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Abstract

We adopt mechanism design to study the effects of inflation on output, trade, and capital
accumulation. Our theory captures multiple channels for individuals to respond to inflation:
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1 Introduction

This paper develops a monetary model with multiple channels for inflation to affect aggregate

activity, trade, and welfare. Since inflation is a tax on cash transactions, the conventional wisdom

suggests individuals shift away from cash intensive activities as inflation rises (Cooley and Hansen

1989, Lucas 2000). In this paper, we emphasize additional consequences of inflation important for

the functioning of monetary economies. These include the efforts taken by individuals engaging in

market activities to economize on cash holdings, the accumulation of real assets or capital goods

that can substitute for money as a means of payment, and the exchange patterns society adopts.

The objective is to analyze how inflation affects these channels and how they interact with one

another. As we highlight in detail below, key to our approach is the use of mechanism design to

determine the terms of trade, which allows us to study how inflation induces changes in the trading

arrangements implemented by society.

Our framework builds on the New Monetarist model of Lagos and Wright (2005) where frictions

like limited commitment and lack of record keeping make money or other liquid assets essential for

trade. Since inflation directly affects the opportunity cost of holding money, output always fall with

inflation absent other margins for individuals to respond. To incorporate additional consequences

of inflation, we modify the Lagos and Wright (2005) model of monetary exchange to include search

intensity, capital accumulation, and a pricing mechanism that respond endogenously to inflation.

For instance, in episodes of high inflation, individuals try to reduce the time of carrying money

by increasing their trading frequency.1 We endogenize search effort as a way to model this effect.

Moreover, while money is a primary liquid asset in most low inflation economies, societies in times

of high inflation tend to use other assets for transactions, such as capital goods. To capture this

substitution effect, we follow Lagos and Rocheteau (2008) and introduce capital goods that can

serve both as a means of production and a means of payment. While stylized, capital in our model

capture two salient features of real assets: first, overaccumulation of such assets is inefficient, and

second, such assets can serve as payment (or collateral) to facilitate trade.2

A key ingredient of our analysis is the use of mechanism design to determine the terms of trade

in pairwise meetings. Following Hu, Kennan, and Wallace (2009), we consider socially optimal

allocations that are individually rational and immune to pairwise defections. As in Hu and Ro-

cheteau (2013), our economy features coexistence of money and higher return capital as a feature

of the optimal trading mechanism. Relative to those papers, we obtain new insights on the non-

trivial interaction between individual search decisions and portfolio choices. Moreover, a novelty of

this approach is that we can study how inflation induces changes in society’s trading arrangements;

these changes may be innocuous, i.e. for low inflation rates, or more dramatic, i.e. for high inflation

1See e.g. descriptions by Guttmann and Meehan (1975) for the 1920s hyperinflation in Germany, Heynmann and
Leijohnhufvud (1995), and O’Dougherty (2002) for the 1990s high inflations in Latin America.

2In this sense, our notion of capital is rather broad; it includes all durable commodities or intermediate goods
that can serve as direct means-of-payments or collateral. See Bresciani-Turroni (1931) Chapter 5, for evidence on the
effects of overaccumulation of such goods in German hyperinflation from 1914 to 1923.
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rates.3

Our results provide a picture of the consequences of inflation for allocations and trading patterns

for different levels of inflation. In particular, the model generates three qualitatively different

regimes distinguished by whether inflation is at a low, intermediate, or high level. Which regime

arises depends on endogenous thresholds for inflation, which affects individual trading decisions

and hence dictates how welfare-relevant variables interact. We characterize constrained efficient

allocations in each regime and describe how they respond to anticipated changes in inflation.

In the low inflation regime, there is monetary superneutrality: output, search effort, and the

capital stock remain at their efficient levels, irrespective of changes in inflation. In the intermediate

inflation regime, search effort can increase with inflation even though the buyer’s real balances

falls. Here the optimal mechanism dictates the buyer to have more surplus as inflation rises, which

induces buyers to search harder. Inflation therefore leads to a higher trading frequency but lower

output per trade. Under a weak sufficient condition, capital remains at the first-best level even

though search intensity increases. We also provide examples where trade in the decentralized market

increases with inflation while search efforts are inefficiently high. Our finding that low inflation

is costless and becomes socially harmful only with higher inflation is broadly consistent with the

non-linear relationship between inflation and output documented empirically, e.g. by Bullard and

Keating (1995). However in these two regimes, capital accumulation is unaffected by inflation.

In the high inflation regime, agents overaccumulate capital which gradually crowds out money

as the main medium of exchange. As inflation tends to infinity, search effort can remain inefficiently

high, and the economy never collapses to autarky. These outcomes contrast with that of a pure

currency economy, such as in Lagos and Rocheteau (2005) where the economy approaches autarky

and buyers stop searching as inflation becomes high enough.4 These results suggest capital overac-

cumulation is a symptom only of high inflation, while Tobin effects are small or absent for moderate

inflation. Our finding that individuals first try to get rid of their real balances before substituting

to another asset is also consistent with the responses of high inflation documented historically.

The paper proceeds as follows. Section 1.1 discusses related literature. Section 2 presents

the baseline environment, and Section 3 describes the trading mechanism. Section 4 characterizes

implementable allocations and the effects of inflation on output, search effort, capital accumulation,

and welfare. We conclude in Section 5. All proofs are in the Appendix.

1.1 Related Literature

In contrast with previous studies on inflation and endogenous search efforts that take the pricing

mechanism as given, we use mechanism design following Hu, Kennan, and Wallace (2009) and

3As emphasized by Casella and Feinstein (1990), inflation not only affects how individuals economize on their
real balances, it also changes the economy’s trading patterns: “[H]istorians emphasize hyperinflation’s disruptive
impact on individuals and on their socioeconomic relationships. Previously stable trading connections were severed,
transactions patterns were altered, and normally well-functioning markets collapsed.”

4In our working paper Hu and Zhang (2015), we consider a pure currency economy and obtain this same result
under the optimal trading mechanism.
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Rocheteau (2012).5 While in Hu, Kennan, and Wallace (2009), the buyer’s surplus is indeterminate

when inflation is sufficiently low, the optimal search effort pins down the buyer’s surplus in our

model. With fixed search intensity, the optimal mechanism always gives buyers the full surplus,

which no longer holds in our model. In our model, the externality from buyers’ search decisions is

the key driving force for search intensity to rise with inflation. When inflation is in an intermediate

range, this hot potato effect arises for all parameters, but appears only for a small parameter set

under suboptimal mechanisms.6

Our coexistence result is similar to the main results in Hu and Rocheteau (2013). However,

different from that paper, our main focus is on the interaction between search intensity and the en-

dogenous choice of media of exchange. While in pure-currency economies (such as those considered

in Lagos and Rocheteau (2005) and Liu, Wang, and Wright (2011)), agents stop exerting search

effort as inflation rate tends infinity, we find the presence of capital creates a range of parameters

where search intensity remains inefficiently high even as inflation gets arbitrarily high.7

2 Environment

Time is discrete and continues forever. The economy is populated by a continuum of infinitely-lived

agents, divided into a set of buyers, denoted by B, and a set of sellers, denoted by S. Each date

has two stages: the first has pairwise meetings in a decentralized market (DM) and the second

has centralized meetings (CM). Time starts in the CM of period zero, and all agents discount

across periods according to β = (1 + r)−1 ∈ (0, 1). There is a single perishable good produced in

each stage, where the CM good is the numéraire. In the CM, all agents can produce and wish to

consume. Agents’ labels as buyers and sellers depend on their roles in the DM where only sellers

are able to produce and only buyers wish to consume.

The numéraire can be transformed into a capital good one for one. Capital goods accumulated

at the end of period t are used by sellers at the beginning of the CM of period t + 1 to produce

numéraire according to the technology F (k), where F is twice continuously differentiable, strictly

increasing, strictly concave, and satisfies the Inada conditions F ′(0) = ∞ and F ′(∞) = 0.8 We

also assume F ′(k)k is strictly increasing, strictly concave in k, and has range R+. Capital goods

5This includes Li (1994) which studies a model with indivisible money and Lagos and Rocheteau (2005) in a model
with divisible money.

6Another way to generate the hot potato effect is to have periodic access to the centralized market, as in Ennis
(2009), or to introduce preference shocks, as in Ennis (2008) and Nosal (2011). Liu, Wang, and Wright (2011) focus
instead on buyers’ participation decisions and show inflation decreases the number of buyers and hence the frequency
of trades. In our working paper Hu and Zhang (2015), we consider an extension with endogenous entry by buyers
and obtain a similar result as Liu, Wang, and Wright (2011) under an optimal mechanism.

7Alternative formalizations of capital accumulation in monetary search models include Shi (1999), Aruoba and
Wright (2003), and Aruoba, Waller, and Wright (2011). These papers focus on the use of capital for production and
rule out its role as a means of payment, a key focus of the present paper.

8Our model can be reinterpreted as one where buyers are endowed with one unit of labor in the CM and enjoy no
utility from leisure, where the CM technology is a constant-return-to-scale neoclassical production function, G(K,L).
Our analysis would be unchanged if we replace F (k) with G(k, 1). Although it would complicate the presentation,
allowing for elastic labor supply in G(K,L) would not alter our main results. In addition, our main results go through
with a linear production technology for capital, e.g. F (k) = Ak where A > 0.
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Figure 1: Timing of Representative Period

depreciate fully after one period, and the rental (or purchase) price of capital in terms of numéraire

at period t is denoted Rt.
9 The assumption of full depreciation is with no loss in generality. For

instance, we could have assumed a production technology f(k) and depreciation rate δ ∈ (0, 1), and

then define F (k) as F (k) = f(k) + (1− δ)k, which will give us exactly the same analytical results.

There is also an intrinsically useless, perfectly divisible and storable asset called money. The

quantity of money at the end of the period-t CM is Mt, and the relative price of money in terms

of numéraire is denoted φt. The money supply evolves according to Mt+1 = γMt, where γ is the

gross growth rate of the money supply. New money is injected if γ > 1, or withdrawn if γ < 1,

by lump-sum transfers or taxes in the beginning of the CM to buyers.10 Lack of record-keeping

and private information over individual trading histories rule out unsecured credit, which gives a

role for money or capital to serve as means of payment. In addition, individual asset holdings are

common knowledge in a match. We assume sellers do not carry real balances or capital across

periods.11 We also assume that the portfolios of both agents are common knowledge in a match.12

Agents are matched pairwise in the DM. The measure of sellers and buyers are normalized each

to one. We assume the seller’s search intensity is exogenously given, but buyers can choose their

search intensity. At the beginning of the DM, each buyer b ∈ B chooses search intensity, eb ∈ [0, 1].

9Who operates the technology, F , is irrelevant for our analysis provided the residual profits, F (k) − kF ′(k), are
not pledgable in the DM due to lack of commitment.

10Since we focus on the effects of inflation, money growth is not chosen optimally and is taken as given in the
mechanism design problem. To model deflation, the government is assumed to have enough coercive power to collect
and enforce taxes in the CM, but has no coercive power in the DM.

11Lemma 3 in Hu and Rocheteau (2013) shows that, in a similar environment without endogenous search intensity,
this assumption is with no loss in generality, as far as optimal allocation is concerned. It is straightforward to modify
their proof to show the same result in our environment with search intensity.

12Our results will go through if the portfolio is private information, as in Hu, Kennan, and Wallace (2009), but,
since this informational friction is not the focus here, we make this assumption to simply the exposition.
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The average search intensity of buyers is e, defined as

e =

∫
b∈B

ebdb.

A buyer exerting effort e to search in the DM incurs cost ψ(e). For all e ∈ [0, 1), ψ (e) ∈ [0,∞) is

twice continuously differentiable, strictly increasing, strictly convex, and satisfies Inada conditions

ψ(0) = ψ′(0) = 0, lime→1 ψ(e) = ∞, and lime→1 ψ
′(e) = ∞. Figure 1 summarizes the timing of a

representative period.

Given ē, the number of DM matches is determined by a constant-returns-to-scale matching

function that depends on market tightness, defined as θ ≡ 1/ē ∈ [1,∞], or the ratio of sellers to

the effective buyers searching. A high θ implies a thick market for buyers and a thin one for sellers.

Given θ, the meeting probability for an individual buyer with search intensity e is eα(θ) while the

meeting probability of a seller is α(θ)/θ. The function α(θ) satisfies α(θ) ∈ [0, 1] for any θ ≥ 1 and

is twice continuously differentiable, strictly increasing, strictly concave for θ ∈ [1,∞), and satisfies

Inada conditions limθ→∞ α(θ) = 1, limθ→1 α(θ) = 0, limθ→1 α
′(θ) ≥ 1, and limθ→1 α(θ)/θ = 1.

The buyer’s instantaneous utility function is

U b(q, e, x) = u(q)− ψ(e) + x, (1)

where q is DM consumption, x is the utility of consuming x ∈ R units of numéraire (x < 0 is

interpreted as production), and e is the buyer’s search effort.13 We assume u(0) = 0, u′(0) = ∞,

u′(q) > 0, and u′′(q) < 0 for q > 0. Similarly, the sellers’ instantaneous utility function is

U s(q, x) = −c(q) + x, (2)

where q is DM production and x is defined as before. We assume c(0) = c′(0) = 0, c′(q) > 0,

and c′′(q) ≥ 0. Further, we let c(q) = u(q) for some q > 0 and denote by q∗ the solution to

u′(q∗) = c′(q∗).

3 Implementation

We study outcomes that can be implemented with a mechanism designer’s proposal. A proposal

consists of (i) a sequence of functions in bilateral matches, ot : R2
+ → R3

+, each of which maps the

buyer’s portfolio, (zt, kt), into a proposed trade, (qt, dz,t, dk,t) ∈ R+× [0, zt]× [0, kt], where qt is the

DM output produced by the seller and consumed by the buyer, dz,t is the transfer of real balances,

and dk,t is the transfer of capital from the buyer to the seller; (ii) an initial distribution of money,

µ; (iii) a sequence of prices for money, {φt}∞t=1, and a sequence of rental prices for capital, {Rt}∞t=1,

both in terms of numéraire; (iv) a sequence of search intensities for buyers, {et}∞t=1.

13For tractability, the model requires either the utility of consuming or the cost of producing the CM good is linear.
Here we assume both CM consumption and production is linear though it would be straightforward to generalize to
quasi-linear preferences.
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The trading procedure in the DM is given by the following game. Given the buyer’s portfolio

holdings and the proposed trade, both the buyer and the seller simultaneously respond with yes

or no: if both say yes, the proposed trade is carried out; otherwise, there is no trade. Since both

agents can turn down the proposed trade, which ensures trades are individually rational. We also

require the proposed trade to be in the pairwise core.14 Agents in the CM trade competitively

against the proposed prices, which is consistent with the pairwise core requirement in the DM due

to the equivalence between the core for the centralized meeting and competitive equilibria.

We denote sb as the strategy of buyer b ∈ B, whose component at date t consists of three parts

for any of his private trading history ht at the beginning of period t: (i) sh
t,0
b (z, k) = e ∈ R+ that

maps the buyer’s portfolio, (z, k), into his search intensity, e, at the beginning of the DM; (ii)

sh
t,1
b (z, k) ∈ {yes, no} that, contingent on being matched in the DM, maps the buyer’s portfolio

(z, k) to his yes or no response in the DM; (iii) sh
t,2
b (z, k, ab, as) ∈ R2

+ that maps the buyer’s original

portfolio, (z, k), and the buyer’s and seller’s choices whether to accept the trade, ab, as ∈ {yes, no},
to his final real balances and capital holdings after the CM. The strategy of a seller s ∈ S at the

beginning of period t, given his private history ht, consists of a function, sh
t,1
s (z, k) ∈ {yes, no},

that represent the seller’s response to trade contingent on the buyer’s portfolio.

Definition 1. Equilibrium is a list, 〈(sb : b ∈ B), (ss : s ∈ S), µ, {ot, φt, Rt, et}∞t=1〉, composed of a

strategy for each agent and a proposal such that ( i) each strategy is sequentially rational given other

agents’ strategies; and ( ii) the centralized market clears at every date.

In the following, we focus on stationary proposals where real balances are constant over time

and equilibria where (i) agents follow symmetric and stationary strategies, (ii) agents respond with

yes in all DM meetings, and (iii) the initial distribution of money is uniform across buyers. In

such an equilibrium, φt = γφt+1 for all t; hence, we can discuss real balances only and leave out φt

from a proposal. Moreover, the proposed DM trades, ot(zt, kt), are the same across time periods

and can be written as o(z, k) = [q(z, k), dz(z, k), dk(z, k)].

The outcome of interest is a list, (qp, dpz, d
p
k, z

p, kp, ep), where (qp, dpz, d
p
k) are the terms of trade

in the DM, ep is the buyer’s search intensity, and (zp, kp) are the portfolio holdings of those buy-

ers. Such an outcome, (qp, dpz, d
p
k, z

p, kp, ep), is said to be implementable if it is the equilibrium

outcome associated with a proposal {o,R, e}. Given proposals and a rental price for capital, we let

CO(z, k;R) denote the set of allocations in the pairwise core for each (z, k).

Given o, θ, and R, let V b(z, k) and W b(z, k) denote the continuation values for a buyer holding

portfolio (z, k) upon entering the DM and CM, respectively. Similarly, let W s(z, k) denote the

continuation value for a seller holding (z, k). A buyer in the CM solves

W b(z, k) = max
x,ẑ≥0,k̂≥0

{
x+ βV b(ẑ, k̂)

}
14The pairwise core requirement can be implemented directly with a trading mechanism that adds a renegotiation

stage as in Hu, Kennan, and Wallace (2009), following the yes responses from both agents. The renegotiation stage
will work as follows. An agent will be chosen at random to make an alternative offer to the one made by the
mechanism. The other agent will then have the opportunity to choose between the two offers.
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s.t. x+ γẑ + k̂ = z +Rk + T

where ẑ and k̂ are real balances and capital taken into the next DM, and T = (Mt+1 −Mt)φt is

the lump-sum transfer of money. In a stationary equilibrium, γ = φt
φt+1

= Mt+1

Mt
. Hence in order to

hold ẑ real balances in the next period, the buyer must accumulate γẑ real balances this period.

Substituting x = z +Rk + T − γẑ − k̂ from the budget constraint, a buyer’s CM value function is

W b(z, k) = z +Rk + T + max
ẑ≥0,k̂≥0

{
−γẑ − k̂ + βV b(ẑ, k̂)

}
, (3)

Due to linear preferences in the CM, the buyer’s value function is linear in total wealth, W b(z, k) =

z + Rk + W b(0, 0), and the maximizing choice of ẑ and k̂ is independent of the buyer’s current

wealth.

The value function of a buyer with portfolio (z, k) upon entering the DM is

V b(z, k) = max
e∈[0,1]

{
−ψ(e) + eα(θ)

{
u [q(z, k)] +W b [z − dz(z, k), k − dk(z, k)]

}
+ [1− eα(θ)]W b(z, k)

}
.

(4)

According to (4), a buyer searching with intensity e meets a seller with probability eα(θ), consumes

q(z, k), and transfers to the seller dz(z, k) real balances and dk(z, k) units of capital. The buyer

therefore enters the CM with z − dz(z, k) real balances and k − dk(z, k) units of capital. With

probability 1 − eα(θ), a buyer is unmatched so there is no trade. From the linearity of W b, (4)

simplifies to

V b(z, k) = max
e∈[0,1]

{
−ψ(e) + eα(θ) {u [q(z, k)]− dz (z, k)−Rdk (z, k)}+W b(z, k)

}
. (5)

For each portfolio (z, k), we let e(z, k) denote the optimal search intensity that solves (5). Since ψ

is strictly convex, e(z, k) is uniquely defined. In addition, (z, k) = (0, 0) implies e(z, k) = 0. Since

θ = 1/ep in equilibrium, the buyer’s search intensity, ep = e(zp, kp), solves

−ψ′(ep) + α(1/ep)
[
u(qp)− dpz −Rd

p
k

]
= 0. (6)

Substituting V b(z, k) from(5) into (3), using the linearity of W b(z, k), and omitting constant terms,

the buyer’s portfolio problem in the CM is as

max
(z,k)
{−iz − (1 + r −R)k − ψ(e(z, k)) + e(z, k)α(θ) {u [q(z, k)]− dz (z, k)−Rdk(z, k)}} , (7)

where i = γ−β
β is the cost of holding money and 1+r−R is the cost of holding capital, which is the

difference between the gross rate of time preference and the rental price of capital. Since holding

the equilibrium portfolio, (zp, kp), is better than (0, 0) in equilibrium, we must have

−izp − (1 + r −R)kp − ψ(ep) + epα(1/ep)[u(qp)− dpz −Rd
p
k] ≥ 0. (8)

8



Similarly, the Bellman equation for a seller in the CM is

W s(z, k) = z +Rk + max
k̂≥0

{
F (k̂)−Rk̂

}
. (9)

According to (9), the seller’s choice of capital solves F ′(k̂) = R. From market clearing in the CM,

kp = k̂. Consequently, the equilibrium capital stock, kp, solves

F ′(kp) = R ≤ 1 + r. (10)

According to (10), the equilibrium capital stock equates the marginal product of capital, F ′(kp),

with the rental rate, R. It is also necessary that R ≤ 1 + r. If R > 1 + r, buyers hold an infinite

amount of capital, but perfect competition implies F ′(∞) = 0 < 1 + r < R, a contradiction. Using

(9), the seller responds with yes to the proposed trade (qp, dpz, d
p
k) only if

−c(qp) + dpz +Rdpk ≥ 0. (11)

The above analysis implies (6), (8), (10), and (11) are necessary conditions to implement

(qp, dpz, d
p
k, z

p, kp, ep). In addition, we also impose the pairwise core requirement. Given buyer’s

portfolio and a rental price, the pairwise core, CO(zp, kp;R), is defined as the set of feasible alloca-

tions, (q, dz, dk) ∈ R+×[0, zp]×[0, kp], such that no alternative feasible allocations would make both

parties in the match strictly better off, taking the continuation value as given. A characterization

of the pairwise core in a related setting can be found in Hu and Rocheteau (2013)’s Supplementary

Appendix B. The following proposition shows that these necessary conditions and the pairwise core

requirement are also sufficient.

Proposition 1. An outcome, (qp, dpz, d
p
k, z

p, kp, ep), is implementable if and only if

−izp − [1 + r − F ′(kp)]kp + epα(1/ep)[u(qp)− dpz − F ′(kp)d
p
k]− ψ(ep) ≥ 0, (12)

dpz ≤ zp, d
p
k ≤ k

p, (13)

ψ′(ep) = α(1/ep)[u(qp)− dpz − F ′(kp)d
p
k], (14)

−c(qp) + dpz + F ′(kp)dpk ≥ 0, (15)

F ′(kp) ≤ 1 + r, (16)

and (qp, dpz, d
p
k) ∈ CO(zp, kp;R).

The proof of Proposition 1 is constructive as we explicitly provide the proposed trades to im-

plement the candidate outcome. In contrast with the implementability result in Hu and Rocheteau

(2013), here we have to worry about the implementation of search efforts determined by the buyer’s

trade surplus through (14). As a result, the buyer’s surplus affects both their portfolio choice and

search decision. This generates a new tradeoff we discuss in detail below.
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4 Optimal Allocation

We now describe implementable outcomes that are socially optimal. Given an outcome, social

welfare is defined as the sum of buyers’ and sellers’ lifetime discounted expected utilities:

W(qp, dpz, d
p
k, z

p, kp, ep) = −kp + lim
T→∞

T∑
t=1

βt
{
epα

(
1

ep

)
[u(qp)− c(qp)]− ψ(ep) + [F (kp)− kp]

}
=

1

r

{
epα

(
1

ep

)
[u(qp)− c(qp)]− ψ(ep) + [F (kp)− (1 + r)kp]

}
. (17)

The first term after the first equality is the utility cost incurred by agents in the initial CM to

accumulate kp; the second term captures the utility flows in subsequent periods and consists of the

sum of expected surpluses in pairwise meetings, epα(1/ep)[u(qp) − c(qp)], net of the search cost,

ψ(ep), and CM output net of the depreciated capital stock, F (kp)− kp.

Definition 2. An outcome, (qp, dpz, d
p
k, z

p, kp, ep), is constrained efficient if it maximizes (17) subject

to (12)–(16) and the pairwise core requirement.

As a benchmark, we begin with the unconstrained problem that maximizes social welfare (17)

without constraints (12)–(16). The solution to this unconstrained problem, which we call the

first-best allocation, is given by qp = q∗, kp = k∗, and ep = e∗ that solve

u′(q∗) = c′(q∗), (18)

F ′(k∗) = 1 + r, (19)[
α(1/e∗)− α′(1/e∗)/e∗

]
[u(q∗)− c(q∗)] = ψ′(e∗). (20)

Since (q∗, k∗, e∗) are uniquely determined and (17) is concave in q and e (but is not jointly concave),

these necessary conditions are also sufficient. The first-best level of output, q∗, maximizes the match

surplus between a buyer and seller, and the first-best level of capital, k∗, ensures that the marginal

product of capital compensates for the opportunity cost of holding capital. The first-best level of

search intensity, e∗, is derived from the first-order condition on the objective function with respect

to e, but taking qp = q∗. Accordingly, the marginal cost of searching, ψ′(e∗), is equal to the

corresponding social marginal contribution of searching, [α(1/e∗)− α′(1/e∗)/e∗], times the surplus

generated in each trade, u(q∗)− c(q∗).
Next we consider an economy where capital is the only liquid asset. Imposing z = 0, an outcome

is denoted by (q, dk, k, e).

Lemma 1. Suppose z = 0. A constrained-efficient outcome, (qc, dck, k
c, ec), exists, and the first-best

is implementable if and only if

(1 + r)k∗ ≥ u(q∗)− ψ′(e∗)

α(1/e∗)
.
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When the first-best is not implementable, dck = kc > k∗. Maximal social welfare given by

Wc =
1

r
{ecα(1/ec)[u(qc)− c(qc)]− ψ(ec) + F (kc)− (1 + r)kc}

is strictly greater than what is achievable with the additional constraint k = k∗, denoted W0.

Lemma 1 implies the first-best is implementable without money when k∗ is sufficiently large. In

that case, the aggregate capital stock is sufficiently abundant to allow buyers to finance consumption

of the first-best. Since the first-best is implementable with z = 0, money is not essential.

When instead k∗ is insufficient to meet the economy’s liquidity needs, the optimal mechanism

features an overaccumulation of capital where kc > k∗. In addition, quantities traded in the DM

are inefficiently low (qc < q∗). With a shortage of liquidity, society faces a trade-off between two

inefficiencies, as highlighted by Hu and Rocheteau (2013): (i) the shortage of capital for liquidity

purposes, and (ii) the overaccumulation of capital for productive purposes. Lemma 2 then shows

that whenever the first best is not implementable, overaccumulation of capital is socially optimal

in order to mitigate the shortage of liquidity. Note that since it is always feasible to set z = 0, Wc

gives a lower bound on welfare when both money and capital are present.

We provide numerical examples in Table 1 for the economy with capital alone. We assume

u(q) = (q+b)1−σ−b1−σ
1−σ , c(q) = qκ

κ , ψ(e) = c
(

e
1−e

)ρ
, α(θ) = 1 − exp(1 − θ) where θ = 1/e, F (k) =

Aka + (1− δ)k, and set b = 0.0001, c = 0.4, ρ = 2, κ = 1, r = 0.02, a = 0.3, A = 0.8, δ = 0.8, and

consider two values for σ, 0.3 and 0.7. In both cases, the first-best is not implementable and there

is overaccumulation of capital. However, when σ = 0.3, equilibrium search intensity is inefficiently

low; for σ = 0.7, search intensity is inefficiently high.

Table 1: Constrained Efficient Outcomes with Capital Alone
First-Best σ = 0.3 First-Best σ = 0.7

Output q 1 0.29 1 0.32
Search Effort e 0.22 0.18 0.34 0.41
Capital k 0.17 0.32 0.17 0.37

Here we present our main proposition, which summarizes the effects of inflation on imple-

mentable allocations when there is a shortage of capital. To simplify notation, we call a tuple

(qp(i), zp(i), kp(i), ep(i)) a constrained-efficient outcome under nominal interest rate i if there ex-

ists (dpz, d
p
k) ≤ (zp(i), kp(i)) such that (qp(i), dpz, d

p
k, z

p(i), kp(i), ep(i)) maximizes social welfare, (17),

subject to (12)–(16) and the pairwise core requirement.

Proposition 2. Suppose (1 + r)k∗ < u(q∗)−ψ′(e∗)/α(1/e∗). For any i ≥ 0, a constrained efficient

outcome, (qp(i), zp(i), kp(i), ep(i)), exists, and satisfies the following.

1. Let i∗ = e∗ψ′(e∗)−ψ(e∗)
u(q∗)−(1+r)k∗−ψ′(e∗)/α(1/e∗) > 0. For all i ∈ [0, i∗], the constrained-efficient outcome,

(qp(i), zp(i), kp(i), ep(i)), is unique (except for zp(i)) , and satisfies qp(i) = q∗, zp(i) > 0,

kp(i) = k∗, and ep(i) = e∗.
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2. Suppose 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗ . There exists ī′ > i∗ such that for all i ∈ (i∗, ī′], the

unique constrained-efficient outcome, (qp(i), zp(i), kp(i), ep(i)), satisfies qp(i) < q∗, kp = k∗,

zp(i) > 0, and ep(i) > e∗. Moreover, ep(i) is strictly increasing in i ∈ [i∗, ī′].

3. There exists î such that, for each i > î, and for each constrained-efficient outcome, we have

kp(i) > k∗. Moreover, zp(i)→ 0 as i→∞ but maximum welfare converges to Wc >W0.

Proposition 2 assumes (1 + r)k∗ < u(q∗)− ψ′(e∗)/α(1/e∗) to allow a role for money. While the

proof of Proposition 2 (1) only requires verifying constraints (12)–(16), the proof of Proposition 2

(2) is non-standard since the constraint set is not convex and the objective function is not globally

concave. Instead, we employ the Implicit Function Theorem to find a solution to the first-order

conditions and use continuity to establish that the solution is also a global maximizer. While we

cannot give an explicit expression for the upper bound on the inflation rate below which search

intensity increases, we later provide examples to quantify this threshold.

According to Proposition 2 (1), the highest nominal interest rate for implementing the first

best is strictly positive: i∗ > 0. Hence, the Friedman rule, defined as i = 0, is sufficient but not

necessary to achieve maximal welfare.15 For all i ∈ [0, i∗], money is superneutral and all welfare-

relevant variables are at their first-best levels. In contrast to Hu, Kennan, and Wallace (2009), a

difference here is the first best cannot be implemented by giving all the surplus to buyers with the

equilibrium amount of real balances. If this were the case, then under the first-best level of output,

search intensity would be given by (14) with q = q∗, dz + F ′(k)dk = c(q∗), and k = k∗, and hence

equal to ê given by

ψ′(ê)/α(1/ê) = [u(q∗)− c(q∗)]. (21)

But due to search externalities, ê > e∗. By (20),

ψ′(e∗)/α(1/e∗) < ψ′(e∗)/[α(1/e∗)− α′(1/e∗)/e∗] = [u(q∗)− c(q∗)] = ψ′(ê)/α(1/ê).

To discourage buyers from over-searching, the optimal mechanism gives buyers a fraction of the

surplus while the seller’s participation constraint, (15), is not binding at the optimum.

For intermediate inflation rates, Proposition 2 (2) gives a sufficient condition for inflation to

have no effects on the capital stock even though output is inefficiently low and search intensity is

inefficiently high. For instance, when F (k) = Aka, the sufficient condition holds if a is not too large

or i∗ is relatively small. We remark here that money is essential for a range of nominal interest

rates above i∗, even without imposing the sufficient condition, 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗ (see

Claim 2 in the proof of Proposition 2 (2)). As in Hu and Rocheteau (2013), there is rate-of-return

dominance whenever both money and capital are used.

15This finding differs from the typical result in monetary models that rely on exogenously given trading mechanisms
such as pairwise bargaining. There, the Friedman rule is typically necessary for efficiency, at least with regards to the
amount of output traded in a match. With endogenous participation or entry however, the Friedman rule need not
be optimal. See also Rocheteau and Wright (2005) and Berentsen, Rocheteau, and Shi (2007) for a related discussion.
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While this result resembles the hot potato effect of inflation, the mechanism in our model differs

from the conventional rationale. The standard explanation is that higher inflation itself induces

buyers to search harder in order to get rid of their money holdings. However, this reasoning

implicitly assumes a cash-in-advance constraint without which buyers may not hold cash in the

first place. Instead in our setting, the optimal mechanism dictates buyers to have more surplus as

inflation rises above i∗, thereby inducing buyers to search harder.

The intuition for why both the buyer’s surplus and search effort increases with inflation can

be seen from Figures 2 and 3, which depict the implementable set under k = k∗ for i = i∗ and a

slightly higher i′, denoted by Am(i∗) and Am(i′) respectively. In Figure 2, the first-best allocation,

(q∗, e∗), lies on the boundary of the lower curve, which corresponds to the buyer’s participation

constraint, (12), being binding, but lies strictly below the upper curve, which corresponds to the

seller’s participation constraint, (15), being slack. Figure 3 shows that as the nominal interest rate

increases from i∗ to i′ > i∗, the buyer’s constraint shifts upward while the seller’s constraint is

not affected. As the objective function, (17), is locally concave, the constrained-efficient level of

search intensity increases with inflation. Since output higher than q∗ would violate the pairwise

core requirement, output falls with inflation.

Figure 2: Implementable Set, Am(i∗)
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Figure 3: Implementable Set Shrinks As i ↑
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In the high inflation regime, the economy with both money and capital has several novel features.

Proposition 2 (3) shows capital overaccumulation is bound to occur as inflation rises, even without

the sufficient condition in part (2). In turn, the monetary sector eventually collapses. In contrast

to the pure currency economy studied in the literature, the economy never collapses into autarky

since capital can always be used as a medium of exchange. In addition, search intensity can remain

inefficiently high even at high inflation rates. Indeed, as welfare converges to the level where only

capital is the medium of exchange, Wc, Proposition 2 (3) suggests search intensity also converges

to its level without money, which may be higher or lower than e∗.

Figures 4–9 are examples illustrating Proposition 2. We assume the same functional forms as
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Figure 4: Output per Match Figure 5: Search Intensity
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Figure 6: Aggregate Output Figure 7: Matching Probability

before with b = 0.0001, c = 0.4, ρ = 2, κ = 1, r = 0.02, a = 0.3, A = 0.8, δ = 0.8, and σ = 0.7.

Figure 5 shows search intensity remains inefficiently high and approaches the value reported in

Table 1 for the economy with capital alone, and hence the rise in search intensity persists even

for high inflation rates. For high inflation rates, there is a substitution effect where the optimal

mechanism prescribes buyers to substitute money for capital as inflation increases. This can be

seen in Figures 8 and 9. This Tobin effect turns out to be an optimal way of responding to inflation

as doing so allows agents to maintain consumption in the DM even as inflation gets very high. The

fact that capital increases with inflation comes from our broader notion of capital as an asset that

competes with money as media of exchange. Indeed, since agents can use both money and capital

as means of payment, but incur a real cost for overaccumulating of capital, search intensity can

still rise with inflation even as inflation gets very high.

Finally, we provide examples where DM aggregate output can rise with inflation. DM aggregate

output is defined as the total quantity of goods traded or total production in the DM:

Q ≡ eα(1/e)︸ ︷︷ ︸
matching prob.

× q︸︷︷︸
output per trade

. (22)

Figure 10 plots DM aggregate output with κ = 5. When i ∈ (i∗, ī′], our model has two counteracting

effects: search intensity and hence the frequency of trades, eα(1/e), increases with inflation while

DM quantity traded per match, q, falls. In our examples, the responsiveness of DM output to

inflation is decreasing in κ, i.e. output is less responsive to inflation when c(q) is more convex.

Hence when κ is relatively large, it is possible for the total quantity traded, eα(1/e)q, to go up with

inflation. This non-monotonicity result on search efforts and quantity traded contrast with many

previous studies that study endogenous search decisions under suboptimal trading mechanisms. In
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Figure 8: Real Balances Figure 9: Capital

particular, Lagos and Rocheteau (2005) show under Nash bargaining, the buyer’s search effort falls

monotonically with inflation. As this trading protocol is held constant for different inflation rates,

both the buyer’s real balances and surplus fall with inflation, and hence search efforts fall as well.

Figure 10: Aggregate Output Figure 11: Matching Probability

5 Concluding Remarks

In this paper, we adopt mechanism design to revisit some classical issues in monetary economics,

namely the long run effects of inflation on output, search efforts, and capital accumulation as well

as the social costs of inflation. We develop a tractable monetary model featuring costly search

efforts to endogenize the frequency of trade, capital accumulation to endogenize the choice of a

means of payment, and an endogenous trading mechanism that adjusts with the inflation tax.

On the normative side, our results suggest that zero inflation rate is not necessarily the optimal

policy under the optimal trading mechanism and a strictly positive rate can also be optimal, and

we show that this can be the case with endogenous search intensity as well as with other means of

payments.

On the positive side, the model is able to replicate several qualitative patterns emphasized in

empirical macro studies and historical anecdotes, including monetary superneutrality for a range

of low inflation rates, non-linearities in trading frequencies and aggregate output, and substitution

of money for capital for high inflation rates. While we acknowledge certain aspects of our findings

have appeared separately in previous studies, we show how they are intimately related by all being

features of an optimal trading mechanism. That changes in inflation can have severe consequences

on economic exchange and social interactions has also been emphasized by economic historians

(Bresciani-Turroni (1931), Heynmann and Leijohnhufvud (1995), O’Dougherty (2002)). Here we
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remark on a few caveats to our analysis and posit some directions for future research.

Optimal Trading Mechanism

In our framework, the economy’s trading mechanism evolves to the optimal mechanism as the

inflation rate changes. The inflation rate itself however is taken as exogenous, and our focus is to

study the consequences of changes in inflation. Importantly however, we do endogenize society’s

trading mechanism and obtain very different results from previous studies, most of which treat the

trading mechanism as a primitive. Indeed we show that under the optimal mechanism, the hot

potato effect and substitution between money and capital are both optimal ways of responding to

the inflation tax. Although it is unlikely for societies to change trading patterns for small changes in

inflation, it seems plausible that societies would adjust trading mechanisms for large and persistent

changes and our results are qualitatively in line with historical episodes of such changes.

Other Substitutes for Domestic Currency

Our model assumes that capital goods are the only alternative means of payments to money.

However, capital goods in the model can be interpreted more broadly to include other real assets

that may provide a hedge against inflation. This includes the use of assets not only for immediate

settlement but as collateral (Caballero (2006)).16 An example is the use of home equity as collateral

to finance future consumption. Moreover, individuals often resort to using foreign currencies for

transactions during periods of high or hyperinflation (Calvo and Vegh (1992)). While our current

framework cannot fully accommodate for the circulation of foreign currencies, an extension of our

model to multiple countries and currencies is a fruitful topic for future research. Such a model

could then determine how the presence of foreign currencies affects the consequences of inflation

on international trade and welfare, as in Zhang (2014).

Sellers’ Search Intensity

While we assume only buyers choose their search intensity, we can extend the analysis to allow

sellers to choose as well. This would add an additional constraint in Proposition 1, through a first

order condition for sellers’ search effort. This implies that we always have to give sellers some

trade surpluses to encourage their search decisions. Under appropriate conditions, Proposition 2

(1) still holds, but with a modified expression for i∗. We also conjecture that if the cost of search is

relatively small for sellers, Proposition 2 (2) and (3) will still hold and leave a more comprehensive

analysis for future work.

16The role of assets as collateral also appears in Kiyotaki and Moore (2008) where assets do not change hands along
the equilibrium path. This would entail DM trades using secured credit with capital playing the role of collateral.
Then in the CM, debtors would settle obligations in numéraire. In our set up, capital goods are transferred between
individuals and there is finality in each DM trade.
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Appendix

Proof of Proposition 1

We proved the necessity of constraints (12)-(16) in the main text. Here we prove their sufficiency.

Let (qp, dpz, d
p
k, z

p, kp, ep) be an outcome that satisfies (12)-(16) and the pairwise core requirement.

Consider the following trading mechanism with R = F ′(kp):

1. If (z, k) ≥ (zp, kp), then

o(z, k) ∈ arg max
q,dz ,dk

{dz +Rdk − c(q)} (23)

s.t. u(q)− dz −Rdk ≥ u(qp)− dpz −Rd
p
k,

q ≥ 0, dz ∈ [0, z], dk ∈ [0, k].

2. Otherwise,

o(z, k) ∈ arg max
q,dz ,dk

{dz +Rdk − c(q)} (24)

s.t. u(q)− dz −Rdk ≥ 0,

q ≥ 0, dz ∈ [0, z], dk ∈ [0, k].

Solutions to the maximization problems (23) and (24) exist, and are denoted by o(z, k) =

[q(z, k), dz(z, k), dz(z, k)]. Each solution has a unique q(z, k). Although dz and dk may not be

uniquely determined, we select the solution such that dz(z, k) = z if it exists and dk(z, k) = 0

otherwise for any (z, k) 6= (zp, kp). Indeed, in the Supplemental Material, Section 1, we show that

the total wealth transfer is in fact uniquely determined.

To show that (qp, zp, kp) is a solution to (23) for (z, k) = (zp, kp), notice that (23) is the dual

problem that defines the core of a pairwise meeting. Because (qp, zp, kp) ∈ CO(zp, kp;R), it is also

a solution to (23). This gives us a well-defined mechanism, o.

Now we show that the following strategy profile, (s∗b , s
∗
s), form a simple equilibrium: for all t and

for all ht, (s∗b)
ht,0(z, k) = ep if (z, k) ≥ (zp, kp), (s∗b)

ht,0(z, k) = 0 otherwise; for all portfolios (z, k),

(s∗b)
ht,1(z, k) = yes for all portfolios (z, k), and (s∗s)

ht,1(z, k) = yes; for all portfolios (z, k) and

all responses (ab, as), (s∗b)
ht,2(z, k, ab, as) = (zp, kp). In words, irrespective of their portfolios when

entering the CM, buyers exit the CM with their proposed portfolios, (zp, kp). The effort choice is

ep if the buyer holds no less than the proposed portfolio in both assets; it is zero otherwise. In the

DM they always say yes to the proposals. We show that s∗b and s∗s are optimal strategies following

any history, given that all other agents follow (s∗b , s
∗
s).

Conditions (12) and (15), as well as the constraints in (23) and (24), ensure that both buyers

and sellers are willing to respond with yes to the mechanism, both on and off equilibrium paths.
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Now, by (23) and (24), the buyer’s surplus is given by

u [q(z, k)]− dz (z, k)−Rdk(z, k) = u(qp)− dpz −Rd
p
k if (z, k) ≥ (zp, kp); (25)

u [q(z, k)]− dz (z, k)−Rdk(z, k) = 0 otherwise.

As a result, because ep satisfies (14) and R = F ′(kp), it follows that e(z, k) = ep if (z, k) ≥ (zp, kp)

and e(z, k) = 0 otherwise. Now consider the problem (7). By (25), any choice (z, k) with (z, k) ≥
(zp, kp) are strictly dominated by (zp, kp) and other choices are dominated by (0, 0), but (zp, kp) is

better than (0, 0) by (12). This implies that (zp, kp) is the unique solution to the problem (7). �

Proof of Lemma 1

From Proposition 1, an outcome (q, dk, k, e) is implementable if and only if

−[1 + r − F ′(k)]k + eα(1/e)[u(q)− F ′(k)dk] ≥ ψ(e), (26)

−c(q) + F ′(k)dk ≥ 0, (27)

1 + r ≥ F ′(k), (28)

ψ′(e) = α(1/e)[u(q)− F ′(k)dk], (29)

and (q, dk) ∈ CO(0, k;R) with R = F ′(k).

(1) Suppose (1 + r)k∗ ≥ u(q∗) − ψ′(e∗)
α(1/e∗) . We show the first-best allocation, (q∗, d∗k, k

∗, e∗), is

implementable, where

d∗k =
1

1 + r

[
u(q∗)− ψ′(e∗)

α(1/e∗)

]
.

Because F ′(k∗) = 1 + r, (26) and (28) are satisfied. Note that d∗k ≤ k∗ because (1 + r)k∗ ≥
u(q∗) − ψ′(e∗)

α(1/e∗) and (29) is satisfied by construction. Finally, (27) holds if and only if u(q∗) −
ψ′(e∗)/α(1/e∗) ≥ c(q∗), that is, α(1/e∗)[u(q∗) − c(q∗)] ≥ ψ′(e∗). But, by (20) and the fact that

α′(θ) > 0 for all θ, α(1/e∗)[u(q∗)− c(q∗)] = [α′(1/e∗)/e∗][u(q∗)− c(q∗)] + ψ′(e∗) > ψ′(e∗). �

(2) Suppose (1 + r)k∗ < u(q∗) − ψ′(e∗)
α(1/e∗) . Here we show k0 > k∗ and hence the first-best is not

implementable and that Wc >W0.

First we showW0 > 0. Consider the outcome (q̄, d̄k, k
∗, ē) given as follows: q̄ = u−1[(1+r)k∗] >

0, ē solves

[α(1/e)− α′(1/e)/e][u(q̄)− c(q̄)] = ψ′(e),

d̄k = u(q̄) − ψ′(ē)/α(1/ē) > c(q̄). The outcome is implementable and is associated with positive

welfare.

Second, we show a constrained-efficient outcome (under the additional constraint z = 0),

(qc, dck, k
c, ec), exists. Note first that any outcome (q, dk, k, e) with q > q∗ is strictly dominated

by another outcome with q′ ≤ q∗; the proof follows exactly the same arguments as in the proof of

Lemma 1. Second, any outcome (q, dk, k, e) with dk < k is strictly dominated as well. If k > k∗,
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then we can decrease k and obtain higher welfare. Otherwise, assume that k = k∗ and consider

two cases: (i) q < q∗. Then, consider another outcome (q′, d′k, k, e) such that q < q′ < q∗ and that

u(q′) − F ′(k)d′k = u(q) − F ′(k)dk. So buyer surplus is unchanged; the seller constraint is satisfied

(note that u(q′)− c(q′) > u(q)− c(q)):

F ′(k)d′k − c(q′) = u(q′)− c(q′)− u(q) + F ′(k)dk > −c(q) + F ′(k)dk ≥ 0.

So (q′, d′k, k, e) is implementable but has strictly higher welfare. (ii) q = q∗ and k = k∗. Then,

because (1 + r)k∗ < u(q∗)− ψ′(e∗)
α(1/e∗) and because (q, dk, k, e) satisfies (29), we have

ψ′(e)/α(1/e) = [u(q∗)− (1 + r)dk] ≥ [u(q∗)− (1 + r)k∗] > ψ′(e∗)/α(1/e∗), (30)

and hence e > e∗. So lowering e will increase welfare. Consider (q, d′k, k, e
′) with dk < d′k < k = k∗

and that
ψ′(e′)

α(1/e′)
= [u(q∗)− F ′(k∗)d′k].

So e′ ∈ (e∗, e). Then, (q, d′k, k, e
′) is implementable but has strictly higher welfare.

Thus, we may only consider outcomes with k = dk, and q ≤ q∗. This implies that k ≤ k̂ that is

given by

F ′(k̂)k̂ = u(q∗). (31)

Therefore, we may consider outcomes of the form (q, k, k, e) that satisfies (26)-(29) and q ∈ [0, q∗],

k ∈ [0, k̂]. Thus, we have a maximization problem of a continuous objective function with a compact

feasible set, which admits a maximum.

Now we show that, in any constrained-efficient outcome, (qc, dck, k
c, ec), kc > k∗. Suppose, by

contradiction, that kc = k∗. Consider two cases.

(a) qc < q∗. We have shown that dck = k∗. Note that because kc = k∗ and because of (29), (26)

holds with strict inequality. Let k′ > k∗ be sufficiently close to k∗ such that, by setting q′ to satisfy

u(q′)− F ′(k′)k′ = u(qc)− F ′(k∗)k∗, we have

qc < q′ < q∗ and ecα(1/ec)[u′(q′)− c′(q′)] g
′(k′)

u′(qc)
> [1 + r − F ′(k′)],

where g(k) = F ′(k)k, a concave function by assumption, and that (26) holds for q = q′, e = ec, and

F ′(k)dk = F ′(k′)k′. Note that the second requirement to define k′ can be satisfied because the right-

side is zero at k∗ but the left-side is bounded away from zero. Because u′(q′)−c′(q′) > u(qc)−c(qc),
it follows that F ′(k′)k′ > c(q′). Thus, (q′, k′, k′, ec) is implementable but the welfare difference is

ecα(1/ec)[u(q′)− c(q′)− u(qc) + c(qc)]− {[(1 + r)k′ − F (k′)]− [(1 + r)k∗ − F (k∗)]}

> ecα(1/ec)[u′(q′)− c′(q′)] g
′(k′)

u′(qc)
[k′ − k∗]− [(1 + r)− F ′(k′)][k′ − k∗] > 0.
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(b) qc = q∗, and hence, by (30), ec > e∗. Let k′ > k∗ be sufficiently close to k∗ such that, by setting

e′ to satisfy u(q∗)− F ′(k′)k′ = ψ′(e′)/α(1/e′), we have

ec > e′ > e∗ and l′(e′)
g′(k′)

maxe∈[e′,e0] j
′(e)

> [1 + r − F ′(k′)],

where j(e) = ψ′(e)/α(1/e) and l(e) = eα(1/e)h(q∗) − ψ(e) (note that j(e) is strictly increasing).

Again, the second requirement that defines e′ above can be satisfied because 1 + r − F ′(k∗) = 0

but the left-hand side is bounded away from zero. (q∗, k′, k′, e′) is implementable but the welfare

difference is

[l(e′)− l(ec)]− {[(1 + r)k′ − F (k′)]− [(1 + r)k∗ − F (k∗)]}

> l′(e′)
g′(k′)

maxe∈[e′,ec] j′(e)
[k′ − k∗]− [(1 + r)− F ′(k′)][k′ − k∗] > 0.

Therefore, we have kc > k∗. �

Proof of Proposition 2

(1) It is straightforward to show that the first-best allocation given by (18)-(20) is unique using

standard arguments. Now we show that for all i ∈ [0, i∗], the outcome (q∗, d∗z, k
∗, z∗, k∗, e∗) with

d∗z = u(q∗)− (1 + r)k∗ − ψ′(e∗)

α(1/e∗)
> 0

satisfies constraints (12)-(16). Clearly, F ′(k∗) = 1 + r implies (16) is satisfied. Note that (14) holds

by construction. Plugging this into (12), it is straightforward to verify that it holds if and only if

i ≤ i∗ by definition of i∗. Note that (15) holds if and only if u(q∗) − ψ′(e∗)/α(1/e∗) ≥ c(q∗), that

is, α(1/e∗)[u(q∗)− c(q∗)] ≥ ψ′(e∗). But, by (20) and the fact that α′(θ) > 0 for all θ,

α(1/e∗)[u(q∗)− c(q∗)] = α′(1/e∗)/e∗[u(q∗)− c(q∗)] + ψ′(e∗) > ψ′(e∗).

�

(2) First we show that when i > i∗, any outcome (q, dz, dk, z, k, e) with dz < z or dk < k is strictly

dominated. Note that any outcome with q > q∗ is strictly dominated by another with q′ ≤ q∗.

The case with dk < k follows the same arguments as those in the proof of Lemma 2. Consider the

case with dz < z and dk = k. If k > k∗, then we may decrease k and dk and increase dz to keep

the buyer surplus unchanged, and by doing so we keep the constraints but increase the welfare.

So assume that k = k∗. If q < q∗, then we may increase both q and dz to keep the buyer surplus

unchanged, and by doing so doing so we keep the constraints but increase the welfare. So assume

that k = k∗ and q = q∗. Then, by (12) and (14),

eψ′(e)− ψ(e)

i
≥ z > dz = u(q∗)− ψ′(e)/α(1/e)− (1 + r)k∗,
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and hence
eψ′(e)− ψ(e)

u(q∗)− ψ′(e)/α(1/e)− (1 + r)k∗
> i > i∗,

which implies that e > e∗. Thus, we may increase dz and decrease e to keep (14) intact, and by

doing so increase welfare.

Thus, we may only consider outcomes with dk = k, dz = z, and with q ≤ q∗. Because q ≤ q∗, to

satisfy (12) it must be the case that F ′(k)k ≤ u(q∗), that is, k ≤ k̂, which is given by (31). Thus,

we may restrict attention to outcomes, (q, z, k, e), that satisfy

−iz − [1 + r − F ′(k)]k + eα(1/e)[u(q)− z − F ′(k)k] ≥ ψ(e), (32)

−c(q) + z + F ′(k)k ≥ 0, (33)

1 + r ≥ F ′(k), (34)

ψ′(e) = α(1/e)[u(q)− z − F ′(k)k]. (35)

Note that because dz = z and dk = k, (q, dz, dk) ∈ CO(z, k;R).

Given these preliminary observations, we follow the same logic as the proof of Proposition 2,

and prove the result by two claims.

Claim 1. (i) When i = i∗, the seller’s participation constraint, (33), holds with strict inequality

at the optimum, (q∗, z∗, k∗, e∗); (ii) for all i > i∗, the buyer’s participation constraint, (32), binds,

and qp < q∗ at the optimum.

Given that (32) and (35) bind, we can solve for z and q as a function of (k, e, i):

z(k, e, i) =
1

i
{eψ′(e)− ψ(e)− [1 + r − F ′(k)]k},

q(k, e, i) = f

{
g(e, i) +

[−(1 + r) + (1 + i)F ′(k)]k

i

}
,

where

g(e, i) =
1

i
[eψ′(e)− ψ(e)] +

ψ′(e)

α(1/e)
and f(x) = u−1(x).

The objective function can be written as

G(k, e, i) = eα(1/e){u(q(k, e, i))− c(q(k, e, i))} − ψ(e) + F (k)− (1 + r)k. (36)

Claim 2. There is an ī′ such that for all i ∈ [i∗, ī′], there is a unique maximizer, (kp(i), ep(i)), to

max
k∈[k∗,k̂],e∈[0,1]

G(k, e, i),

with zp(i) = z[kp(i), ep(i), i] > 0. Moreover, (qp(i), zp(i), kp(i), ep(i)) is the unique constrained-

efficient outcome (qp(i) = q[kp(i), ep(i), i]), and, if 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗ , then d

dee
p(i) > 0

and kp(i) = k∗.
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The result follows directly from Claim 2. Now we prove the two claims.

Proof of Claim 1. (i) We have shown it in (1).

(ii) To show that (32) binds for all i > i∗, we consider two cases:

(a) At the optimum, kp > k∗. Suppose, by contradiction, that (32) does not bind. Let (z′, k′) be

such that k∗ ≤ k′ < kp but z′+F ′(k′)k′ = zp+F ′(kp)kp, and, by continuity, the tuple (qp, z′, k′, ep)

also satisfies (32). Because k′ < kp, this leads to an increase in the welfare, a contradiction.

(b) At the optimum, kp = k∗. Consider the Lagrangian associated with (32), (33), (34), (35),

q ≥ 0, z ≥ 0, and e ≥ 0:

L(q, z, k, e;λ, µ, ξ, η) = eα(1/e)[u(q)− c(q)] + [F (k)− (1 + r)k]− ψ(e)

+ λ{−iz − [(1 + r)− F ′(k)]k + eα(1/e)[u(q)− z − F ′(k)k]− ψ(e)}

+ µ{[F ′(k)k + z − c(q)]}+ ξ[(1 + r)− F ′(k)]

+ η{ψ′(e)− α(1/e)[u(q)− z − F ′(k)k]},

where λ ≥ 0, µ ≥ 0, ξ ≥ 0, and η are the Lagrange multipliers associated with (32), (33), (34), and

(35). From the Kuhn-Tucker Theorem, the following are the first-order necessary conditions with

respect to q, z, e (with kp = k∗):

epα(1/ep)[u′(qp)− c′(qp)] + λepα(1/ep)u′(qp)− µc′(qp)− ηα(1/ep)u′(qp) = 0, (37)

λ[i+ epα(1/ep)] = µ+ ηα(1/ep), (38)

[α(1/ep)− α′(1/ep)/ep][u(qp)− c(qp)]− ψ′(ep)

+λ{[α(1/ep)− α′(1/ep)/ep][u(qp)− zp − (1 + r)k∗]− ψ′(ep)}

= −η{ψ′′(ep) + [α′(1/ep)/(ep)2][u(qp)− zp − (1 + r)k∗]}, . (39)

In addition, (32) and (33) are not binding only if λ = 0 and µ = 0, respectively.

Here we show that (32) binds at the optimum for all i > i∗. Suppose, by contradiction, that

(32) does not bind and hence λ = 0. It also implies that qp > 0 and ep > 0. Then from (33),

qp > 0, ep > 0, and kp = k∗, we have zp > 0. Combining (37) and (38) yields

u′(qp)

c′(qp)
=

epα(1/ep) + µ

epα(1/ep) + µ− λi
. (40)

From (40), qp = q∗, and hence, from (38) and λ = 0 we have −α(1/ep)η = µ. If µ = 0, then from

(39), ep = e∗, a contradiction. If µ > 0, then (33) is binding and hence dpz + (1 + r)k∗ = c(q∗). By

(38), µ = −ηα(1/ep) > 0. But then, by (39), this implies [α(1/ep) − α′(1/ep)/ep][u(q∗) − c(q∗)] −
ψ′(ep) > 0, and hence ep < e∗. However, by (35), ψ′(ep) = α(1/ep)[u(q∗) − c(q∗)], and, because

c(q∗) < d∗z + (1 + r)k∗, this implies that ep > e∗. This leads to a contradiction. Hence λ > 0 and so

(32) is binding. Moreover, because λ > 0, (40) implies that u′(qp) > c′(qp) and hence qp < q∗. �
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Proof of Claim 2. First note that

∂G(k∗, e∗, i∗)

∂e
=

[
α(1/e∗)− α′(1/e∗)

e∗

]
[u(q∗)− c(q∗)]− ψ′(e∗) = 0, (41)

∂G(k∗, e∗, i∗)

∂k
= e∗α(1/e∗)

{
u′(q∗)− c′(q∗)

} ∂q(k∗, e∗, i∗)
∂k

+ F ′(k∗)− (1 + r) = 0.

Now we show that

∂2G(k∗, e∗, i∗)

∂k2
< 0,

∂2G(k∗, e∗, i∗)

∂e2
< 0,

∂2G(k∗, e∗, i∗)

∂k2
∂2G(k∗, e∗, i∗)

∂e2
− ∂2G(k∗, e∗, i∗)

∂k∂e
> 0. (42)

The second partial derivatives are

∂2G(k∗, e∗, i∗)

∂e2

= α′′(1/e∗)/(e∗)3[u(q∗)− c(q∗)] + e∗α(1/e∗)

[
∂

∂e
q(k∗, e∗, i∗)

]2
[u′′(q∗)− c′′(q∗)]− ψ′′(e∗) < 0,

∂2G(k∗, e∗, i∗)

∂k2
= e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗)

]2
[u′′(q∗)− c′′(q∗)] + F ′′(k∗) < 0,

∂2G(k∗, e∗, i∗)

∂k∂e
= e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗)

∂

∂e
q(k∗, e∗, i∗)

]
[u′′(q∗)− c′′(q∗)].

Hence,

∂2G(k∗, e∗, i∗)

∂e2
∂2G(k∗, e∗, i∗)

∂k2

> e∗α(1/e∗)

[
∂

∂e
q(k∗, e∗, i∗)

]2
[u′′(q∗)− c′′(q∗)]e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗)

]2
[u′′(q∗)− c′′(q∗)]

=

{
∂2G(k∗, e∗, i∗)

∂k∂e

}2

.

Because of (41) and (42), and by the IFT, there is an open neighborhood O = (k0, k1) ×
(e0, e1)×(i0, i1) around (e∗, i∗) and a continuously differentiable implicit function (kp0, e

p
0) : (i0, i1)→

(k0, k1) × (e0, e1) such that for all i ∈ [i∗, i1), [kp(i), ep0(i)] is the unique (k, e) ∈ (k0, k1) × (e0, e1)

such that
∂

∂e
G(kp0(i), ep0(i), i) = 0 and

∂

∂k
G(kp(i), ep0(i), i) = 0,

and another continuously differentiable implicit function ep : (i0, i1) → (e0, e1) such that for all

i ∈ [i∗, i1), e
p
1(i) is the unique e ∈ (e0, e1) such that

∂

∂e
G(k∗, ep1(i), i) = 0,
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and that G(·, ·, i) is strictly concave over O. Now, define (kp(i), ep(i)) as

(kp(i), ep(i)) =

 (kp0(i), ep0(i)) if kp0(i) ≥ k∗

(k∗, ep1(i)) otherwise.

Because G(·, ·, i) is strictly concave over O, by the Kuhn-Tucker conditions, (kp(i), ep(i)) is a local

maximizer; using the same arguments as those in Proposition 2, we can show that (kp(i), ep(i)) is

the global maximizer as well, at least for some interval [i∗, i2] with i2 ∈ (i∗, i1] and, using similar

arguments there about seller participation constraint, one can show

(qp, zp, kp, ep) = (q[kp(i), ep0(i), i], z[k
p(i), ep0(i), i], k

p(i), ep0(i))

is the unique constrained-efficient outcome for i ∈ [i∗, i2]. Note that, by continuity, ep(i) > 0 and

kp(i) is close to k∗ at least locally and hence zp > 0.

Now we we show that if 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗ , then kp(i) = k∗ and ep(i) is increasing.

For all i ∈ [i∗, i2], let q(i) = q(k∗, ep1(i), i),

∂

∂k
G(k∗, ep1(i), i) = ep1(i)α(1/ep1(i))[u

′(q(i))− c′(q(i))]f ′[u(q(i))]
{

[1 + r + F ′′(k∗)k∗] + F ′′(k∗)k∗/i
}
.

Because 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗ , there exists i3 ≤ i2 such that for all i ∈ [i∗, i3], 1 + r +

F ′′(k∗)k∗ + F ′′(k∗)k∗

i ≤ 0, and hence, for all such i’s, ∂
∂kG(k∗, ep1(i), i) ≤ 0. Recall that G(·, ·, i) is

strictly concave over O. Because

∂

∂e
G(k∗, ep1(i), i) = 0 and

∂

∂k
G(k∗, ep1(i), i) ≤ 0

for all i ∈ [i∗, i2], it follows that ep(i) = ep1(i) for all i ∈ [i∗, i3] and hence the constrained efficient

outcome has kp = k∗.

Finally, by IFT again, ep(i) is continuously differentiable and for all i ∈ (i∗, i3],

(ep)′(i) = − ∂2

∂e∂i
G(k∗, ep(i), i)/

∂2

∂e2
G(k∗, ep(i), i).

We have shown that ∂2

∂e2
G(k∗, e∗, i∗) < 0. Now,

∂2

∂e∂i
G(k∗, e∗, i∗) = e∗α(1/e∗)[u′′(q∗)− c′′(q∗)][f ′(u(q∗))]2ge(e

∗, i∗)gi(e
∗, i∗) > 0,

because

ge(e
∗, i∗) =

e∗ψ′′(e∗)

i∗
+
ψ′′(e∗)α(1/e∗) + ψ′(e∗)α′(1/e∗)/(e∗)2

α(1/e∗)2
> 0, gi(e

∗, i∗) =
e∗ψ′(e∗)− ψ(e∗)

(i∗)2
< 0.

So d
die

p(i∗) > 0 and, by continuity, there is ī′ ∈ (i∗, i3] such that d
die

p(i) > 0 for all i ∈ [i∗, ī′]. �
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(3) Recall from Lemma 1 that for any i and in any constrained-efficient outcome w.r.t. i, ep(i) ≤ ê.
Note that the arguments there are not affected by the presence of capital. Moreover, by (32), we

have

zp(i) ≤ ep(i)α(1/ep(i))[u(qp(i))− c(qp(i))]/i ≤ êα(1/ê)[u(q∗)− c(q∗)]/i.

Again, we prove the result by two claims below. Claim 3 show that W(i), the welfare associated

with a constrained-efficient outcome under i, is arbitrarily close to Wk as i goes to infinity.

Claim 3. For any ε > 0, there exists iε for which i > iε implies W(i) ≤ Wk + ε.

Because it is always feasible to set z = 0 and hence W(i) ≥ Wk for all i, the result that

limi→∞W(i) = Wk follows immediately from Claim 3. By Lemma 2, if we impose the additional

constraints z = 0 and k = k∗, then the resulting maximum welfare, denoted W0, is strictly less

than Wk, and hence [Wk −W0]/2 > 0. The following claim shows that, if we impose k = k∗, then,

for i sufficiently large, the maximum achievable welfare is less than Wk − [Wk −W0]/2. �

Claim 4. Define W0(i) to be the maximum welfare achievable by outcomes satisfying k = k∗,

together with constraints (32)-(35). There exists an î such that for all i > î, W0(i) <Wk − [Wk −
W0]/2.

Claim 4 implies that for all i > î, kp(i) > k∗, for otherwiseW(i) =W0(i) <Wk, a contradiction.

Now we prove the two claims.

Proof of Claim 3. First note that in any constrained-efficient outcome, qp(i) ≤ q∗ and kp(i) ≤ k̂.

For each i, define k̃(i) by the capital stock that satisfies

F ′(k̃(i))k̃(i)− F ′(k̂)k̂ =
êα(1/ê)[u(q∗)− c(q∗)]

i
.

Because the function F ′(k)k is strictly increasing in k with range R+, k̃(i) is well-defined and is a

decreasing function of i. Moreover, as i→∞, k̃(i) converges to k̂.

Let S(k) = F ′(k)k. Given ε > 0, let iε be so large that i > iε implies

{1 + r − F ′[k̃(i)]}[k̃(i)− k̂] ≤ ε, S′(k̃(i))(1 + i) ≥ 1 + r. (43)

Note that iε is well-defined because k̃(i) converges to k̂ and S′ is a decreasing function.

Now we show that if i > iε, then W(i) ≤ Wk + ε. Fix some i > iε, and a constrained-efficient

outcome, (qp(i), dpz(i), d
p
k(i), z

p(i), kp(i), ep(i)). Consider an alternative outcome

(q′, d′z, d
′
k, z
′, k′, e′) = (qp(i), 0, d′k, 0, k

′, ep(i)),

where k′ and d′k are such that

F ′(k′)k′ − F ′[kp(i)]kp(i) = zp(i) ≤ êα(1/ê)[u(q∗)− c(q∗)]
i

, (44)

F ′(k′)d′k = F ′[kp(i)]dpk(i) + dpz(i). (45)
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Note that k′ ≤ k̃(i). Now we show that the outcome (q′, d′z, d
′
k, z
′, k′, e′) satisfies incentive com-

patibility constraints (32)-(35) and has welfare equal to W ′ ≥ W(i) − ε. Note that, by definition,

W ′ ≤ Wk and hence this implies that Wk ≥ W(i)− ε.
First consider the buyer’s participation constraint, (32). Because the original outcome satisfies

(32), it suffices to show that

−izp(i)− [1 + r − F ′(kp(i))]kp(i) ≤ −[1 + r − F ′(k′)]k′,

which holds if and only if

(1 + r)(k′ − kp(i))− zp(i) ≤ izp(i)⇔ (1 + r)(k′ − kp(i)) ≤ (1 + i)zp(i)⇔ zp(i)

k′ − kp(i)
≥ 1 + r

1 + i
.

By definition of k′, zp(i) = F ′(k′)k′ − F ′(kp(i))kp(i) and hence (note that k′ ≤ k̃(i)), by (43),

zp(i)

k′ − kp(i)
=
F ′(k′)k′ − F ′(kp(i))kp(i)

k′ − kp(i)
≥ S′(k′) ≥ S′(k̃(i)) ≥ 1 + r

1 + i
.

In addition, because k′ ≥ kp(i) and because of (45), the alternative outcome satisfies (33)–(35).

Here we show that W ′ ≥ W(i)− ε. First note that

[F (kp(i))− (1 + r)kp(i)]− [F (k′)− (1 + r)k′] ≤ [F ′(k′)− (1 + r)][kp(i)− k′] = [1 + r − F ′(k′)][k′ − kp(i)].

Then, note that, in terms of variables relevant to the welfare, the alternative outcome differ from

the original outcome only in the capital stock, and hence the difference in welfare, W ′ −W(i), can

be written as

W ′ −W(i) = −{[F (kp(i))− (1 + r)kp(i)]− [F ′(k′)− (1 + r)k′]} ≥ −[1 + r − F ′(k′)][k′ − kp(i)]

≥ −[1 + r − F ′(k̃(i))][k̃(i)− k̂] ≥ −ε.

The second last inequality follows from the fact that k′ − kp(i) = zp(i) ≥ k̃(i) − k̂ and the fact

that the function S(k) = F ′(k)k is concave in k, and the last inequality follows from (43). Hence,

W ′ ≥ W(i)− ε. �

Proof of Claim 4. We show that for any ε > 0, there exists i′ε such that W0(i) < W0 + ε for all

i > i′ε. The claim follows immediately.

Because W0(i) > 0 (as it is always feasible to set k = k∗, q such that c(q) = (1 + r)k∗, and

e that solves ψ′(e)/α(1/e) = [u(q) − (1 + r)k∗] > 0) for all i, we can find a lower bound q and e

such that for any outcome (q0(i), d0z(i), d
0
k(i), z

0(i), k0(i), e0(i)) that achieves the maximum welfare

under the constraints (32)-(35) plus k = k∗, we have q0(i) > q and e0(i) > e for all i. Because

i > i∗, at the optimum we must have d0z(i) = z0(i) and d0k(i) = k∗. Moreover, it follows that we

can choose u(q) to be strictly greater than (1 + r)k∗, for otherwise the buyer will have arbitrarily

small surplus and hence the search intensity will be arbitrarily small as well.
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Now, the welfare, as a function of (q, k, e), is continuous and hence is uniformly continuous in

[q, q∗] × {k∗} × [e, ê]. Thus, there exists δ > 0 such that if ‖(q, e) − (q0(i), e0(i))‖ < δ, then the

welfare associated with (q, k∗, e), differs from the welfare W0(i) by less than ε for all i.

Let l(e) = ψ′(e)/α(1/e). Then, l′(e) > 0 for all e ∈ [e, ê] and hence A = mine∈[e,ê] l
′(e) > 0. Let

i′ε be so large that if i > i′ε,

max{2, 1 + u′(q)/A} [u(q∗)− c(q∗)]
c′(q/2)i

< min{q/2, δ/2, q − u−1[(1 + r)k∗]}, (46)

Fix an i > i′ε and an outcome (q0(i), z0(i), k∗, e0(i)) that achieves W0(i). We construct an alterna-

tive outcome, (q′, 0, k∗, e′) such that ‖(q′, e′)− (q0(i), e0(i))‖ < δ and satisfies (32)-(35). Then, the

welfare associated with the alternative outcome, denoted byW ′, is within ε ofW0(i), butW ′ ≤ W0.

The outcome (q′, 0, k∗, e′) is given by

c(q′) = c(q0(i))− z0(i) ≥ 0 and
ψ′(e′)

α(1/e′)
= u(q′)− (1 + r)k∗.

Because z0(i) ≤ [u(q∗) − c(q∗)]/i, it follows from (46) that q′ ≥ q/2 and that u(q′) ≥ (1 + r)k∗.

Moreover, because (q0(i), z0(i), k∗, e0(i)) satisfies (33),

−c(q′) + (1 + r)k∗ = −c(q0(i)) + z0(i) + (1 + r)k∗ ≥ 0,

and hence (q′, 0, k∗, e′) satisfies (33) as well. Note that it also satisfies (32) and (35) by construction.

Thus, we have

0 ≤ c(q0(i))− c(q′) ≤ z0(i) ≤ êα(1/ê)[u(q∗)− c(q∗)]
i

,

and so, by (46),

|qo(i)− q′| ≤ |c(q0(i))− c(q′)|/c′(q/2) ≤ δ/2.

By (35),

|l(e0(i))−l(e′)| = |ψ′(e0(i))/α(e0(i))−ψ′(e′)/α(1/e′)| = |u(q0(i))−u(q′)−z0(i)| ≤ u′(q/2)[q0(i)−q′]+z0(i),

and so, by (46),

|e′ − e0(i)| ≤ (1/A)[u′(q/2)[q0(i)− q′] + z0(i)] < δ/2.

Thus, we have ‖(q′, e′) − (q0(i), e0(i))‖ < δ, and hence W0 ≥ W ′ > W0(i) − ε. Finally, take

î = i′
[Wk−W0]/2

. �
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