depleted to a 

lower level (Cannell et al., 2013) –a feature reminiscent of the behavior of CICR as seen in the 

presence of RyR gating modifiers (Eisner et al., 2000). A more recent study (Walker et al., 2014) 

using the geometry and RyR gating used in the original induction decay model showed that it could 

also mimic the SR Ca2+ leak-load relationship as seen in intact cells (Zima et al., 2010). In the 

induction decay model, such effects are mediated by cytoplasmic dependence of RyR opening rate 



and consequent support of CICR (initiated by a spontaneous RyR opening) rather than a luminal 

[Ca2+] effect per se. It is important to note that in the induction decay model, the number of open 

RyRs gradually decreases, unlike the abrupt simultaneous closure required for stochastic attrition. Of 

course, once the number of open RyRs becomes small enough, stochastic attrition may finish the 

induction decay process (see (Hinch, 2004) for an analysis), but simultaneous closure of multiple 

RyRs is not needed and does not usually occur.  

Perhaps unexpectedly, our induction decay simulations also showed that the standard 

deviation of Ca2+ spark durations (~10% of the mean see Table 1 in (Cannell et al., 2013)) was 

smaller than might be expected for a purely stochastic closing process. A part of this behavior can be 

explained by RyR gating being supplied with an effective memory of the prior RyR gating pattern due 

to the coupling of prior RyR openings to the level of Ca2+ in the jSR that, in turn, affects RyR gating 

(primarily via the dyad space). This behavior is also creates a type of “allosteric coupling”, although 

not mediated by direct RyR contact but rather via Ca2+-dependent crosstalk. 

SR depletion as a local control problem/non-uniform depletion 

Local depletion of the jSR is required for induction decay and the depth of depletion (to 

~10% of the original level) is much larger than suggested by previous studies. Using caffeine to probe 

the total SR Ca2+ content, it has been estimated that the SR releases 17%-53% of its content (Bassani 

et al., 1993; Delbridge et al., 1996; Diaz et al., 1997). A similar estimate (~50%) is provided by Ca2+ 

imaging with SR loaded Fluo 5N (e.g. (Shannon et al., 2003; Picht et al., 2011; Zima et al., 2010). 

Such moderate depletion might seem to be a problem for the induction decay mechanism. However, 

we suggest the local jSR is more deeply depleted than the latter imaging studies suggest. Ca2+ sparks 

that were repeatedly activated from the same site showed that Ca2+ spark amplitude decreased with 

decreasing interval between activations (Δt) and at t short Δt (~ 50 ms) Ca2+ spark amplitude was only 

~ 10 % of the initial Ca2+ spark amplitude (Sobie et al., 2005) suggesting that local SR Ca2+ may be 

similarly reduced. Importantly, the restitution of Ca2+ spark amplitude in the latter study was 

reproduced by the induction decay model, further strengthening the idea of significant local SR 

depletion, although this would not rule out a lesser depletion augmented by some other form of 

luminal control. 



 

Re-analysis of SR Ca2+ depletion signals 

To further examine the possibility deeper local jSR depletion than suggested by fluorescence 

measurements, we carried out a detailed Ca2+ spark model fitting exercise (Kong et al., 2013), similar 

to an earlier analysis of Ca2+ spark flux by a reconstruction method (Soeller and Cannell, 2002). We 

constructed a spherical reaction-diffusion model centred on a single dyad. Cellular structures and 

associated Ca2+ buffers were homogeneously distributed over each model compartment (see Fig. 1B 

in (Kong et al., 2013)) and the calculated fluorescence signals at all model spatiotemporal coordinates 

were then convolved with a microscope PSF to simulate experimental Ca2+ spark recordings. 

Importantly, the model confocal PSF was not assumed to be diffraction-limited, but matched to that 

observed in live cell experiments. The jSR was given a volume and buffering power consistent with 

other models and high quality Ca2+ spark records were fitted by modifying a release flux basis 

function. This model accurately fitted Ca2+ spark data (Fig 2A) both temporally and spatially (Fig 2A 

right) and produced a reasonable “Ca2+ blink” depletion signal (Fig. 2B), although the actual level of 

SR Ca2+ depletion was lower than the fluorescence record (F/F0) might suggest. This difference arises 

from the blurring of the Fluo-5N signal, which is more spatially restricted compared to that of a Ca2+ 

spark and its non-linear response to Ca2+ (Kong et al., 2013). The time to minimum of the induction 

decay model blink signal (~25 ms) is very similar to that reported in the original work of Brochet et al. 

(24 ms) (Brochet et al., 2005) (see also (Terentyev et al., 2008)), although another study in skinned 

cells suggested longer times to peak of the Ca2+ spark and blink (~60 ms) (Zima et al., 2008b). The 

time to nadir depends on the degree of jSR connectivity, jSR buffering as well as RyR cytoplasmic 

Ca2+ sensitivity, so some variability among experiments should be expected. Nevertheless, one 

consistently observed property is that the time to nadir of a Ca2+ blink is 1.5-3 times longer than the 

time to peak of the associated Ca2+ spark and this is reproduced in the computational model (see 

Fig.2). 

From the deduced release flux and jSR depletion, the apparent RyR gating time-course was 

derived (nPO Fig. 2C). Two features of this analysis were notable: 1) the release flux appeared to 

decay monotonically, while 2) the jSR permeability declined more slowly. The experimentally 



constrained model flux was very similar to the average (stochastic) induction decay model results (Fig 

2D). The time-course of RyR gating differs between the models. The decline of RyR permeability is 

sensitive to the Ca2+-dependence of RyR closed time, as shown by the more Ca2+-sensitive sheep 

RyRs (dotted line, Fig 2D). Despite these changes in gating time-course, these models suggest that the 

decay of release flux is driven mainly by the local Ca2+ gradient across the jSR membrane rather than 

the time course of RyR gating per se. The calculated jSR depletion levels are consistent with the 

depletion required for induction decay.  

 

Conclusion 

 The induction decay mechanism provides a self-sufficient explanation for CICR 

termination. In this mechanism, a decline in jSR Ca2+ during a Ca2+ spark is transduced via 

the steep cytoplasmic Ca2+-dependence of RyR gating, and this rapidly increases RyR closed 

time until CICR cannot be maintained. The other mechanisms described here may be able to 

modulate induction decay, although further studies will be needed to establish their relative 

contributions. We suggest that additional modification(s) of the gain and sensitivity of CICR 

may be necessary because of the criticality of CICR for cardiac function and therefore the 

need for more than one point of control. 
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Figure Legends 

Figure 1.  Possible CICR termination mechanisms. (A) SR Ca2+ depletion. Reduction in SR 

Ca2+ levels will reduce release flux regardless of RyR gating (PO). However, fateful 

termination by this mechanism alone is problematic because the jSR lumen is continually 



refilled from the rest of the SR. (B) SR luminal control of RyR gating may be modulated 

either by a direct on the RyR itself (red), and/or via an accessory protein such as CSQ 

(green). However, the extent to which these mechanisms could reduce RyR PO sufficiently to 

terminate release is unclear. (C) Stochastic attrition. If all RyRs close simultaneously, then 

the release flux is terminated. However, it is unlikely that this will occur within the time scale 

of a Ca2+ spark. Stochastic attrition could be accelerated by coupled gating between RyRs, 

either by direct contact, or by a protein linker, ‘X’. (D) Induction decay. After CRU 

activation, jSR Ca2+ levels decline which results in a decreasing release flux. The local 

cytoplasmic Ca2+ is proportional to the release flux and this is transduced via the steep Ca2+-

dependence of the RyR closed time. As the closed time becomes longer, it becomes less and 

less likely for an RyR to re-open to provide the flux and local Ca2+ levels required to continue 

CICR.  

Figure 2. Estimating jSR Ca2+ depletion and RyR gating time-course from flux 

reconstructions. (A) A 3D model of Ca2+ reactions, diffusion and microscope blurring 

generates a Ca2+ spark record, which is fitted to experimental data by varying a basis function 

for the jSR permeability time-course (Kong et al., 2013) . (B) Although not fitted, the model 

can also simulate the corresponding SR Ca2+ depletion signals which are similar to those 

recorded experimentally (see (Zima et al., 2008b)). (C) From the calculated release flux (red) 

and the jSR Ca2+ levels, the jSR permeability time-course can be derived (blue). (D) Release 

flux (red) and permeability (blue) changes from the induction decay model of Cannell et al 

(2013). Note the concordance of flux estimates by both models, although the permeability 

time-course is dependent on the species-dependent RyR Ca2+ sensitivity.   


