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Abstract word count: 300 

Background/Aims: Effective strategies are needed to address dramatic increases in hepatitis C 

virus (HCV) infection among people who inject drugs (PWID) in rural settings of the United 

States (US). We determine the required scale-up of HCV treatment with or without scale-up of 

HCV prevention interventions to achieve a 90% reduction in HCV chronic prevalence or 

incidence by 2020/25/30 in a rural US setting. 

Design: An ordinary differential equation model of HCV transmission calibrated to HCV 

epidemiological data obtained primarily from a HIV-outbreak investigation in Indiana.  

Setting: Scott County, Indiana (population 24,181), a rural setting with negligible baseline 

interventions, increasing HCV epidemic since 2010, and 55.3% chronic HCV prevalence amongst 

PWID in 2015 

Participants: PWID  

Measurements: Required annual HCV treatments per 1000 PWID (and initial annual 

percentage of infections treated) to achieve a 90% reduction in HCV chronic prevalence or 

incidence by 2025/30, either with or without scaling-up syringe service programs (SSPs) and 

medication-assisted treatment (MAT) to 50% coverage. Sensitivity analyses considered whether 

this impact could be achieved without retreatment of reinfections, and whether greater 

intervention scale-up was required due to the increasing epidemic in this setting. 

Findings: To achieve a 90% reduction in incidence and prevalence by 2030, without MAT and 

SSP, 159 per 1000 PWID (initially 25% of infected PWID) need to be HCV-treated annually. 

However, with MAT and SSP scaled-up, treatment rates are halved (89 per 1000 annually or 

15%). To reach the same target by 2025 with MAT and SSP scaled-up, 121 per 1000 PWID 

(20%) need treatment annually. These treatment requirements are 3-fold higher than if the 

epidemic was stable, and the impact targets are unattainable without retreatment. 

Conclusions: Combined scale-up of HCV treatment and prevention interventions is needed to 

decrease the increasing burden of HCV incidence and prevalence in rural Indiana by 90% by 

2025/30. 
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Introduction 

Globally, chronic hepatitis C virus (HCV) is a leading cause of liver disease and death.1,2 In the 

United States (U.S.), HCV has a high burden, with 3.4-6 million persons currently infected3 and 

annual deaths where HCV is an underlying cause now exceeding those from HIV.4 Injection drug 

use is the primary mode of HCV transmission.5 While incidence rates of HCV infection fell 

between 1989 and 2003, rates have increased over three-fold since 20076. Many of these 

infections have been amongst young people who inject drugs (PWID) in rural areas7. Reducing 

HCV transmission amongst this sub-group is critical for reducing associated morbidity8 and 

achieving elimination9.  

Accumulating international evidence suggests syringe service programs (SSPs) and medication-

assisted treatment (MAT, normally involving methadone or buprenorphine replacement 

therapy in the US) can reduce HCV transmission by 50-80%.10-14 Additionally, the availability of 

all-oral, highly effective direct-acting antiviral (DAA) HCV treatment has heralded a new era 

where HCV infection can be easily cured in 8-12 weeks.15,16 The robust evidence associated with 

these interventions suggests that treating current HCV infections while simultaneously 

preventing future infection could significantly reduce HCV transmission in the U.S. This is 

supported by mathematical modelling from non-U.S. settings,17-19 and advocated by the World 

Health Organisation (WHO) in their recent global strategy to eliminate viral hepatitis20.   

In many U.S. regions, the number of PWID has increased markedly due to a growing 

prescription opioid and heroin epidemic,7 contributing to a marked increase in parenterally-

acquired HCV infections.6 Recently, in Scott County, Indiana, a rural county of 24,000 persons, a 

recent HIV-outbreak occurred (192 cases) among persons injecting oxymorphone (Opana® 

ER), a prescription opioid.21 Contact tracing and targeted HIV and HCV testing revealed a 

sizeable network of PWID with considerable HCV infection (>70% HCV antibody positivity) and 

high rates of syringe sharing (68% report ever sharing needles/syringes) and re-use (mean: 12 

times before disposal).22,23  Similar to other rural U.S. communities, programs for preventing 

HCV/HIV transmission and treating opioid addiction were extremely limited in this setting. 

In response to the HIV-outbreak, the Scott County Health Department implemented an SSP in 

2015 and MAT is reported to follow,22 with ongoing discussions on whether to scale-up HCV 

treatment. Due to the increasing HCV epidemic, and limited coverage of prevention and 

treatment interventions, Scott County provides an important setting for modelling the required 

scale-up of HCV treatment, MAT and SSP for reducing HCV transmission to low-levels.  While 

numerous models24-27 have demonstrated that treating HCV-infected PWID, possibly in 

combination with scaling-up SSPs and MAT17, could reduce HCV infection transmission, none 
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have considered the increased requirements in settings with increasing transmission risk, as 

currently occurring across many rural U.S. settings and other settings worldwide28-31.  

This study aims to model the HCV-impact of scaling-up access to MAT, SSPs and HCV treatment 

in Scott County, to typify other rural U.S. settings with limited existing interventions and 

increasing HCV epidemics. Specifically, our aims are:  

1. With or without scale-up of MAT and SSP services, project the required HCV treatment 

capacity needed to reduce HCV infection prevalence and incidence among PWID by 90% (as 

advocated by WHO’s elimination strategy20) by 2020/25/30. 

2. Project what subsequent treatment rate is needed to maintain impact to 2040.  

3. Estimate the degree to which the HCV treatment targets are heightened due to the increasing 

HCV epidemic occurring in this setting,  

4. Determine whether the impact targets are still achievable without allowing treatment of re-

infected PWID.   

 

Methods  

Mathematical model description 

We developed a dynamic, deterministic, compartmental ordinary differential equation model of 

HCV transmission among PWID. The modelled PWID population was stratified by HCV (see 

Figure S1a) and intervention status (none, MAT or SSP only, and both, Figure S1b). PWID enter 

the modelled population through a time-varying rate that individuals initiate injecting, and 

leave through mortality (drug-related or other causes) or permanent cessation from injecting 

drug use. We did not include HIV because HIV mortality was not expected to be important over 

the time span of our projections due to HIV treatment being scaled-up. All new PWID are 

assumed susceptible to HCV, with no access to SSP or MAT.  

The model is dynamic, in that it simulates HCV transmission at a per-capita transmission rate 

dependent on the current prevalence of chronic HCV infection. The baseline transmission rate 

for PWID not on MAT or SSP is decreased by fixed multiplicative cofactors (or rate ratios) for 

PWID on MAT, SSP or both. PWID mix randomly to form potential transmission contacts with 

other PWID (see supplementary materials for details).  

Once infected, PWID either develop chronic infection (presence of viremia) or spontaneously 

clear their infection and become susceptible to re-infection32. Chronically infected PWID remain 

infected unless treated, whereupon they either achieve a sustained viral response (SVR -

virologic cure)16, or fail treatment and remain chronically infected. Treated PWID who achieve 
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SVR become susceptible to re-infection. Conservatively, we assume that re-infection will occur 

at the same rate as primary infection. We assume PWID who fail treatment or become re-

infected can be retreated, but vary this assumption in the sensitivity analysis. 

Further model details are in the supplementary materials.   

 

Model parameterisation 

Key model input parameters were estimated based on experiences in Scott County, Indiana, 

with most parameters estimated from state surveillance and contact-tracing data collected 

during the 2014-2015 HIV-outbreak. Data from intensive contact-tracing for the HIV-outbreak 

investigation in Indiana23 suggests a high prevalence of current PWID (436 individuals were 

identified that reported recently (in last 12 months) injecting in an estimated population of 

24,18133) and high HCV chronic prevalence (55.3%, 95%CI 49.3-61.4% of PWID were RNA-

positive). The model assumed a PWID population size 436-600, and chronic HCV prevalence of 

45-65% in 2015 due to uncertainty in the representativeness of available data.  

Based on state-level acute HCV case reports34,35 and data on new opioid dependent admissions 

to the drug treatment episode dataset (TEDs) for Indiana36, we assumed a steady PWID 

population and HCV epidemic up to 2008 which increased thereafter. Through an increased rate 

of individuals initiating injecting, we assumed a 2 to 3-fold increase in PWID population size 

over 2008-2013 based on increases in opioid dependent admissions (TEDs) over that period. 

Through increased HCV transmission risk, we also assumed a 4 to 7-fold increase in the annual 

number of incident HCV infections over 2010-2014 – as observed in the number of acute HCV 

case reports from Indiana, which increased from approximately 17 annually for 2004-2010 to 

123 annually for 2011-2014. Although known to underestimate the real number of acute 

infections, the increasing trends in acute cases should still represent a real increase in the rate 

of new HCV infections as they are not thought to be due to changes in reporting or case 

definitions7. Importantly, the demographics of these recent acute HCV cases (2015) align closely 

with the HIV-outbreak cases from Scott County (98-99% white, median age 32-34 years and 50-

58% male), suggesting the increase in acute HCV cases occurred amongst the same pool of 

PWID as the HIV-outbreak. 

There is uncertainty in the overall duration that PWID inject drugs, and so we sampled from a 

wide range of 5-20 years reflecting the young age and short duration of current injecting in 

rural U.S. sites (23,37,38 and unpublished Scott County SSP data) and the long injection careers 
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observed among PWID in U.S. cities.39 We assumed a drug-related mortality rate based on U.S. 

synthesised data40 and a non-drug related mortality rate for the U.S.41 

Prior to 2015, there was no SSP or HCV treatment for PWID in this setting and negligible MAT. 

SSP opened in March 2015 and reached 200 PWID (33-46% of PWID) by the end of 2015, with 

the model assuming further scale-up to 50% of PWID by mid-2016. Estimates for the 

effectiveness of SSP and MAT in reducing an individual’s risk of HCV infection were taken from a 

recent Cochrane systematic review.13 The duration on MAT or using the SSP were based on U.S. 

data,42 after which PWID cease MAT or SSP but can return at existing recruitment rates. Because 

most PWID are likely to be young and recently infected, we assumed conservative SVR rates for 

DAA HCV treatment of 90% (varied 85-95%) with 12-week duration.43  

The model parameters with uncertainty bounds are given in Table 1. 

[Insert Table 1] 

 

Model calibration and analyses 

While incorporating parameter uncertainty (1000 random samples of parameter distributions 

in Table 1), the model was calibrated (using a least-squared solver in MATLAB) to a sampled 

estimate for the PWID population size in 2015, increase in PWID population over 2008-2013, 

chronic prevalence in 2015, and 4-7-fold increase in annual incident infections over 2010-2014. 

The supplementary materials include more details of the methods. 

The model was then run from 2015 to consider the impact of scaling-up SSP from March 2015, 

and MAT and HCV treatment from mid-2016. We projected the impact of a few illustrative 

treatment scenarios, and then estimated the annual treatment rate needed to result in a 90% 

reduction in HCV infection prevalence or incidence from 2016 to 2020, 2025 or 2030. These 

projections considered the impact both with and without scaling-up both MAT and SSP to 50% 

coverage alongside increased HCV treatment, with the added assumption that no more than 

80% of chronic infections can be treated annually. We then projected the required treatment 

rates needed to maintain the impact achieved by 2020/25/30 to 2040, and assessed whether 

the same impact targets for 2020/25/30 could be reached with no retreatment.  

Lastly, we undertook a sensitivity analysis to determine the degree to which the increasing 

epidemic in Indiana may be heightening our required treatment rates for achieving a 90% 

reduction in incidence and prevalence. The model was recalibrated to the same HCV prevalence 
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in 2015, but assuming no increase in transmission risk or injecting in recent years (see 

supplementary materials), and the treatment rates needed to achieve a 90% reduction in 

prevalence or incidence were re-estimated.    

Uncertainty analysis 

To determine which parameter uncertainties are important for driving the variability in our 

model projections, a linear regression analysis of covariance44 was performed on the projected 

number of HCV treatments needed to reduce HCV prevalence or incidence by 90% by 2030 

when MAT and SSP are also scaled-up. The proportion of the model outcome’s sum-of-squares 

contributed by each parameter was calculated to estimate the importance of individual 

parameters to the overall uncertainty.  

 

Results 

Baseline epidemic projections and illustrative intervention scenarios 

Figure 1 shows that between 2008 and 2010, the model projects that both HCV infection 

prevalence and incidence decreased due to the increased recruitment of new susceptible PWID 

initiating injecting. However, this trend reversed when HCV transmission risk increased in 

2010. Chronic prevalence increased to 56.0% by 2015, agreeing with available data from the 

HIV-outbreak investigation, but is then projected to reach 83.2% by 2030, and HCV incidence is 

projected to increase from 44.9 to 66.8 per 100 person years from 2015 to 2030.  

Figure 1 also shows the impact of three intervention scenarios, illustrating that scaling-up both 

SSP and MAT to 50% coverage will be enough to decrease incidence by 2030, but that chronic 

prevalence will only decrease if this is combined with treating 50 PWID per 1000 annually 

(7.7% of infections treated in first year).  

 

[Insert Figure 1] 

 

Treatment scale-up needed for reducing and maintaining HCV at low-levels 

Projections in Figure 2 suggest that a 90% decrease in both HCV infection prevalence and 

incidence can be achieved by 2030. With no scale-up of SSP and MAT, 159 per 1000 PWID 

(24.9% of HCV infections treated in first year) need to receive HCV treatment annually to reach 

both these targets. Conversely, if SSP and MAT are both scaled-up to 50% coverage, then the 
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yearly number needing treatment approximately halves to 89 per 1000 PWID (14.5% in first 

year).   

Projections also suggest it should be possible to achieve these same impact targets by 2025. 

When SSP and MAT are scaled-up, a 90% reduction in prevalence and incidence is possible if 

121 per 1000 PWID (19.9% of HCV infections treated in first year) are treated annually. 

However, if SSP and MAT are not scaled-up then the yearly number needing HCV treatment 

doubles to 213 per 1000 PWID (34.1% in first year), although 17% of model simulations 

suggest it is not possible in this time-frame.  

Lastly, it is not possible to achieve a 90% reduction in HCV prevalence by 2020, but a 90% 

decrease in incidence may be achievable (in 55% of simulations) if SSP and MAT are scaled-up 

and 294 per 1000 PWID (54.9% in first year) are treated in the first year, with this decreasing in 

subsequent years.  

 

[Insert figure 2] 

 

After achieving a 90% decrease in prevalence and/or incidence by 2030, Supplementary Figure 

S2 shows that prevalence and incidence would rebound quickly (increasing up to 10-fold by 

2040) if treatment was not maintained, although the rebound would be smaller (about half) if 

MAT and SSP are scaled-up.  To maintain the impact achieved on incidence from 2030 to 2040, 

21 per 1000 PWID need to be treated annually if MAT and SSP are scaled-up, and 33 per 1000 

PWID otherwise (Supplementary Table S1). Fewer treatments are needed to maintain the 

impact on prevalence.  

 

Uncertainty and sensitivity analysis  

There is considerable variability in the projected number of treatments needed to reach 

different impact targets (Figure 2). Analyses of covariance indicate that uncertainty in the 

chronic HCV infection prevalence in 2015 accounts for most variability in the required number 

of treatments (with SSP and MAT scaled-up) for achieving a 90% reduction in prevalence or 

incidence by 2030 (40-42% of variability – Figure 3). Other important parameters were the 

efficacy estimate for SSP (13% of variability), the PWID population size in 2015 (9-11% of 

variability), and the drug-related mortality rate (10-12%). The efficacy of SSP and MAT 

combined and the projected increase in incidence after 2010 also contributed 6-10% of 
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variability each. Other parameters had a small effect.  

 

[Insert figure 3] 

 

The baseline model assumed an increasing HCV epidemic and allowed re-treatment of re-

infected PWID. If we assume a stable HCV-epidemic in Indiana, then two-thirds fewer 

treatments are needed to achieve a 90% decrease in prevalence/incidence (Supplementary 

Figure S3). Additionally, without retreatment it is not possible to decrease 

prevalence/incidence by 90% by 2030 (Supplementary Figure S4), with considerable re-

treatment being needed (24-37% of all treatments) to achieve these targets.  

 

Discussion 

Since 2010, dramatic increases in HCV infections in the U.S. have occurred concurrently with the 

country’s growing opioid epidemic, linked to increasing injection drug use in rural settings.38 

This increase in HCV transmissions was facilitated by limited HCV prevention services in rural 

settings, which contrasts with most U.S. urban areas which have established harm reduction 

programs, and have experienced long-term decreases in HIV transmission.45,46 The success of 

these urban efforts demonstrates the need to expand MAT and SSP in rural settings. However, 

because no modelling has so far considered similar settings experiencing increasing epidemics, 

the required scale-up remains unknown.  

This modelling study helps to fill this knowledge-gap. It demonstrates that achievable scale-up 

of HCV treatment, when paired with expanded SSP and MAT, could dramatically reduce the 

burden of HCV among PWID in rural U.S. settings experiencing increasing HCV epidemics20. Our 

findings indicate that a 90% reduction in HCV incidence and prevalence are achievable by 2025 

if 20% of currently HCV-infected PWID receive HCV treatment each year with no restriction on 

re-treatment, and half of the population are on MAT or SSP. Due to the small number of PWID in 

Scott County (estimated at 436-600), these targets should be achievable (<65 HCV-infected 

needing treatment annually), suggesting that such rural jurisdictions could be viable settings for 

conducting demonstration studies to test whether combining HCV treatment with MAT and SSP 

scale-up can control and eliminate HCV. 

To reduce the HCV-burden among PWID, this study highlights the importance of scaling-up both 

HCV treatment and MAT and SSP capacity, with each playing a complementary role. HCV 
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treatment is essential for rapidly reducing the infection burden to low-levels, which otherwise 

would take decades with just expanded MAT and SSP. Conversely, scaling-up MAT and SSP 

dramatically reduces (by half) the required levels of HCV treatment and underlying risk for new 

infections, which is key for maintaining a low infection burden.  

Our projections also highlight the necessity of allowing treatment of re-infections, without 

which large reductions in HCV transmission are not possible, and the importance of maintaining 

levels of HCV treatment after the epidemic has reached low-levels, because otherwise 

prevalence and incidence quickly rebound to pre-intervention levels. Crucially, we also 

illustrate for the first time that much higher treatment rates (3-fold higher in our projections) 

will be needed to reach the WHO elimination targets in settings experiencing increasing HCV 

epidemics, such as Indiana, other rural U.S. settings, and numerous global settings experiencing 

increased injecting risk28-31. Further analyses need to confirm the generalisability of our findings 

to other similar settings, with these analyses emphasising the importance of accurately 

characterising a setting’s on-going epidemic when assessing required prevention and treatment 

needs for tackling HCV.  

Limitations 

Our analyses are subject to several potential limitations. First, there was limited epidemiological 

and behavioural data available to parameterise and calibrate the model. To address this, we 

used data from other U.S. settings7,37 when necessary and incorporated parameter uncertainty 

in our projections.  

Second, we used acute HCV surveillance data34,35 and substance abuse treatment admission 

data36 to parameterise the likely increase in HCV infection and injecting drug use occurring in 

Indiana. Given these data sources do not capture all new HCV infections and many PWID do not 

access drug treatment, it is possible that the real-life increases in the HCV epidemic and levels of 

injection drug use may differ from what these datasets suggest. To counter this, uncertainty was 

incorporated in to these modelled trends and our projections were robust despite this.   

Third, we did not incorporate network effects in to our model, which data suggests contributed 

to the HIV-outbreak in Indiana.23 This could be an important area of future modelling since 

previous modelling has suggested the network structure of PWID can affect the impact of HCV 

treatment interventions.48 Further, due to a lack of data, the model did not incorporate periods 

of temporary cessation of injecting, but instead assumed their effect was incorporated into the 

overall transmission risk of PWID, especially amongst those on MAT who are more likely to 

temporarily cease injecting.49 This model simplification should not have affected our model 

projections as illustrated by previous modelling.17,18  
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Lastly, we did not consider the mechanism by which the scale-up in treatment will be financed. 

Until recently, the high costs of all oral DAA drugs ($84,000-96,000 per treatment course in 

2014), and restrictions within Medicaid programs43 (drug/alcohol abstinence and disease 

severity requirements and restrictions on treatment providers) presented serious obstacles to 

using HCV treatment as a prevention strategy in the U.S.50 However, the costs of HCV 

medications are now decreasing51,52 (through competition and negotiations), and Medicaid 

programs are easing restrictions on HCV treatment53, including amongst those with current 

drug/alcohol use (CDC, unpublished data). Economic modelling is now needed to help identify 

the required HCV drug prices to ensure HCV treatment-based prevention strategies are cost-

effective. Economic modelling should also compare the costs of these HCV treatment-based 

prevention strategies to the costs of scaling-up MAT and SSP, whose yearly costs are much 

cheaper per PWID reached (estimated as ~$5,000 for MAT54 and ~$100 for SSP55 if 200 

syringes are exchanged per year). However, this is not a simple comparison because HCV 

treatment exerts a one-off cost per infected PWID, while SSP and MAT exert yearly costs 

amongst both infected and susceptible PWID and have other economic benefits.   

Comparison with other studies 

This is the first modelling study to project the impact on HCV transmission of scaling-up 

combination prevention interventions (MAT and SSP) and HCV treatment for PWID in the U.S. 

Other analyses in non-U.S. settings have considered the HCV prevention impact of these 

combined interventions,17,18 but have not considered an increasing epidemic setting. Two other 

analyses have modelled the impact of scaling-up HCV treatment amongst prisoners27 or PWID in 

urban U.S.26 Our modelling builds on these analyses by considering a rural setting with 

increasing injection drug use and HCV transmission, which characterises the main expansion of 

HCV transmission in the U.S. Additionally, we incorporate the important benefits of scaling-up 

SSP and MAT,12,14,56,57 which generally have very low coverage in rural settings. 

Conclusion 

Scott County’s rapid HIV-outbreak occurred in a region that has witnessed increasing injection 

drug use and HCV transmission over recent years.7 Many other rural U.S. regions are witnessing 

similar problems.7 Like Scott County before the HIV-outbreak, many of these regions have 

insufficient infrastructure or resources to respond effectively, raising serious concerns that 

similar increases in HCV and HIV infections may occur elsewhere23,58.  For areas of the U.S. and 

internationally experiencing similar epidemics and suffering analogous limitations in 

intervention coverage, our findings are of particular importance. They emphasise the need to 

scale-up HCV treatment, in combination with MAT and SSP, for reducing levels of HCV 
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transmission. Importantly, this would also address current inequities in the provision of MAT 

and SSP, which will have other benefits.59 40,60-62 Demonstrating the effectiveness and potential 

costs and savings of our combined scale-up strategies in the field is an important next step.  
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TABLES 

Table 1: Parameter table including uncertainty intervals. TEDs denotes the drug treatment 

episode dataset. 

Parameter Symbol Units Values (sampled range) Reference 

PWID and HCV-related parameters    

PWID HCV chronic 
prevalence in 2015  

 - 45 – 65%, uniform distribution Contact tracing 
data33 

Average infection rate  𝑅𝜋1 per year Varied to fit sampled HCV 
prevalence in 2015, and increased by 
factor after 2010 to achieve 4-7 fold 
increase in incident infections 

Acute HCV 
surveillance 
data34,35 

Average proportion of 
infections that 
spontaneously clear 

𝛿 - 0.22 – 0.29, uniform distribution 32 

PWID recruitment rate 𝜃 per year Varied to fit total population of 436-
600 PWID in 2015, and increased by 
factor after 2008 to fit 2-3 fold 
increase in PWID population 
between 2008-2013 

Contact tracing 
data33 and 
TEDs data36  

Increase in PWID population 
size between 2008 and 2013 

p  2 – 3, uniform distribution TEDs data36 

Average duration of injecting 
until cessation 

1

𝜇1
 

years 5 – 20, uniform distribution Unpublished 
Scott county 
SSP data and 
other data 23,37-

39  

Average drug-related 
mortality rate 

𝜇2 per year 0.57% (0.41-0.73%), Poisson 
distribution 

USA sites from 
40 

Average non drug-related 
mortality rate 

𝜇3 per year 0.14%, Poisson distribution 41 for 35-39 
year olds in US 

Treatment parameters     

SVR rate 𝛼 - 85 – 95%, uniform distribution 43 

Duration of treatment 𝜔 weeks 12 

Treatment number  Φ1 number 
per year 

Varied to reduce HCV prevalence or 
incidence by 90% by 2020/25/30. 

 

Harm reduction intervention parameters   

Relative risk of acquiring HCV while:    

On MAT Γ - 0.50 (0.40–0.63), log normal 
distribution 

Cochrane 
Systematic 
review13 On SSP Π - 0.44 (0.24–0.80), log normal 

distribution 

On both MAT and SSP Β - 0.29 (0.13–0.65), log normal 
distribution 

Duration on MAT/SSP 1/𝛾 years 0.99 (0.64-1.50), normal distribution 42 

Recruitment rate MAT 𝛽 per year Varied to give 25% or 50% coverage 
by mid-2017 

 

Recruitment rate SSP 𝜂 per year Varied to give 50% coverage by mid-
2016 
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FIGURES 

Figure 1: HCV chronic prevalence (a) and incidence (b) amongst PWID over time for different 
intervention scenarios. 
 
Figure 1 shows median projections from 1000 model fits, with 95% credibility intervals only 

shown for the no intervention scale-up scenario. SSP denotes syringe service programs and 

MAT denotes medication-assisted treatment. Full HR denotes full harm reduction which is 

defined as 50% coverage of both SSP and MAT. HCV treatment started in mid-2016 with two 

scenarios being shown (20 or 50 per 1000 PWID being treated annually). Incidence is estimated 

amongst susceptible PWID. Figure 1a also shows chronic HCV prevalence estimate model was 

calibrated to. 
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Figure 2: Required yearly HCV treatment rate needed to decrease HCV prevalence or incidence 

by 90% by 2020/25/30.  

Figures show projected number per 1000 PWID needing to be HCV-treated each year (2b), and 

percentage of infections this translates to in the first year (2a), to result in a 90% reduction in 

chronic HCV prevalence or incidence by 2020, 2025 or 2030, with or without full harm 

reduction (50% coverage of both SSP and MAT). In both figures, bars show the median 

projections from a sample of 1000 model runs and whiskers show the 95% credibility intervals. 

*Less than 5% of parameter sets achieved the target. #Only a proportion of parameter sets 

achieved the target.  

(a) 

 

(b) 
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Figure 3: Contribution of each model parameter to the variability in the required number of 

HCV treatments to reduce incidence/prevalence by 90% by 2030.  

Figures show the proportion of sum of squares each of the parameters contributes to the model 

outcome, indicating the importance of the parameters to the variation that is seen in the 

treatment number needed to reduce prevalence and incidence by 90% by 2030. The projections 

assume 50% coverage of SSP and MAT.  

 

 

 

 

 


