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Abstract 20 

Warning signal variation is ubiquitous but paradoxical: low variability should aid 21 

recognition and learning by predators. However, spatial variability in the direction and strength of 22 

selection for individual elements of the warning signal may allow phenotypic variation for some 23 

components, but not others. Variation in selection may occur if predators only learn particular 24 

colour pattern components rather than the entire signal. Here, we used a nudibranch mollusc, 25 

Goniobranchus splendidus, which exhibits a conspicuous red spot/white body/yellow rim colour 26 

pattern, to test this hypothesis. We first demonstrated that secondary metabolites stored within the 27 

nudibranch were unpalatable to a marine organism. Using pattern analysis, we demonstrated that 28 

the yellow rim remained invariable within and between populations; however, red spots varied 29 

significantly in both colour and pattern. In behavioural experiments, a potential fish predator, 30 

Rhinecanthus aculeatus, used the presence of the yellow rims to recognise and avoid warning 31 

signals. Yellow rims remained stable in the presence of high genetic divergence among populations. 32 

We therefore suggest that how predators learn warning signals may cause stabilizing selection on 33 

individual colour pattern elements, and will thus have important implications on the evolution of 34 

warning signals. 35 

 36 

 37 

  38 
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Introduction 39 

Aposematic visual signals are used by prey to indicate unprofitability and/or toxicity to 40 

potential predators. Consistency in warning signals is considered beneficial to both predator and 41 

prey, as predators will be less likely to make errors when recognizing defended prey. Despite this, 42 

warning signals are often variable both between and within populations of aposematic prey [1]. 43 

Such variation might be facilitated through non-adaptive processes such as genetic drift and 44 

restricted gene flow [2, 3]. However, differences in warning signals can also relate to the variation 45 

in selective pressures, such as spatial differences in predator communities [4, 5], the abundance of 46 

other suitable prey [6], visual contrast between the habitat substrate and the warning signal [1], the 47 

availability of dietary metabolites used as chemical defences at a given location [1, 7], and 48 

geographic differences in mimetic communities [8]. 49 

An alternative hypothesis is that predators may only learn avoidance of warning signals 50 

based on individual signal elements (colour, pattern, or shape) of the aposematic signal, and 51 

therefore only these elements are under stabilizing selection. Relaxed selection may exist for other 52 

elements that are not learned or paid attention to by the predator, allowing phenotypic variation of 53 

colour patterns to persist [9]. Previous studies have shown animals often use elemental processing 54 

(signal-elemental approaches) when learning visual signals and attend to one component over 55 

others, rather than learn the stimulus in its entirety (configural-cue approaches) [10]. For example, 56 

chicks, Gallus gallus domesticus used colour over pattern when learning to avoid unpalatable food 57 

items [11]. Similarly, blue tits learned the colour of rewarded stimuli at a higher rate than pattern or 58 

shape, and when presented with mimetic variants of unrewarded stimuli, the birds continued to 59 

avoid stimuli based on colour rather than pattern or shape [12]. We also recently show a marine fish 60 

used colour, rather than pattern or luminance contrast, to learn an appetitive discrimination task 61 

[13].  62 

In this study, we investigated warning signal variation of individual pattern elements in 63 

populations of aposematic prey and examined whether potential predators used a signal-elemental 64 
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approach when learning avoidance of warning signals.  In addition, we used population genetics to 65 

assess whether colour pattern differences are indicative of genetic structure among populations. Our 66 

study species was a nudibranch mollusc, Gonibranchus splendidus, which is a common species 67 

throughout most of its range. Nudibranchs are a diverse group of marine molluscs that can deter 68 

attackers with potent chemical defences, which in most cases are sequestered and accumulated from 69 

specialized diets of sponge, ascidian, and cnidarian food sources [14]. Many nudibranchs display 70 

vibrant colour patterns thought to act as warning signals e.g. [15]. In SE Australia, G. splendidus is 71 

characterized by a white mantle with a red-spotted colour pattern, encircled by a conspicuous 72 

yellow rim (Figure S1a). This pattern is highly variable, with spots ranging in size from large 73 

blotches to small spots [16], and colour from bright red to maroon [17]. At the edge of its 74 

distribution, the species is rare and the rim is red [18]. This species is known to harbor a plethora of 75 

secondary metabolites [19, 20], which are accumulated in specialized glands located along the 76 

mantle rim  and are thought to provide defense [21].  77 

We first tested whether this conspicuous colour pattern was aposematic by measuring anti-78 

feedant properties of secondary metabolites found within the nudibranch. Second, we quantified 79 

warning signal variation within and between locations where G. splendidus is most abundant 80 

(Southern Queensland to New South Wales, Australia) using spectral reflectance measurements, 81 

visual modeling, and pattern adjacency analysis [22]. Third, we used behavioural experiments with 82 

a potential predatory marine fish, Picasso triggerfish Rhinecanthus aculeatus, to examine whether 83 

fish learned individual components of the visual signal, or learned the signal in its entirety. Finally, 84 

we investigated whether colour pattern variation was indicative of genetic structure among 85 

locations. A fast evolving mitochondrial gene, Cytochrome Oxidase I (COI), was sequenced to 86 

construct a haplotype network and infer divergence among locations. A more conserved nuclear 87 

protein coding gene, Adenine Nucleotide Translocase (ANT), was also sequenced to independently 88 

test the pattern from the mitochondrial genome [23, 24]. Examining population structure can help 89 

determine if signal divergence is occurring in the presence of high genetic differentiation, or 90 
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whether genetic isolation may be driving the fixation of phenotypic variation.  91 

 92 

Methods 93 

Nudibranch collection 94 

We collected individuals of Goniobranchus splendidus by hand on SCUBA from five sites 95 

along the south east coast of Australia: Gneerings Reef, Mooloolaba (-26
o
 64’ S, 153

 o
 15’ E), n = 96 

31 in March and April 2013; Shag Rock, North Stradbroke Island (-27
 o

 41’ S, 153
 o

 52’ E), n = 14 97 

in September 2012, November 2013 and December 2014; Split Solitary Island, Coffs Harbour (-30
 98 

o
 31’ S, 153

 o
 15’ E), n = 24 in October 2014; Seahorse Gardens, Nelson Bay (-32

 o
 71’ S, 152

 o
 15’ 99 

E), n = 20 in November 2013; and Oak Park, Sydney (-34
 o

 06’ S, 151
 o

 15’ E), n = 23 in November 100 

2013. Specimens were transferred into larger buckets with aerated seawater and transported to a 101 

laboratory for processing. Size of individuals ranged from 10-70mm, and was significantly different 102 

between sites (F4, 92 = 11.44, p < 0.001), with individuals from Mooloolaba smaller than other sites 103 

(mean + s.e. (mm): Mooloolaba = 21 + 7, Nelson Bay 38 + 13; Sydney 39 + 12, Coffs Harbour 37 + 104 

12; North Stradbroke 37 + 8). Nudibranchs were collected under the following permits: Queensland 105 

General Fisheries Permit (#161624); Moreton Bay Marine Park Permit (QS2012/MAN183); NSW 106 

Industry & Investment Scientific Collection Permit (F86/2163-7.0). 107 

 108 

Anti-feedant assays  109 

Individuals from each location were combined to yield a total tissue volume of at least 2ml 110 

(Mooloolaba n=21, Stradbroke Island n=7, Coffs Harbour n=16, Nelson Bay n=13, Sydney n=6). 111 

Specimens were then chopped, extracted with acetone and sonicated for 2 minutes. The extract was 112 

then concentrated under vacuum and partitioned with diethyl ether (Et2O) and water. The organic 113 

layer was dried with anhydrous Na2SO4, before concentration under nitrogen. The dry weight of 114 

each crude extract was recorded to the nearest 0.01mg using an electronic balance (ER-182A; A&D 115 

Mercury Pty. Ltd.) as per [19, 20, 25, 26].  116 
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To assess whether G. splendidus secondary metabolites were used as chemical defence, and 117 

whether strength of defence varied between sites, we conducted anti-feedant assays using rock-pool 118 

shrimp (Palaemon serenus). Although these species are not considered nudibranch predators, these 119 

crustaceans are commonly used to assay nudibranch chemical defences [27, 28].  Assays were 120 

performed using general protocols outlined in [25]. Briefly, artificial food pellets were created 121 

using a mixture of freeze-dried squid mantle, alginic acid, purified sea sand and red food dye. 122 

Crude extracts from each nudibranch population were added to pellets at four concentrations, and 123 

control pellets were made without extract. Ten shrimp were used for each treatment and control 124 

group (total n = 50 for each population). Pellets were given to shrimp and after 60 min the presence 125 

of a red spot in the transparent gastric mill of the shrimp indicated acceptance, and the absence of a 126 

spot indicated rejection. The concentration at which 50% of shrimp rejected the pellets (ED50, 127 

effective-dose response) was calculated by interpolating a sigmoidal curve.  128 

 129 

Pattern geometry 130 

We quantified variation in size and distribution of red colour patches for individuals from 131 

each population. Individuals were submerged in seawater within a petri dish in the laboratory and 132 

photographed with a size standard in an extended crawling position. The nudibranch outline was 133 

manually traced using a magnetic lasso tool and extracted from the background using Adobe 134 

Photoshop CS5. The nudibranch image was then stylized for analysis by placing a transparent layer 135 

over the original image and using the pencil tool to define the red spot pattern [22]. The yellow 136 

border, rhinophores, and gills were removed for two reasons: rhinophores and gills are often 137 

withdrawn when nudibranchs are disturbed, making it unlikely they are used as a signal when under 138 

threat of attack, and the yellow rim was difficult to conduct pattern analysis on as it is often folded 139 

towards the foot, and thus not fully captured within the image. However, to assess yellow rim 140 

variation, we measured rim width and body length for each individual using the line and measure 141 

tools in Image J. We then calculated a rim-width: body-length ratio. Images were then normalized 142 
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for size by rescaling the images to a standard body area of 5000 pixels, converted into CIE colour 143 

space, and intermediate pixels were grouped into two clusters (red or white) using the kmeans 144 

cluster analysis function in the MATLAB statistical toolbox. Pattern measurements were taken 145 

from at least 13 individuals per population (Mooloolaba n=26, Stradbroke Island n=13, Coffs 146 

Harbour n=22, Nelson Bay n=20, Sydney n=23). 147 

Pattern properties were quantified using the adjacency analysis method [22]. We used the 148 

fraction of transitions (FOT) statistic for our analysis, which is a relative measure of the total 149 

number of transitions between red and white pixels within the pattern. This provides a good 150 

estimation of variation in spot size and frequency. Animals with fewer transitions tend to have 151 

larger, less frequent spots, while animals with more transitions have more frequent spots (Figure 152 

S1b).  153 

 154 

Spectral reflectance 155 

We assessed differences in colour patches among locations by measuring spectral 156 

reflectance of white mantle, red spots and yellow rim with an Ocean Optics USB2000 spectrometer 157 

(Dunedin, FL, USA) and Ocean Optics OOIBASE32 software. Individuals were submerged in 158 

seawater within a petri dish in the laboratory and we used a 200µm bifurcated optic UV/visible 159 

fibre held at a 45° angle connected to a PX-2 pulse xenon light (Ocean Optics). A Spectralon 99% 160 

white reflectance standard was used to calibrate the percentage of light reflected at each wavelength 161 

from 300-700 nm (LabSphere, NH, USA). At least 10 measurements were taken per colour patch, 162 

and three different areas of each colour patch were measured and averaged per individual. Colour 163 

measurements were taken from multiple individuals per population: Mooloolaba n = 19, Stradbroke 164 

Island n = 10, Coffs Harbour n = 22, Nelson Bay n = 15, Sydney n = 5 (due to equipment failure).  165 

To estimate colour variation of individual nudibranch pattern elements, we used spectral 166 

contrast measurements from the perspective of our model fish predator, Picasso triggerfish 167 

Rhinecanthus aculeatus, using the receptor noise limited vision model [29]. The model calculates 168 
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distance (∆S) between colours in a trichromatic visual space. Colours that appear similar to a 169 

specific visual system result in low ∆S values, while those that are chromatically contrasting have 170 

high values. We used the spectral sensitivities of Picasso triggerfish λmax = 413 nm, 480 nm, 528 171 

nm [30] because this species: 1) was used in our behavioural experiment (below), 2) is found 172 

throughout the range where G. splendidus is abundant, from southern Queensland to Sydney, New 173 

South Wales [31]), 3) is omnivorous with a diet including molluscs [32], and 4) is representative of 174 

a common trichromatic visual system found in many reef fish [33]. This species has relatively low 175 

visual acuity at 1.75 cycles per degree [34] which is similar to other reef fish.  176 

As per previous studies [15, 35], we assumed a 1:2:2 ratio for the weber fraction (ω),  LWS 177 

noise threshold was set at 0.05, and, colours were modelled using illumination measurements at a 178 

water depth of 5m (as per [35]). To assess colour pattern variation within and between sites, we 179 

calculated the colour contrast (∆S) between the spectral reflectance of each individual colour patch 180 

and the average for that site (within-site variation) or the average for all sites combined (between-181 

site variation).  182 

 183 

Behavioural experiment 184 

We conducted behavioural experiments to investigate whether Picasso triggerfish learned 185 

individual pattern elements (e.g. red spots or yellow rim), or learned the colour pattern of G. 186 

splendidus in its entirety [10]. Picasso triggerfish are easy to keep in aquaria, and highly trainable 187 

[30, 34]. Thirty Picasso triggerfish were collected on snorkel using hand-nets in the lagoon near 188 

Lizard Island, Great Barrier Reef, Australia (14
o
40’S, 145

o
 28’E) from depths of 1-3m and shipped 189 

to the University of Queensland or tested at the research station. Fish standard length ranged from 190 

4-15cm. Experiments were conducted between June-September 2014, and February-March 2017. 191 

Fish were kept in individual tanks ranging from 50-100L (W: 30-50cm; L: 40-100cm; H: 30-40cm) 192 

depending on body size, and were allowed to acclimatize for at least one week before testing. Fish 193 

were collected under the Queensland General Fisheries Permit #161624 and Great Barrier Reef 194 
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Marine Parks Authority Permit # G12/35688.  195 

Thirty Picasso triggerfish were trained with one ‘non-aposematic’ and one ‘aposematic’ 196 

circular stimulus (2.5cm diameter; Figure 1i), printed using a HP Officejet H470 inkjet printer on 197 

matte photo-quality paper, laminated and attached in the centre of a white feeding board 10cm 198 

apart. The feeding board was placed vertically at one end of the tank and fish were trained to peck 199 

stimuli to receive a food reward. The non-aposematic stimulus was a plain white circle. In 200 

experiment 1a, the aposematic stimulus for fish in Group A (n = 8) was a yellow rim and red spot, 201 

while for fish in Group B (n = 7), the aposematic stimulus featured a red spot with no coloured rim 202 

(Figure 1i). In experiment 1b, Group C (n = 8) were presented with just a yellow rim and Group D 203 

(n = 7) were again given a yellow rim and red spot. Colours of aposematic stimuli exhibited 204 

spectral reflectance similar to G. splendidus (Figure S7). If fish pecked the non-aposematic 205 

stimulus, they were rewarded with palatable food held by forceps from above; if they pecked the 206 

aposematic stimulus, they were given unpalatable food. This method of food delivery ensured fish 207 

did not use olfactory cues during experiments. Palatable food was prepared by combining 6g frozen 208 

squid mantle, 3g gelatine and 10ml water; while unpalatable food consisted of 6g sodium alginate 209 

and 10ml water. Both food types had a semi-solid consistency and were similar in colour and 210 

texture. Fish given a small piece of unpalatable food immediately spat it out (> 95% of trials), while 211 

palatable food was readily consumed (> 95% of trials).  212 

Trials commenced with the insertion of an opaque partition across the centre of the tank to 213 

keep the fish away from the feeding board featuring the pair of stimuli. Once the partition was 214 

removed, fish were permitted to peck a stimulus and obtain the associated food. Four trials were 215 

conducted per session and fish completed 15-20 sessions in total, with one or two sessions per day 216 

(total 60-80 trials per fish). The position (left or right) was pseudo-randomised so it did not remain 217 

the same for more than 2 successive sessions. Fish were considered to have learned the task of 218 

avoiding the aposematic stimulus once they achieved 80% avoidance over 5 consecutive sessions 219 

with a maximum of 1 incorrect peck allowed per session.  220 
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Once fish met the avoidance criteria in Group A (N = 8), they then proceeded to a 221 

generalisation experiment (experiment 2) in which they were tested using a paired-choice paradigm 222 

with 3 novel stimuli (yellow border/ no spot, yellow border/ 5 red spots, and no border/ 5 red spots, 223 

Figure 1ii) presented in a pseudorandomised order and position. Fish were permitted to peck twice 224 

on either stimulus but did not receive food during these sessions to avoid confounding the learned 225 

avoidance acquired during experiment 1. Fish were tested on one pair of test stimuli per session, 226 

with 1-2 sessions per day and fish encountered any given stimulus pair between 1-6 times. To 227 

ensure fish maintained avoidance of the original unpalatable stimulus, reinforcement training was 228 

conducted 1-2 hours before each generalisation session following the method of experiment 1.  Fish 229 

took approximately 3 weeks to complete learning experiments and a further 2 weeks for the 230 

generalisation experiment. 231 

 232 

Population-level genetic analysis  233 

Tissue samples were taken from at least 12 G. splendidus per population (Mooloolaba n= 234 

31, Stradbroke Island n=12, Coffs Harbour n=20, Nelson Bay n=19, Sydney n=23). The genomic 235 

DNA from individuals was extracted and purified with a DNeasy blood and tissue kit (Qiagen). 236 

These extracts were used in PCR reactions amplifying two fragments of DNA. This included the 237 

mitochondrial gene Cytochrome Oxidase I (COI) and the nuclear protein coding Adenine 238 

Nucleotide Translocase (ANT). Primers and cycling conditions are given in (Table S1). These 239 

products were purified and sequenced at the Australian Genome Research Facility on an ABI 240 

PRISM 3730. Bidirectional reads were assembled and edited in Geneious v7, aligned with MAFFT 241 

v7.017 [36]. Protein coding genes were translated to check for stop codons. Haplotypic diversity 242 

was displayed using a haplotype network constructed in PopArt using the statistical parsimony TCS 243 

algorithm [37]. FST indices for locations were calculated in Arlequin v.3.5.1.2 [38] and visualized 244 

using the heatmap.2 function in R Studio v0.98 [39] in gplots [40].  245 

 246 
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Statistical Analysis 247 

All statistical analyses were conducted in R v.3.1.3 [39]. For colour analysis, we used a 248 

linear mixed-effects model (LMM) to examine whether variation in colour contrast (∆S) differed 249 

between colours within the pattern and among locations. Individual ID was included as a random 250 

factor. For pattern and rim analyses, we used a one-way ANOVA to examine whether FOT and rim 251 

differed among locations, with a posteriori Tukey-Kramer HSD post-hoc test to interpret significant 252 

interactions between collection sites. In the models, ∆S and rim-width: body-length ratio were log 253 

transformed to meet the assumptions of normality. 254 

For behavioural experiment 1 (learning experiment), data were analysed with a survival 255 

model, using the function survdiff in survival package [41] to examine the differences in the 256 

number of sessions fish from different groups took to achieve the learning criteria. For behavioural 257 

experiment 2 (generalisation experiment), data were analysed using the GenDavidson formula, part 258 

of the Davidson model in the Bradley–Terry 2 package [42].  This model does not allow random 259 

factors to be incorporated; therefore, to account for differences between individual fish, the data 260 

was also analysed without tied data, using the original Bradley-Terry 2 model (glmmPQL: 261 

Generalised mixed model using Penalized Quasi-Likelihood) in which FishID was included as a 262 

random factor. 263 

 264 

Results 265 

Anti-feedant assays  266 

Crude extracts were obtained in the following concentrations for each population: 267 

Mooloolaba (25.7 mg/ml), Stradbroke Island (24.6 mg/ml), Coffs Harbour (32.4 mg/ml), Nelson 268 

Bay (10.3 mg/ml), Sydney (20.8 mg/ml). There were numerous compounds in extracts from each 269 

site, but most were identified to be spongian diterpenes, rearranged spongian diterpenes, and 270 

spongian norditerpenes as per [19, 20, 26].   271 
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All extracts exhibited a dose response to the rock-pool shrimp Palaemon serenus; however, 272 

the response of extracts from Nelson Bay was relatively weak (Figure 2). Extracts from 273 

Mooloolaba, Stradbroke, Coffs Harbour, and Sydney were unpalatable at less than half the 274 

concentration naturally occurring within the nudibranchs, while the extract from Nelson Bay was 275 

only unpalatable at roughly natural concentration.  276 

 277 

Pattern geometry 278 

We found strong variation in red spot colour pattern between sites (Figure 3). There were 279 

significant differences in FOT among sites (one-way ANOVA, F4,99 = 43.07, p < 0.001; Figure 3). 280 

Individuals from Northern locations (Mooloolaba, Stradbroke Island, Coffs Harbour) had larger, 281 

less frequent spots (lower FOT), while individuals from southern locations (Nelson Bay, Sydney) 282 

had smaller, more frequent spots (higher FOT) (mean FOT± standard error: Mooloolaba 0.26 ± 283 

0.02, Stradbroke Island 0.31 ± 0.02, Coffs Harbour 0.36 ± 0.02, Nelson Bay 0.48 ± 0.02, Sydney 284 

0.53 ± 0.02). Individuals from neighbouring sites did not differ except in the case of Coffs Harbour 285 

and Nelson Bay. 286 

The yellow rim pattern component encircling the mantle was present in all individuals. 287 

Variation of the yellow rim was minimal with a mean width of 0.65 mm ± 0.03 standard error 288 

across all sites. There was no difference in rim-width: body-length ratio (mean ± standard error) 289 

between individuals from Mooloolaba, Stradebroke, Nelson Bay or Sydney; however, this 290 

measurement was slightly smaller for individuals from Coffs Harbour (0.017 ± 0.001) compared to 291 

Mooloolaba (0.023 ± 0.001; p < 0.001) and Nelson Bay (0.022 ± 0.001; p = 0.008) (ANOVA F4,92 = 292 

6.03, p < 0.001). However, because differences in individuals from Coffs Harbour are very small, 293 

we believe they would not be functionally significant based on the visual acuity of the fish [34]. 294 

 295 

Spectral reflectance 296 
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For the colour contrast (∆S) between spectral reflectance of each individual and the average 297 

for all sites combined (between-site variation) there was a significant interaction between colour 298 

patch and collection site (Χ
2
4,12 = 35.05, p < 0.001). We found similar results for within-site 299 

variation (Χ
2

4,12 = 14.73, p = 0.005). The main effect of colour patch indicates higher ∆S (more 300 

variation) for red spots than yellow rims for all sites except Sydney (which did not significantly 301 

differ) (Figure 4; Figure S2), though the magnitude varies across collection sites. Results for ∆S of 302 

white mantles compared red spots are reported and visualized in Figure S3.  303 

Individuals from Mooloolaba were collected in March-April, while samples from other sites 304 

were collected in October-December. Therefore, we collected and measured an additional n = 12 305 

individuals from Mooloolaba in October 2016. There were slight differences in spectral reflectance 306 

curves between seasons (Figure S4a); however, we still found higher variation for red spots than 307 

yellow rims in both seasons (Figure S4b).  308 

 309 

Behavioural experiment 310 

 In experiment 1a (learning experiment), fish learned to avoid unprofitable aposematic 311 

signals more quickly when a yellow border was present than when only a red spot was present (χ
2 
= 312 

9.5, df = 1, p = 0.002; Figure 1i). Surprisingly, all fish from Group B (n = 7) failed to learn the task 313 

over the given time frame when only a red spot was present. In experiment 1b, there was no 314 

difference in the time taken to avoid unprofitable stimuli comprised of only a yellow border (Group 315 

C) and a yellow border and red spot (Group D) (χ
2 

= 0.4, df = 1, p = 0.53). There was also no 316 

difference between the two groups trained to avoid the yellow border/red spot signal in experiment 317 

1a and 1b (Group A and D) (χ
2 

= 0.5, df = 1, p = 0.50) and so the data for these two groups was 318 

combined for analysis. 319 

 320 

In experiment 2 (generalisation experiment), fish were much more likely to peck the no 321 

border/ 5 red spots stimulus (Z = 3.65, df = 95, p < 0.0001) compared with chance (Figure 1ii) but 322 
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continued to avoid both stimuli featuring a yellow border (yellow border/ no spot; Z = - 2.66, df = 323 

95, p < 0.008 and yellow border/ 5 red spots; Z = -0.53, df = 95, p = 0.05).  324 

 325 

Population-level genetic analysis 326 

Mitochondrial COI sequences produced a network with strong geographic structuring and 327 

many private haplotypes, and subsequently showed little haplotype sharing among locations (Figure 328 

5). Indeed, only two haplotypes were shared, one between Coffs Harbour and Mooloolaba and 329 

another between Nelson Bay and Sydney. All individuals from Stradbroke Island possessed a 330 

unique haplotype. 331 

 The nuclear ANT sequences produced a more conserved network of two haplotypes (Figure 332 

5) that did not contradict the mitochondrial signal. The first haplotype was shared among the three 333 

northernmost locations (Mooloolaba, Stradbroke Island, Coffs Harbour), while the second 334 

haplotype is shared among the four southernmost locations (Stradbroke Island, Coffs Harbour, 335 

Nelson Bay, Sydney). There was no haplotype sharing between Mooloolaba and Nelson Bay or 336 

Sydney.    337 

The high FST values seen here indicate a significant lack of gene flow among populations 338 

(Figure S5). For COI, Coffs Harbour and Mooloolaba were the least diverged (FST 0.349), while 339 

Stradbroke Island and Nelson Bay were the most divergent (FST 0.941). For the more conserved 340 

ANT, the neighbouring populations of Coffs Harbour and Stradbroke Island, as well as Sydney and 341 

Nelson Bay showed no detectable differentiation, while zero gene flow could be inferred between 342 

the most northerly population of Mooloolaba and the most southerly populations of Sydney and 343 

Nelson Bay.  344 

 345 

Discussion 346 

We investigated the hypothesis that warning signal variation can be explained by variation 347 

in selection on individual pattern elements. First, using anti-feedant assays, we confirmed our 348 
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model species, the conspicuous nudibranch Goniobranchus splendidus, possessed unpalatable 349 

chemical defences. Second, using quantitative pattern analysis, we show individual pattern 350 

elements exhibited different degrees of divergence within and between populations. The red-spotted 351 

element of this colour pattern was highly variable in both colour and pattern, in comparison to the 352 

yellow rim element, which was relatively constrained. Third, in behavioural experiments, a 353 

potential fish predator used the yellow rim to avoid the colour pattern and did not use alternative 354 

pattern elements (i.e. red spots) when deciding whether to attack the stimulus. The red spot element 355 

did not further enhance avoidance learning, and there is little evidence suggesting it is part of the 356 

warning display. We therefore demonstrate visually hunting predators pay attention to certain 357 

pattern components when learning to avoid complex colour patterns. Finally, there was little gene 358 

flow between northern and southern populations, and spot pattern was correlated with genetic 359 

structure among populations.  We propose that while limited gene flow can permit variation in 360 

colour patterns, the mechanisms behind predator learning may allow for stabilising selection on 361 

more salient pattern elements. 362 

When learning visual signals, some animals only learn one element of a stimulus (stimulus-363 

element learning) [10, 43, 44], or base behavioural decisions on the most noticeable element, which 364 

overshadows others [12]. In our behavioural experiments, fish learned avoidance of the signal when 365 

both yellow border and red spot pattern was present, but surprisingly, failed to learn the task when 366 

only a red spot was present. Furthermore, once fish learned avoidance of the yellow rim/red spot 367 

pattern, fish avoided novel stimuli when the yellow rim was present. This indicates they did not 368 

learn the pattern as a whole, but instead learned the yellow rim as an individual element. If fish had 369 

a fully configural mechanism, they would have exhibited no preference for any novel stimuli as all 370 

differed substantially in at least one aspect from the original learned stimuli [10, 45]. We therefore 371 

propose that preferential learning of the yellow rim by fish predators selects for reduced variability 372 

of this element while no such selection exists for the red-spotted pattern allowing it to vary within 373 

and between populations. In terrestrial systems, red is frequently used in warning signals; however, 374 
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in the marine environment, longer wavelengths of light are attenuated first and therefore would 375 

have reduced signal efficacy. Furthermore, the visual systems of marine organisms including fish 376 

have reduced sensitivity to long wavelengths [38]. 377 

However, it is possible red spots help camouflage individuals when viewed against a 378 

heterogeneous reef background from a distance. Indeed, the idea that colour patterns may act as 379 

camouflage from a distance and warning signals in close proximity has been suggested for other 380 

species, e.g. [46]. Predator communities may vary between geographic locations [6], and these may 381 

select for differences in pattern among populations, depending on predator spectral sensitivities or 382 

visual acuity. In addition, geographical locations may have different habitat backgrounds against 383 

which  G. splendidus is viewed [1], requiring a shift in pattern design among populations. However, 384 

underwater images of individuals from a northern site (Mooloolaba) and a southern site (Nelson 385 

Bay) suggest differences in habitat backgrounds are not pronounced (Figure S6), but this cannot be 386 

discounted without further pattern analysis of background pattern characteristics. Increased spot 387 

frequency in southern populations may also match the warning signal of a putative red-spotted 388 

mimicry ring, which includes nudibranchs from Goniobranchus, Hypselodoris, Mexichromis and 389 

Noumea genera, and is more prevalent in New South Wales [47].  390 

However, variation in colour patterns can also be facilitated through non-adaptive processes 391 

such as genetic drift and restricted gene flow [2, 3]. We suggest restricted gene flow among 392 

populations of G. splendidus would allow variation in spot pattern, since the red spots do not appear 393 

to contribute to the warning signal. We found a gradual change in spot pattern from northern to 394 

southern populations with the greatest differences in FOT values among populations with the least 395 

gene flow. Therefore, it is likely there is a genetic component to the distribution of colour patches 396 

in this species. In other molluscs variation in shell patterns have been attributed to Mendelian 397 

inheritance [48]. The red spot pattern may also be driven by a reaction-diffusion mechanism 398 

proposed for pattern formation in the external shells of molluscs [49]; however, how colour patterns 399 

form in shell-less nudibranchs is unclear. Genetic drift and restricted gene flow may also contribute 400 

Page 16 of 28

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



 

to the slight differences in the width of the yellow rim for individuals from Coffs Harbour; but we 401 

suggest this very small difference is unlikely to be perceived by fish based on their visual acuity 402 

[34]. 403 

In contrast with the spatial distribution of pattern elements, differences in red colouration 404 

among populations was not related to gene flow or geographic distance among populations. Colour 405 

pigments in G. splendidus warning signals may be acquired from dietary sources as has been 406 

described in other nudibranch species [50, 51], such as yellow and pink aplysillid sponges upon 407 

which they are found feeding [52].  408 

All populations of G. splendidus were unpalatable to palaemon shrimp, although palatability 409 

varied among geographic locations. The extract from the Nelson Bay population was only weakly 410 

unpalatable in comparison with other geographic locations.  Goniobranchus nudibranchs are 411 

assumed to sequester defensive chemicals from their diet [53]. Thus, the strength of chemical 412 

defences from each population likely reflects the availability of different dietary sponges. Indeed, 413 

chemical variation in other nudibranch species has been shown to depend on the dietary origin of 414 

the metabolites [54]. Though how nudibranch chemical differences influence avoidance learning 415 

and selection by predators requires further study. 416 

Our results demonstrate the importance of measuring individual elements of colour patterns 417 

to help us better understand how predator learning can influence the design of aposematic warning 418 

signals. We demonstrate that elements within the pattern of an aposematic nudibranch differ in 419 

salience potentially driving stabilising selection on the yellow rim and indicating red spots may not 420 

contribute to the warning signal. Geographic variance in the red-spotted pattern may vary across 421 

populations due to interactions between restricted gene flow and differences in selection among 422 

populations, while differences in colour are likely related to availability of sponge food sources and 423 

may be linked to differences in chemical defences.  These results have important implications for 424 

the selective pressures acting on aposematic warning signals in the marine environment. 425 

 426 
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Figure 1. i) The % of fish that learned avoidance of an aposematic stimulus (S-) over a non-aposematic stimulus (S+) 

after a given number of sessions. In Group A and D the aposematic stimulus contained a yellow rim and red spots 

(represented by squares). In Group B the aposematic stimulus contained red spots but no rim (represented by circles), 

and in Group C was only a yellow rim (represented by triangles). ii) The learning experiment was followed by a 

generalization experiment on fish from Group A. Fish were presented with novel stimuli displayed on the x-axis. 

Preference indices (mean ± standard error) indicate the likelihood of each stimuli being chosen (pecked). The expected 

preference index if choices were random is indicated with a dashed line. 

 

Figure 2. Rejection of pellets by the shrimp Palaemon serenus (ED50) for crude extracts from each population of G. 

splendidus. The y-axis is reversed so extracts with higher activity (low volume of extract needed to induce 

unpalatability) are at the top. Where interpolated x values fall within the range of the standard curve, values are graphed 

along with 95% confidence intervals. Where interpolated x values were extrapolated beyond the reported range, 95% 

confidence intervals were not calculated. 

 

Figure 3. Representative zone maps for each population of G. splendidus are pictured beside a map of collection 

locations. Differences in our measure of pattern, fraction of transition values (FOT), are displayed in a bar graph with 

mean ± standard error. Most sites were significantly different. However, sites that did not differ (p > 0.05) are indicated 

with ~. 

 

Figure 4: Mean colour contrast (∆S) between the spectral reflectance of G. splendidus yellow and red colour patches 

are displayed for each population with mean ± standard error. For each population, mean (∆S) was calculated between 

i) the average for all sites combined (between-site variation) or ii) the average for that site (within-site variation). 

 

Figure 5. COI and ANT haplotype networks for G. splendidus populations. Circles represent haplotypes, size 

represents number of individuals that possess each haplotype, and colours represent the collection site for individuals. 

Black circles represent an inferred missing haplotype (not found in individuals sampled) and bars represent mutational 

steps between haplotypes. 
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Figure 1. i) The % of fish that learned avoidance of an aposematic stimulus (S-) over a non-aposematic 
stimulus (S+) after a given number of sessions. In Group A and D the aposematic stimulus contained a 

yellow rim and red spots (represented by squares). In Group B the aposematic stimulus contained red spots 

but no rim (represented by circles), and in Group C was only a yellow rim (represented by triangles). ii) The 
learning experiment was followed by a generalization experiment on fish from Group A. Fish were presented 
with novel stimuli displayed on the x-axis. Preference indices (mean ± standard error) indicate the likelihood 
of each stimuli being chosen (pecked). The expected preference index if choices were random is indicated 

with a dashed line.  
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Figure 2. Rejection of pellets by the shrimp Palaemon serenus (ED50) for crude extracts from each 
population of G. splendidus. The y-axis is reversed so extracts with higher activity (low volume of extract 
needed to induce unpalatability) are at the top. Where interpolated x values fall within the range of the 

standard curve, values are graphed along with 95% confidence intervals. Where interpolated x values were 
extrapolated beyond the reported range, 95% confidence intervals were not calculated.  
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Figure 3. Representative zone maps for each population of G. splendidus are pictured beside a map of 
collection locations. Differences in our measure of pattern, fraction of transition values (FOT), are displayed 
in a bar graph with mean ± standard error. Most sites were significantly different. However, sites that did 

not differ (p > 0.05) are indicated with ~.  
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Figure 4: Mean colour contrast (∆S) between the spectral reflectance of G. splendidus yellow and red colour 
patches are displayed for each population with mean ± standard error. For each population, mean (∆S) was 
calculated between i) the average for all sites combined (between-site variation) or ii) the average for that 

site (within-site variation).  
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Figure 5. COI and ANT haplotype networks for G. splendidus populations. Circles represent haplotypes, size 
represents number of individuals that possess each haplotype, and colours represent the collection site for 

individuals. Black circles represent an inferred missing haplotype (not found in individuals sampled) and bars 
represent mutational steps between haplotypes.  
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