

Mata, J., Martins, S., Mattielli, N., Madeira, J., Faria, B., Ramalho, R. S., ... Martins, L. (2017). The 2014-15 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. *Lithos*, 288-289, 91-107. https://doi.org/10.1016/j.lithos.2017.07.001

Peer reviewed version

License (if available): Unspecified

Link to published version (if available): 10.1016/j.lithos.2017.07.001

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ELSEVIER at http://www.sciencedirect.com/science/article/pii/S0024493717302402?via%3Dihub . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

*Revised Manuscript with No changes marked Click here to download Revised Manuscript with No changes marked: Mata et al. (2017)-REV2.docx

1	The 2014-15 eruption and the short-term geochemical evolution of the
2	Fogo volcano (Cape Verde): evidence for small-scale mantle
3	heterogeneity
4	
5	
6	
7	I Mata ^{1*} : S. Martins ¹ : N. Mattielli ² : I. Madeira ¹ : B. Faria ³ : R. S. Ramalho ^{1,4,5} : P.
, 8	Silva ^{6,1} M Moreira ⁷ R Caldeira ⁸ M Moreira ^{6,1} I Rodrigues ⁹ L Martins ¹
9	
10	
11	
12	1- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016
13	Lisboa, Portugal.
14	2- Laboratoire G-Time, DGES, Université Libre de Bruxelles, ULB, Av.
15	Roosevelt, 50, CP 160/02, 1050 Brussels, Belgium
16	3- Instituto Nacional de Meteorologia e Geofísica, Mindelo, Cabo Verde
17	4- School of Earth Sciences, University of Bristol, Wills Memorial Building,
18	Queen's Road, Bristol, BS8 1RJ, UK
19	5- Lamont-Doherty Earth Observatory at Columbia University, Comer
20	Geochemistry Building, 61 Route 9W, P. O. Box 1000, Palisades, NY 10964-
21	8000, USA
22	6- Instituto Politécnico de Lisboa, ISEL/ADF, Lisboa, Portugal
23	7- Institute de Physique du Globe de Paris (France)
24	8- Laboratório Nacional de Energia e Geologia, I.P., 2610-999 Amadora, Portugal.
25	9- Geologist, Cabo Verde
26	
27	
28	
29	
30	
31	* Commence line with an investe Ofe when
32	- Corresponding author: Jinata@rc.ui.p
33	
34	
35	
36	
37	
38	
39	
40 41	
4⊥ 4⊃	
42 42	
43 44	
44 15	
45	

46	Keywords
47	
48	
49	2014-15 Fogo Island (Cape Verde) eruption; Ocean island basalts; Mantle
50	heterogeneity; Short-term magmatic variation; Volcano plumbing system
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	

92 1- Introduction

93 The Earth's mantle is highly heterogeneous as depicted by the composition of oceanic basalts and particularly by those from oceanic islands (e.g. Hofmann, 2003; White, 94 95 2015). Such heterogeneity is considered the result of mixing in different proportions of the so-called mantle components (Zindler and Hart, 1986; Stracke et al., 2005). The 96 length scale of mantle heterogeneities sampled by oceanic basalts is highly variable, 97 98 sometimes encompassing large regional domains (e.g. DUPAL and SOPITA anomalies; Hart, 1984; Staudigel et al., 1991; White, 2015), but being also evident at the scale of a 99 single magmatic province, as reported, for example, for the Azores (e.g. Beier et al., 100 2008), Cape Verde (Gerlach et al., 1988; Doucelance et al., 2003) and Galápagos 101 (Gibson et al., 2012) archipelagos. The same is true at the scale of a single island edifice 102 103 (e.g. Barker et al., 2010; Mourão et al., 2012a; Nobre Silva et al., 2013), even when 104 considering quasi-coeval magmatic products (e.g. Madureira et al., 2011).

105 In this work we evaluate the small-scale heterogeneity of the mantle source feeding a 106 plume-related intraplate volcano, as well as the short-term geochemical evolution of the 107 magmas it generated. To this purpose we use as a case study the island of Fogo (Cape 108 Verde Archipelago), one of the most active oceanic volcanoes in our planet. Indeed, since the mid-15th Century Fogo experienced about 27 eruptions mostly from vents 109 located within a restricted area ($\approx 50 \text{ km}^2$) of the island's summit depression (Fig. 1). 110 111 The latest eruption occurred in 2014-2015 and constitutes the main object of this study. 112 Their vents are practically coincident or localized less than 2 km away from those of the two previous eruptions (1995 and 1951, respectively). For this reason, Fogo constitutes 113 114 a prime locality to test the existence of small-scale heterogeneities of mantle sources, as 115 well as to investigate the recent short-term evolution of magmas issued from those sources. Here we characterize and discuss the geochemistry of the lava flows and 116 117 pyroclasts extruded during the initial stages of the eruption (up to December 7, 2014). 118 Even though we are only considering lavas formed during the first 15 out of 60 days of

eruption, the extracted information allows the demonstration of chemical differencesrelative to the products erupted in 1951 and 1995.

The preservation of such heterogeneities by magmas is also here discussed emphasizing the role of lithosphere thickness. The mineralogical, geochemical and physical characteristics of a volcano are partially constrained by what happens during magma transit from its source to the surface, i.e. by the nature and dynamics of the associated magma plumbing system (e.g. Longpré et al., 2008; Klügel et al., 2015; Cooper, 2017; Cashman et al., 2017). The Fogo's plumbing system is here assessed using barometric data, which indicates a location of the main magma chamber(s) into the mantle.

Our observations show that magmas erupted in 2014 mark a reversal from the tendency depicted by previous eruptions (Escrig et al., 2005), which exhibited an increasing contribution of a local end-member with relatively radiogenic Sr.

131

132 2- Cape Verde Geological Setting

133 The Cape Verde Archipelago (Eastern Central Atlantic; Fig. 1) lies on top of the largest bathymetric anomaly in the Earth's oceans - the Cape Verde Rise - that coincides with 134 important geoid, heat flow, gravity, and seismic anomalies (e.g. Dash et al., 1976; 135 Courtney and White, 1986; Wilson et al., 2013; Liu and Zhao, 2014). The archipelago, 136 which stand on 120-140 Ma-old seafloor (Williams et al., 1990) is regarded as a hotspot 137 resulting from the impingement of a mantle plume on the quasi-stationary (<1 cm.a⁻¹ in 138 the region; Pollitz, 1991; Holm et al., 2008) Nubian plate. These would explain the 139 140 long-lasting volcanic activity and, at least partially, the age distribution of volcanism 141 and the geometry of both the archipelago and the Cape Verde Rise (Lodge and Helffrich, 2006; Holm et al., 2008; Madeira et al., 2008; Ramalho et al. 2010, Ramalho, 142 2011). The presence of a mantle plume deeply anchored in the lower mantle is 143 144 suggested by seismic data (Montelli et al., 2006; Forte et al., 2010; Vinnik et al, 2012; 145 Saki et al., 2015; French and Romanowicz, 2015) and of noble gas studies performed on

carbonatites and alkaline silicate rocks (Christensen et al., 2001; Doucelance et al.,
2003; Mata et al., 2010; Mourão et al., 2012b). The oldest exposed hotspot-related
volcanism is ~26 Ma (Torres et al., 2010) and at least three islands are considered
volcanically active (Santo Antão, Brava and Fogo; see e.g. Madeira et al., 2010; Eisele
et al., 2015; Faria and Fonseca, 2014) but only Fogo had post-settlement eruptions.

Magmatism in Cape Verde is strongly alkaline, as testified by the occurrence of 151 152 nephelinitic, melanephelinitic, and melilititic rocks on several islands. It also is well known by its striking geochemical heterogeneity, allowing the isotopic separation of the 153 islands into two groups (Northern and Southern). Lavas from the Southern group have 154 more radiogenic Sr, but unradiogenic Nd and Pb ratios than those from the Northern 155 156 group, which are also exhibit more unradiogenic He signatures. In addition, magmatic rocks from the Southern group are positioned, on the ²⁰⁸Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb 157 diagram, above the Northern Hemisphere Reference Line (NHRL; Hart, 1984) whilst 158 159 lavas from the Northern group tend to plot along the NHRL (e.g. Gerlach et al., 1988; Doucelance et al., 2003; Holm et al., 2006; Kogarko and Asavin, 2007; Martins et al., 160 161 2010; Mourão et al. 2012a and references therein). Notable exceptions to this scenario 162 include Brava (the southwesternmost island), which depicts both typical Northern (older 163 sequences) and Southern (younger volcanism) isotope signatures (Mourão et al., 2012a), 164 and the neighbouring Cadamosto seamount, which also presents typical Northern 165 signatures (Barker et al., 2012).

166

167 2.1 Fogo Volcano

Fogo is one of the youngest of the Cape Verde Islands and a very prominent oceanic volcano, standing ~7 km above the surrounding seafloor. The island exhibits a slightly asymmetric conical shape, being truncated atop by a summit depression open to the east. This 8 km-wide depression - Chã das Caldeiras - is surrounded on three sides by a almost vertical wall – the Bordeira – up to 1 km tall. Inside the summit depression and 173 on its eastern side, a 1100 m high strato-volcano – Pico do Fogo – grew up to an 174 elevation of 2829 m (Fig. 1). Fogo volcano is therefore interpreted as a compound volcano, featuring a "somma-vesuvio" association of a vounger strato-cone on top of an 175 176 older, collapsed volcanic edifice (Ribeiro, 1954; Foeken et al., 2009). The opening to the east of the summit depression is interpreted as the result of a massive flank collapse 177 (Day et al., 1999; Brum da Silveira et al., 2006), as attested by a landslide debris deposit 178 179 extending offshore into the channel between Fogo and Santiago (e.g. Masson et al., 2008), and by field evidence documenting the impact of a megatsunami in the 180 neighbouring island of Santiago (Paris et al., 2011; Ramalho et al., 2015). The present-181 day Pico do Fogo stands on, and partially fills, the collapse scar, and naturally post-182 dates the collapse event, which is interpreted to have occurred either at ~ 117 or at ~ 73 183 184 ka (cf. Eisele et al. 2015 and Ramalho et al. 2015). A older basement is, however, exposed in two shallow valleys near the city of São Filipe, where plutonic 185 calciocarbonatites were dated from 2.5 Ma to 5.1 Ma (Hoernle et al., 2002; Madeira et 186 187 al., 2005; Foeken et al., 2009). These suggest a > 2 Myr volcanic hiatus in the evolution of Fogo. 188

Fogo volcano is very active, with 27 eruptive events since 1500 AD (Ribeiro, 1954).
The mean recurrence interval between eruptions is 19.8 years, but with individual
intervals ranging from 1 to 94 years. Historical eruptions seem to have been confined to
Chã das Caldeiras and the eastern slope of the volcano, as it was the case of the recent
193 1951, 1995 and 2014/2015 events (Fig. 1).

The latest eruption started on November 23, 2014 and continued until February 7, 2015. The eruption occurred on a NE-SW trending 700 m-long fissure located on the SE flank of the previous 1995 cinder cone, an adventitious vent developed on the SW flank of Pico do Fogo (Figs. 2A, 2B e 2D). This eruption started with vigorous "hawaiian" firefountain activity, followed by strombolian activity, and later by simultaneous or alternating Hawaiian (Fig. 2C), strombolian and vulcanian (Fig. 2D) eruptive activity

200 from different craters along a fissural vent, lasting for several days. The eruption also 201 emitted, from the first day, thick a'a lava flows (Fig. 2E; Supplementary Material S1) forming two initial lava lobes. A shorter lobe, 1.7 km-long, progressed southwestwards 202 203 down to the flank of Cova Tina cone, stalling short of the Bordeira wall in this area. The second, longer lobe advanced 3 km to the northeast in the initial hours of the eruption, 204 205 crossing the topographic barrier formed by the 1995 lava flows by advancing through 206 the existing road cut. It advanced intermittently towards the village of Portela, causing 207 widespread destruction (Fig. 2F). During the later stages of the eruption, thinner, more 208 fluid, a'a and especially pahoehoe breakouts expanded the flow field to the west and 209 north, the latter descending to the village of Bangaeira, destroying almost completely 210 both villages and reaching a total length of 5.2 km (Fig.1). Overall, the resulting lava flows, with an average thickness of about 9 m, covered an area of 4.8 km², with 211 extruded volumes estimated to correspond to $\sim 45 \times 10^6$ m³, at a mean eruption rate of 212 6.8 m³.s⁻¹ (Bagnardi et al. 2016; Richter et al. 2016). Lava flow thicknesses as high as 213 214 35 m (close to the vent), or 25 m on the lava ponding west of Portela, were described by Richter et al. (2016). See also Cappello et al. (2016) for additional information about the 215 216 eruption.

217

218 **3-** Analytical procedures

Whole-rock major and trace element concentrations were obtained at Activation
Laboratories, Ltd (Ancaster, Ontario, Canada) using the geochemical analytical package
4Lithoresearch (lithium metaborate/tetraborate fusion - ICP and ICP/MS).

Several certified reference materials from USGS (United States Geological Survey), GSJ (Geological Survey of Japan) and CCRMP (Canadian Certificate Reference Material Project) were run to check for accuracy (Supplementary Material S2). Errors associated with the accuracy are $\leq 4\%$ for major elements and better than 9% for the REE and the most widely used incompatible elements. Reproducibility was generally

better than 5% for both major and trace elements. For detailed information regardinganalytical and control procedures consult the Actlabs website (www.actlabs.com).

Mineral analyses were performed on carbon-coated polished thin sections using a JEOL 229 230 SUPERPROBE[™], model JXA-8200, in wavelength dispersive mode at the Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa 231 (Portugal). Minerals were analysed with an acceleration voltage of 15 kV and a current 232 233 of 25 nA, using a 5 µm wide beam for most minerals. Plagioclase and apatite were 234 analysed using a 7 and 9 μ m wide beam, respectively. The analyses performed in each mineral phase/glass were calibrated using the composition of reference material, with 235 236 precisions being better than 2% and ordinarily around 1% (see Supplementary Material S3-H for specific minerals standards used in each mineral analysis). 237

Isotopic analyses of Pb, Nd, Sr and Hf were performed at the Laboratoire G-Time of the
Université Libre de Bruxelles (ULB, Belgium) on a Nu Plasma I Multi-Collector
Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) (@ Nu instruments).

Sr analyses were performed in wet mode. In routine, the raw data was normalized to ⁸⁶Sr/⁸⁸Sr=0.1194, and corrected for mass bias by standard sample bracketing using the lab's in-house Sr standard solution. The in-house shelf Sr standard was calibrated and normalized to the certified value of NBS 987 Sr standard (0.710248) reported by Weis et al. (2006). During our analytical sessions, in-house standard solution was run every two samples and gave an average value of 0.710287 ± 50 (2 σ) for raw ⁸⁷Sr/⁸⁶Sr data (21 runs).

Nd and Hf were run in dry mode with an Aridus II desolvating system. To monitor the instrumental mass bias during the analysis sessions, the standard sample bracketing method was also applied. Standards were systematically run between every two samples, giving an average value in ¹⁴³Nd/¹⁴⁴Nd of 0.511921 ± 41 (2σ , 8 runs) for the Rennes Nd standard, and ¹⁷⁶Hf/¹⁷⁷Hf=0.282172 ± 30 (2σ , 10 runs) for the JMC 475 Hf standard. The Nd and Hf isotopic measurements were internally normalised to

¹⁴⁶Nd/¹⁴⁴Nd=0.7219 and ¹⁷⁹Hf/¹⁷⁷Hf=0.7325, respectively. All Hf and Nd isotopic data
(Table 1) are normalized to the reference values of 0.511961 and 0.282160 as published
by Chauvel and Blichert-Toft (2001) and Chauvel et al. (2011).

257 For the Pb isotope analyses, a Tl dopant solution was added for every sample and standard, within a Pb-Tl concentration ratio of $\pm 5:1$ (for a minimum signal of 100 mV in 258 the axial collector - ²⁰⁴Pb). ²⁰²Hg is routinely monitored to correct for the potential 259 isobaric interference of 204 Hg on 204 Pb. Mass discrimination was monitored using ln – ln 260 261 plots and corrected by the external normalization and the standard sample bracketing technique using the recommended values of Galer and Abouchami (1998) (i.e. 262 206 Pb/ 204 Pb=16.9405±15; 207 Pb/ 204 Pb=15.4963±16; 208 Pb/ 204 Pb=36.7219±44). 263 The repeated of the 264 measurements NBS981 gave the following values: 206 Pb/ 204 Pb=16.9403±8, 207 Pb/ 204 Pb=15.4961±10, 208 Pb/ 204 Pb=36.7217±31 (2 σ) for the 265 NBS981 Pb standard (5 runs). 266

267

268 4- Results

The samples used in this study were collected during a field survey undertaken during 269 270 the course of the last Fogo eruption, between November 27 and December 7, 2014. From all collected samples a sub-set of 14 was selected for petrographic, mineralogical 271 and whole-rock elemental geochemical study (TABLE I), on the basis of its 272 273 geographical and temporal distribution. Sr, Nd, Hf and Pb isotopes were determined for 8 samples (TABLE II), while the He isotope analysis was performed for one sample. On 274 the Supplementary Material the reader can also find mineral chemistry data (S3) and the 275 whole-rock normative compositions (S4). The composition of interstitial glasses 276 determined by electron microprobe is also presented on Supplementary Material S3-G. 277

- 279
- 280

281 **4.1. Petrography and mineral chemistry**

On a chemical basis, lava flows and pyroclasts erupted up to December 7 are, sensu lato, tephrites and phonotephrites (see *section* 4.3 and Fig. 3). Some of the most important petrographic characteristics of the studied samples are depicted on Fig. 4 and their mineral chemistry data are displayed on the Supplementary Material S3.

286

287 **4.1.1 Tephrites**

The bulk ($\approx 85\%$) of the eruptive products corresponds to tephrites. The lavas are vesicular and porphyritic with a hypocrystalline groundmass and with phenocrysts amounting up to 10%. Samples are highly vesicular (up to 60% of the rock volume) and the vesicles are irregular in shape and size.

292 The most abundant phenocryst phase is clinopyroxene. Even though all the 293 clinopyroxene phenocrysts are classified as diopside (Wo₄₉En₃₈Fs₁₃ to Wo₅₂En₃₆Fs₁₂) 294 according to IMA recommendations (Supplementary Material S-3A), in most samples 295 two groups must be considered regarding size and composition. One group corresponds 296 to phenocrysts with dimensions up to 2 mm and euhedral shapes. They are characterized 297 by normal zoning patterns, with Al₂O₃, FeO and TiO₂ increasing and MgO, CaO and 298 Mg# decreasing from core to rim. Opaque mineral inclusions are frequent. The other 299 group of phenocrysts occurs in clusters along with kaersutite, both with dimensions up 300 to 4 mm in length. Clinopyroxee megacrysts in these aggregates usually show complex 301 zoning patterns presenting abnormal compositional variations with increments of Al₂O₃, 302 FeO and TiO₂ towards the intermediate zone/mantle and then decreasing towards the 303 rim; the opposite occurs with MgO and CaO, suggesting a more complex and multistage 304 crystallization history as compared with the first group. Indeed the increase in 305 MgO/FeO and decrease in TiO₂ towards the rim is suggestive of a replenishment of the 306 magma chamber where these particular crystals were formed, reflecting an influx of less 307 evolved magmas, thus pointing out to mixing of distinct magma batches. However, both 308 groups of clinopyroxenes show similar Al^{VI} values (0.059 to 0) and Al/Ti ratios 309 indicating that megacrysts are cognate, being genetically related with the host lava and 310 with the clinopyroxene phenocrysts. This assertion is also considered valid for 311 keaersutite megacrysts given the chemical evidence for amphibole fractionation (see 312 5.1).

These kaersutite crystals are Mg- and Ti-rich (MgO = 12.8 - 13.0 wt.%; TiO₂ up to 6.07 313 314 wt.%), usually occurring in association with apatite and showing reaction rims where 315 clinopyroxene and rhönite crystals are present, sometimes completely replacing the 316 amphibole (Fig. 4D). Olivine crystals are restricted to inclusions in clinopyroxene 317 phenocrysts, with no signs of resorption, and to the groundmass. In all lava samples the opaque minerals can be considered microphenocryts, being characterized by euhedral 318 319 shapes and dimensions up to 1 mm. Most of the occurring oxides can be considered as 320 titanomagnetites, with ulvöspinel component (X_{USP}) up to 57, and Cr# ranging from 1.6 321 to 5.3.

322 The groundmass is made up of small crystals immersed in a glassy matrix. These comprise plagioclase laths (labradorite, An₅₆₋₆₆) sometimes with a fluidal arrangement, 323 324 clinopyroxene elongated crystals (Wo₄₉En₃₇Fs₁₄ to Wo₅₃En₃₂Fs₁₅), finely disseminated opaque minerals (titanomagnetites, $58 < X_{USP} < 67$), rare olivine (Fo $\approx 72\%$), and 325 326 fluorapatite (1.7 to 2.8 wt.% of F). The electron-microprobe analyses of interstitial glass 327 revealed it to be very rich in alkalis (11.8 to 15.8 wt%, K₂O+Na₂O) and poor in MgO (down to 0.66 wt%) having tephriphonolitic and phonolitic (SiO₂ up to 54.15 wt%) 328 compositions (see Fig. 3). 329

330

331 4.1.2 Phonotephrites

These lavas are vesicular hemicrystalline/hypocrystalline and sparsely porphyritic (phenocrysts up to 3% vol.). The vesicles are elongated reaching up to 10 mm in length and corresponding to 50 to 80% of rock volume. The clinopyroxene phenocrysts are

335 euhedral up to 3 mm in size, frequently showing complex oscillatory zoning patterns 336 and inclusions of opaque minerals. Despite the striking optical zoning patterns, all the clinopyroxene phenocrysts are classified as diopside with a short compositional range 337 (Wo₄₉En₃₅Fs₁₀ to Wo₅₃En₄₀Fs₁₄), being very similar to that reported for the tephrites. 338 Olivine (Fo=80-84%) is scarce, being identified only as a core inclusion in a 339 340 clinopyroxene phenocryst. Microphenocrysts (up to 1mm) of equant opaque minerals 341 are classified as titanomagnetites ($X_{USP} = 44-46$; Cr# = 1.15-5.4). Kaersutite 342 pseudomorphs are frequent. They consist of aggregates of rhönite and clinopyroxene elongated crystals, displayed in inward radial arrangements totally or partially replacing 343 the amphibole. However, in either case, a border of small opaque minerals encloses the 344 altered/partially altered amphibole crystals. These kaersuites are similar (MgO = 11.9 -345 346 12.7 wt.%: TiO₂ up to 6.04 wt.%) to those occurring as megacrysts/phenocrysts in tephritic rocks, and the occurrence of apatite within or in close proximity to the 347 348 amphibole is frequent. The groundmass is composed of plagioclase microliths 349 (labradorite, An₅₄₋₆₆), elongated clinopyroxene crystals (average Wo₅₃En₃₁Fs₁₆), opaque 350 minerals $(38 < X_{USP} < 57; Cr \# = 0.67-1.49)$, scarce olivine and glass.

351 In one sample, a cluster of clinopyroxene, opaque crystals, and amphibole is interpreted as a possible co-magmatic cumulate nodule. This interpretation is based on the large 352 353 dimension of the crystals, the sharp contrast between the mineral aggregate and the 354 surrounding rock matrix, and on its chemical similarity between its minerals and the rock phenocrysts. The same interpretation is considered for an aggregate of small (0.5 355 356 mm in length) plagioclase crystals characterized by anorthite content up to 79 %. 357 Ultramafic nodules of cumulate origin, mainly composed of olivine, clinopyroxene, and 358 amphibole, were also reported for this eruption by Caldeira et al. (2015).

- 360
- 361

362 4.2. Whole rock elemental composition

Major and trace element analyses of the studied rocks are presented in Table I, whilenormative compositions can be found in Supplementary Material S4.

365 As all other subaerial lavas in the Cape Verde Islands, Fogo's 2014 volcanic products are alkaline. They plot dominantly in the U_1 field, but also in the U_2 (phonotephrites) 366 field of the TAS diagram (Fig. 3). Rocks plotting inside the U₁ field would be classified, 367 368 according their CIPW normative composition, either as nephelinites (normative ne >20%) – the dominant type – or as melanephelinites (normative ne < 20%; normative ab369 < 5%) according to the subdivision proposed by Le Bas (1989); (see S4). However, as 370 modal plagioclase can be identified in most of the rocks plotting in the U1 TAS field 371 and for all the samples normative ol < 10%, the classification as tephrites is here 372 373 preferred and used.

The rocks are representative of moderately evolved magmas characterized by Mg# ranging from 55.32 to 45.98 and by Na₂O/K₂O between 1.35 and 1.46. The less evolved rocks (Mg# = 55.32 to 51.97) have TiO₂ contents varying from 3.65 to 3.75 wt%, P₂O₅ close to 1 (0.94 to 1.11 wt%), CaO/Al₂O₃ ratios ranging from 0.65 to 0.78 and K₂O/TiO₂ ratios from 0.25 to 0.32.

379 The 2014 lavas are highly enriched in the most incompatible elements (Fig. 5), which is 380 depicted, for example, by $(La/Yb)_{cn}$ ratios > 20, with the most evolved rocks presenting 381 the highest values for this ratio (> 23). Primitive mantle normalized incompatible elements patterns (Fig. 5c) show a significant enrichment of Nb and Ta relatively to the 382 light REE and the radiogenic heat producers K. Th and U. Small Hf negative anomalies 383 384 are also evident, which partially reflects the high Zr/Hf ratios (>49), well above the 385 value of 36 characterizing CI chondrites and the primitive mantle (e.g. Palme and 386 O'Neil, 2003).

The sampled pyroclasts and lava flows are similar in composition, the most significant difference being the sulphur-enriched composition of pyroclasts (120 to 230 ppm;

389 \overline{X} = 200 ppm) as compared to lava flows (60 to 120 ppm; \overline{X} = 84 ppm). This 390 indicates a more effective degassing of lava flows as a consequence of a slower cooling. Most of the characteristics described above are similar to those of lavas erupted during 391 392 the two precedent eruptions (1995 and 1951), as Fig. 5 shows. Notwithstanding the fact that the samples here studied are only representative of the lava emitted during the first 393 394 15 days of the eruption, some differences, however, were noticed: i) the 1995 lavas present a slightly higher compositional range (MgO from 6,86 to 2.40 wt%; Hildner et 395 al., 2011) than the ones from 2014 (MgO from 6.23 to 2.93 wt%); ii) from the three 396 397 eruptions considered, the 1951 event produced the less evolved lavas (MgO up to 8.24 wt%; Hildner et al., 2012); iii) for the same SiO₂ content, the 1951 lavas tend to be less 398 alkali-rich than the 2014 and 1995 volcanics (Fig. 3); iv) the 2014 and 1995 erupted 399 materials are characterized by small compositional gaps ($\Delta SiO_2 = 2.5\%$ and 3.8%, 400 respectively) in opposition to the described for from the 1951 eruption for which no 401 402 phonotephrite compositions were reported (see Fig. 1 and references therein); v) for these three eruptions, the most evolved products are the phonotephrites from the 1995 403 404 eruption, which also present the highest concentrations in incompatible elements like 405 Nb and Ta. However, the highest concentrations in light REE are found in 406 phonotephrites from the 2014 eruption, which show the highest La/Nb ratios. This higher La/Nb are also observed for the less evolved rocks (MgO > 5 wt%), with 2014 407 lavas presenting \overline{X} La/Nb = 0.69, whereas the 1995 and 1951 less evolved rocks show 408 \overline{X} La/Nb=0.60 (cf. Table 1, Hildner et al., 2011 and Hildner et al., 2012). 409

410

411 **4.3. Whole rock isotope composition**

The results of Sr, Nd, Hf and Pb isotope analyses are shown on Table II. The lavas erupted in 2014 at Fogo Island present isotope signatures akin to those typical of the Southern islands in the Cape Verde Archipelago. Indeed, in opposition to what is observed for the Northern capeverdean islands (Fig.6), they are characterized by

relatively unradiogenic ²⁰⁶Pb/²⁰⁴Pb ratios (up to 19.001) and plot above the Northern 416 Hemisphere Reference Line ($\Delta 7/4$ from 0.99 to 1.57; $\Delta 8/4$ from 25.38 to 28.80; see 417 418 Hart, 1984 for definitions of these parameters). Notwithstanding the fact that their 87 Sr/ 86 Sr (0.70361 to 0.70369) and 143 Nd/ 144 Nd (0.51276 to 0.51279) ratios are clearly 419 more and less radiogenic, respectively, than those observed for the Northern islands, the 420 2014 lavas plot on the second quadrant of the ⁸⁷Sr/⁸⁶Sr vs. ¹⁴³Nd/¹⁴⁴Nd diagram (Fig. 421 7A). This indicates a provenance from a time-integrated depleted source(s), i.e. which 422 423 evolved over time with lower Rb/Sr and higher Nd/Sm than those of the BSE (bulk silicate earth) and the CHUR (chonditic uniform reservoir), respectively. Compared to 424 the lavas extruded during the 1951 and 1995 eruptions, the 2014 rocks present more 425 426 unradiogenic Sr and radiogenic Nd signatures (Fig. 7). The 2014 lavas also exhibit slightly more radiogenic ²⁰⁶Pb/²⁰⁴Pb ratios than the most samples from the two previous 427 eruptions, the same being true for ²⁰⁷Pb/²⁰⁴Pb ratios (Fig. 6A). Lavas from these 3 428 eruptions are amongst the Cape Verde rocks with lower ²⁰⁶Pb/²⁰⁴Pb ratios. As is typical 429 of the Southern Cape Verde Islands, rocks from these 3 eruptions are characterized by 430 431 positive $\Delta 8/4$, plotting above the NHRL (Fig. 6B).

The 2014 lavas' ¹⁷⁶Hf/¹⁷⁷Hf ratios range from 0.28294 to 0.28296 (Table II). A time-432 integrated evolution with high Lu/Hf ratios compared to CHUR is shown by positive 433 εHf values (5.88 to 6.62; Fig. 7B), plotting between the mantle arrays proposed by 434 Vervoort (1999) and Chauvel (2008). These are the first ¹⁷⁶Hf/¹⁷⁷Hf determinations 435 436 available for Fogo Island, preventing any comparison with previous results. However, noteworthy that the lavas erupted in 2014 plot inside the large field defined in the ENd-437 EHf space by the lavas from the neighbouring island of Santiago, which is characterized 438 by significantly higher and lower ¹⁷⁶Hf/¹⁷⁷Hf ratios (see Barker et al., 2009; Martins et 439 al., 2010). Significant correlations between any of these isotope signatures and ratios 440

- involving incompatible trace elements have not been found. This will be discussed later(see 5.3).
- The 3 He/ 4 He ratio of a glassy phonotephrite was determined at the Intitut de Physique du Globe de Paris (IPGP) using crushing for gas extraction. The obtained value (1.11± 0.13 Ra, where Ra is the present atmospheric ratio of 1.4 x 10⁻⁶) for a 4 He concentration of 2.8 x 10⁻⁹ cc/g is interpreted as the result of atmospheric contamination during the eruption/consolidation of lava. Consequently, this result will not be considered in the discussion.
- 449

450 **5. Discussion**

451 **5.1 Mantle source composition and magma evolution**

452 Previous studies, explained the chemical variability of Fogo's lavas by mixing in 453 different proportions of HIMU-like (ancient recycled ocean crust) and EM1-like mantle 454 end-members, diluted by the presence of depleted upper mantle (Gerlach et al., 1988) or 455 by lower mantle material (Doucelance et al., 2003; Escrig et al., 2005) entrained by the 456 upward moving plume.

Although 2014 lavas present low ²⁰⁶Pb/²⁰⁴Pb ratios (up to 19.001), clearly below those 457 typical of magmas originated from sources dominated by the HIMU mantle component 458 459 (e.g. Kawabata et al., 2011), the HIMU fingerprint is shown by trace element patterns 460 (Fig. 5) displaying enrichment in Nb and Ta relative to the LREE and the LILE (e.g. Niu et al., 2012). Aditionally, all the analysed rocks are characterized by positive $\Delta 8/4$ 461 462 and $\Delta 7/4$ and plot below the mixing lines between a HIMU type end-member and DMM 463 or lower mantle compositions (Fig. 10), strongly suggesting the contribution of an EM1-type end-member to the 2014 Fogo mantle source(s). Interestingly, the products 464 465 erupted in 2014 mark a change on the evolutionary trend reported by previous authors 466 for Fogo eruptions (Gerlach et al., 1988; Escrig et al., 2005) which was characterized by 467 an increasing contribution of the enriched component. Indeed, the 2014 lavas have less

radiogenic Sr, but more radiogenic Nd signatures than those from the 1951 and 1995eruptions.

Fogo's 2014 lavas (MgO \leq 6.4 wt %, Mg# \leq 53.2; Ni \leq 42 ppm) cannot be considered representative of primary magmas. This fact and its chemical variability (MgO down to 2.93 wt.%; Ni down to 6 ppm) emphasize the role of magma evolution processes to explain the observed compositional range. This is reinforced by the phonolitic composition of the glassy groundmass of some lavas (MgO down to 0.66 wt%; total alkalis up to 15.76 wt%; see Supplementary Material S3-G).

The important role of clinopyroxene fractionation is suggested by its occurrence as 476 477 phenocryst in most samples and by the Sc decrease with increasing concentration of strongly incompatible trace elements such as La (Fig 8A), here used as a proxy of 478 479 magma evolution index. Fractionation of clinopyroxene must have been preceded by crystallization of olivine as indicated by the occurrence of olivine inclusions in 480 481 clinopyroxene phenocrysts. The Dy/Dy* ratio, as defined by Davidson et al. (2013), 482 tends to decrease from up to 0.81 in tephrites, down to 0.61 in phonotephrites, a tendency that, according to those authors, can be attributed either to amphibole or to 483 clinopyroxene fractionation. If the importance of clinopyroxene fractionation was 484 already demonstrated, the positive correlation of Dy/Dy* and Nb/U ratios (Fig. 8B) 485 486 emphasizes the role of amphibole since, at odds with what happens with this mineral, 487 clinopyroxene does not have the capacity to fractionate Nb from U (e.g. Adam and 488 Green, 2006).

The calculated water content of the melt during kaersutite crystallization range from 3.81 to 4.14 wt% (\pm 0.78 wt%) while oxygen fugacity is estimated in the range of 0.92 to 2.3 log units above NNO (\pm 0.37 log units) using the methodology of Ridolfi and Renzulli (2012). The obtained fO₂ values are comparable to those reported for some other intraplate ocean islands (e.g. Madeira; Mata and Munhá, 2004). These relatively high fO₂ values are reflected in the composition of pyroxenes for which high Fe3⁺

495 contents were calculates based on the stoichiometry (Suplementary material S3-A), but 496 not in the amphibole (Suplementary material S3-C). This suggests the incorporation of 497 Ti (TiO₂ up to 6.13 wt%) into the octahedral position of kaersutite through the 498 substitution $^{[VI]}R^{2+} + 2OH^- = ^{[VI]}Ti^{4+} + 2O^{2-}$, which favours high Fe^{2+}/Fe^{3+} (Satoh et al., 499 2004).

500 As also reported for the previous Fogo's eruption (e.g. Munhá et al., 1997; Hildner et 501 al., 2012) plagioclase did not play a significant role in the evolution of 2014 magmas, as 502 inferred from its rarity among phenocrysts and from the continuous Sr increase (1194 to 1408 ppm) throughout the erupted suite. Judging from the comparatively high Al_2O_3 503 Na₂O and K₂O concentrations determined in the glassy phonolitic matrix, plagioclase 504 505 and alkali feldspar fractionation was also not important for the generation of such 506 evolved compositions. On the other hand, the role of Fe-Ti oxides and apatite 507 fractionation is made evident by the significant decrease on P_2O_5 (Fig. 8C) and TiO₂ 508 (not shown) concentrations from the most evolved tephrites (SiO₂ < 45.2.%) to phonotephrites (SiO₂ > 47.7 wt. %) (see also Table I). The fractionation of these two 509 510 non-silicate phases, with the consequent significant increase in silica content of magmatic liquids, was probably the cause for the small compositional gap ($\Delta SiO_2 =$ 511 512 2.5%) separating those two lithotypes.

Even though the isotope differences precludes the studied rocks to be considered comagmatic with those erupted in 1951 and 1995 (see section 4.4), samples from these three eruptions plot along the same trends in most variation diagrams, suggesting that they share a common magma evolution history (e.g. Fig. 8 A and C). However, Fig. 8B emphasizes, despite similar trends, the lower Nb/U and Dy/Dy* ratios of the 2014 rocks relatively to the rocks of similar degree of evolution generated during the two previous eruptions.

520 Indeed, the less evolved 2014 rocks are characterized by lower Nb/U ratios (60 ± 3) 521 than the basanitic/tephritic lavas from the 1995 and 1951 eruptions (95 ± 4 ; Hildner et al., 2011; 2012). Given the similar degree of evolution, these differences cannot be explained by fractional crystallization. The 2014 Nb/U ratios fits the typical OIB value (EM lavas excluded) of 52 ± 15 obtained by Hofmann (2003). As shown by this author, either the EM-type mantle components or the continental crust have significantly lower Nb/U ratios. Consequently the higher contribution of an enriched end-member (EM type) for the 1995 and 1951(see above) lavas cannot be invoked as a cause for their higher Nb/U ratios.

Nb/U ratios significantly higher than the typical OIB lavas have also been reported for 529 some Canary lavas by Lundstrom et al. (2003). These authors defended that this can be 530 531 the reflex of mixing between ascending plume-derived magmas and lithospheric melts with a significant contribution from amphibole present in low-solidus mantle domains. 532 533 These domains would have been generated by metasomatic (s.l.) processes during previous stages of islands building. We suggest that a similar process may have been 534 responsible for the significantly higher Nb/U and Dy/Dy* ratios of the 1995 and 1951 535 536 lavas. Since their vents, and probably also the ascending magma paths, were almost 537 coincident with those of 2014, we speculate that such low-solidus lithospheric domains 538 were already exhausted and did not contribute significantly for the composition of the 539 subsequent 2014 eruption products.

As observed for the precedent 1995 eruption (Munhá et al., 1997; Silva et al., 1997; 540 541 Hildner et al., 2011), the initial products erupted in 2014 were more evolved (phonotephrites; SiO₂ up to 47.99 wt.%) than those emitted subsequently (tephrites, s.l.), for 542 543 which SiO₂ contents as low as 43.03 wt.% were obtained. Considering the composition 544 of the erupted magmas, assuming a complete degassing during eruption (suggested by very low loss on ignition), and using the algorithm of Giordano et al. (2008), the 545 546 viscosity of the phonotephrites would have been some 10 times higher than that of the 547 less evolved tephrites. This partially explains the evolution of lava flow morphology 548 during the course of the eruption, which exhibited a'a characteristics during the initial

549 eruptive stages, whilst $p\bar{a}hoehoe$ type lavas became more frequent during the 550 subsequent effusion of the less viscous tephritic lava flows.

551

552 **5.2** Thermobarometric evidence for magma reservoirs into the mantle

553 Geothermobarometric estimates based on phenocrysts and cognate megacrysts have 554 been considered to be important to constrain the magmatic plumbing system of a 555 volcano, given they can be used to calculate the depths of magma stalling/stagnation at 556 mantle/crustal chambers. Indeed, silicates are characterized by very low intra-crystalline 557 diffusion rates, thus tending to preserve the composition acquired at the moment of 558 crystallization.

We used the clinopyroxene-liquid thermobarometer of Putirka et al. (2003) for which 559 560 lower uncertainties are foreseen than those reported for methods only using the clinopyroxene composition (Putirka, 2008; see also Geiger et al., 2016 for a review on 561 562 clinopyroxene thermobarometry). The method is based jadeiteon diopside/hedenbergite exchange equilibria in hydrous conditions, which are shown to 563 have existed at Fogo by the presence of amphibole (see also above for an estimate of 564 565 water content in magma). As we used phenocryst cores and whole rock compositions as proxies of the crystal-liquid pairs, the P-T results obtained will be regarded as the 566 567 conditions prevailing during early stages of clinopyroxene phenocrysts crystallization, 568 assuming that no magma mixing occurred after pyroxene crystallization.

In order to use mineral/liquid thermobarometers it is mandatory to test if the crystal/melt pairs used testify equilibrium conditions. On a first approach a visual screening was made to identify textural evidence for disequilibrium, those showing irregular or reabsorbed shapes were avoided. Furthermore, only core analyses of unzoned or normally zoned phenocrysts where used. No mineral correction was made to the whole-rock composition due to the lack of evidence for significant accumulation (\leq 10 % of phenocryst phases).

576 Considering the concerns regarding the efficacy of the Fe-Mg exchange in deciphering 577 situations of pyroxene-melt equilibrium (e.g. Mollo et al., 2013), we used instead the comparison between predicted and measured components in clinopyroxene (diopside-578 579 hedenbergite; enstatite-ferrosilite; Ca-Tschermak's) as proposed by Putirka (1999). Following the recommendations of Putirka et al. (2003), only clinopyroxenes whose 580 581 compositions are within the $\pm 2\sigma$ level of the predicted ones were used in the 582 thermobarometric calculations. The standard errors of estimation (SEE) of the Putirka et al. (2003) method are 1.7 kbar and 33 °C, while analytical uncertainties, calculated 583 using the relative standard deviation of whole rock and microprobe analyses of 584 585 reference materials are significantly lower than the uncertainties of the method.

The temperatures obtained for pyroxene crystallization range from 1045 to 1063 °C for the phonotephrites and 1102 to 1143 °C for the tephrites. Pyroxene phenocrysts crystallized from phonotephritic magmas at pressures in the range between 560 and 778 MPa, whereas the tephrites yield variations between 690 and 890 MPa (Fig. 9).

For amphiboles we used the single-phase thermobarometric and chemometric equations proposed by Ridolfi and Renzulli (2012), based on multivariate least-squares regression analyses of a large database of amphibole compositions in alkaline magma systems. For this method the authors claim low uncertainties: $P \pm 11.5\%$, $T \pm 23.5$ °C. The application of the thermobarometer shows that the values obtained for kaersutites occurring in phonotephrites and tephrites are similar within error (1032 to 1050°C and 568 to 620 MPa; see Fig. 9).

597 The kaersutite occurring in the 2014 Fogo lavas show ubiquitous signs for 598 disequilibrium, presenting evidence for partial (reaction rims) to total (pseudomorphosis) substitution by polycrystalline aggregates of rhönite and 599 600 clinopyroxene. We interpret the occurrence of rhönite and of the associated 601 clinopyroxene as a consequence of the kaersutite destabilization resulting from magma 602 degassing upon ascent, given the decrease of H₂O solubility in magmas as pressure

drops (e.g. De Angelis et al., 2015). The destabilization of amphibole most probably
occurs at pressures below 100-150 MPa (e.g., Rutherford, 2008) with reaction rims
developing, for hornblende compositions, at pressures from circa 100 MPa down to 40
MPa (Browne and Gardener, 2006).

Amphibole reaction rims are often used to estimate magma ascent rate since their 607 thickness, size and the shape of the replacing mineral phases are all dependent on it 608 609 (Chiaradia et al., 2011; Browne and Gardner, 2006). Since the reaction rims observed in kaersutite crystals from the 2014 lavas are thick (> 500 microns) and complete 610 pseudomorphosis of mm-sized crystals (up to 4mm) is common, it is valid to assume on 611 612 a qualitative basis and based on Browne and Gardener's (2006) experimental data that the time of exposure of kaersutite to low PH₂O before quenching at the surface was 613 614 relatively long (> 1 month). Thus, the occurrence of rhönite and the degree of kaersutite 615 replacement by rhönite suggest a late and short stagnation/stalling at crustal levels (i.e. at pressures below 100 MPa; < 4.3 km below the island summit or < 1.5 km below sea 616 617 level) after a longer storage at deeper magma chambers.

618 In order to convert the calculated pressures to depths several assumptions has to be619 done, the depth of Moho being the one with more impact in the obtained results.

Vinnik et al. (2012), proposed that at the Cape Verde archipelago the crust would be significantly thicker than the normal oceanic crust, extending down to 20-30 km depth. This was not supported by a later study (Wilson et al., 2013), which placed the Moho at significantly shallower depths, in agreement with the models of Lodge and Helffrich (2006), Pim et al. (2008) and Wilson et al. (2010). In this study we adopt 13.5 km as the depth of Moho beneath the Fogo Island (see Wilson et al., 2010; 2013).

626 Considering a height of 5800 m for the Fogo island edifice (\approx 3000 m below present sea 627 level), an average density of 2400 kg.m⁻³ (Dash et al., 1976) for the island edifice, a 628 crustal density of 2800 kg.m⁻³ inferred from seismic receiver functions (Lodge and 629 Helffrich, 2006), a mantle density of about 3200 kg.m⁻³ at the Fogo region (Pim et al.,

630 2008), a Moho depth at 13.5 km below sea level (Wilson et al., 2010; 2013) and taking 631 into account the uncertainties of the barometric methods (see above) the crystallization depth of clinopyroxene phenocrysts ranges approximately $(\pm 5.5 \text{ km})$ from 17.8 to 28.4 632 633 km below Fogo's summit, or 15.0 to 25.6 km below sea level. For amphiboles the same presupposes allow considering their crystallization at depths between 18.2 and 19.9 km 634 (± 3 km) below Fogo's summit, or 15.4 to 20.1km below sea level. Considering the 635 636 most common estimates for the crustal thickness at the Cape Verde region (≈ 12 to 13.5 637 km; Lodge and Helffrich, 2006; Pim et al., 2008; Wilson et al., 2010; 2013) the obtained results suggest that the major fractionation events occurred in magma 638 639 chambers located into the mantle.

Geobarometric studies of the previous two eruptions also revealed pre-eruptive magma 640 641 storage at shallow mantle depths, followed by a short-period of magma stalling at crustal levels (Munhá et al., 1997; Hildner et al., 2011, 2012). The depths of 642 643 clinopyroxene equilibration obtained in this study for the 2014 eruption (890 to 560 644 MPa; see above), although partially overlapping those presented for the historical 645 eruptions by Hildner et al. (2011, 2012) (680 to 460 MPa), extends to higher pressures. 646 However it must be noted that the pressure estimates by those authors refer to the final crystallization level, while our data represents the first crystallization stages of 647 648 clinopyroxene phenocrysts.

649 The causes for the development of magma reservoirs within the mantle are still not 650 understood. Changes in buoyancy have been considered as an explanation for magma 651 stagnation during ascent (e.g. Ryan, 1994). However, Jagoutz (2014) emphasized that, 652 ascending magmas can stagnate even when they are less dense than the surrounding rocks. A similar point of view was defended by Menand (2008) who considered that 653 654 buoyancy is unlikely to be a major control in the emplacement of sills, which can be 655 viewed as precursors of magma reservoirs (Gudmundsson, 2012). Moreover, as shown 656 by Putirka (2017), hydrated magmas with MgO contents similar to those erupted in the

657 2014 Fogo eruption are less dense than the mantle, or even than the lower crustal rocks, 658 indicating that buoyancy cannot be the explanation for the stagnation of Fogo magmas in the mantle. As proposed by Menand (2008), the presence of rheological anisotropies 659 660 could be the primary factor determining the depth of magma stalling or stagnation. This 661 can lead to the inference that the thickness of the elastic lithosphere exerts a major 662 control on the depth of magma reservoirs. However, for the Cape Verde Archipelago 663 the elastic thickness is estimated at 30 km (Pim et al., 2008) and our barometric data 664 suggest magma emplacement at shallower depths, invalidating, in this case, such a proposal. Regional flexural stresses produced by the volcanic edifice loading are also 665 666 thought to strongly influence the plumbing systems by generating a vertical contrast between tensile and compressive stress zones, capable of influencing the depth of 667 668 magma stalling (see Putirka, 1997 and references therein). We do not have data to 669 evaluate this hypothesis.

Whatever the cause for the development of mantle magma reservoirs, they seem to be common on ocean islands during periods of low magma supply rates (e.g. Longpré et al., 2008; Stroncik et al., 2009; Klügel et al., 2015) as was the case during the latest (this study) and the previous eruptions of Fogo volcano (Munhá et al., 1997; Hildner et al., 2011; 2012).

675 The scenario here proposed for the ascent of the 2014 Fogo magmas and of its plumbing 676 system receives support from independent data. Indeed, a seismic event on October 4, 2014 (i.e. 50 days before the eruption) with a hypocentre 17 km below sea level (19.8 677 km below the Fogo summit), was interpreted by Instituto Nacional de Meteorologia e 678 679 Geofísica (INMG, Cabo Verde) as resulting from the rupture of the roof of a mantle reservoir allowing magma transfer to shallower levels. Also, geodetic modelling of 680 Sentinel-TOPS interferometry by Gonzalez et al. (2015) revealed the lack of 681 682 deformation at the island-scale during and pre-eruption times, further suggesting the 683 deep location of the main magma reservoirs.

5.3 Evidence for small-scale mantle heterogeneity and short-term compositional evolution of Fogo volcano.

686 As mentioned above, the Cape Verde Archipelago is known by its remarkable geochemical intra-island heterogeneity (e.g. Gerlach et al., 1988; Doucelance et al., 687 2003). Significant intra-island time-dependent geochemical variations are also common 688 as shown for most Cape Verde Islands (e.g. Barker et al., 2010; Mourão et al., 2012 a). 689 690 Intra-island heterogeneities have also been described for presumably coeval rocks, such 691 is the case of the Recent Volcanics of São Vicente Island (Trindade et al., 2003), and 692 also of the Fogo Island where, as shown by Escrig et al. (2005), lavas erupted since 693 1785 present measurable variability on isotope signatures.

In opposition to incompatible trace-element ratios, which can be fractionated during partial melting and crystal fractionation processes, radiogenic isotope ratios are not changed during such events. They are thus a reliable indicator of source heterogeneity, even though the isotope variability of lavas tends to be smaller than that of the mantle source due to eventual mixing/homogenization processes (e.g. Stracke and Bourdon, 2009).

The 2014 volcanic products have clearly more unradiogenic Pb and Sr (206Pb/204Pb 700 down to 18.972; ⁸⁷Sr/⁸⁶Sr down to 0.703613) but more radiogenic Nd (¹⁴³Nd/¹⁴⁴Nd up to 701 0.512789) signatures than the previous two eruptions (206 Pb/ 204 Pb up to 19.273; 87 Sr/ 86 Sr 702 up to 0.70379; ¹⁴³Nd/¹⁴⁴Nd down to 0.51272; see also Figs 6 and 7). Considering that 703 704 the 2014 lavas erupted from vents localized less than 200 and 2000 m of those from the 705 two previous eruptions (1951 and 1995) and that these 3 eruptions occurred within a 706 time lapse of only 63 years, such differences emphasize the presence of small-scale 707 heterogeneities in the mantle sources feeding the volcanism of Fogo Island and the 708 absence of significant magma mingling/homogenization before eruption.

The ability of magmas erupted from a volcano to show the source heterogeneitydepends on the degree of partial melting, on the size of magma chambers and on the

711 time of residence in such reservoirs. The higher the degree of partial melting, the higher 712 is the capability of the extracted magmas to average the composition of a heterogeneous source. As a consequence low degree partial melts reflect better the compositional 713 714 variability of the source (e.g. Stracke and Bourdon, 2009; Martins et al., 2010). It is 715 accepted that the lithosphere exerts a major control in the final depth and extent of sub-716 lithospheric mantle melting (e.g. Watson and Mckenzie, 1991; Humphrey and Niu, 717 2009; Niu et al., 2011), even though the thickness of mature (> 70Ma) oceanic 718 lithosphere does not surpass ≈ 90 km (Niu et al., 2011). The Cape Verde islands stand on a 120-140 My old oceanic crust characterized by significantly high values of admittance 719 720 (geoid to depth ratio) (Monnerau and Cazennave, 1990). These suggests that lithosphere may extend to depths below the spinel-garnet transition (\approx 3 GPa; Klemme and O'Neil, 721 722 2000) in agreement with previous studies for Cape Verde islands (e.g. Gerlach et al., 1998; Barker et al., 2010; Mourão et al., 2012a). Even taking into account that the less 723 724 evolved 2014 magmas (tephrites) are not characterized by primary or primitive 725 compositions, this percept is endorsed by (Tb/Yb)n ratios higher than 2.3, which is 726 significantly above the threshold value of 1.8 proposed by Wang et al. (2002) as a proxy 727 for spinel-garnet facies transition. Indeed it would be necessary to consider a (Tb/Yb)n increase higher than 27% during magma evolution – which is not expectable from the 728 729 commonly accepted D values (e.g. Adam and Green, 2006) - to place the mean melting 730 depths outside the garnet zone. Moreover, 2014 magmas show a Tb/Yb decrease from tephrites for the more evolved phonotephrites. 731

The thickness of the lithosphere exerts a first-order control on the extent of partial melting (e.g. Humphreys and Niu, 2009). For the present case, a lithosphere some 90 km thick (see above) would have constrained the melting to small extent. Despite the exact extent of melting is difficult to assess given the significantly evolved character of lavas (MgO < 6.4 wt%) and the uncertainty derived from the lack of knowledge about the relative proportion of peridotite and eclogite in the mantle source, the highly SiO₂ -

undersaturated character of the Fogo lavas (2014: normative *ne* up to 23.04 %) and the high TiO2 contents clearly suggest low percentages of partial melting, with the consequent deficient averaging of the isotopic variability of the source. The above referred lack of correlation between elemental and isotope ratios (see 4.3) also points to low degrees of melting during which a significant elemental fractionation occurs erasing any correlation between incompatible element ratios and isotope ratios (see Stracke and Bourdon, 2009).

745 After extraction, the degree of melt homogenization will depend on the occurrence of a 746 plumbing system with large magmatic chamber(s), and of long magma residence times 747 within the system, allowing mixing of different batches of melt. Data gathered from several islands suggest that for voluminous magma chambers to form, high magma 748 749 supply rates are needed; conversely, during evolutionary stages characterized by low 750 magma supply rates a plethora of small and ephemeral magma reservoirs tend to form, 751 many of them within the mantle (see Klügel et al., 2000; 2005; Stroncik et al., 2009 and 752 references therein), and this is also the case for the recent magmatism of Fogo. The 753 evidence for small and ephemeral magma reservoirs beneath Fogo was already 754 proposed for the previous eruptions (Munhá et al., 1997; Hildner et al., 2012). This may 755 be also the case for the 2014 eruption as suggested by the compositional change during 756 the latest two eruptions (from phonotephrites to basanites/tephrites) and, despite the 757 associated methodological errors, by distinct depths of magma chambers where clinopyroxene and kaersutite crystalized, both evidences precluding a large 758 759 homogenizing reservoir.

760

761 6. Concluding remarks

Magmas erupted from November 23 to December 7, 2014 at Fogo Island (Cape
 Verde Archipelago) are alkaline, exhibit significantly evolved compositions (Ni
 < 42 ppm) and are classified as tephrites and phonotephrites. The compositional

range is slightly smaller than that reported for the 1995 eruption, but larger thanthe displayed by the 1951 eruption, for which no phonotephrites were erupted.

Similarly to 1995 (Munhá et al., 1997; Silva et al., 1997; Hildner et al., 2011),
 the eruption of phonotephritic lavas preceded the effusion of the tephritic ones
 suggesting the existence of a compositional/density zoning inside the pre eruptive magma chamber or of several magma reservoirs, in agreement with
 barometric data.

- Geobarometric estimates using clinopyroxene and kaersutite compositions
 indicate that fractional crystallization mainly occurred in magma chambers
 located in the mantle (down to 25.6 ± 5.5 km below the sea level), followed by a
 short residence time (< 60 days) at crustal levels.
- Erupted magmas are characterized by positive εNd, εHf, Δ8/4 and Δ7/4. Their compositions reflect a mantle source where ancient recycled ocean crust and an enriched component (EM1-type) are present. The 2014 lavas have less radiogenic Sr, but more radiogenic Nd compositions, than those from the 1951 and 1995 eruptions, marking a change on the evolutionary trend reported by previous authors for Fogo (Gerlach et al., 1988; Escrig et al., 2005) which was characterized by an increasing contribution of the EM1-type component.

Although the 2014 eruption vents are almost spatially coincident with those of 783 784 1995 and less than 2 km away from the 1951 vents, their lavas are isotopically different from those generated in the previous two eruptions. These differences 785 786 in magmas erupted on a very limited area and short interval (63 years) reflect the 787 heterogeneity of the mantle source and the lack of averaging/mingling during 788 partial melting and ascent through the plumbing system. For these, the lid effect 789 of the old (120-140 Ma) and thick lithosphere is considered of utmost 790 importance.

The lower Nb/U ratios of the 2014 rocks as compared with previous eruptions is
 considered to reflect the lack of significant mixing of ascending plume magmas
 with lithospheric melts, as opposed to what has been hypothesized for 1995 and
 1951 magmas.

795

796 Acknowledgements

We dedicate this paper to the memory of Luís Celestino Silva (1936-2017), a pioneer in
the geology of Cape Verde: his knowledge, enthusiasm and kindness marked most of
the authors of this work.

800 This research received financial support from FCT (Fundação para a Ciência e Tecnologia) through projects REGENA (PTDC /GEO-FIQ/3648/2012) and FIRE 801 (PTDC/GEO-GEO/1123/2014), as well as through project UID/GEO/50019/2013 to 802 Instituto Dom Luiz (IDL). R. Ramalho was funded by a FP7-PEOPLE-2011-IOF Marie 803 Curie International Outgoing Fellowship, which is acknowledged. The authors are 804 805 grateful to Pedro Rodrigues for skilled assistance during electron microprobe analyses. 806 Field work of J. Mata was partially funded by Bernardo Mata. Kayla Iacovino is 807 acknowledged for the permission to use her Excel spreadsheet to calculate magma 808 viscosity (see http://www.kaylaiacovino.com/tools-for-petrologists/). Cristina de 809 Ignacio, an anonymous reviewer and the Editor (Nelson Eby) are acknowledged for their constructive comments, corrections and suggestions, which significantly 810 811 contributed for the quality of this paper.

812

813 References

814

Adam, J., Green, T. 2006. Trace element partitioning between mica and amphibole-bearing
garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of
controls on partitioning behavior. Contributions to Mineralogy and Petrology 152, 1-17.

Bagnardi, M., Gonzàlez, P.J., Hooper, A. 2016. High-resolution digital elevation model from
tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano: Tristereo Pleiades DEM of Fogo Volcano. Geophys. Res. Lett.,43, doi:10.1002/2016GL06945

- Barker, A.K., Holm, P.M., Peate, D.W., Baker, J.A. 2009. Geochemical stratigraphy of
 submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, southern Cape Verde islands.
 Journal of Petrology 50, 169-193.
- 826

Barker, A.K., Holm, P.M., Peate, D.W., Baker, J.A. 2010. A 5 million year record of
compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde
archipelago. Contributions to Mineralogy and Petrology 160, 133-154.

Barker, A.K., Troll, V.R., Ellam, R.M., Hansteen, T.H., Harris, C., Stillman, C.J., Andersson,
A. 2012. Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial
extent of EM1. Contributions to Mineralogy and Petrology 163, 949 -965.

Beier, C., Haase, K. M., Abouchami, W., Krienitz, M.-S., Hauff, F. 2008. Magma genesis by
rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry,
Geophysics, Geosystems 9, Q12013.

Browne, B.L., Gardner, J.E. 2006. The influence of magma ascent path on the texture,
mineralogy, and formation of hornblende reaction rims. Earth and Planetary Science Letters
246, 161-176.

Brum da Silveira, A., Madeira, J., Munhá, J., Mata, J.; Martins, S., Mourão, C., Tassinari, C.
2006. The summit depression of Fogo Island (Cape Verde): caldera and/or flank collapse?
Abstracts and Programme of the George P. L. Walker symposium on Advances in Volcanology,
Reykolt, Islândia, 23.

847

852

842

Caldeira, R., Guimarães, F., Mata, J. Silva, P., Moreira, M., Ferreira, P. 2015.
Mineral Chemistry of Ultramafic Nodules from Lavas of the Fogo Island 2014 Eruption (Cape
Verde). Preliminary results. Livro de Resumos do X Congresso Ibérico de Geoquímica/XVIII
Semana de Geoquímica, 51-53, LNEG, Lisboa.

Cappello, A., G. Ganci, S. Calvari, N. M. Pérez, P. A. Hernández, S. V. Silva, J. Cabral, and C.
Del Negro. 2016. Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape
Verde, Journal of Geophysical Research, Solid Earth 121, 1-14.

Chauvel, C., Blichert-Toft, J. 2001. A hafnium isotope and trace element perspective on melting
of the depleted mantle. Earth Planetary Science Letters 190, 137–151.

Chauvel, C., Lewin, E., Carpentier, M., Arndt, N., Marini, J.-C. 2008. Role of recycled oceanic
basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience 1, 64–67.

Chauvel, C., Bureau, S., Poggi, C. 2011. Comprehensive chemical and isotopic analyses of
basalt and sediment reference materials. Geostandards and Geoanalytical Research 35, 125–143.

Chiaradia, M., Müntener, O., Beate, B. 2011. Enriched basaltic andesites from mid-crustal
fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of
Ecuador). Journal of Petrology 52, 1107-1141.

Christensen, B., Holm, P., Jambon, A., Wilson, J. 2001. Helium, argon and lead isotopic
composition of volcanics from Santo Antão and Fogo, Cape Verde Islands. Chemical Geology
178, 127–142.

874 Cooper, K.M. 2017. What does a magma reservoir look like? The "crystal's eye" view.875 Elements 13, 23-28.

876

877 Courtney, R., White, R. 1986. Anomalous heat flow and geoid across the Cape Verde Rise:
878 Evidence for dynamic support from a thermal plume in the mantle. Geophysical Journal of the
879 Royal Astronomical Society 87, 815-868.

- Cashman, K.V., Sparks, R.S.J., Blundy, J.D. 2017. Vertically extensive and unstable magmatic
 systems: A unified view of igneous processes. Science 355, eaag3055, 9 pages.
- 883

- Dash, B.P., Ball, M.M., King, G.A., Butler, I.W., Rona, P.A. 1976. Geophysical investigation of
 the Cape Verde archipelago. Journal of Geophysical Research 81, 5249-5259.
- Bavidson, J., Turner, S., Plank, T. 2013. Dy/Dy*: Variations Arising from Mantle Sources and
 Petrogenetic Processes. Journal of Petrology 54, 525-537.
- Boy, S., Heleno da Silva, S., Fonseca, J. 1999. A past giant lateral collapse and present day
 instability of Fogo, Cape Verde Islands. Journal of Volcanology and Geothermal Research 94,
 191-218.
- B94 De Angelis, S.H., Larsen, J., Coombs, Dunn, A., Hayden, L. 2015. Amphibole reaction rims as
 a record of pre-eruptive magmatic heating: An experimental approach. Earth and Planetary
 Science Letters 426, 235–245
- B98 Doucelance, R., Escrig, S., Moreira, M., Gariépy, C., Kurz, M.D. 2003. Pb-Sr-He isotope and
 trace element geochemistry of the Cape Verde Archipelago. Geochimica et. Cosmochimica
 900 Acta 67, 3717-3733.
- 901
- Eisele, S., Reißig, S., Freundt, A., Kutterolf, S., Nürnberg, D., Wang, K.L, Kwasnitschka, T.
 2015. Pleistocene to Holocene offshore tephrostratigraphy of highly explosive eruptions from
 the southwestern Cape Verde Archipelago. Marine Geology 369, 233-250.
- 905
- Escrig, S., Doucelance, R., Moreira, M., Allègre, C.J. 2005. Os isotope systematics in Fogo
 Island: evidence for lower continental crust fragments under the Cape Verde Southern islands.
 Chemical Geology 219, 93-113.
- 909
- Faria, B., Fonseca, J. F. B. D. 2014. Investigating volcanic hazard in Cape Verde Islands
 through geophysical monitoring: network description and first results. Natural Hazards and
 Earth System Sciences 14, 485–499.
- 913
 914 Foeken, J.P.T., Day, S., Stuart, F.M. 2009. Cosmogenic ³He exposure dating of the Quaternary
- basalts from Fogo, Cape Verdes: Implications for rift zone and magmatic reorganisation.
 Quaternary Geochronology 4, 37-49.
- Forte, A.M., Quere, S., Moucha, R., Simmons, N.A., Grand, S.P., Mitrovica, J.X., Rowley, D.B.
 2010. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: a
 reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planetary
 Science Letters 295, 329–341.
- French, S.W., Romanowicz, B. 2015. Broad plumes rooted at the base of the earth's mantle
 beneath major hotspots. Nature 525, 95-99.
- Galer, S.J.G., Abouchami, W. 1998. Pratical application of lead triple spiking for correction of
 instrumental mass discrimination. Mineralogical Magazine 62 A, 491-492.
- Geiger, H., Barker, A., Troll, V. 2016. Locating the depth of magma supply for volcaniceruptions, insights from Mt. Cameroon. Scientific Reports 6, 33629.
- 931
 932 Gerlach, D., Cliff, R., Davies, G., Norry, M., Hodgson, N. 1988. Magma sources of the Cape
 933 Verde archipelago: Isotopic and trace element constraints. Geochimica et Cosmochimica Acta
 934 52, 2979-2992.
 935
- Gibson, S.A., Geist, D.G., Day, J.A., Dale, C.W. 2012. Short wavelength heterogeneity in the
 Galápagos plume: Evidence from compositionally diverse basalts on Isla Santiago.
 Geochemistry, Geophysics, Geosystems 13, doi: 10.1029/2012GC004244.

951

- Giordano, D., Russell, J. K., Dingwell, D. B. 2008. Viscosity of magmatic liquids: A model.
 Earth and Planetary Science Letters, 217, 123-134.
- González, P. J., M. Bagnardi, A. J. Hooper, Y. Larsen, P. Marinkovic, S. V. Samsonov,
 Wright, T. J. 2015. The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1
- TOPS interferometry. Geophysical Research Letters 42, 9239–9246.
- Gudmundsson, A., 2012. Magma chambers: Formation, local stresses, excess pressures, and
 compartments: Journal of Volcanology and Geothermal Research 237–238, 19–41.
- Hart, S.R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753-757.
- Hildner, H., Klügle, A., Hauff, F. 2011. Magma storage and ascent during the 1995 eruption of
 Fogo, Cape Verde Archipelago. Contributions to Mineralogy and Petrology 162, 751–772.
- Hildner, H., Klügle, A., Hansteen, T.2012. Barometry of lavas from 1951 eruption of Fogo,
 Cape Verde Islands: Implications for historic and prehistoric magma plumbing system. Journal
 of Volcanology and Geothermal Research 217-218, 73-90.
- Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S., Garbe-Schönberg, D. 2002. Geochemistry of
 oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal
 carbonate. Contribution to Mineralogy and Petrology 142, 520-542.
- Hofmann, A.W. 2003. Sampling mantle heterogeneity trough oceanic basalts: isotopes and trace
 elements, in: Carlson, R. (Ed.), Treatise on geochemistry, vol. 2 The mantle and core.
 Elsevier-Pergamon, Oxford, pp. 61-101.
- Holm, P.M., Wilson, J.R., Christensen, B.P., Hansen, L., Hansen S.L., Hein, K.M., Mortensen,
 A.K., Pedersen, R., Plesner, S., Runge, M.K. 2006. Sampling the Cape Verde mantle plume:
 evolution of the melt compositions on Santo Antão, Cape Verde Islands. Journal of Petrology
 47, 145-189.
- Holm, P.M., Grandvuinet, T., Friis, J., Wilson, J.R., Barker, A.K., Plesner, S. 2008. An ⁴⁰Ar³⁹Ar study of the Cape Verde hot spot: Temporal evolution in a semistationary plate
 environment. Journal of Geophysical Research 113, B08201.
- Humphreys, E., Niu, Y. 2009. On the composition of ocean island basalts (OIB): the effects oflithospheric thickness variation and mantle metasomatism. Lithos 112, 118-136.
- 975
 976 Iwamori, H., Nakamura, H. 2015. Isotopic heterogeneity of oceanic, arc and continental basalts
 977 and its implications for mantle dynamics. Gondwana Research 27, 1131-1152.
 978
- Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth Planetary Science Letters 396,
 67–77.
- Jørgensen, J.Ø., Holm, P.M. 2002. Temporal variation and carbonatite contamination in
 primitive ocean island volcanics from S. Vicente, Cape Verde Islands. Chemical Geology 192,
 249-267.
- 985
 986 Kawabata, H., Hanyu, T., Chang, Q., Kimura, J., Nichols, A.R.L., Tatsumi, Y. 2011. The
 987 Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust988 recycling Model for HIMU OIB. Journal of Petrology 52, 791-838.
- Klemme, S., O'Neill, H., 2000. The near solidus transition from garnet lherzolite to spinel
 lherzolite. Contributions to Mineralogy and Petrology 138, 237-248.
- 992

- Klügel, A., Hoernle, K.A., Schmincke, H-U, White, J.D.L. 2000. The chemically zoned 1949
 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a
 rift-zone eruption. Journal of Geophysical Research 105, 5997-6016.
- 996
 997 Klügel, A., Hansteen, T.H., Galipp, K. 2005. Magma storage and underplating beneath Cumbre
 998 Vieja volcano, La Palma (Canary Islands). Earth and Planetary Science Letters 236, 211-226.
- 899
 1000 Klügel, A., Longpré, M-A., Cañada, L. C., Stix, J. 2015. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes. Earth and Planetary Science Letters 431, 140-149.
- 1003
- Kogarko, L.N., Asavin, A.M. 2007. Regional Features of Primary Alkaline Magmas of theAtlantic Ocean. Geochemistry International 45, 841-856.
- 1006

1022

1029

- Le Bas, M. 1989. Nephelinitic and basanitic rocks. Journal of Petrology 30, 1299-1312.
- Le Maitre, R.W., 2002. Igneous rocks. A classification and glossary of terms.
 Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge. 236pp.
- Liu, X., Zhao, D. 2014. Seismic evidence for a mantle plume beneath the Cape Verde hotspot.
 International Geology Review 56, 1213-1225.
- 1016 Lodge, A., Helffrich, G. 2006. Depleted swell root beneath the Cape Verde Islands. Geology 34,1017 449-452.
- Longpré, M., Troll, V.R., Hansteen, T.H. 2008. Upper mantle magma storage and transport
 under a Canarian shield-volcano, Teno, Tenerife (Spain). Journal of Geophysical Research 113,
 doi: 10.1029/2007JB005422.
- Lundstrom, C.C., Hoernle, K., Gill, J. 2003. U-series disequilibria in volcanic rocks from the
 Canary Islands: Plume versus lithospheric melting: Geochimica et Cosmochimica Acta 67,
 4153–4177.
- MacDonlad, G.A. 1968. Composition and origin of Hawaiian lavas. Geological Society of
 America Memoir 116, 477-452.
- Madeira, J., Munhá, J., Tassinari, C., Mata, J., Brum, A., Martins, S. 2005. K/Ar ages of
 carbonatites from the Island of Fogo (Cape Verde). VIII Congresso Ibérico de Geoquímica e
 XIV Semana de Geoquímica (Portugal).
- Madeira, J., Brum da Silveira, A., Mata, J., Mourão, C., Martins, S. 2008. The role of mass
 movements on the geomorphologic evolution of ocean islands: examples from Fogo and Brava
 in the Cape Verde archipelago. Comunicações Geológicas 95, 99-112.
- Madeira, J., Mata, J., Mourão, C., Brum da Silveira, A., Martins, S., Ramalho, R., Hoffmann,
 D.L. 2010. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based
 on ⁴⁰Ar/³⁹Ar, U–Th and field constraints. Journal of Volcanology and Geothermal Research 196,
 219-235.
- Madureira, P., Mata, J., Mattielli, N., Queiroz, G., Silva, P. 2011. Mantle source heterogeneity,
 magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints
 from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126, 402-418.
- Martins, S., Mata, J., Munhá, J., Mendes, M.H., Maerschalk, C., Caldeira, R., Mattielli, N.
 2010. Chemical and mineralogical evidence of the occurrence of mantle metasomatism by
 carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineralogy and
 Petrology 99, 43-65.

- 1051
- Masson, D.G., Le Bas, T.P., Grevemeyer, I., Weinrebe, W., 2008. Flank collapse and largescale landsliding in the Cape Verde Islands, off West Africa. Geochemistry, Geophysics,
 Geosystems 9 (7).
- 1055

Mata, J., Munhá, J. 2004. Madeira Island alkaline lava spinels: petrogenetic implications.
Mineralogy and Petrology 81, 85-111.

Mata, J., Moreira, M., Doucelance, R., Ader, M., Silva, L.C. 2010. Noble gas and carbon
isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance.
Earth Planetary Science Letters 291, 70-83.

- McKenzie, D., O'Nions, R.K. 1991. Partial melt distributions from inversion of rare earth
 element concentrations. Journal of Petrology 32, 1021-1091.
- Menand, T. 2008. The mechanics and dynamics of sills in elastic layered media and their
 implications for the growth of laccoliths. Earth Planetary Science Letters 267, 93–99.
- 1068
- Millet, M.A., Doucelance, R., Schiano, P., David, K., Bosq, C. 2008. Mantle plume
 heterogeneity versus shallow-level interactions: A case study, the São Nicolau Island, Cape
 Verde archipelago. Journal of Volcanology and Geothermal Research 176, 265-276.
- Mollo, S., Putirka, K., Misiti, V., Soligo, M., Scarlato, P. 2013. A new test for equilibrium
 based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline
 melts at post-eruptive conditions. Chemical Geology 352, 92-100.
- 1076
 1077 Monnereau, M., Cazenave, A. 1990. Depth and geoid anomalies over oceanic hotspot swells: A
 1078 global survey. Journal of Geophysical Research (Solid Earth) 95, 15-429.
 1079
- Montelli, R., Nolet, G., Dahlen, F.A., Masters, G. 2006. A catalogue of deep mantle plumes:
 new results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems 7,
 doi:10.1029/2006GC001248.
- Mourão, C., Mata, J., Doucelance, R., Madeira, J., Millet, M-A., Moreira, M. 2012a.
 Geochemical temporal evolution of Brava Island magmatism: constraints on the variability of
 Cape Verde mantle sources and on the carbonatite-silicate magma link. Chemical Geology 334,
 44-61.
- Mourão, C., Moreira, M., Mata, J., Raquin, A., Madeira, J. 2012b. Primary and secondary processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from Brava Island: evidence for a lower mantle origin of the Cape Verde plume. Contributions to Mineralogy and Petrology 163, 995-1009.
- Munhá, J.M., Mendes, M.H., Palácios, T., Silva, L.C., Torres, P.C., 1997. Petrologia e
 geoquímica da erupção de 1995 e de outras lavas históricas da ilha do Fogo, Cabo Verde. In:
 Réffega A et al. (eds). A Erupção Vulcânica de 1995 na Ilha do Fogo, Cabo Verde. IICT,
 Lisboa, 171-186.
- Niu, Y., Wilson, M., Humphreys, E.R., O'Hara, M.J. 2011. The Origin of Intra-plate Ocean
 Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. Journal of Petrology 52,
 1443-1468.
- 1102

- Niu, Y.L., Wilson, M., Humphreys, E.R., O'Hara, M.J. 2012. A trace element perspective on the
 source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle
 lithosphere (SML). Episodes 35, 310-327.
- 1106

1107 1108 1109 1110	Nobre Silva, I., Weis, D., Scoates, J. 2013. Isotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochemistry, Geophysics, Geosystems 11, Q 09011. doi:10.1029/2010gc003176.
1111 1112 1113	Palme, H., O'Neill, H.S.C. 2003. Cosmochemical estimates of mantle compositions. In: Carlson, R. (Ed.). The mantle and core. Treatise on Geochemistry 2, 1-38.
1114 1115 1116 1117	Paris, R., Giachetti, T., Chevalier, J., Guillou, H., Frank, N. 2011. Tsunami deposits in Santiago Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo volcano. Sedimentary Geology 239, 129-145.
1118 1119 1120	Pim, J., Peirce, C., Watts, A.B., Grevemeyer, I., Krabbenhoeft, A. 2008. Crustal structure and the origin of the Cape Verde Rise. Earth Planetary Science Letters 272, 422-428.
1120 1121 1122	Pollitz, F. 1991. Two-stage model of African absolute motion during the last 30 million years. Tectonophysics 194, 91-106.
1125 1124 1125	Putirka, K. 1997. Magma transport at Hawaii: Inferences based on igneous thermobarometry. Geology 25, 69–72.
1126 1127 1128	Putirka, K. 1999. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contributions to Mineralogy and Petrology 135, 151-163.
1129 1130 1131 1132	Putirka, K.D. 2008. Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69, 61-120.
1132 1133 1134 1135	Putirka, K.D. 2017. Down the crater: where magmas are stored and why they erupt. Elements 13, 11-16.
1136 1137 1138	Putirka, K., Mikaelian, H., Ryerson, F., Shaw, H., 2003. New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist 88, 1542-1554.
1139 1140 1141	Ramalho, R. 2011. Building the Cape Verde Islands. Springer Theses, 207 pp.
1142 1143 1144 1145	Ramalho, R., Helffrich, G., Cosca, M., Vance, D., Hoffmann, D., Schmidt, D.N. 2010. Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands. Nature Geoscience 3, 774-777.
1145 1146 1147 1148	Ramalho, R., Winckler, G., Madeira, J., Helffrich, G., Hipólito, A., Quartau, R., Adena, K., Schaefer, J. 2015 Hazard potential of volcanic flank collapses raised by new megatsunami evidence. Science Advances 1, doi: 10.1126/sciadv.1500456.
1149 1150 1151 1152	Ribeiro, O. 1954. A ilha do Fogo e as suas erupções. Junta de Investigações do Ultramar, Memórias, Série Geográfica I, Lisboa.
1153 1154 1155 1156	Richter, N., Favalli, M., Dalfsen, E.Z., Fornaciai, A., Fernandes, R.M.S., Rodriguez, N.P., Levy, J., Victória, S.S., Walter, Th.R. 2016. Lava flow hazard at Fogo Volcano, Cape Verde, before and after the 2014-2015 eruption. Natural Hazards and Earth Systems 16, 1925-1951.
1157 1158 1159	Ridolfi, F, Renzulli, A. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa. Contributions to Mineralogy and Petrology 163, 877–895.
1161 1162 1163 1164	Rutherford, M.J. 2008. Magma ascent rates. In: Putirka, K.D. and Tepley, F.J., III (eds) Minerals, Inclusions and Volcanic Processes. Mineralogical Society of America and Geochemical Society Reviews, in Mineralogy and Geochemistry 69, 241-271
- 1165 Ryan, M. 1994. Neutral-buoyancy controlled magma transport and storage in mid-ocean ridge 1166 magma reservoirs and their sheeted-dike complex: A summary of basic relationships. In:
- 1167 Magmatic Systems. Eds: M. P. Ryan, Chap. 6, Academic, San Diego, Caliornia.
- 1168
- Saki, M., Thomas, C., Nippress, S.E.J., Lessing, S. 2015. Topography of upper mantle seismic
 discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth
 and Planetary Science Letters 409, 193-202.
- Satoh, H., Yamaguchi, Y., Makino, K. 2004. Ti-substitution mechanism in plutonic oxykaersutite from the Larvik alkaline complex, Oslo rift, Norway. Mineralogical Magazine, Vol.
 68, 687–697.
- 1175

Silva, L.C., Mendes, M.H., Torres, P.C., Palácios, T., Munhá, J.1997. Petrografia das
Formações Vulcânicas da Erupção de 1995 na Ilha do Fogo, Cabo Verde. In: Réffega, A. et al.
(eds.). A Erupção Vulcânica de 1995, na Ilha do Fogo, Cabo Verde. IICT, Lisboa, 164-170.

- Staudigel, H., Park, K.H., Pringle, M., Rubenstone, J.L., Smith, W.H.F., Zindler, A., 1991. The
 longevity of the South-Pacific isotopic and thermal anomaly. Earth and Planetary Science
 Letters 102, 24–44.
- 1183
- Stracke, A., Hofmann, A.W., Hart, S.R. 2005. FOZO, HIMU, and the rest of the mantle zoo.
 Geochemistry, Geophysics, Geosystems 6, Q05007, doi:10.1029/2004GC000824.
- Stracke, A., Bourdon, B. 2009. The importance of melt extraction for tracing mantle
 heterogeneity. Geochimica et Cosmochimica Acta 73, 218-238.
- 1189
- Stroncik, N.A, Klügel A., Hansteen, T. H. 2009. The magmatic plumbing system beneath El
 Hierro (Canary Islands): Constraints from phenocrysts and naturally quenched basaltic glasses
 in submarine rocks. Contributions to Mineralogy and Petrology 157, 593-607.
- Torres, P.C., Madeira, J., Silva, L.C., Brum da Silveira, A., Serralheiro, A., Mota Gomes, A.
 1998. Carta Geológica das Erupções Históricas da Ilha do Fogo (Cabo Verde): revisão e actualização. Comunicações do Instituto Geológico e Mineiro 84, A193-196.
- Torres, P., Silva, L.C., Munhá, J., Caldeira, R., Mata, J., Tassinari, C. 2010. Petrology and
 Geochemistry of lavas from Sal Island: Implications for the variability of the Cape Verde
 magmatism. Comunicações Geológicas 97, 35-62.
- 1201
 1202 Trindade, M.J., Mata, J., Munhá, J. 2003. Petrogenesis of the Quaternary magmatism from the
 1203 S. Vicente Island (Cape Verde). Comunicações do Instituto Geológico e Mineiro 90, 169-188.
 1204
- 1205 Vervoort, J., Patchett, P., Blichert-Toft, J., Albarède, F. 1999. Relationships between Lu-Hf and
 1206 Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters
 1207 168, 79-99.
 1208
- Vinnik, L., Silveira, G., Kiselev, S., Farra, V., Weber, M., Stutzmann, E. 2012. Cape Verde
 hotspot from the upper crust to the top of the lower mantle. Earth Planetary Science Letters 319320, 259-268.
- Wang, K., Plank, T., Walker J.D., Smith, E.I. 2002. A mantle melting profile across the Basin and Range, SW USA. Journal of Geophysical Research 107, ECV 5, 1-21.
- Watson, S., McKenzie, D. 1991. Melt generation by plumes: A study of Hawaiian volcanism.Journal of Petrology 32, 501-537.
- 1218

- Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J., Williams, G., Hanano, D.,
 Pretorius, W., Mattielli, N., Scoates, J., Goolaerts, A., Friedman, R., Mahoney, J. 2006. Highprecision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS.
- 1222 Geochemistry, Geophysics, Geosystems 7, doi:10.1029/2006GC001283.

- White, W.M. 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology 419, 10-28.

Williams, C., Hill, I., Young, R., White, R.S. 1990. Fracture zones across the Cape Verde Rise,
NE Atlantic. Journal of the Geological Society of London 147, 851-857.

Wilson, D., Peirce, C., Watts, A., Grevemeyer, I., Krabbenhoeft, A. 2013. Uplift at lithospheric
swells-I: Seismic and gravity constraints on the crust and uppermost mantle structure of the
Cape Verde mid-plate swell. Geophysical Journal International 182, 531-550.

Wilson, D., Peirce, C., Watts, A., Grevemeyer, I. 2013. Uplift at lithospheric swells-II: is the
Cape Verde mid-plate swell supported by a lithosphere of varying mechanical strength?
Geophysical Journal International 193, 798-819.

1239 Zindler, A., Hart, S.R. 1986. Chemical geodynamics. Annual Reviews of Earth Planetary1240 Sciences 14, 493-571.

Fig. 1 – Geological map of the identified historical eruptions in Fogo (modified from Torres et al., 1998) superimposed on the digital terrain model of the island. The upper inset shows the location of the Island of Fogo in the archipelago of Cape Verde. The lower insets correspond to the legend of the geological map and to a structural sketch showing the geometry and location of the eruptive fissures of the last three eruptions (1951, 1995 and 2014/15), the Bordeira wall (continuous line represents the top; dashed line represents the base), and the crater rim of Pico do Fogo.

1285

Fig 2 – Photos of the 2014/15 Fogo eruption: A- general view looking East of Pico do 1286 Fogo with the active vents at the base of the cone, the flat region of Chã das Caldeiras 1287 1288 covered with the 1995 and 2014 lava flows and the south-eastern tip of the Bordeira 1289 wall; the eruptive column rises 3 km above the vents and is dispersed by south-eastward 1290 wind at an altitude of approximately 5 km (photo taken on November 29, 2014, at 15:44 1291 UTC); B- the alignment of active vents, viewed from the south, during a low activity 1292 phase; the new cone is growing against the southeast flank of the 1995 cone (to the left); 1293 the lava flow is being fed by the southernmost vent; the lava flow at the base of the cone presents a lava channel and several skylights with degassing white columns (photo 1294 taken on December 2, 2014, at 19:35 UTC); C- night aspect of the central crater 1295 1296 projecting plastic spatter fragments from the explosion of lava bubbles during an hawaiian lava lake phase (photo taken on November 28, 2014, at 20:48 UTC); D- aspect 1297 of vulcanian activity at the northernmost vent producing ash-laden episodic eruptive 1298 1299 columns with the wind blowing from the north; the white plume marks the position of 1300 the effusive south vent (photo taken on November 30, 2014, at 19:24 UTC); E- aspect of the surface of the active lava flow seen from the northwest presenting strong thermal 1301 1302 emission and degassing (photo taken on November 29, 2014, at 15:48 UTC); F- the 1303 village of Portela invaded by the front of the lava flow 3.5 km away from the effusive

vent (photo taken on December 2, 2014, at 14:39 UTC). For more photos seeSupplementary Material S1.

1306

1307 Fig. 3 - Total alkali-silica (TAS) diagram (Le Maître, 2002) for the 2014 magmatic rocks and interstitial glass occurring in the matrix of the lava samples. The thick line is 1308 a compositional divider between alkaline and subalkaline volcanic rocks (MacDonald, 1309 1310 1968). The compositional fields of the 1951 and 1995 are also shown for comparison (data from Doucelance et al., 2003; Escrig et al., 2005; Hildner et al., 2011;). U1, U2, 1311 U3 and Ph correspond to the field designations of Le Maitre et al. (2002) (U1: 1312 Tephrite/Basanite; U2: Pnotephrite; U3: Tephriphonolite; Ph: Phonolite). See the main 1313 text (Section 4.3) for a details on the systematics. 1314

1315

Fig. 4 – Petrographic aspects of the lava flow samples showing the presence of clinopyroxene and kaersutite phenocrysts (A and B) in a hypocrystalline matrix with plagioclase, clinopyroxene and Fe-Ti oxides (A, B, C and D). Note the partial (A and B) or total (D) replacement of kaersutite by rhönite (opaque inosilicate of the aenigmatite group) which is marked by an arrow. Backscattered electron images showing a detailed view of the kaersutite rim replacement (E and F).

1322

Fig. 5 – Trace element characteristics of the 2014 eruptive products compared with
those of the 1951 and 1995 eruptions (see Hildner et al., 2012 and Hildner et al., 2011,
respectively). Normalizing values of Palme and O'Neil (2003).

1326

Fig. 6 - Pb isotopic compositions (A: ²⁰⁶Pb/²⁰⁴Pb vs. ²⁰⁷Pb/²⁰⁴Pb; B: ²⁰⁶Pb/²⁰⁴Pb vs.
²⁰⁸Pb/²⁰⁴Pb). Data sources: Northern Islands (Santo Antão, São Vicente and São Nicolau: Jørgensen and Holm, 2002; Holm et al., 2006; Millet et al., 2008) and Southern Islands (Fogo and Santiago: Doucelance et al., 2003; Barker et al., 2010;

Martins et al., 2010). The 1951 and 1995 eruptions data are from Escrig et al., 2005.
The heavy line represents the Northern Hemisphere Reference Line (NHRL) defined by
Hart (1984). Also plotted are the compositions of mantle components (see main text for
references).

1335

Fig. 7 – Sr, Nd (A) and Hf (B) isotope compositions. Data sources: the Santiago Island
field was defined using data from Barker et al. (2009) and Martins et al. (2010). See
caption of Fig. 6 for further references. No Hf isotope data exist for the 1951 and 1995
eruptions.

1340

Fig 8 - The role of clinopyroxene, olivine, amphibole and apatite fractionation on the liquid lines of descent for the 2014, 1995 and 1951 eruptions. In 8A and 8B fractional crystallization was modelled using the Rayleigh equation. Partition coefficients used in calculations can be find in the Supplementary Material S5-1 and data relative to the fractional crystallization vectors in the S5-2. Circular ticks represent consecutive increments of 5% crystallization. Crystallization vectors corresponds to F=0.7.

1347

Fig. 9 – Temperature and pressure conditions for crystallization of clinopyroxene and
amphibole from the 2014 tephritic and phonotephritic rocks.

1350

Fig.10 - Mixing model between depleted mantle (DMM) and recycled oceanic crust (ROC; \approx HIMU), and between ROC and EM1and the lower mantle (LM). Values for these end-members are from Doucelance et al. (2003) (lower mantle), Iwamoro (2015) (EM1, DMM) and Mourão et al. (2012a) (ROC). Given that the 2014 Fogo lavas are characterized by a diluted contribution of ROC (see main text), making difficult its constraint, we considered 1.3 Ga as the age of recycling for mixing calculations, as determined by Mourão et al. (2012a) for the neighbouring Brava Island. Additional line

- 1358 corresponds to a mixture between recycled oceanic crust and lower mantle material in a
- 60:40 proportion, with EM1. Circular marks represent 10% increments. SeeSupplementary Material S5-3 for mixing calculations.

1	The 2014-15 eruption and the short-term geochemical evolution of the
2	Fogo volcano (Cape Verde): evidence for small-scale mantle
3	heterogeneity
4	
5	
6	
7	J. Mata ^{1*} : S. Martins ¹ : N. Mattielli ² : J. Madeira ¹ : B. Faria ³ : R.S. Ramalho ^{1,4,5} : P.
8	Silva ^{6,1} ; M. Moreira ⁷ ; R. Caldeira ⁸ ; M. Moreira ^{6,1} ; J. Rodrigues ⁹ ; L. Martins ¹
9	
10	
11	
12	1- Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016
13	Lisboa, Portugal.
14	2- Laboratoire G-Time, DGES, Université Libre de Bruxelles, ULB, Av.
15	Roosevelt, 50, CP 160/02, 1050 Brussels, Belgium
16	3- Instituto Nacional de Meteorologia e Geofísica, Mindelo, Cabo Verde
17	4- School of Earth Sciences, University of Bristol, Wills Memorial Building,
18	Queen's Road, Bristol, BS8 1RJ, UK
19	5- Lamont-Doherty Earth Observatory at Columbia University, Comer
20	Geochemistry Building, 61 Route 9W, P. O. Box 1000, Palisades, NY 10964-
21	8000, USA
22	6- Instituto Politécnico de Lisboa, ISEL/ADF, Lisboa, Portugal
23	7- Institute de Physique du Globe de Paris (France)
24 25	8- Laboratorio Nacional de Energia e Geologia, I.P., 2010-999 Amadora, Portugal.
25	9- Geologist, Cabo verde
20 27	
27 28	
20 29	
30	
31	
32	*- Corresponding author: jmata@fc.ul.p
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	

46	
47	Keywords
48	
49	
50	2014-15 Fogo Island (Cape Verde) eruption; Ocean island basalts; Mantle
51	heterogeneity; Short-term magmatic variation; Volcano plumbing system
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	

92

93 1- Introduction

The Earth's mantle is highly heterogeneous as depicted by the composition of oceanic 94 95 basalts and particularly by those from oceanic islands (e.g. Hofmann, 2003; White, 96 2015). Such heterogeneity is considered the result of mixing in different proportions of 97 the so-called mantle components (Zindler and Hart, 1986; Stracke et al., 2005). The 98 length scale of mantle heterogeneities sampled by oceanic basalts is highly variable, 99 sometimes encompassing large regional domains (e.g. DUPAL and SOPITA anomalies; 100 Hart, 1984; Staudigel et al., 1991; White, 2015), but being also evident at the scale of a 101 single magmatic province, as reported, for example, for the Azores (e.g. Beier et al., 102 2008), Cape Verde (Gerlach et al., 1988; Doucelance et al., 2003) and Galápagos 103 (Gibson et al., 2012) archipelagos. The same is true at the scale of a single island edifice 104 (e.g. Barker et al., 2010; Mourão et al., 2012a; Nobre Silva et al., 2013), even when 105 considering quasi-coeval magmatic products (e.g. Madureira et al., 2011).

106 In this work we evaluate the small-scale heterogeneity of the mantle source feeding a 107 plume-related intraplate volcano, as well as the short-term geochemical evolution of the 108 magmas it generated. To this purpose we use as a case study the island of Fogo (Cape Verde Archipelago), one of the most active oceanic volcanoes in our planet. Indeed, 109 since the mid-15th Century Fogo experienced about 27 eruptions mostly from vents 110 located within a restrict restricted area ($\approx 50 \text{ km}^2$) of the edifice's island's summit 111 depression (Fig. 1). The latest eruption occurred in 2014-2015 and constitutes the main 112 113 object of this study. Their vents are practically coincident (1995) or localized less than 2 114 km away (1951) from those of the 2014-15 eruption.two previous eruptions (1995 and 115 1951, respectively). For this reason, Fogo constitutes a prime locality to test the existence of small-scale heterogeneities of mantle sources, as well as to investigate the 116 117 recent short-term evolution of magmas issued from those sources. Here we characterize and discuss the geochemistry of the lava flows and pyroclasts extruded during the initial 118 3

stages of the eruption (up to December 7, 2014). Even though we are only considering
lavas formed during the first 15 out of 60 days of eruption, the extracted information
allows the demonstration of chemical differences relative to the products erupted in
1951 and 1995.

The preservation of such heterogeneities by magmas is also here discussed emphasizing the role of lithosphere thickness. The mineralogical, geochemical and physical characteristics of a volcano are partially constrained by what happens during magma transit from its source to the surface, i.e. by the nature and dynamics of the associated magma plumbing system (e.g. Longpré et al., 2008; Klügel et al., 2015; Cooper, 2017; Cashman et al., 2017). The Fogo's plumbing system is here assessed using barometric data, which indicates a location of the main magma chamber(s) into the mantle.

Our observations show that magmas erupted in 2014 erupted mark a reversal from the
tendency depicted by previous eruptions (Escrig et al., 2005), which exhibited an
increasing contribution of a radiogenic-Sr-local end-member with relatively radiogenic
Sr.

134

135 2- Cape Verde Geological Setting

136 The Cape Verde Archipelago (Eastern Central Atlantic; Fig. 1) lies on top of the largest 137 bathymetric anomaly in the Earth's oceans - the Cape Verde Rise - that coincides with important geoid, heat flow, gravity, and seismic anomalies (e.g. Dash et al., 1976; 138 139 Courtney and White, 1986; Wilson et al., 2013; Liu and Zhao, 2014). The 140 islandsarchipelago, which stand on 120–140 Ma-old seafloor (Williams et al., 1990) areis regarded as the result of a hotspot-volcanism resulting from the impingement of a 141 mantle plume on the quasi-stationary (<1 cm.a⁻¹ in the region; Pollitz, 1991; Holm et al., 142 2008) Nubian plate. These would explain the long-lasting volcanic activity and, at least 143 partially, the age distribution of volcanism and the geometry of both the archipelago and 144 145 the Cape Verde Rise (Lodge and Helffrich, 2006; Holm et al., 2008; Madeira et al., 4

146 2008; Ramalho et al. 2010, Ramalho, 2011). The presence of a mantle plume deeply anchored in the lower mantle is also-suggested by seismic data (Montelli et al., 2006; 147 148 Forte et al., 2010; Vinnik et al, 2012; Saki et al., 2015; French and Romanowicz, 2015) 149 and of noble gas studies performed on carbonatiticarbonatites and alkaline silicate 150 rocks (Christensen et al., 2001; Doucelance et al., 2003; Mata et al., 2010; Mourão et 151 al., 2012b). The oldest exposed hotspot-related volcanism is ~26 Ma (Torres et al., 152 2010) and at least three islands are considered volcanically active (Santo Antão, Brava 153 and Fogo; see e.g. Madeira et al., 2010; Eisele et al., 2015; Faria and Fonseca, 2014) but 154 only Fogo had post-settlement eruptions.

155 Magmatism in Cape Verde is strongly alkaline, as testified by the occurrence of 156 nephelinitic, melanephelinitic, and melilititic rocks on several islands. It also is well 157 known by its striking geochemical heterogeneity, allowing the isotopic separation of the 158 islands into two groups, a (Northern and a Southern.). Lavas from the Southern group 159 have more radiogenic Sr, but unradiogenic Nd and Pb ratios than those from the 160 Northern group, which are also exhibit more unradiogenic He signatures. In addition, magmatic rocks from the Southern group are positioned, on the ²⁰⁸Pb/²⁰⁴Pb vs. 161 ²⁰⁶Pb/²⁰⁴Pb diagram, above the Northern Hemisphere Reference Line (NHRL; Hart, 162 163 1984) whilst lavas from the Northern group tend to plot along the NHRL (e.g. Gerlach 164 et al., 1988; Doucelance et al., 2003; Holm et al., 2006; Kogarko and Asavin, 2007; 165 Martins et al., 2010; Mourão et al. 2012a and references therein). Notable exceptions to 166 this scenario include Brava (the southwesternmost island), which depicts both typical 167 Northern (older sequences) and Southern (younger volcanism) isotope signatures (Mourão et al., 2012a), and the neighbouring Cadamosto seamount, which also presents 168 typical Northern signatures (Barker et al., 2012). 169

170

171 2.1 Fogo Volcano

172 Fogo is one of the youngest of the Cape Verde Islands and a very prominent oceanic volcano, standing ~7 km above the surrounding seafloor. The island exhibits a slightly 173 174 asymmetric conical shape, being truncated atop by a summit depression open to the 175 east. This 8 km-wide depression - Chã das Caldeiras - is surrounded on three sides by a 176 almost vertical wall – the Bordeira – up to 1 km tall. Inside the summit depression and 177 on its eastern side, a 1100 m high strato-volcano - Pico do Fogo - grew up to an 178 elevation of 2829 m (Fig. 1). Fogo volcano is therefore interpreted as a compound 179 volcano, featuring a "somma-vesuvio" association of a younger strato-cone on top of an 180 older, collapsed volcanic edifice (Ribeiro, 1954; Machado and Assunção, 1965; Foeken 181 et al., 2009). The opening to the east of the summit depression is interpreted as the 182 result of a massive flank collapse (Day et al., 1999; Brum da Silveira et al., 2006), as 183 attested by a landslide debris deposit extending offshore into the channel between Fogo 184 and Santiago (e.g. Masson et al., 2008), and by field evidence documenting the impact 185 of a megatsunami in the neighbouring island of Santiago (Paris et al., 2011; Ramalho et 186 al., 2015). The present-day Pico do Fogo stands on, and partially fills, the collapse scar, 187 and naturally post-dates the collapse event, which is interpreted to have occurred either 188 at ~117 or at ~73 ka (cf. Eisele et al. 2015 and Ramalho et al. 2015). A older basement 189 is, however, exposed in two shallow valleys near the city of São Filipe, where plutonic calciocarbonatites were dated from 2.5 Ma to 5.1 Ma (Hoernle et al., 2002; Madeira et 190 191 al., 2005; Foeken et al., 2009). These suggest a > 2 Myr volcanic hiatus in the evolution 192 of Fogo.

Fogo volcano is very active, with 27 eruptive events since 1500 AD (Ribeiro, 1954).
The mean recurrence interval between eruptions is 19.8 years, but with individual
intervals ranging from 1 to 94 years. Historical eruptions seem to have been confined to
Chã das Caldeiras and the eastern slope of the volcano, as it was the case of the recent
1951, 1995 and 2014/2015 events (Fig. 1).

198	The latest eruption started on November 23, 2014 and continued until February 7, 2015.
199	The eruption occurred on a NE-SW trending 700 m-long fissure located on the SE flank
200	of the previous 1995 cinder cone, an adventitious vent developed on the SW flank of
201	Pico do Fogo (Figs. 2C2A, 2B e 2D). This eruption started with vigorous "hawaiian"
202	fire-fountain activity, followed by strombolian activity, and later by simultaneous or
203	alternating hawaiian, Hawaiian (Fig. 2C), strombolian and vulcanian (Fig. 2D) eruptive
204	activity from different craters along a fissural vent, lasting for several days. The
205	eruption also emitted, from the first day, thick a'a lava flows (Fig. 2E; Supplementary
206	Material S1) forming two initial lava lobes. A shorter lobe, 1.7 km-long, progressed
207	southwestwards down to the flank of Cova Tina cone, stalling short of the Bordeira wall
208	in this area. The second, longer lobe advanced 3 km to the northeast in the initial hours
209	of the eruption, crossing the topographic barrier formed by the 1995 lava flows by
210	advancing through the existing road cut. It advanced intermittently towards the village
211	of Portela, causing widespread destruction (Fig. 2F). During the later stages of the
212	eruption, thinner, more fluid, a'a and especially pahoehoe breakouts expanded the flow
213	field to the west and north, the latter descending to the village of Bangaeira, destroying
214	almost completely both villages and reaching a total length of 5.2 km (Fig.1). Overall,
215	the resulting lava flows, with an average thickness of about 9 m, covered an area of 4.8
216	km ² , with extruded volumes estimated to correspond to ~45 \times 10 ⁶ m ³ -(Richter et al.
217	2016; , at a mean eruption rate of 6.8 m ³ .s ⁻¹ (Bagnardi et al. 2016; Richter et al. 2016).
218	Lava flow thicknesses as high as 35 m (close to the vent), or 25 m on the lava ponding
219	west of Portela, were described by Richter et al. (2016). See also Cappello et al. (2016)
220	for additional information about the eruption.

3- Analytical procedures

Whole-rock major and trace element concentrations were obtained at Activation
Laboratories, Ltd (Ancaster, Ontario, Canada) using the geochemical analytical package
4Lithoresearch (lithium metaborate/tetraborate fusion - ICP and ICP/MS).

226 Several certified reference materials from USGS (United States Geological Survey), 227 GSJ (Geological Survey of Japan) and CCRMP (Canadian Certificate Reference 228 Material Project) were run to check for accuracy (Supplementary Material S2). Errors associated with the accuracy are $\leq 4\%$ for major elements and better than 9% for the 229 230 REE and the most widely used incompatible elements. Reproducibility was generally 231 better than 5% for both major and trace elements. Four blanks were also analysed. For 232 detailed information regarding analytical and control procedures consult the Actlabs 233 website (www.actlabs.com).

234 Mineral analyses were performed on carbon-coated polished thin sections using a JEOL 235 SUPERPROBE™, model JXA-8200, in wavelength dispersive mode at the 236 Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa 237 (Portugal). Minerals were analysed with an acceleration voltage of 15 kV and a current 238 of 25 nA, using a 5 µm wide beam for most minerals. Plagioclase and apatite were 239 analysed using a 7 and 9 µm wide beam, respectively. The analyses performed in each 240 mineral phase/glass were calibrated using the composition of reference material, with 241 precisions being better than 2% and ordinarily around 1% (see Supplementary Material 242 S3-H for specific minerals standards used in each mineral analysis).

Isotopic analyses of Pb, Nd, Sr and Hf were performed at the Laboratoire G-Time of the
Université Libre de Bruxelles (ULB, Belgium) on a Nu Plasma I Multi-Collector
Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) (@ Nu instruments).

Sr analyses were performed in wet mode. In routine, the raw data was normalized to
⁸⁶Sr/⁸⁸Sr=0.1194, and corrected for mass bias by standard sample bracketing using the
lab's in-house Sr standard solution. The in-house shelf Sr standard was calibrated and
normalized to the certified value of NBS 987 Sr standard (0.710248) reported by Weis

et al. (2006). During our analytical sessions, in-house standard solution was run every two samples and gave an average value of 0.710287 ± 50 (2 σ) for raw ⁸⁷Sr/⁸⁶Sr data (21 runs).

253 Nd and Hf were run in dry mode with an Aridus II desolvating system. To monitor the 254 instrumental mass bias during the analysis sessions, the standard sample bracketing 255 method was also applied. Standards were systematically run between every two samples, giving an average value in $^{143}Nd/^{144}Nd$ of 0.511921 ± 41 (2 σ , 8 runs) for the 256 Rennes Nd standard, and 176 Hf/ 177 Hf=0.282172 ± 30 (2 σ , 10 runs) for the JMC 475 Hf 257 standard. The Nd and Hf isotopic measurements were internally normalised to 258 146 Nd/ 144 Nd=0.7219 and 179 Hf/ 177 Hf=0.7325, respectively. All Hf and Nd isotopic data 259 260 (Table 1) are normalized to the reference values of 0.511961 and 0.282160 as published 261 by Chauvel and Blichert-Toft (2001) and Chauvel et al. (2011).

262 For the Pb isotope analyses, a Tl dopant solution was added for every sample and 263 standard, within a Pb-Tl concentration ratio of $\pm 5:1$ (for a minimum signal of 100 mV in the axial collector - ²⁰⁴Pb). ²⁰²Hg is routinely monitored to correct for the potential 264 isobaric interference of 204 Hg on 204 Pb. Mass discrimination was monitored using ln - ln265 266 plots and corrected by the external normalization and the standard sample bracketing 267 technique using the recommended values of Galer and Abouchami (1998) (i.e. 206 Pb/ 204 Pb=16.9405±15; 207 Pb/ 204 Pb=15.4963±16; 208 Pb/ 204 Pb=36.7219±44). The 268 269 repeated measurements of the NBS981 gave the following values: 206 Pb/ 204 Pb=16.9403±8, 207 Pb/ 204 Pb=15.4961±10, 208 Pb/ 204 Pb=36.7217±31 (2 σ) for the 270 271 NBS981 Pb standard (5 runs).

272

273 **4- Results**

The samples used in this study were collected during a field survey undertaken during
the course of the last Fogo eruption, between November 27 and December 7, 2014.
From all collected samples a sub-set of 14 was selected for petrographic, mineralogical
9

278	geographical and temporal distribution Sr. Nd. Hf and Pb isotones were determined for				
	geographical and temporal distribution. St, Nd, Th and To isotopes were determined for				
279	8 samples (TABLE II), while the He isotope analysis was performed for one sample. On				
280	the Supplementary Material the reader can also find mineral chemistry data (S3) and the				
281	whole-rock normative compositions (S4). The composition of interstitial glasses				
282	determined by electron microprobe is also presented on Supplementary Material S3-G.				
283					
284					
285					
286	4.1. Petrography and mineral chemistry		Formatted	: List Paragr	aph
287	On a chemical basis, lava flows and pyroclasts erupted up to December 7 are, sensu	٦	Formatted	Font: Not	3old
288	lato, tephrites and phonotephrites (see section 4.3 and Fig. 3). Some of the most				
289	important petrographic characteristics of the studied samples are depicted on Fig. 4 and				
290	their mineral chemistry data are displayed on the Supplementary Material S3.				
250					
283 284					

292 4.1.1 Tephrites

The bulk ($(\approx 85\%)$) of the eruptive products corresponds to tephrites. The lavas are vesicular and porphyritic with a hypocrystalline groundmass and with phenocrysts amounting up to 10%. Samples are highly vesicular (up to 60% of the rock volume) and the vesicles are irregular in shape and size.

The most abundant phenocryst phase is clinopyroxene. Even though all the clinopyroxene phenocrysts are classified as diopside (Wo₄₉En₃₈Fs₁₃ to Wo₅₂En₃₆Fs₁₂) according to IMA recommendations (Supplementary Material S-3A), in most samples two groups must be considered regarding size and composition. One group corresponds to phenocrysts with dimensions up to 2 mm and euhedral shapes. They are characterized by normal zoning patterns, with Al₂O₃, FeO and TiO₂ increasing and MgO, CaO and Mg# decreasing from core to rim. Opaque mineral inclusions are frequent. The other 10

304 group of phenocrysts occurs in clusters along with kaersutite, both with dimensions up 305 to 4 mm in length. Clinopyroxee megacrysts in these aggregates usually show complex 306 zoning patterns presenting abnormal compositional variations with increments of Al₂O₃, 307 FeO and TiO₂ towards the intermediate zone/mantle and then decreasing towards the 308 rim; the opposite occurs with MgO and CaO, suggesting a more complex and multistage 309 crystallization history as compared with the first group. Indeed the increase in 310 MgO/FeO and decrease in TiO_2 towards the rim is suggestive of a replenishment of the 311 magma chamber where these particular crystals were formed, reflecting an influx of less 312 evolved magmas, thus pointing out to mixing of distinct magma batches. However, both groups of clinopyroxenes show similar Al^{VI} values (0.059 to 0) and Al/Ti ratios 313 314 indicating that megacrysts are cognate, being genetically related with the host lava and 315 with the clinopyroxene phenocrysts. This assertion is also considered valid for 316 keaersutite megacrysts given the chemical evidence for amphibole fractionation (see 317 5.1).

These kaersutite crystals are Mg- and Ti-rich (MgO = 12.8 - 13.0 wt.%; TiO₂ up to 6.07 wt.%), usually occurring in association with apatite and showing reaction rims where clinopyroxene and rhönite crystals are present, sometimes completely replacing the amphibole and forming pseudomorphes (Fig. 4D). Olivine crystals are restricted to inclusions in clinopyroxene phenocrysts, with no signs of resorption, and to the groundmass.

324 In all lava samples the opaque minerals can be considered microphenocryts, being 325 characterized by euhedral shapes and dimensions up to 1 mm. Most of the occurring 326 oxides can be considered as titanomagnetites, with ulvöspinel component (X_{USP}) up to 327 57, but with lowand Cr# (ranging from 1.6 to 5.3).

The groundmass is made up of small crystals immersed in a glassy matrix. These
comprise plagioclase laths (labradorite, An₅₆₋₆₆) sometimes with a fluidal arrangement,
clinopyroxene elongated crystals (Wo₄₉En₃₇Fs₁₄ to Wo₅₃En₃₂Fs₁₅), finely disseminated
11

opaque minerals (titanomagnetites, $58 < X_{USP} < 67$), rare olivine (Fo $\approx 72\%$), and fluorapatite (1.7 to 2.8 wt.% of F). The electron-microprobe analyses of interstitial glass revealed it to be very rich in alkalis (11.8 to 15.8 wt%, K₂O+Na₂O) and poor in MgO (down to 0.66 wt%) having tephriphonolitic and phonolitic (SiO₂ up to 54.15 wt%) compositions (see Fig. 3).

336

337 4.1.2 Phonotephrites

338 These lavas are vesicular hemicrystalline/hypocrystalline and sparsely porphyritic 339 (phenocrysts up to 3% vol.). The vesicles are elongated reaching up to 10 mm in length 340 and corresponding to 50 to 80% of rock volume. The clinopyroxene phenocrysts are 341 euhedral up to 3 mm in size, frequently showing complex oscillatory zoning patterns 342 and inclusions of opaque minerals. Despite the striking optical zoning patterns, all the 343 clinopyroxene phenocrysts are classified as diopside with a short compositional range 344 $(Wo_{49}En_{35}Fs_{10}$ to $Wo_{53}En_{40}Fs_{14})$, being very similar to that reported for the tephrites. 345 Olivine (Fo=80-84%) is scarce, being identified only as a core inclusion in a 346 clinopyroxene phenocryst. Microphenocrysts (up to 1mm) of equant opaque minerals 347 are classified as titanomagnetites ($X_{USP} = 44-46$; Cr# = 1.15-5.4).

348 Kaersutite pseudomorphs are frequent. They consist of aggregates of rhönite and 349 clinopyroxene elongated crystals, displayed in inward radial arrangements totally or 350 partially replacing the amphibole. However, in either case, a border of small opaque 351 minerals encloses the altered/partially altered amphibole crystals. These kaersuites are 352 similar (MgO = 11.9 - 12.7 wt.%: TiO₂ up to 6.04 wt.%) to those occurring as 353 megacrysts/phenocrysts in tephritic rocks, and the occurrence of apatite within or in 354 close proximity to the amphibole is frequent.

The groundmass is composed of plagioclase microliths (labradorite, An_{54-66}), elongated clinopyroxene crystals (average $Wo_{53}En_{31}Fs_{16}$), opaque minerals ($38 < X_{USP} < 57$; Cr# = 0.67-1.49), scarce olivine and glass. 358 In one sample, a cluster of clinopyroxene, opaque crystals, an opaque mineral, and 359 amphibole is interpreted as a possible co-magmatic cumulate nodule. This interpretation 360 is based on the large dimension of the crystals, the sharp contrast between the mineral 361 aggregate and the surrounding rock matrix, and on its chemical similarity between its 362 minerals and the rock phenocrysts. The same interpretation is considered for an 363 aggregate of small (0.5 mm in length) plagioclase crystals characterized by anorthite content up to 79 %. Ultramafic nodules of cumulate origin, mainly composed of olivine, 364 clinopyroxene, and amphibole, were also reported for this eruption by Caldeira et al. 365 366 (2015).

- 367
- 368
- 369

370 4.2. Whole rock elemental composition

Major and trace element analyses of the studied rocks are presented in Table I, whilenormative compositions can be found in Supplementary Material S4.

373 As all other subaerial lavas in the Cape Verde Islands, Fogo's 2014 volcanic products 374 are alkaline. They plot dominantly in the U_1 field, but also in the U_2 (phonotephrites) 375 field of the TAS diagram (Fig. 3). Rocks plotting inside the U_1 field would be classified, 376 according their CIPW normative composition, either as nephelinites (normative ne >20%) – the dominant type – or as melanephelinites (normative ne < 20%, but%; 377 normative ab < 5%) according to the subdivision proposed by Le Bas (1989); (see S-378 379 +S4). However, as modal plagioclase can be identified in most of the rocks plotting in 380 the U1 TAS field and for all the samples normative ol < 10%, the classification as 381 tephrites is here preferred and used.

The rocks are representative of moderately evolved magmas characterized by Mg# ranging from 55.32 and to 45.98 and by Na₂O/K₂O between 1.35 and 1.46. The less evolved rocks (Mg# = 55.32 to 51.97) have TiO₂ contents varying from 3.65 to 3.75 13 385 wt%, P₂O₅ close to 1 (0.94 to 1.11 wt%), CaO/Al₂O₃ ratios ranging from 0.65 to 0.78
386 and K₂O/TiO₂ ratios from 0.25 to 0.32.

387 The 2014 lavas are highly enriched in the most incompatible elements (Fig. 5), which is 388 depicted, for example, by $(La/Yb)_{cn}$ ratios > 20, with the most evolved rocks presenting 389 the highest values for this ratio (> 23). Primitive mantle normalized incompatible 390 elements patterns (Fig. 5c) show a significant enrichment of Nb and Ta relatively to the 391 light REE and the radiogenic heat producers K, Th and U. Small Hf negative anomalies 392 are also evident, which partially reflects the high Zr/Hf ratios (>49), well above the 393 value of 36 characterizing CI chondrites and the primitive mantle (e.g. Palme and 394 O'Neil, 2003).

The sampled pyroclasts and lava flows are similar in composition, the most significant 395 396 difference being the sulphur-enriched composition of pyroclasts (120 to 230 ppm; \overline{X} = 200 ppm) as compared to lava flows (60 to 120 ppm; \overline{X} = 84 ppm). This 397 398 indicates a more effective degassing of lava flows as a consequence of a slower cooling. 399 Concerning elemental compositions, most Most of the characteristics described above 400 are similar to those of lavas erupted during the two precedent eruptions (1995 and 1951), as Fig. 5 shows. Notwithstanding the fact that the samples here studied are only 401 402 representative of the lava emitted during the first 15 days of the eruption, some 403 differences, however, were noticed: i) the 1995 lavas present a slightly higher 404 compositional range (MgO from 6,86 to 2.40 wt%; Hildner et al., 2011) than the ones 405 from 2014 (MgO from 6.23 to 2.93 wt%); ii) from the three eruptions considered, the 406 1951 event produced the less evolved lavas (MgO up to 8.24 wt%; Hildner et al., 2012); 407 iii) for the same SiO₂ content, the 1951 lavas tend to be less alkali-rich than the 2014 and 1995 volcanics (Fig. 3); iv) the 2014 and 1995 erupted materials are 408 409 characterized by small compositional gaps ($\Delta SiO_2 = 2.5\%$ and 3.8%, respectively) in opposition to the described for from the 1951 eruption for which no phonotephrite 410 compositions were reported (see Fig. 1 and references therein); v) for these three 411 14

412 eruptions, the most evolved products are the phonotephrites from the 1995 eruption, 413 which also present the highest concentrations in incompatible elements like Nb and Ta. 414 However, the highest concentrations in light REE are found in phonotephrites from the 415 2014 eruption, which show the highest La/Nb ratios. This ishigher La/Nb are also 416 observed for the less evolved rocks (MgO > 5 wt%), with 2014 lavas presenting 417 \overline{X} La/Nb = 0.69, whereas the 1995 and 1951 less evolved rocks show \overline{X} La/Nb=0.60 (cf. 418 Table 1, Hildner et al., 2011 and Hildner et al., 2012).

419

420 4.3. Whole rock isotope composition

421 The results of Sr, Nd, Hf and Pb isotope analyses are shown on Table II. The lavas 422 erupted in 2014 at Fogo Island present isotope signatures akin to those typical of the 423 Southern islands in the Cape Verde Archipelago. Indeed, in opposition to what is 424 observed for the Northern capeverdean islands (Fig.6), they are characterized by relatively unradiogenic ²⁰⁶Pb/²⁰⁴Pb ratios (up to 19.001) and plot above the Northern 425 Hemisphere Reference Line ($\Delta 7/4$ from 0.99 to 1.57; $\Delta 8/4$ from 25.38 to 28.80; see 426 Hart, 1984 for definitions of these parameters). Notwithstanding the fact that their 427 87 Sr/ 86 Sr (0.70361 to 0.70369) and 143 Nd/ 144 Nd (0.51276 to 0.51279) ratios are clearly 428 429 more and less radiogenic, respectively, than those observed for the Northern islands, the 2014 lavas plot on the second quadrant of the ⁸⁷Sr/⁸⁶Sr vs. ¹⁴³Nd/¹⁴⁴Nd diagram (Fig. 430 431 7A). This indicates a provenance from a time-integrated depleted source(s), i.e. which evolved over time with lower Rb/Sr and higher Nd/Sm than those of the CHUR 432 433 (chonditic uniform reservoir). 434 which evolved over time with lower Rb/Sr and higher Nd/Sm than those of the BSE

434 which evolved over time with lower Ro/si and higher Ro/si than those of the BSE
435 (bulk silicate earth) and the CHUR (chonditic uniform reservoir), respectively.
436 Compared to the lavas extruded during the 1951 and 1995 eruptions, the 2014 rocks
437 present more unradiogenic Sr and radiogenic Nd signatures (Fig. 7). The 2014 lavas
438 also exhibit slightly more radiogenic ²⁰⁶Pb/²⁰⁴Pb ratios than the most samples from the 15

two previous eruptions, the same being true for ²⁰⁷Pb/²⁰⁴Pb ratios (Fig. 6A). Lavas from
these 3 eruptions are amongst the Cape Verde rocks with lower ²⁰⁶Pb/²⁰⁴Pb ratios. As is
typical of the Southern Cape Verde Islands, rocks from these 3 eruptions are
characterized by positive Δ8/4, plotting above the NHRL (Fig. 6B).

The 2014 lavas' ¹⁷⁶Hf/¹⁷⁷Hf ratios range from 0.28294 to 0.28296 (Table II). A time-443 integrated evolution with high Lu/Hf ratios compared to CHUR is shown by positive 444 εHf values (5.88 to 6.62; Fig. 7B), plotting between the mantle arrays proposed by 445 Vervoort (1999) and Chauvel (2008). These are the first ¹⁷⁶Hf/¹⁷⁷Hf determinations 446 447 available for Fogo Island, preventing any comparison with previous results. However, 448 noteworthy that the lavas erupted in 2014 plot inside the large field defined in the ENd-449 EHf space by the lavas from the neighbouring island of Santiago, which is characterized by significantly higher and lower ¹⁷⁶Hf/¹⁷⁷Hf ratios (see Barker et al., 2009; Martins et 450 451 al., 2010). Significant correlations between any of these isotope signatures and ratios 452 involving incompatible trace elements have not been found. This will be discussed later 453 (see 5.3).

The 3 He/ 4 He ratio of a glassy phonotephrite was determined at the Intitut de Physique du Globe de Paris (IPGP) using crushing for gas extraction. The obtained value (1.11± 0.13 Ra, where Ra is the present atmospheric ratio of 1.4 x 10⁻⁶) for a 4 He concentration of 2.8 x 10⁻⁹ cc/g is interpreted as the result of atmospheric contamination during the eruption/consolidation of lava. Consequently, this result will not be considered in the discussion.

460 Compared to the lavas extruded during the 1951 and 1995 eruptions, the 2014 rocks
461 present more unradiogenic Sr and radiogenic Nd signatures (Fig. 7). The 2014 lavas
462 also exhibit slightly more radiogenic ²⁰⁶Pb/²⁰⁴Pb ratios than the most samples from the
463 two previous eruptions, the same being true for ²⁰⁷Pb/²⁰⁴Pb ratios (Fig. 6A). Lavas from
464 these 3 eruptions are amongst the Cape Verde rocks with lower ²⁰⁶Pb/²⁰⁴Pb ratios. As is

465	typical of	the	Southern	Cape	Verde	Islands,	rocks	from	these	3	eruptions	are
466	eharaeteriz	ed by	, positive /	<u>8/4, p</u>	lotting a	bove the	NHRL	(Fig. (B).			
467												

468 **5. Discussion**

469	5.1 MagmaMantle source composition and magma evolution
470	Previous studies, explained the chemical variability of Fogo's lavas by mixing in
471	different proportions of HIMU-like (ancient recycled ocean crust) and EM1-like mantle
472	end-members, diluted by the presence of depleted upper mantle (Gerlach et al., 1988) or
473	by lower mantle material (Doucelance et al., 2003; Escrig et al., 2005) entrained by the
474	upward moving plume.
475	Although 2014 lavas present low ²⁰⁶ Pb/ ²⁰⁴ Pb ratios (up to 19.001), clearly below those
476	typical of magmas originated from sources dominated by the HIMU mantle component
477	(e.g. Kawabata et al., 2011), the HIMU fingerprint is shown by trace element patterns
478	(Fig. 5) displaying enrichment in Nb and Ta relative to the LREE and the LILE (e.g.
479	<u>Niu et al., 2012).</u> Aditionally, all the analysed rocks are characterized by positive $\Delta 8/4$
480	and $\Delta 7/4$ and plot below the mixing lines between a HIMU type end-member and DMM
481	or lower mantle compositions (Fig. 10), strongly suggesting the contribution of an
482	EM1-type end-member to the 2014 Fogo mantle source(s). Interestingly, the products
483	erupted in 2014 mark a change on the evolutionary trend reported by previous authors
484	for Fogo eruptions (Gerlach et al., 1988; Escrig et al., 2005) which was characterized by
485	an increasing contribution of the enriched component. Indeed, the 2014 lavas have less
486	radiogenic Sr, but more radiogenic Nd signatures than those from the 1951 and 1995
487	eruptions.

Fogo's 2014 lavas (MgO ≤ 6.4 wt %, Mg# ≤ 53.2 ; Ni ≤ 42 ppm) cannot be considered representative of primary magmas. This fact and its chemical variability (MgO down to 2.93 wt.%; Ni down to 6 ppm) emphasize the role of magma evolution processes to explain the observed compositional range. This is reinforced by the phonolitic 17 Formatted: English (United States)
Formatted: English (United States)

492 composition of the glassy groundmass of some lavas (MgO down to 0.66 wt%; total
493 alkalis up to 15.76 wt%; see Supplementary Material S3-G).

494 The important role of clinopyroxene fractionation is suggested by its occurrence as 495 phenocryst in most samples and by the Sc decrease with increasing concentration of 496 strongly incompatible trace elements such as La (Fig 8A), here used as a proxy of 497 magma evolution index. Fractionation of clinopyroxene must have been preceded by 498 crystallization of olivine as indicated by the occurrence of olivine inclusions in 499 clinopyroxene phenocrysts. However, the smooth decrease of Ni during magma 500 evolution (not shown), indicates that olivine role must have been restricted to previous stages of fractionation for which there were no magmas erupted. 501

502 With continuing magma evolution The Dy/Dy*,* ratio, as defined by Davidson et al. 503 (2013), tends to decrease from up to 0.81 in tephrites, down to 0.61 in phonotephrites, a 504 tendency that, according to those authors, can be attributed either to amphibole or to 505 clinopyroxene fractionation. If the importance of clinopyroxene fractionation was 506 already demonstrated, the positive correlation of Dy/Dy* and Nb/U ratios (Fig. 8B) 507 emphasizes the role of amphibole since, at odds with what happens with this mineral, 508 clinopyroxene does not have the capacity to fractionate Nb from U (e.g. Adam and 509 Green, 2006; see also https://earthref.org/KDD/).).

510 The calculated water content of the melt during kaersutite crystallization range from 3.81 to 4.14 wt% (\pm 0.78 wt%) while oxygen fugacity is estimated in the range of 0.92 511 to 2.3 log units above NNO (\pm 0.37 log units) using the methodology of Ridolfi and 512 513 Renzulli (2012). The obtained fO₂ values are comparable to those reported for some other intraplate ocean islands (e.g. Madeira; Mata and Munhá, 2004). These relatively 514 515 high fO_2 values are reflected in the composition of pyroxenes for which high Fe3⁺ contents were calculates based on the stoichiometry (Suplementary material S3-A), but 516 not in the amphibole (Suplementary material S3-C). This suggests the incorporation of 517 Ti (TiO₂ up to 6.13 wt%) into the octahedral position of kaersutite through the 518 18

519 <u>substitution $^{[VI]}R^{2+} + 2OH^{-} = ^{[VI]}Ti^{4+} + 2O^{2-}$, which favours high Fe^{2+}/Fe^{3+} (Satoh et al., 520 <u>2004</u>).</u>

521 As also reported for the previous Fogo's eruption (e.g. Munhá et al., 1997; Hildner et 522 al., 2012) plagioclase did not play a significant role in the evolution of 2014 magmas, as 523 inferred from its rarity among phenocrysts and from the continuous Sr increase (1194 to 524 1408 ppm) throughout the erupted suite. However, judgingJudging from the 525 comparatively low CaOhigh Al₂O₃ Na₂O and Al₂O₃K₂O concentrations determined in 526 the glassy phonolitic matrix, plagioclase and alkali feldspar fractionation must have 527 beenwas also not important for the generation of such evolved compositions. On the 528 other hand, the role of Fe-Ti oxides and apatite fractionation is made evident by the 529 significant decrease on P_2O_5 (Fig. 8C) and TiO₂ (not shown) concentrations from the 530 most evolved tephrites (SiO₂ < 45.2.%) to phonotephrites (SiO₂ > 47.7 wt. %) (see also 531 Table I), which form two groups separated by a compositional gap ($\Delta SiO_2 = 2.5\%$). 532 The generation of this gap is beyond the scope of this paper. However, we note that the gap is immediately preceded by the inflexion on the liquid line of descent of P_2O_5 (Fig. 533 534 8C) and TiO₂ (not shown). Considering this, we interpret that small gap as the result of erystal fractionation of these two non-silicate phases (Fe Ti oxides, apatite), with the 535 consequent significant increase in silica content of magmatic liquids. Similar, but more 536 important gap ($\Delta SiO_2 = 3.8\%$) characterize the 1995 lavas (see Hildner et al., 2011), but 537 538 not the rocks from the 1951 eruption, was probably the cause for which no 539 phonotephrite compositions were reported (see Fig. 1 and Fig. 8C and references 540 therein). the small compositional gap ($\Delta SiO_2 = 2.5\%$) separating those two lithotypes. 541 Even though the isotope differences precludes the studied rocks to be considered comagmatic comagmatic with those erupted in 1951 and 1995 (see section 4.4), samples 542 from these three eruptions plot along the same trends in most variation diagrams, 543 suggesting that they share a common magma evolution history (e.g. Fig. 8 A and C). 544 545 However, Fig. 8B emphasizes, despite similar trends, the lower Nb/U and Dy/Dy*

Formatted: Font color: Text 1
Formatted: Font color: Text 1

ratios of the 2014 rocks relatively to the rocks of similar degree of evolution generated

547 during the two previous eruptions. Despite these differences, even for these ratios, they

548 exhibit the same trends with magma evolution.

549 The Nb/U of Indeed, the less evolved 2014 lavas ranges between 48 and 65, with 550 tephrites beingrocks are characterized by lower Nb/U ratios of (60 \pm 3-(1 σ). The) than 551 the basanitic/tephritic lavas from the 1995 and 1951 lavas have Nb/U ratios ranging 552 from 70 to 100eruptions (95 ± 4 for basanites/tephrites). Considering such significant 553 differences between lavas with ; Hildner et al., 2011; 2012). Given the similar 554 degrees degree of evolution, primary/primitive magmas of the 2014 lavas had to these 555 differences cannot be explained by fractional crystallization. The 2014 Nb/U ratios fits 556 the typical OIB value (EM lavas excluded) of 52 ± 15 obtained by Hofmann (2003). distinct from those erupted in As shown by this author, either the EM-type mantle 557 558 components or the continental crust have significantly lower Nb/U ratios. Consequently 559 the higher contribution of an enriched end-member (EM type) for the 1995 and 560 1951(see 5.2 above) lavas cannot be invoked as a cause for a discussion). their higher Nb/U ratios. 561 Nb/U ratios significantly higher than the typical OIB lavas have also been reported for 562 563 some Canary lavas by Lundstrom et al. (2003). These authors defended that this can be the reflex of mixing between ascending plume-derived magmas and lithospheric melts 564 565

Formatted: Font color: Text 1

some Canary lavas by Lundstrom et al. (2003). These authors defended that this can be
the reflex of mixing between ascending plume-derived magmas and lithospheric melts
with a significant contribution from amphibole present in low-solidus mantle domains.
These domains would have been generated by metasomatic (s.l.) processes during
previous stages of islands building. We suggest that a similar process may have been
responsible for the significantly higher Nb/U and Dy/Dy* ratios of the 1995 and 1951
lavas. Since their vents, and probably also the ascending magma paths, were almost
coincident with those of 2014, we speculate that such low-solidus lithospheric domains
were already exhausted and did not contribute significantly for the composition of the
subsequent 2014 eruption products.

573 As observed for the precedent 1995 eruption (Munhá et al., 1997; Silva et al., 1997; 574 Hildner et al., 2011), the initial products erupted in 2014 were more evolved (phono-575 tephrites; SiO₂ up to 47.99 wt.%) than those emitted subsequently (tephrites, s.l.), for 576 which SiO₂ contents as low as 43.03 wt.% were obtained. Considering the composition 577 of the erupted magmas, assuming a complete degassing during eruption (suggested by 578 very low loss on ignition), and using the algorithm of Giordano et al. (2008), the 579 viscosity of the phonotephrites would have been some 10 times higher than that of the 580 less evolved tephrites. This partially explains the evolution of lava flow morphology 581 during the course of the eruption, which exhibited a'a characteristics during the initial 582 eruptive stages, whilst pāhoehoe type lavas became more frequent during the 583 subsequent effusion of the less viscous tephritic lava flows,

584

585 **5.1.12** Thermobarometric evidence for magma reservoirs into the mantle

586 Phenocrysts and cognate megacrysts are considered to grow slowly as a consequence of 587 low magmatic cooling rates. This indicates stagnant or quasi-stagnant conditions at 588 some stage during the process of magma transfer from the mantle source(s) to the 589 surface, such as those characterizing magma stalling/stagnation at mantle/crustal 590 chambers. Geothermobarometric estimates based on such type of crystals can thus 591 phenocrysts and cognate megacrysts have been considered to be important to constrain the magmatic plumbing system of a volcano-, given they can be used to calculate the 592 depths of magma stalling/stagnation at mantle/crustal chambers. Indeed, silicates are 593 594 characterized by very slowlow intra-crystalline diffusion rates, thus tending to preserve 595 the composition acquired at the moment of crystallization.

We used the clinopyroxene-liquid thermobarometer of Putirka et al. (2003) for which
lower uncertainties are foreseen than those reported for methods only using the
clinopyroxene composition (Putirka, 2008). see also Geiger et al., 2016 for a review on
<u>clinopyroxene thermobarometry</u>. The method is based on jadeite-21

Formatted: Pattern: Clear (White)

Formatted: Font: Not Bold, Font color: Text 1, Pattern: Clear (White)

diopside/hedenbergite exchange equilibria in hydrous conditions, which are shown to have existed at Fogo by the presence of amphibole (see also <u>belowabove</u> for an estimate of water content in magma). As we used phenocryst cores and whole rock compositions as proxies of the crystal-liquid pairs, the P-T results obtained will be regarded as the conditions prevailing during early stages of clinopyroxene phenocrysts crystallization. <u>assuming that no magma mixing occurred after pyroxene crystallization</u>.

In order to use mineral/liquid thermobarometers it is mandatory to test if the crystal/melt pairs used testify equilibrium conditions. On a first approach a visual screening was made to identify textural evidence for disequilibrium, those showing irregular or reabsorbed shapes were avoided. Furthermore, only core analyses of unzoned or normally zoned phenocrysts where used. No mineral correction was made to the whole-rock composition due to the lack of evidence for significant accumulation (\leq 10 % of phenocryst phasephases).

613 Considering the concerns regarding the efficacy of the Fe-Mg exchange in deciphering 614 situations of pyroxene-melt equilibrium (e.g. Mollo et al., 2013), we used instead the 615 comparison between predicted and measured components in clinopyroxene (diopside-616 hedenbergite; enstatite-ferrosilite; Ca-Tschermak's) as proposed by Putirka (1999). 617 Following the recommendations of Putirka et al. (2003), only clinopyroxenes whose 618 compositions are within the $\pm 2\sigma$ level of the predicted ones were used in the 619 thermobarometric calculations. The standard errors of estimation (SEE) of the Putirka et 620 al. (2003) method are 1.7 kbar and 33 °C, while analytical uncertainties, calculated 621 using the relative standard deviation of whole rock and microprobe analyses of reference materials are significantly lower than the uncertainties of the method. 622

The temperatures obtained <u>for pyroxene crystallization</u> range from 1045 to 1063 °C for the phonotephrites and 1102 to 1143 °C for the tephrites. <u>Concerning pressure</u> estimates, Pyroxene phenocrysts crystallized from phonotephritic magmas at pressures 626 <u>in</u> the <u>phonotephrites are characterized by a</u> range between 560 and 778 MPa, whereas
627 the tephrites yield variations between 690 and 890 MPa (Fig. 9).

The calculated pressures can be converted to depth estimates considering a height of 628 629 5800 m for the Fogo island edifice (~ 3000 m below present sea level), an average 630 density of 2400 kg.m⁻³ (Dash et al., 1976) for the island edifice, a erustal density of 2800 kg.m⁻² inferred from seismic receiver functions (Lodge and Helffrich, 2006), a 631 632 mantle density of about 3200 kg.m⁻¹ at the Fogo region (Pim et al., 2008), and a Moho 633 depth at 12 km below sea level (Pim et al., 2008). Taking into account these values and 634 the referred uncertainties, the crystallization depth of clinopyroxene phenocrysts ranges 635 approximately from 14.8 to 36.4 km below Fogo's summit, or 12 to 33.6 km below sea 636 level.

For amphiboles we used the single-phase thermobarometric and chemometric equations 637 638 proposed by Ridolfi and Renzulli (2012), based on multivariate least-squares regression 639 analyses of a large database of amphibole compositions in alkaline magma systems. For 640 this method the authors claim low uncertainties: $P \pm 11.5\%$, $T \pm 23.5$ °C, ANNO ± 0.37 641 log units and H₂Omelt \pm 0.78 wt%. The application of the thermobarometer shows that 642 the values obtained for kaersutites occurring in phonotephrites and tephrites are similar 643 within error (1032 to 1050°C and 568 to 620 MPa; see Fig. 9), which, considering the 644 method uncertainties, would correspond to depths ranging from ≈ 16 to 21.8 km below 645 sea level. The calculated melt water content during kaersutite crystallization is very 646 similar for both lithotypes, ranging from 3.81 to 4.14 wt%. Oxygen fugacity estimates a range of 0.92 to 2.3 log units above NNO. The obtained fO2 values 647 648 comparable to those reported for some andesitic lavas in convergent tectonic settings (e.g. Chiaradia et al., 2011), but also for other intraplate ocean islands (e.g. 9). Madeira: 649 Mata and Munhá, 2004). These relatively high fO₂ values may have resulted from the 650 651 H2O-rich composition of magmas (see above), which allowed the crystallization of 652 amphibole. Indeed, the liberation of free oxygen and the consequent increase of magma 23

653 fO2 are thought to be a consequence of amphibole crystallization (Frost and Lindsley,

654 1991; Chiaradia et al., 2011).

655 The kaersutite occurring in the 2014 Fogo lavas show ubiquitous signs for 656 disequilibrium, presenting evidence for partial (reaction rims) to total 657 (pseudomorphosis) substitution by polycrystalline aggregates of rhönite and 658 clinopyroxene. We interpret the occurrence of rhönite and of the associated 659 clinopyroxene as a consequence of the kaersutite destabilization resulting from magma 660 degassing upon ascent, given the decrease of H₂O solubility in magmas as pressure 661 drops (e.g. De Angelis et al., 2015). The destabilization of amphibole most probably 662 occurs at pressures below 100-150 MPa (e.g., Rutherford, 2008) with reaction rims 663 developing, for hornblende compositions, at pressures from circa 100 MPa down to 40 664 MPa (Browne and Gardener, 2006).

665 Amphibole reaction rims are often used to estimate magma ascent rate since their 666 thickness, size and the shape of the replacing mineral phases are all dependent on it 667 (Chiaradia et al., 2011; Browne and Gardner, 2006). Since the reaction rims observed in 668 kaersutite crystals from the 2014 lavas are thick (> 500 microns) and complete 669 pseudomorphosis of mm-sized crystals (up to 4mm) is common, it is valid to assume on 670 a qualitative basis and based on Browne and Gardener's (2006) experimental data that 671 the time of exposure of kaersutite to low PH₂O before quenching at the surface was relatively long (several months). (> 1 month). Thus, the occurrence of rhönite and the 672 673 degree of kaersutite replacement by rhönite suggest a late and short stagnation/stalling 674 at crustal levels (i.e. at pressures below 100 MPa; < 4.3 km below the island summit or <1.5 km below sea level) after a longer storage at deeper magma chambers.</p> 675 The pressure constraints emerging from this study, based on phenocrysts occurring in 676 relatively evolved magmas (Ni < 42 ppm), indicate that magma evolution processes 677 involving clinopyroxene and amphibole fractionation occurred approximately at depths 678 of 14.8 to 36.4 km below the island's summit, or \approx 12 to \approx 33.6 km below sea level. 679

Formatted: Font color: Red

680	Considering a sub-Fogo Moho depth of 12 km below sea level (Pim et al., 2008), these
681	data indicates that magmas stagnated and evolved at mantle depths. On the other hand,
682	this depths range suggests that Fogo is underlain by a complex plumbing system
683	characterized by several magma chambers at distinct depths where clinopyroxene and
684	kaersutite crystallized.
685	Additionally, the occurrence of rhönite and the degree of kaersutite replacement by
686	rhönite suggest a later (shorter and less significant) stagnation/stalling at crustal levels
687	(i.e. at pressures below 100 MPa; < 4.3 km below the island summit or < 1.5 km below
688	sea level). Even considering the uncertainties associated to the barometric data, it can be
689	concluded that the magma chambers where the major magma fractionation events
690	occurred were located in the mantle.
691	The scenario here proposed for the ascent of the 2014 Fogo magmas is in agreement
692	with seismic data. In order to convert the calculated pressures to depths several
693	assumptions has to be done, the depth of Moho being the one with more impact in the
694	obtained results.
695	Vinnik et al. (2012), proposed that at the Cape Verde archipelago the crust would be
696	significantly thicker than the normal oceanic crust, extending down to 20-30 km depth.
697	This was not supported by a later study (Wilson et al., 2013), which placed the Moho at
698	significantly shallower depths, in agreement with the models of Lodge and Helffrich
699	(2006), Pim et al. (2008) and Wilson et al. (2010). In this study we adopt 13.5 km as the
700	depth of Moho beneath the Fogo Island (see Wilson et al., 2010; 2013).
701	Considering a height of 5800 m for the Fogo island edifice (\approx 3000 m below present sea
702	level), an average density of 2400 kg.m ⁻³ (Dash et al., 1976) for the island edifice, a
703	crustal density of 2800 kg.m ⁻³ inferred from seismic receiver functions (Lodge and
704	Helffrich, 2006), a mantle density of about 3200 kg.m ⁻³ at the Fogo region (Pim et al.,
705	2008), a Moho depth at 13.5 km below sea level (Wilson et al., 2010; 2013) and taking
706	into account the uncertainties of the barometric methods (see above) the crystallization

707 depth of clinopyroxene phenocrysts ranges approximately (± 5.5 km) from 17.8 to 28.4 708 km below Fogo's summit, or 15.0 to 25.6 km below sea level. For amphiboles the same 709 presupposes allow considering their crystallization at depths between 18.2 and 19.9 km (± 3 km) below Fogo's summit, or 15.4 to 20.1km below sea level. Considering the 710 711 most common estimates for the crustal thickness at the Cape Verde region (≈ 12 to 13.5 712 km; Lodge and Helffrich, 2006; Pim et al., 2008; Wilson et al., 2010; 2013) the 713 obtained results suggest that the major fractionation events occurred in magma 714 chambers located into the mantle.

Indeed, a seismie event on October 4, 2014 (i.e. 50 days before the cruption) with a
hypocentre 17 km below sea level (19.8 km below the Fogo summit), was interpreted
by Instituto Nacional de Meteorologia e Geofísica (INMG, Cabo Verde) as resulting
from the rupture of the roof of a mantle reservoir allowing magma transfer to shallower
levels. Also, geodetic modelling of Sentinel-TOPS interferometry by Gonzalez et al.
(2015) revealed the lack of deformation at the island-scale during and pre-cruption
times, further suggesting the deep location of the main magma reservoirs.

722 Geobarometric studies of the previous two eruptions also revealed pre-eruptive magma 723 storage at shallow mantle depths, followed by a short-period of magma stalling at 724 crustal levels (Munhá et al., 1997; Hildner et al., 2011, 2012). The depths of 725 clinopyroxene equilibration obtained in this study for the 2014 eruption (890 to 560 726 MPa; see above), although partially overlapping those presented for the historical eruptions by Hildner et al. (2011, 2012) (680 to 460 MPa), extends to higher pressures. 727 728 However it must be noted that the pressure estimates by those authors refer to the final crystallization level, while our data represents -the first crystallization stages of 729 730 clinopyroxene phenocrysts.

The causes for the development of magma reservoirs within the mantle are still not
understood. Changes in buoyancy have been considered as an explanation for magma
stagnation during ascent (e.g. Ryan, 1994). However, Jagoutz (2014) emphasized that,
26

at continental arcs, meltsascending magmas can stagnate even when they are less dense 734 735 than the surrounding rocks and that its emplacement is not controlled by the existence 736 of a neutral buoyancy level. A similar point of view was defended by Menand (2008) 737 who considered that buoyancy is unlikely to be a major control in the emplacement of 738 sills, which can be viewed as precursors of magma reservoirs (Gudmundsson, 2012). 739 Moreover, as shown by Putirka (2017), hydrated magmas with MgO contents similar to 740 those erupted in the 2014 Fogo eruption are less dense than the mantle, or even than the 741 lower crustal rocks, indicating that buoyancy cannot be the explanation for the 742 stagnation of Fogo magmas in the mantle. As proposed by Menand (2008), the presence 743 of rheologyrheological anisotropies could be the primary factor determining the depth 744 of magma stalling or stagnation. This can lead to the inference that the thickness of the 745 elastic lithosphere exerts a major control on the depth of magma reservoirs. However, 746 for the Cape Verde Archipelago the elastic thickness is estimated at 30 km (Pim et al., 747 2008) and our barometric data suggest magma emplacement at shallower depths, 748 invalidating, in this case, such a proposal. Regional flexural stresses produced by the 749 volcanic edifice loading are also thought to strongly influence the plumbing systems by 750 generating a vertical contrast between tensile and compressive stress zones, capable of influencing the depth of magma stalling (see Putirka, 1997 and references therein). We 751 752 do not have data to evaluate this hypothesis.

Whatever the cause for the development of mantle magma reservoirs, they seem to be common on ocean islands during periods of low magma supply rates (e.g. Longpré et al., 2008; Stroncik et al., 2009; Klügel et al., 2015) as was the case during the latest (this study) and the previous eruptions of Fogo volcano (Munhá et al., 1997; Hildner et al., 2011; 2012).

758

759 **5.2 Mantle source**

760	In agreement with the location of Fogo Island, all its lavas and, particularly, the
761	products erupted in 2014, are chemically akin to those characterizing the Southern
762	Islands of the Cape Verde Archipelago. This is true for all the isotope systems used, as
763	shown above (Fig. 6 and 7). Previous studies (see below), explained the chemical
764	variability of Fogo's lavas by mixing in different proportions of two recycled end-
765	members with characteristics similar to those of the HIMU (ancient recycled ocean
766	crust) and EM1 mantle components. These end members would have been diluted by
767	the presence of depleted upper mantle entrained by the upward moving plume (Gerlach
768	et al., 1988) The scenario here proposed for the ascent of the 2014 Fogo magmas and of
769	its plumbing system receives support from independent data.lower mantle material
770	(Doucelance et al., 2003; Eserig et al., 2005), as also proposed by Mourão et al. (2012a)
771	for the neighbouring Brava Island.
772	The 2014 erupted lavas do not show extreme isotope compositions when compared the
773	other Southern Cape Verde Islands, or even with other Fogo rocks (Fig. 6 and 7). This
774	makes it difficult to determine the end-members contributing to its source, also
775	hindering a strong contribution for the discussion of the end-members of the mantle
776	underlying Cape Verde. Nonetheless, some remarks have to be done:
777	Although the low ²⁰⁶ Pb/ ²⁰⁴ Pb ratios (up to 19.001) are clearly below those presented by
778	lavas originated from sources dominated by HIMU (recycled ocean crust) (e.g. Indeed,
779	a seismic event on October 4, 2014 (i.e. 50 days before the eruption) with a hypocentre
780	17 km below sea level (19.8 km below the Fogo summit), was interpreted by Instituto
781	Nacional de Meteorologia e Geofísica (INMG, Cabo Verde) as resulting from the
782	rupture of the roof of a mantle reservoir allowing magma transfer to shallower levels.
783	Also, geodetic modelling of Sentinel-TOPS interferometry by Gonzalez et al. (2015)
784	revealed the lack of deformation at the island-scale during and pre-eruption times,
785	further suggesting the deep location of the main magma reservoirs.

786	Kawabata et al., 2011), the HIMU fingerprint is shown by trace element
787	patterns (Fig. 5) displaying enrichment in Nb (and Ta)-relative to the LREE and
788	the LILE (e.g. Niu et al., 2012).
789	- All the analysed rocks are characterized by positive $\Delta 8/4$ and $\Delta 7/4$ and plot
790	below the mixing lines between a HIMU type end-member and DMM or lower
791	mantle compositions on the ²⁰⁶ Pb/ ²⁰⁴ Pb vs. ¹⁴³ Nd/ ¹⁴⁴ Nd diagram (Fig. 10),
792	strongly suggesting the contribution of an enriched end-member to the 2014
793	Fogo mantle source(s).
794	- The products crupted in 2014 mark a change on the evolutionary trend reported
795	by previous authors for Fogo cruptions (Gerlach et al., 1988; Eserig et al., 2005)
796	which was characterized by an increasing contribution of the enriched
797	componentIndeed, the 2014 lavas have less radiogenic Sr, but more radiogenic
798	Nd signatures when compared with those from the 1951 and 1995 eruptions.
799	For Fogo Island, Escrig et al., (2005), based on radiogenic Os signatures (up to 0.1369),
800	proposed the incorporation of lower continental crust materials present in Fogo
801	lithosphere during the ascent and differentiation of plume-derived magmas. We note
802	that, for the studied 2014 rocks there is no positive correlation between ⁸⁷ Sr/ ⁸⁶ Sr ratios
803	and SiO ₂ contents (not shown), which is at odds with what would be expectable from
804	processes of simultaneous assimilation and fractional crystallization (e.g. EC-AFC from
805	Bohrson and Spera, 2001) involving a typical basic/ultrabasic alkaline magma and
806	lower continental crust materials. This could eventually be explained admitting that
807	magmas continued to evolve after the end of the assimilation process, as proposed by
808	Escrig et al. (2005) to explain, for the previous eruptions, the lack of correlation
809	between ¹⁸⁷ Os/ ¹⁸⁶ Os ratios and differentiation indices. However, in such a model the
810	correlation between SiO ₂ and ⁸⁷ Sr/ ⁸⁶ Sr would only be lost for the most evolved rocks,
811	which is clearly not the case. Taking these into account we consider more plausible that

812 the mixing of the enriched continental lithosphere (s.l.) with plume material occurred in
813 the mantle before melting.

As shown before (see 5.1) the less evolved 2014 rocks are characterized by Nb/U ratios 814 of 60 ± 3 , while for basanitic/tephritic lavas from the 1995 and 1951 eruptions a mean 815 816 value of 95 ± 4 has been assigned (Hildner et al., 2011; 2012). These differences cannot 817 be explained by fractional crystallization (see 5.1). The 2014 Nb/U ratios fits the typical OIB value (EM lavas excluded) of 52 ± 15 obtained by Hofmann (2003). We 818 819 demonstrated above that the contribution of a local enriched end-member is less 820 significant for the 2014 lavas than for those of the two previous eruptions. However, as shown by Hofmann (2003), either the EM-type mantle components or the continental 821 822 erust have low Nb/U ratios. Consequently the higher contribution of an enriched end-823 member for the 1995 and 1951 lavas cannot be invoked as a cause for their higher Nb/U 824 ratios. Nb/U ratios significantly higher than the typical OIB lavas have also been reported for 825 826 some Canarian lavas by Lundstrom et al. (2003). These authors defended that this can 827 be the reflex of mixing between ascending plume-derived magmas and lithospheric melts with a significant contribution of amphibole present in low-solidus mantle 828 829 domains. These domains would have been generated by metasomatic (s.l.) processes during previous stages of islands building. We defend that a similar process may have 830 831 been responsible for the higher Nb/U and Dv/Dv* ratios of the 1995 and 1951 lavas. 832 Since their vents, and probably also the ascending magma paths, were almost coincident

with those of 2014 we speculate that such low solidus lithospheric domains were
already exhausted and did not contribute significantly for the composition of the
subsequent 2014 eruption products.

836

837 5.3 Evidence for small-scale mantle heterogeneity and short-term compositional
838 evolution of Fogo volcano.
839	As mentioned above, the Cape Verde Archipelago is known by its remarkable
840	geochemical intra-island heterogeneity. With few exceptions, Cape Verde alkaline rocks
841	form two groups with distinct elemental and isotopic signatures, according to their
842	geographical location (Northern vs. Southern Islands; (e.g. Gerlach et al., 1988;
843	Doucelance et al., 2003). IntraSignificant intra-island heterogeneitiestime-dependent
844	geochemical variations are also common as shown for most Cape Verde Islands and
845	particularly for the neighbouring islands of Santiago (e.g. Barker et al., -2010) and
846	Brava (; Mourão et al., 2012 a) where significant time-dependent geochemical
847	variations were described.). Intra-island spatial heterogeneities have also been described
848	for presumably coeval rocks. This, such is the case of lavas from the Recent Volcanics
849	of São Vicente Island whose major element compositions suggest magma extraction at
850	variable depths, and also present significantly different incompatible trace element
851	ratios (Trindade et al., 2003). This is), and also of the case of Fogo Island where, as
852	shown by Escrig et al. (2005), lavas erupted since 1785 present measurable variability
853	on isotope signatures. The 2014-15 and the 1995 eruptive fissures are separated by less
854	than 200 m, and less than 2000 m from the 1951 vents, thus offering the opportunity to
855	further constrain mantle heterogeneity beneath Cape Verde and particularly in Fogo
856	Island.
857	It is well known that ratios involving elements characterized by highly incompatible
858	behaviour (D ≤ 1) tend <u>In opposition</u> to reflect mantle source values when the extent of
859	partial melting is higher than about 5%. However, the behaviour of such elements can
860	be significantly different during melting of peridotite or pyroxenite. This is true, for
861	example, for-incompatible trace-element ratios-involving Ba or for the La/Nb ratio,
862	which tend to be lower or equal to the pyroxenite source ratios can be fractionated
863	during partial melting and higher or equal to the peridotite source ratios (Stracke and
864	Bourdon, 2009). In addition we have shown that the studied rocks are significantly
865	evolved (Ni < 42 ppm) and that amphibole, one of the crystallized phases, is capable of 31

866 fractionating elemental ratios involving Nb. In contrast, ascrystal fractionation
867 processes, radiogenic isotope ratios are not changed during meltingsuch events they.
868 They are considered thus a more reliable indicator of source heterogeneity, even though
869 the isotope variability of lavas tend tends to be smaller than that of the mantle source due
870 to eventual mixing/homogenization processes (e.g. Stracke and Bourdon, 2009).

The 2014 volcanic products have clearly more unradiogenic Pb and Sr (²⁰⁶Pb/²⁰⁴Pb 871 down to 18.972; ⁸⁷Sr/⁸⁶Sr down to 0.703613) but more radiogenic Nd (¹⁴³Nd/¹⁴⁴Nd up to 872 0.512789) signatures than the previous two eruptions (206 Pb/ 204 Pb up to 19.273; 87 Sr/ 86 Sr 873 up to 0.70379; ¹⁴³Nd/¹⁴⁴Nd down to 0.51272; see also Figs 6 and 7). Such differences, 874 observed in volcanic products erupted during a time span of just 63 years from vents so 875 elosely located (200 to < 2000 m)Considering that the 2014 lavas erupted from vents 876 877 localized less than 200 and 2000 m of those from the two previous eruptions (1951 and 878 1995) and that these 3 eruptions occurred within a time lapse of only 63 years, such 879 differences emphasize the presence of small-scale heterogeneities in the mantle sources 880 feeding the volcanism of Fogo Island and the absence of significant magma 881 mingling/homogenization before eruption.

882 The ability of magmas erupted from a volcano to show the source heterogeneity 883 depends on the degree of partial melting, on the size of magma chambers and on the time of residence in such reservoirs. The higher the degree of partial melting, the higher 884 885 is the capability of the extracted magmas to average the composition of a heterogeneous source. As a consequence low degree partial melts reflect better the compositional 886 887 variability of the source. This was shown, for example, by (e.g. Stracke and Bourdon, 2009; Martins et al. (... 2010) for the neighbouring Santiago Island, who evidenced an 888 increasing variability of the ¹⁴³Nd/¹⁴⁴ Nd ratios with decreasing degrees of partial 889 melting. 890

891). It is considered accepted that the lithosphere exerts a major control in the final depth
 892 and extent of sub-lithospheric mantle melting and, consequently, also on the extent and 32

893	mean pressure of melting (e.g. (e.g. Watson and Mckenzie, 1991; Humphrey and Niu,
894	2009; Niu et al., 2011), even though the thickness of mature (> 70Ma) oceanic
895	<u>lithosphere does not surpass ≈90 km (Niu et al.</u> , 2011). The Cape Verde islands stand on
896	a 120-140 My old oceanic crust characterized by significantly high values of admittance
897	(geoid to depth ratio) (Monnerau and Cazennave, 1990). This These suggests that
898	lithosphere may extend to depths below the spinel-garnet transition, considered to occur
899	at depths corresponding to $\approx (\approx 3 \text{ GPa} \cdot (e.g.,; Klemme and O'Neil, 2000). Consequently,$
900	the depth of melting would have been totally or partially confined to the mantle garnet
901	zone.) in agreement with previous studies for Cape Verde islands (e.g. Gerlach et al.,
902	1998; Barker et al., 2010; Mourão et al., 2012a). Even taking into account that the less
903	evolved 2014 magmas (tephrites) are not characterized by primary or primitive
904	compositions, this percept is endorsed by (Tb/Yb)n ratios higher than 2.3, which is
905	significantly above the threshold value of 1.8 proposed by Wang et al. (2002) as a proxy
906	for spinel-garnet facies transition. Indeed it would be necessary to consider a (Tb/Yb)n
907	increase higher than 27% during magma evolution - which is not expectable from the
908	commonly accepted D values (see for example <u>https://earthref.org/KDD/)e.g. Adam and</u>
909	Green, 2006) - to place the mean melting depths outside the garnet zone. This and
910	Moreover, 2014 magmas show a Tb/Yb decrease from tephrites for the highly SiO2
911	undersaturated character of the Fogo lavas (2014: normative ne up to 23.04 %) point out
912	to low degree of partial melting events with the consequent deficient averaging of the
913	isotopic variability of the source.more evolved phonotephrites.
914	The thickness of the lithosphere exerts a first-order control on the extent of partial
915	melting (e.g. Humphreys and Niu, 2009). For the present case, a lithosphere some 90
916	km thick (see above) would have constrained the melting to small extent. Despite the
917	exact extent of melting is difficult to assess given the significantly evolved character of
918	lavas (MgO < 6.4 wt%) and the uncertainty derived from the lack of knowledge about
919	the relative proportion of peridotite and eclogite in the mantle source, the highly SiO_2 - 33

920 undersaturated character of the Fogo lavas (2014: normative *ne* up to 23.04 %) and the
921 high TiO2 contents clearly suggest low percentages of partial melting, with the
922 consequent deficient averaging of the isotopic variability of the source. The above
923 referred lack of correlation between elemental and isotope ratios (see 4.3) also points to
924 low degrees of melting during which a significant elemental fractionation occurs erasing
925 any correlation between incompatible element ratios and isotope ratios (see Stracke and
926 Bourdon, 2009).

927 After extraction, the degree of melt homogenization will depend on the occurrence of a 928 plumbing system with large magmatic chamber(s), and of long magma residence times 929 within the system, allowing mixing of different batches of melt. Data gathered from 930 several islands suggest that for voluminous magma chambers to form, high magma 931 supply rates are needed; conversely, during evolutionary stages characterized by low 932 magma supply rates a plethora of small and ephemeral magma reservoirs tend to form, 933 many of them within the mantle (see Klügel et al., 2000; 2005; Stroncik et al., 2009 and 934 references therein), and this is also the case for the recent magmatism of Fogo. The 935 evidence for small and ephemeral magma reservoirs beneath Fogo was already 936 proposed for the previous eruptions (Munhá et al., 1997; Hildner et al., 2012). This may 937 be also the case for the 2014 eruption as suggested by the compositional change during 938 the latest two eruptions (from phonotephrites to basanites/tephrites) and, despite the associated methodological errors, by distinct depths of magma chambers where 939 940 clinopyroxene and kaersutite crystalized, both evidences precluding a large 941 homogenizing reservoir.

942 Thus, the isotopic heterogeneity depicted by the lavas erupted during the three last
943 eruptions at Fogo Island (1951, 1995 and 2014) can be considered as the result of
944 source heterogeneities and the presence of a thick lithosphere that, by restraining the
945 extent of partial melting to low degrees – and consequently limiting magma supply to
946 low rates – inhibited both significant averaging of source composition and the
34

947	subsequent mixing/homogenization during ascent to the surface. It must be emphasized	
948	that, to some degree, melt aggregation and magma mixing must have occurred (see for	
949	example the reverse zoning in some elinopyroxenes), and thus the isotopic	
950	heterogeneity of the erupted materials is considered to be smaller than that of the mantle	
951	Source.	
952	Another consequence of the low degrees of partial melting in Cape Verde is the referred	
953	lack of correlation between elemental and isotope ratios (see 4.3). Indeed, during such	
954	melting events an elemental fractionation occurs erasing any correlation between	
955	incompatible element ratios and isotope ratios characterizing the mantle source (see	
956	Stracke and Bourdon, 2009).	
957	<u>۸</u>	Formatted: Font: Bold
958	6. Concluding remarks	
959	• Magmas erupted from November 23 to December 7, 2014 at Fogo Island (Cape	
960	Verde Archipelago) are alkaline, exhibit significantly evolved compositions (Ni	
961	< 42 ppm) and are classified as tephrites and phonotephrites. The compositional	
962	range is slightly smaller than that reported for the 1995 eruption, but larger than	
963	the displayed by the 1951 eruption, for which no phonotephrites were erupted.	
964	• Similarly to 1995 (Munhá et al., 1997; Silva et al., 1997; Hildner et al., 2011),	
965	the eruption of phonotephritic lavas preceded the effusion of the tephritic ones	
966	pointing tosuggesting the existence of a compositional/density zoning inside the	
967	pre-eruptive magma chamber or of several magma reservoirs, in agreement with	
968	barometric data.	
969	• Geobarometric estimates using clinopyroxene and kaersutite compositions	
970	indicate that fractional crystallization mainly occurred in magma chambers	
971	located in the mantle $(\approx -12(\text{down} \text{ to } 3425.6 \pm 5.5 \text{ km below the sea level}),$	
972	followed by a short residence time (< 60 days) at crustal levels.	

973 - Erupted magmas are characterized by positive ε Nd, ε Hf, Δ 8/4 and Δ 7/4. Their compositions reflect a mantle source where ancient recycled ocean crust and an 974 975 enriched component (EM1-type) are present. The 2014 lavas have less 976 radiogenic Sr, but more radiogenic Nd compositions, when compared with than 977 those from the 1951 and 1995 eruptions, marking a change on the evolutionary 978 trend reported by previous authors for Fogo (Gerlach et al., 1988; Escrig et al., 979 2005) which was characterized by an increasing contribution of the enrichedEM1-type component. 980

981 Although the 2014 eruption vents are almost spatially coincident with those of 982 1995 and less than 2 km away from the 1951 vents, their lavas are isotopically different from those generated in the previous two eruptions. These differences 983 984 in magmas erupted on a very limited area and short interval (63 years) reflect the 985 heterogeneity of the mantle source and the lack of averaging/mingling during partial melting and ascent through the plumbing system. For these, the lid effect 986 of the old (120-140 Ma) and thick lithosphere is considered of utmost 987 importance. 988

The lower Nb/U ratios of the 2014 rocks as compared with previous eruptions is
 considered to reflect the lack of significant mixing of ascending plume magmas
 with lithospheric melts, as opposed to what has been hypothesized for 1995 and
 1951 magmas.

It is inferred that the lid effect of an old (120-140 Ma) and thick lithosphere,
 imposing low melting degrees, limited the averaging of source compositions. In
 turn, low melting degrees induced low magma ascent rates, a condition not
 favourable to the generation of voluminous magma chambers where isotopically
 distinct magma batches issued from heterogeneous sources could pond and mix

Formatted: Font: Verdana, 10 pt Formatted: Bulleted + Level: 1 + Aligned at: 0.63 cm + Indent at: 1.27 cm Formatted: Font: Verdana, 10 pt Formatted: Font: Verdana, 10 pt Formatted: Font: Verdana, 10 pt

1000

1001

1002 Acknowledgements

of time.

1003 We dedicate this paper to the memory of Luís Celestino Silva (1936-2017), a pioneer in
1004 the geology of Cape Verde: his knowledge, enthusiasm and kindness marked most of
1005 the authors of this work.

with each other, producing homogeneous compositions over significant periods

1006 This research received financial support from FCT (Fundação para a Ciência e Tecnologia) through projects REGENA (PTDC /GEO-FIQ/3648/2012) and FIRE 1007 (PTDC/GEO-GEO/1123/2014), as well as through project UID/GEO/50019/2013 to 1008 Instituto Dom Luiz (IDL). R. Ramalho was funded by a FP7-PEOPLE-2011-IOF Marie 1009 1010 Curie International Outgoing Fellowship, which is acknowledged. The authors are 1011 grateful to Pedro Rodrigues for skilled assistance during electron microprobe analyses. Field work of J. Mata was partially funded by Bernardo Mata. Kayla Iacovino is 1012 acknowledged for the permission to use her Excel spreadsheet to calculate magma 1013 viscosity (see http://www.kaylaiacovino.com/tools-for-petrologists/). Cristina de 1014 1015 Ignacio, an anonymous reviewer and the Editor (Nelson Eby) are acknowledged for their constructive comments, corrections and suggestions, which significantly 1016 1017 contributed for the quality of this paper.

1018

1019 References1020

Adam, J., Green, T. 2006. Trace element partitioning between mica and amphibole-bearing
garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of
controls on partitioning behavior. Contributions to Mineralogy and Petrology 152, 1-17.

- Aignertorres, M., Blundy, J., Ulmer, P., Pettke, T. 2007. Laser Ablation ICPMS study of trace
 element partitioning between plagioclase and basaltic melts: an experimental approach.
 Contributions to Mineralogy and Petrology 153, 647-667.
- Bagnardi, M., Gonzàlez, P.J., Hooper, A. 2016. High-resolution digital elevation model from
 tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano: Tri-
- 1030 stereo Pleiades DEM of Fogo Volcano. Geophys. Res. Lett., 43, doi:10.1002/2016GL06945

1031 1032 1033	Barker, A.K., Holm, P.M., Peate, D.W., Baker, J.A. 2009. Geochemical stratigraphy of submarine layas (3–5 Ma) from the Flamengos Valley Santiago southern Cape Verde islands	Forma Color(States
1034	Journal of Petrology 50, 169-193.	Forma (White
1035 1036 1037 1038	Barker, A.K., Holm, P.M., Peate, D.W., Baker, J.A. 2010. A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contributions to Mineralogy and Petrology 160, 133-154.	
1039 1040 1041 1042 1043	Barker, A.K., Troll, V.R., Ellam, R.M., Hansteen, T.H., Harris, C., Stillman, C.J., Andersson, A. 2012. Magmatic evolution of the Cadamosto Seamount, Cape Verde: beyond the spatial extent of EM1. Contributions to Mineralogy and Petrology 163, 949 -965.	
1044 1045 1046 1047	Beattie, P. 1994. Systematics and energetics of trace element partitioning between olivine and silicate melts: Implications for the nature of mineral/melt partitioning. Chemical Geology 117, 57-71.	
1048 1049 1050	Beier, C., Haase, K. M., Abouchami, W., Krienitz, MS., Hauff, F. 2008. Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores. Geochemistry, Geophysics, Geosystems 9, Q12013.	
1051 1052 1053 1054	Bohrson, Wendy A., Spera, Frank J. 2001. Energy Constrained Open System Magmatic. Processes II: Application of Energy Constrained Assimilation Fractional Crystallization (EC- AFC) Model to Magmatic Systems. Journal of Petrology 42, 1019–1041.	
1055 1056 1057 1058	Bottazzi, P., M. Tiepolo, R. Vannucci, A. Zanetti, S. Foley, R. Brumm, Oberti, R. 1999. Distinct site preference for heavy and light REE and the prediction of ^{Amph/L} D _{REE} . Contributions to Mineralogy and Petrology 137, 36–45.	
1059 1060 1061 1062	Browne, B.L., Gardner, J.E. 2006. The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth and Planetary Science Letters 246, 161-176.	
1063 1064 1065 1066 1067	Brum da Silveira, A., Madeira, J., Munhá, J., Mata, J.; Martins, S., Mourão, C., Tassinari, C. 2006. The summit depression of Fogo Island (Cape Verde): caldera and/or flank collapse? Abstracts and Programme of the George P. L. Walker symposium on Advances in Volcanology, Reykolt, Islândia, 23.	
1008 1069 1070 1071 1072 1073	Caldeira, R., Guimarães, F., Mata, J. Silva, P., Moreira, M., Ferreira, P. 2015. Mineral Chemistry of Ultramafic Nodules from Lavas of the Fogo Island 2014 Eruption (Cape Verde). Preliminary results. Livro de Resumos do X Congresso Ibérico de Geoquímica/XVIII Semana de Geoquímica, 51-53, LNEG, Lisboa.	
1074 1075 1076	Cappello, A., G. Ganci, S. Calvari, N. M. Pérez, P. A. Hernández, S. V. Silva, J. Cabral, and C. Del Negro. 2016. Lava flow hazard modeling during the 2014–2015 Fogo eruption, Cape Verde, Journal of Geophysical Research, Solid Earth 121, 1-14.	
1078 1079 1080	Chauvel, C., Blichert-Toft, J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planetary Science Letters 190, 137–151.	
1081 1082 1083	Chauvel, C., Lewin, E., Carpentier, M., Arndt, N., Marini, JC. 2008. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geoscience 1, 64–67.	
1084 1085 1086	Chauvel, C., Bureau, S., Poggi, C. 2011. Comprehensive chemical and isotopic analyses of basalt and sediment reference materials. Geostandards and Geoanalytical Research 35, 125–143.	

Formatted: Level 1, Pattern: Clear (White)

- 1087 Chiaradia, M., Müntener, O., Beate, B. 2011. Enriched basaltic andesites from mid-crustal
 1088 fractional crystallization, recharge, and assimilation (Pilavo Volcano, Western Cordillera of
 1089 Ecuador). Journal of Petrology 52, 1107-1141.
- 1091 Christensen, B., Holm, P., Jambon, A., Wilson, J. 2001. Helium, argon and lead isotopic
 1092 composition of volcanics from Santo Antão and Fogo, Cape Verde Islands. Chemical Geology
 1093 178, 127–142.
- 1094
- 1095 Cooper, K.M. 2017. What does a magma reservoir look like? The "crystal's eye" view.1096 Elements 13, 23-28.
- 1097
 1098 Courtney, R., White, R. 1986. Anomalous heat flow and geoid across the Cape Verde Rise:
 1099 Evidence for dynamic support from a thermal plume in the mantle. Geophysical Journal of the
 1100 Royal Astronomical Society 87, 815-868.
- 1101

1114

1118

Cashman, K.V., Sparks, R.S.J., Blundy, J.D. 2017. Vertically extensive and unstable magmatic
systems: A unified view of igneous processes. Science 355, eaag3055, 9 pages.

- Dash, B.P., Ball, M.M., King, G.A., Butler, I.W., Rona, P.A. 1976. Geophysical investigation of
 the Cape Verde archipelago. Journal of Geophysical Research 81, 5249-5259.
- 1107
 1108 Davidson, J., Turner, S., Plank, T. 2013. Dy/Dy*: Variations Arising from Mantle Sources and
 1109 Petrogenetic Processes. Journal of Petrology 54, 525-537.
- 1110
 1111 | Day, S., Heleno da Silva, S., Fonseca, J. 1999. A past giant lateral collapse and present day
 1112 instability of Fogo, Cape Verde Islands. Journal of Volcanology and Geothermal Research 94,
 1113 191-218.
- 1115 De Angelis, S.H., Larsen, J., Coombs, Dunn, A., Hayden, L. 2015. Amphibole reaction rims as
 a record of pre-eruptive magmatic heating: An experimental approach. Earth and Planetary
 Science Letters 426, 235–245
- Doucelance, R., Escrig, S., Moreira, M., Gariépy, C., Kurz, M.D. 2003. Pb-Sr-He isotope and
 trace element geochemistry of the Cape Verde Archipelago. Geochimica et. Cosmochimica
 Acta 67, 3717-3733.
- Eisele, S., Reißig, S., Freundt, A., Kutterolf, S., Nürnberg, D., Wang, K.L, Kwasnitschka, T.
 2015. Pleistocene to Holocene offshore tephrostratigraphy of highly explosive eruptions from
 the southwestern Cape Verde Archipelago. Marine Geology 369, 233-250.
- 1126
 1127 Escrig, S., Doucelance, R., Moreira, M., Allègre, C.J. 2005. Os isotope systematics in Fogo
 1128 Island: evidence for lower continental crust fragments under the Cape Verde Southern islands.
 1129 Chemical Geology 219, 93-113.
- 1130

1134

- Faria, B., Fonseca, J. F. B. D. 2014. Investigating volcanic hazard in Cape Verde Islands
 through geophysical monitoring: network description and first results. Natural Hazards and
 Earth System Sciences 14, 485–499.
- Foeken, J.P.T., Day, S., Stuart, F.M. 2009. Cosmogenic ³He exposure dating of the Quaternary
 basalts from Fogo, Cape Verdes: Implications for rift zone and magmatic reorganisation.
 Quaternary Geochronology 4, 37-49.
- 1138
 1139 Forte, A.M., Quere, S., Moucha, R., Simmons, N.A., Grand, S.P., Mitrovica, J.X., Rowley, D.B.
 2010. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: a
 reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planetary
 Science Letters 295, 329–341.
- 1143

Formatted: Portuguese (Portugal)

Formatted: Portuguese (Portugal)

- French, S.W., Romanowicz, B. 2015. Broad plumes rooted at the base of the earth's mantle beneath major hotspots. Nature 525, 95-99.
- 1146

Frost, B.R., Lindsley, D.H. 1991. Occurrence of iron titanium oxides in igneous rocks. In:
 Lindsley, D.H. (ed.) Oxide Minerals. Mineralogical Society of America, Reviews in Mineralogy
 25, 433-468.

Galer, S.J.G., Abouchami, W. 1998. Pratical application of lead triple spiking for correction of
 instrumental mass discrimination. Mineralogical Magazine 62 A, 491-492.

1153

Geiger, H., Barker, A., Troll, V. 2016. Locating the depth of magma supply for volcaniceruptions, insights from Mt. Cameroon. Scientific Reports 6, 33629.

1156

Gerlach, D., Cliff, R., Davies, G., Norry, M., Hodgson, N. 1988. Magma sources of the Cape
Verde archipelago: Isotopic and trace element constraints. Geochimica et Cosmochimica Acta
52, 2979-2992.

1160

1161 Gibson, S.A., Geist, D.G., Day, J.A., Dale, C.W. 2012. Short wavelength heterogeneity in the 1162 Galápagos plume: Evidence from compositionally diverse basalts on Isla Santiago.

1163 Geochemistry, Geophysics, Geosystems 13, doi: 10.1029/2012GC004244. 1164

Giordano, D., Russell, J. K., Dingwell, D. B. 2008. Viscosity of magmatic liquids: A model.
Earth and Planetary Science Letters, 217, 123-134.

González, P. J., M. Bagnardi, A. J. Hooper, Y. Larsen, P. Marinkovic, S. V. Samsonov,
Wright, T. J. 2015. The 2014–2015 eruption of Fogo volcano: Geodetic modeling of Sentinel-1
TOPS interferometry. Geophysical Research Letters 42, 9239–9246.

- 1170 Gudmundsson, A., 2012. Magma chambers: Formation, local stresses, excess pressures, and 1171 compartments: Journal of Volcanology and Geothermal Research 237–238, 19–41.
- Hart, S.R. 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753-757.
- Hildner, H., Klügle, A., Hauff, F. 2011. Magma storage and ascent during the 1995 eruption of
 Fogo, Cape Verde Archipelago. Contributions to Mineralogy and Petrology 162, 751–772.
- 1176
 1177 Hildner, H., Klügle, A., Hansteen, T.2012. Barometry of lavas from 1951 eruption of Fogo,
 1178 Cape Verde Islands: Implications for historic and prehistoric magma plumbing system. Journal
 1179 of Volcanology and Geothermal Research 217-218, 73-90.
- 1180
 1181 Hoernle, K., Tilton, G., Le Bas, M.J., Duggen, S., Garbe-Schönberg, D. 2002. Geochemistry of
 oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal
 carbonate. Contribution to Mineralogy and Petrology 142, 520-542.
- 1184

Hofmann, A.W. 2003. Sampling mantle heterogeneity trough oceanic basalts: isotopes and trace
elements, in: Carlson, R. (Ed.), Treatise on geochemistry, vol. 2 - The mantle and core.
Elsevier-Pergamon, Oxford, pp. 61-101.

- Holm, P.M., Wilson, J.R., Christensen, B.P., Hansen, L., Hansen S.L., Hein, K.M., Mortensen,
 A.K., Pedersen, R., Plesner, S., Runge, M.K. 2006. Sampling the Cape Verde mantle plume:
 evolution of the melt compositions on Santo Antão, Cape Verde Islands. Journal of Petrology
 47, 145-189.
- 1193
- Holm, P.M., Grandvuinet, T., Friis, J., Wilson, J.R., Barker, A.K., Plesner, S. 2008. An ⁴⁰Ar ³⁹Ar study of the Cape Verde hot spot: Temporal evolution in a semistationary plate
 environment. Journal of Geophysical Research 113, B08201.
- 1197

- Humphreys, E., Niu, Y. 2009. On the composition of ocean island basalts (OIB): the effects oflithospheric thickness variation and mantle metasomatism. Lithos 112, 118-136.
- 1200

Iwamori, H., Nakamura, H. 2015. Isotopic heterogeneity of oceanic, arc and continental basalts
 and its implications for mantle dynamics. Gondwana Research 27, 1131-1152.

- Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth Planetary Science Letters 396,67–77.
- 1206

Jørgensen, J.Ø., Holm, P.M. 2002. Temporal variation and carbonatite contamination in primitive ocean island volcanics from S. Vicente, Cape Verde Islands. Chemical Geology 192, 249-267.

- 1210
- 1211 Kawabata, H., Hanyu, T., Chang, Q., Kimura, J., Nichols, A.R.L., Tatsumi, Y. 2011. The
 1212 Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust1213 recycling Model for HIMU OIB. Journal of Petrology 52, 791-838.
- 1214

1221

1231

1237

- 1215 Klemme, S., O'Neill, H., 2000. The near solidus transition from garnet lherzolite to spinel
 1216 lherzolite. Contributions to Mineralogy and Petrology 138, 237-248.
 1217
- 1218 Klügel, A., Hoernle, K.A., Schmincke, H-U, White, J.D.L. 2000. The chemically zoned 1949
 1219 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a
 1220 rift-zone eruption. Journal of Geophysical Research 105, 5997-6016.
- 1222 Klügel, A., Hansteen, T.H., Galipp, K. 2005. Magma storage and underplating beneath Cumbre
 1223 Vieja volcano, La Palma (Canary Islands). Earth and Planetary Science Letters 236, 211-226.
 1224
- Klügel, A., Longpré, M-A., Cañada, L. C., Stix, J. 2015. Deep intrusions, lateral magma
 transport and related uplift at ocean island volcanoes. Earth and Planetary Science Letters 431,
 140-149.
- 12281229 Kogarko, L.N., Asavin, A.M. 2007. Regional Features of Primary Alkaline Magmas of the1230 Atlantic Ocean. Geochemistry International 45, 841-856.
- 1232 Le Bas, M. 1989. Nephelinitic and basanitic rocks. Journal of Petrology 30, 1299-1312.
- 1233
 1234
 1234
 1235
 1235
 1235
 1236
 1236
 1237
 1236
 1237
 1236
 1238
 1238
 1239
 1230
 1230
 1230
 1230
 1231
 1231
 1232
 1232
 1233
 1234
 1235
 1235
 1236
 1236
 1237
 1236
 1238
 1238
 1239
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 1230
 <li
- Le Maitre, R.W., 2002. Igneous rocks. A classification and glossary of terms.
 Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Cambridge University Press, Cambridge. 236pp.
- Liu, X., Zhao, D. 2014. Seismic evidence for a mantle plume beneath the Cape Verde hotspot.
 International Geology Review 56, 1213-1225.
- Lodge, A., Helffrich, G. 2006. Depleted swell root beneath the Cape Verde Islands. Geology 34,449-452.
- 1247
 1248 Longpré, M., Troll, V.R., Hansteen, T.H. 2008. Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). Journal of Geophysical Research 113, doi: 10.1029/2007JB005422.
- 1251
- Lundstrom, C.C., Hoernle, K., Gill, J. 2003. U-series disequilibria in volcanic rocks from the
 Canary Islands: Plume versus lithospheric melting: Geochimica et Cosmochimica Acta 67,
 4153–4177.
- 1255

Formatted: List Paragraph

- MacDonlad, G.A. 1968. Composition and origin of Hawaiian lavas. Geological Society ofAmerica Memoir 116, 477-452.
- 1258

- Madeira, J., Munhá, J., Tassinari, C., Mata, J., Brum, A., Martins, S. 2005. K/Ar ages of
 carbonatites from the Island of Fogo (Cape Verde). VIII Congresso Ibérico de Geoquímica e
 XIV Semana de Geoquímica (Portugal).
- Madeira, J., Brum da Silveira, A., Mata, J., Mourão, C., Martins, S. 2008. The role of mass
 movements on the geomorphologic evolution of ocean islands: examples from Fogo and Brava
 in the Cape Verde archipelago. Comunicações Geológicas 95, 99-112.
- Madeira, J., Mata, J., Mourão, C., Brum da Silveira, A., Martins, S., Ramalho, R., Hoffmann,
 D.L. 2010. Volcano-stratigraphic and structural evolution of Brava Island (Cape Verde) based
 on ⁴⁰Ar/³⁹Ar, U–Th and field constraints. Journal of Volcanology and Geothermal Research 196,
 219-235.
- Madureira, P., Mata, J., Mattielli, N., Queiroz, G., Silva, P. 2011. Mantle source heterogeneity,
 magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints
 from elemental and isotopic (Sr, Nd, Hf, and Pb) data. Lithos 126, 402-418.
- 1275

1284

1271

- Martins, S., Mata, J., Munhá, J., Mendes, M.H., Maerschalk, C., Caldeira, R., Mattielli, N.
 2010. Chemical and mineralogical evidence of the occurrence of mantle metasomatism by
 carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineralogy and
 Petrology 99, 43-65.
- Masson, D.G., Le Bas, T.P., Grevemeyer, I., Weinrebe, W., 2008. Flank collapse and large scale landsliding in the Cape Verde Islands, off West Africa. Geochemistry, Geophysics,
 Geosystems 9 (7).
- Mata, J., Munhá, J. 2004. Madeira Island alkaline lava spinels: petrogenetic implications.
 Mineralogy and Petrology 81, 85-111.
- Mata, J., Moreira, M., Doucelance, R., Ader, M., Silva, L.C. 2010. Noble gas and carbon
 isotopic signatures of Cape Verde oceanic carbonatites: Implications for carbon provenance.
 Earth Planetary Science Letters 291, 70-83.
- McKenzie, D., O'Nions, R.K. 1991. Partial melt distributions from inversion of rare earth
 element concentrations. Journal of Petrology 32, 1021-1091.
- Menand, T. 2008. The mechanics and dynamics of sills in elastic layered media and their
 implications for the growth of laccoliths. Earth Planetary Science Letters 267, 93–99.
- Millet, M.A., Doucelance, R., Schiano, P., David, K., Bosq, C. 2008. Mantle plume
 heterogeneity versus shallow-level interactions: A case study, the São Nicolau Island, Cape
 Verde archipelago. Journal of Volcanology and Geothermal Research 176, 265-276.
- Mollo, S., Putirka, K., Misiti, V., Soligo, M., Scarlato, P. 2013. A new test for equilibrium
 based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline
 melts at post-eruptive conditions. Chemical Geology 352, 92-100.
- 1305

- Monnereau, M., Cazenave, A. 1990. Depth and geoid anomalies over oceanic hotspot swells: A
 global survey. Journal of Geophysical Research (Solid Earth) 95, 15-429.
- 1308
- Montelli, R., Nolet, G., Dahlen, F.A., Masters, G. 2006. A catalogue of deep mantle plumes:
 new results from finite-frequency tomography. Geochemistry, Geophysics, Geosystems 7,
 doi:10.1029/2006GC001248.
- 1312

- Mourão, C., Mata, J., Doucelance, R., Madeira, J., Millet, M-A., Moreira, M. 2012a.
 Geochemical temporal evolution of Brava Island magmatism: constraints on the variability of
 Cape Verde mantle sources and on the carbonatite-silicate magma link. Chemical Geology 334,
 44-61.
- 1317
- Mourão, C., Moreira, M., Mata, J., Raquin, A., Madeira, J. 2012b. Primary and secondary
 processes constraining the noble gas isotopic signatures of carbonatites and silicate rocks from
 Brava Island: evidence for a lower mantle origin of the Cape Verde plume. Contributions to
- 1321 Mineralogy and Petrology 163, 995-1009. 1322
- Munhá, J.M., Mendes, M.H., Palácios, T., Silva, L.C., Torres, P.C., 1997. Petrologia e geoquímica da erupção de 1995 e de outras lavas históricas da ilha do Fogo, Cabo Verde. In:
 Réffega A et al. (eds). A Erupção Vulcânica de 1995 na Ilha do Fogo, Cabo Verde. IICT, Lisboa, 171-186.
- 1327
 1328 Niu, Y., Wilson, M., Humphreys, E.R., O'Hara, M.J. 2011. The Origin of Intra-plate Ocean
 1329 Island Basalts (OIB): the Lid Effect and its Geodynamic Implications. Journal of Petrology 52,
 1330 1443-1468.
- 1331

1342

- 1335
 1336 Nobre Silva, I., Weis, D., Scoates, J. 2013. Isotopic systematics of the early Mauna Kea shield
 1337 phase and insight into the deep mantle beneath the Pacific Ocean. Geochemistry, Geophysics,
 1338 Geosystems 11, Q 09011. doi:10.1029/2010gc003176.
- Palme, H., O'Neill, H.S.C. 2003. Cosmochemical estimates of mantle compositions. In:
 Carlson, R. (Ed.). The mantle and core. Treatise on Geochemistry 2, 1-38.
- Paris, R., Giachetti, T., Chevalier, J., Guillou, H., Frank, N. 2011. Tsunami deposits in Santiago
 Island (Cape Verde archipelago) as possible evidence of a massive flank failure of Fogo
 volcano. Sedimentary Geology 239, 129-145.
- Paster, T.P., Schauwecker, D.S.Haskin, L.A. 1974. The behavior of some trace elements during
 solidification of the Skaergaard layered series. Geochimica et Cosmochimica Acta 38, 1549 1349
- 1350
 Pim, J., Peirce, C., Watts, A.B., Grevemeyer, I., Krabbenhoeft, A. 2008. Crustal structure and the origin of the Cape Verde Rise. Earth Planetary Science Letters 272, 422-428.
 1353
- Pollitz, F. 1991. Two-stage model of African absolute motion during the last 30 million years.
 Tectonophysics 194, 91-106.
- 1356
 1357 Putirka, K. 1997. Magma transport at Hawaii: Inferences based on igneous thermobarometry.
 1358 Geology 25, 69–72.
- 1359
 1360 Putirka, K. 1999. Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contributions to
 1361 Mineralogy and Petrology 135, 151-163.
- 1362
 1363 Putirka, K.D. 2008. Thermometers and barometers for volcanic systems. Reviews in
 1364 Mineralogy and Geochemistry 69, 61-120.
- 1365
- 1366 Putirka, K.D. 2017. Down the crater: where magmas are stored and why they erupt. Elements 1367 13, 11-16.
- 1368

<sup>Niu, Y.L., Wilson, M., Humphreys, E.R., O'Hara, M.J. 2012. A trace element perspective on the
source of ocean island basalts (OIB) and fate of subducted ocean crust (SOC) and mantle
lithosphere (SML). Episodes 35, 310-327.</sup>

- 1369 Putirka, K., Mikaelian, H., Ryerson, F., Shaw, H., 2003. New clinopyroxene-liquid
- 1370 thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications
- 1371 to lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist 88, 1542-1554.
- 1372
- 1373 Ramalho, R. 2011. Building the Cape Verde Islands. Springer Theses, 207 pp.
- 13741375 Ramalho, R., Helffrich, G., Cosca, M., Vance, D., Hoffmann, D., Schmidt, D.N. 2010. Episodic
- ramaino, R., Heirrich, G., Cosca, M., Vance, D., Horimann, D., Schmidt, D.N. 2010. Episodic
 swell growth inferred from variable uplift of the Cape Verde hotspot islands. Nature Geoscience
 3, 774-777.
- 1378
- Ramalho, R., Winckler, G., Madeira, J., Helffrich, G., Hipólito, A., Quartau, R., Adena, K.,
 Schaefer, J. 2015 Hazard potential of volcanic flank collapses raised by new megatsunami
 evidence. Science Advances 1, doi: 10.1126/sciadv.1500456.
- 1382

- 1383 Ribeiro, O. 1954. A ilha do Fogo e as suas erupções. Junta de Investigações do Ultramar,
 1384 Memórias, Série Geográfica I, Lisboa.
 1385
- Richter, N., Favalli, M., Dalfsen, E.Z., Fornaciai, A., Fernandes, R.M.S., Rodriguez, N.P., Levy,
 J., Victória, S.S., Walter, Th.R. 2016. Lava flow hazard at Fogo Volcano, Cape Verde, before
 and after the 2014-2015 eruption. Natural Hazards and Earth Systems 16, 1925-1951.
- 1388 and after the 2014-2015 eruption. Natural Hazards and Earth Systems 16, 1925-1951. 1389
- Ridolfi, F, Renzulli, A. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas:
 thermobarometric and chemometric empirical equations valid up to 1130 °C and 2.2 GPa.
 Contributions to Mineralogy and Petrology 163, 877–895.
- 1393
 1394 Rutherford, M.J. 2008. Magma ascent rates. In: Putirka, K.D. and Tepley, F.J., III (eds)
 1395 Minerals, Inclusions and Volcanic Processes. Mineralogical Society of America and
 1396 Geochemical Society Reviews, in Mineralogy and Geochemistry 69, 241-271
- Ryan, M. 1994. Neutral-buoyancy controlled magma transport and storage in mid-ocean ridge
 magma reservoirs and their sheeted-dike complex: A summary of basic relationships. In:
 Magmatic Systems. Eds: M. P. Ryan, Chap. 6, Academic, San Diego, Caliornia.
- Saki, M., Thomas, C., Nippress, S.E.J., Lessing, S. 2015. Topography of upper mantle seismic
 discontinuities beneath the North Atlantic: the Azores, Canary and Cape Verde plumes. Earth
 and Planetary Science Letters 409, 193-202.
- Satoh, H., Yamaguchi, Y., Makino, K. 2004. Ti-substitution mechanism in plutonic oxykaersutite from the Larvik alkaline complex, Oslo rift, Norway. Mineralogical Magazine, Vol. 68, 687–697.
- Silva, L.C., Mendes, M.H., Torres, P.C., Palácios, T., Munhá, J.1997. Petrografia das
 Formações Vulcânicas da Erupção de 1995 na Ilha do Fogo, Cabo Verde. In: Réffega, A. et al.
 (eds.). A Erupção Vulcânica de 1995, na Ilha do Fogo, Cabo Verde. IICT, Lisboa, 164-170.
- Staudigel, H., Park, K.H., Pringle, M., Rubenstone, J.L., Smith, W.H.F., Zindler, A., 1991. The
 longevity of the South-Pacific isotopic and thermal anomaly. Earth and Planetary Science
 Letters 102, 24–44.
- Stracke, A., Hofmann, A.W., Hart, S.R. 2005. FOZO, HIMU, and the rest of the mantle zoo.
 Geochemistry, Geophysics, Geosystems 6, Q05007, doi:10.1029/2004GC000824.
- 1419
 1420 Stracke, A., Bourdon, B. 2009. The importance of melt extraction for tracing mantle
 1421 heterogeneity. Geochimica et Cosmochimica Acta 73, 218-238.
- 1422

1416

- 1423 Stroncik, N.A, Klügel A., Hansteen, T. H. 2009. The magmatic plumbing system beneath El
- 1424 Hierro (Canary Islands): Constraints from phenocrysts and naturally quenched basaltic glasses
- in submarine rocks. Contributions to Mineralogy and Petrology 157, 593-607.

Formatted: Portuguese (Portugal)

Formatted: English (United States)

	45		
1483			
1482			
1481			
1480			1.15 li
14/9			Formatted: Line spacing: Multiple
1470	<u>۸</u>	1	color: Auto
1470			Formathada Fanta Mandana 10 - 5
14/6 1/77			
14/5			
14/4 1/75			
14/3	Sciences 14, 493-5/1.		
14/2	Zindier, A., Hart, S.K. 1986. Chemical geodynamics. Annual Reviews of Earth Planetary		
1471			
1470	Geophysical Journal International 193, 798-819.		
1469	Cape Verde mid-plate swell supported by a lithosphere of varying mechanical strength?		
1468	Wilson, D., Peirce, C., Watts, A., Grevemeyer, I. 2013. Uplift at lithospheric swells-II: is the		
1467			
1466			
1465	Cape Verde mid-plate swell. Geophysical Journal International 182, 531-550.		
1464	swells-I: Seismic and gravity constraints on the crust and uppermost mantle structure of the		
1463	Wilson, D., Peirce, C., Watts, A., Grevemeyer, I., Krabbenhoeft, A. 2013. Uplift at lithospheric		
1462			
1461	NE Atlantic. Journal of the Geological Society of London 147, 851-857.		
1460	Williams, C., Hill, I., Young, R., White, R.S. 1990. Fracture zones across the Cape Verde Rise,		
1459			
1458	10-28.		
1457	White, W.M. 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology 419.		
1456			
1455	Geochemistry, Geophysics, Geosystems 7, doi:10.1029/2006GC001283.		
1454	precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS		
1453	Pretorius, W., Mattielli, N., Scoates, J., Goolaerts, A. Friedman, R. Mahonev, I. 2006 High-		
1452	Weis, D., Kieffer, B., Maerschalk, C., Barling, J., de Jong, J. Williams, G. Hanano, D.		
1451	Journal of 1 outlogy 52, 501-557.		
1450	Journal of Petrology 32, 501-537		
1449	Watson S. McKenzie, D. 1991 Melt generation by plumes: A study of Hawaiian volcanism		
1448	and range, 5 W 051X. Journal of Geophysical Research 107, ECV 3, 1-21.		
1447	and Range SW USA Journal of Geonbusical Research 107 FCV 5 1-21		
1446	Wang K Plank T Walker I.D. Smith F.I. 2002 A mantle melting profile across the Basin		
1444 1445	520, 237-200.		
1443 1777	noispot nom the upper crust to the top of the lower mantie. Earth Planetary Science Letters 319-		
1442	vininik, L., Silveira, G., Kiselev, S., Farra, V., Weber, M., Stutzmann, E. 2012. Cape Verde		
1441	Vinnily I. Gilvaina C. Kisalay, C. Fanna V. Weber, M. Statemann, F. 2012, C. M. L.		Formatted: Portuguese (Portugal)
1440	168, 79-99.		
1439	Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters		
1438	Vervoort, J., Patchett, P., Blichert-Toft, J., Albarède, F. 1999. Relationships between Lu-Hf and		Formatted: English (United States)
1437			
1436	S. Vicente Island (Cape Verde). Comunicações do Instituto Geológico e Mineiro 90, 169-188.		
1435	Trindade, M.J., Mata, J., Munhá, J. 2003. Petrogenesis of the Quaternary magmatism from the		Formatted: Portuguese (Portugal)
1434			
1433	magmatism. Comunicações Geológicas 97, 35-62.		
1432	Geochemistry of lavas from Sal Island: Implications for the variability of the Cane Verde		
1431	Torres P Silva L.C. Munhá I Caldeira R Mata I Tassinari C 2010 Petrology and		
1429	actuanzação. Comunicações do instituto Geologico e Mineiro 84, A193-196.		
1428	1998. Carta Geológica das Erupções Históricas da Ilha do Fogo (Cabo Verde): revisão e		
1427	Torres, P.C., Madeira, J., Silva, L.C., Brum da Silveira, A., Serralheiro, A., Mota Gomes, A.		

1510 Captions

Fig. 1 – Geological map of the identified historical eruptions in Fogo (modified from Torres et al., 1998) superimposed on the digital terrain model of the island. The upper inset shows the location of the Island of Fogo in the archipelago of Cape Verde. The lower insets correspond to the legend of the geological map and to a structural sketch showing the geometry and location of the eruptive fissures of the last three eruptions (1951, 1995 and 2014/15), the Bordeira wall (continuous line represents the top; dashed line represents the base), and the crater rim of Pico do Fogo.

Fig 2 – Photos of the 2014/15 Fogo eruption: A- general view looking East of Pico do
Fogo with the active vents at the base of the cone, the flat region of Chã das Caldeiras
covered with the 1995 and 2014 lava flows and the south-eastern tip of the Bordeira
wall; the eruptive column rises 3 km above the vents and is dispersed by south-eastward

wind at an altitude of approximately 5 km (photo taken on November 29, 2014, at 15:44 1523 UTC); B- the alignment of active vents, viewed from the south, during a low activity 1524 1525 phase; the new cone is growing against the southeast flank of the 1995 cone (to the left); 1526 the lava flow is being fed by the southernmost vent; the lava flow at the base of the cone 1527 presents a lava channel and several skylights with degassing white columns (photo 1528 taken on December 2, 2014, at 19:35 UTC); C- night aspect of the central crater 1529 projecting plastic spatter fragments from the explosion of lava bubbles during an hawaiian lava lake phase (photo taken on November 28, 2014, at 20:48 UTC); D- aspect 1530 1531 of vulcanian activity at the northernmost vent producing ash-laden episodic eruptive columns with the wind blowing from the north; the white plume marks the position of 1532 the effusive south vent (photo taken on November 30, 2014, at 19:24 UTC); E- aspect 1533 of the surface of the active lava flow seen from the northwest presenting strong thermal 1534 1535 emission and degassing (photo taken on November 29, 2014, at 15:48 UTC); F- the 1536 village of Portela invaded by the front of the lava flow 3.5 km away from the effusive vent (photo taken on December 2, 2014, at 14:39 UTC). For more photos see 1537 Supplementary Material S1. 1538

1539

1540 Fig. 3 - Total alkali-silica (TAS) diagram (Le Maître, 2002) for the 2014 magmatic 1541 rocks and interstitial glass occurring in the matrix of the lava samples. The thick line is 1542 a compositional divider between alkaline and subalkaline volcanic rocks (MacDonald, 1968). The compositional fields of the 1951 and 1995 are also shown for comparison 1543 (data from Doucelance et al., 2003; Escrig et al., 2005; Hildner et al., 2011;). U1, U2, 1544 U3 and Ph correspond to the field designations of Le Maitre et al. (2002). For complete 1545 rock systematics of the 2014 rocks see Section 4.3). (2002) (U1: Tephrite/Basanite; U2: 1546 Pnotephrite; U3: Tephriphonolite; Ph: Phonolite). See the main text (Section 4.3) for a 1547 1548 details on the systematics.

Fig. 4 – Petrographic aspects of the lava flow samples showing the presence of clinopyroxene and kaersutite phenocrysts (A and B) in a hypocrystalline matrix with plagioclase, clinopyroxene and Fe-Ti oxides (A, B, C and D). Note the partial (A and B) or total (D) replacement of kaersutite by rhönite (opaque inosilicate of the aenigmatite group) which is marked by an arrow. Backscattered electron images showing a detailed view of the kaersutite rim replacement (E and F).

1556

Fig. 5 – Trace element characteristics of the 2014 eruptive products compared with
those of the 1951 and 1995 eruptions (see Hildner et al., 2012 and Hildner et al., 2011,
respectively). Normalizing values of Palme and O'Neil (2003).

1560

Fig. 6 - Pb isotopic compositions (A: ²⁰⁶Pb/²⁰⁴Pb vs. ²⁰⁷Pb/²⁰⁴Pb; B: ²⁰⁶Pb/²⁰⁴Pb vs. 1561 ²⁰⁸Pb/²⁰⁴Pb). Data sources: Northern Islands (Santo Antão, São Vicente and São 1562 Nicolau: Jørgensen and Holm, 2002; Holm et al., 2006; Millet et al., 2008) and 1563 Southern Islands (Fogo and Santiago: Doucelance et al., 2003; Barker et al., 2010; 1564 Martins et al., 2010). The 1951 and 1995 eruptions data are from Escrig et al., 2005. 1565 The heavy line represents the Northern Hemisphere Reference Line (NHRL) defined by 1566 1567 Hart (1984). Also plotted are the compositions of mantle components (see main text for references). 1568

1569

Fig. 7 – Sr, Nd (A) and Hf (B) isotope compositions. Data sources: the Santiago Island
field was defined using data from Barker et al. (2009) and Martins et al. (2010). See
caption of Fig. 6 for further references?. No Hf isotope data exist for the 1951 and 1995
eruptions.

1574

1575 Fig 8 - The role of clinopyroxene, olivine, amphibole and apatite fractionation on the
1576 liquid lines of descent for the 2014, 1995 and 1951 eruptions. In 8A and 8B fractional
48

1577	crystallization was modelled using the Rayleigh equation. Partition coefficients are from	
1578	Aignertorres et al. (2007), Adamused in calculations can be find in the Supplementary	
1579	Material S5-1 and Green (2006), Bottazzi et al. (1999), Beattie (1994), McKenzie and	
1580	O'Nions (1991) and Paster et al. (1974).data relative to the fractional crystallization	
1581	vectors in the S5-2. Circular ticks represent consecutive increments of 5%	
1582	crystallization. Crystallization vectors corresponds to F=0.7. Note that despite similar	
1583	liquid lines of descent the 2014 rocks are characterized by lower Nb/U ratios than their	
1584	1995 and 1951 counterparts.	
1585	<u>ــــــــــــــــــــــــــــــــــــ</u>	Formatted: Font color: Auto
1586	Fig. 9 – T vs. P diagram Temperature and pressure conditions for crystallization of	
1587	clinopyroxene and amphibole from the 2014 tephritic and phonotephritic rocks from the	
1588	2014 eruption .	
1589		
1590	Fig.10 - Mixing model between depleted mantle (DMM) and recycled oceanic crust	
1591	(ROC; \approx HIMU), and between ROC and EM1and the lower mantle (LM). Values for	
1592	these end-members are from Doucelance et al. (2003) (lower mantle), Iwamoro (2015)	
1593	(EM1, DMM) and Mourão et al. (2012) (ROC).	
1594	(2012a) (ROC). Given that the 2014 Fogo lavas are characterized by a diluted	
1595	contribution of ROC (see main text), making difficult its constraint, we considered 1.3	
1596	Ga as the age of recycling for mixing calculations, as determined by Mourão et al.	
1597	(2012a) for the neighbouring Brava Island. Additional line corresponds to a mixture	
1598	between recycled oceanic crust and lower mantle material in a 60:40 proportion, with	
1599	EM1. Circular marks represent 10% increments. See Supplementary Material S5-3 for	
1600	mixing calculations.	
1601		

Figure 5 Click here to download high resolution image

Figure 5 B&W Click here to download high resolution image

-1

ENd

-1

ENd

Sample	F14-1	F14-2	F14-4	F14-5	F14-6	F14-7	F14-8	F14-9	F14-10	F14-11	F14-12	F14-13	F14-14
	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Lava	Pyroc.	Pyroc.	Pyroc.	Pyroc.
Lithotype	Pht	Pht	Тер	Тер	Тер	Тер	Тер	Тер	Тер	Тер	Тер	Тер	Тер
SiO ₂ (wt%)	47.99	47.74	45.19	43.54	43.03	44.70	45.10	45.07	44.03	44.62	44.16	43.10	44.40
TiO ₂	2.50	2.54	3.16	3.58	3.81	3.37	3.31	3.17	3.46	3.34	3.38	3.71	3.37
AI_2O_3	19.28	18.53	17.58	16.80	15.35	16.86	16.85	17.58	16.54	16.84	16.80	16.28	16.66
Fe ₂ O ₃ *	2.12	2.26	2.28	2.53	2.74	2.40	2.36	2.32	2.54	2.47	2.51	2.66	2.47
FeO*	6.06	6.46	7.61	8.44	9.12	7.99	7.86	7.73	8.48	8.24	8.36	8.88	8.22
MnO	0.21	0.22	0.21	0.22	0.21	0.22	0.22	0.22	0.22	0.22	0.22	0.21	0.22
MgO	2.93	3.08	4.47	5.25	6.33	4.91	4.63	4.43	5.15	4.55	4.83	5.66	4.87
CaO	7.96	8.21	9.95	10.95	11.98	10.47	10.30	9.83	10.82	10.51	10.62	11.43	10.74
Na₂O	6.00	6.00	5.06	4.51	3.84	4.78	4.95	5.13	4.55	4.76	4.69	4.01	4.64
K₂O	4.17	4.16	3.48	3.09	2.64	3.29	3.39	3.51	3.12	3.31	3.30	2.97	3.26
P_2O_5	0.78	0.80	1.00	1.11	0.96	1.02	1.05	1.02	1.10	1.14	1.14	1.10	1.15
LOI	-0.17	-0.18	-0.26	-0.42	-0.53	-0.4	-0.37	-0.30	-0.51	-0.09	0.65	-0.04	-0.19
Mg#	46.25	45.98	51.14	52.58	55.32	52.26	51.21	50.53	51.97	49.63	50.75	53.16	51.34
S (%)	0.012	0.008	0.007	0.006	0.009	0.009	0.008	0.009	0.008	0.023	0.012	0.023	0.022
Sc (ppm)	5	5	11	15	23	13	12	11	14	11	12	17	13
V	217	223	280	322	363	306	299	286	322	300	305	353	311
Cr	30	<20	40	60	90	50	50	60	50	70	30	30	20
Co	17	20	26	30	37	28	27	26	29	28	29	34	29
Ni	6	20	17	22	42	21	19	17	31	15	16	28	17
Rb	97	108	79	68	58	76	78	79	70	75	75	65	72
Sr	1408	1403	1256	1213	1084	1242	1280	1295	1212	1243	1194	1140	1214
Y	27.40	31.70	29.40	29.40	27.60	29.80	29.80	29.10	29.90	30.20	30.20	28.90	29.90
Zr	433	422	394	382	336	394	406	412	384	387	374	360	390
Nb	117	133	112	98.4	89	110	112	111	107	113	108	97.4	110
Cs	1.10	1.20	0.90	0.80	0.60	0.80	0.90	0.90	0.80	0.80	0.80	0.70	0.80
Ва	1198	1204	1043	973	839	1013	1050	1076	1000	1025	1013	960	1024
La	81.30	103.00	78.00	/1.10	61.30	/5.10	//.00	78.10	/3.10	78.40	//.30	67.80	76.10
Ce	157	199	157	147	129	155	156	158	152	160	159	141	155
Pr	17.80	22.20	18.50	17.70	15.70	18.50	18.40	18.80	18.10	18.90	19.10	17.10	18.70
INU Sm	10 60	10.90	11 00	12.00	01.40	12.00	10.00	10.90	12 20	12.00	12.50	11 00	12.40
Sm	10.60	12.70	11.80	12.00	11.20	12.00	12.40	12.20	12.30	12.50	12.50	11.80	12.40
Eu	3.39	4.03	3.90	0.20	3.0Z	3.93	4.00 9.05	0.11	3.93 0.10	4.02	4.11	3.03 0.21	0.21
Gu Th	1.09	9.02	9.41	9.30	0.01	9.03	0.90	9.11	9.19	9.10	9.27	9.21	9.31
	5.01	6.82	6.60	6.63	6 35	6.61	6.60	6.56	6.61	6.70	6.78	6.30	6.61
Dy Ho	1.05	1.02	1 10	1 20	0.00	1 14	1 10	1 17	1 21	1 10	1.22	1 16	1 10
Fr	2 00	3.25	3.08	3 11	2.86	3.06	3.04	3.07	3.01	3.05	3 10	2 00	3.00
Tm	0.38	0.43	0.30	0.41	0.35	0.41	0.40	0.41	0.40	0.41	0.42	0.38	0.40
Vh	2 30	2.64	2 33	2 16	2.03	2 35	2 30	2 30	2 23	2 27	2 34	2 13	2.28
	2.00 0.33	2.04 0.37	2.00 0 33	0 32	2.03 0.20	2.00 0.32	∠.59 ∩ 33	2.30 0.31	2.23 0 31	2.21 0 31	2.34 0 3/	0.20	2.20 0.31
Hf	6 50	7 40	6 90	6 90	6 80	7 00	7 00	7 30	7 30	7 00	6 40	6 80	7 10
Ta	7 85	8 70	7 65	7 04	6.13	7 49	7.61	7 75	7.32	7.63	7 59	6 70	7.50
Th	9.38	11 20	8.09	6.83	5.62	7.58	7 59	7.95	7.15	7 54	7 54	6 24	7 32
U	2 41	2 64	1 98	1 64	1 40	1 84	1.87	1.92	1 74	1.95	1.91	1 49	1 81
-	<u> </u>	2.04	1.00	1.04	1.10	1.01	1.01	1.52	1.1.4	1.00	1.01	1.10	1.01

Table I: Whole rock chemical analyses of 2014 erupted lava flows and pyroclasts

(*) Fe₂O₃/FeO ratio calculated from the analysed Fe₂O₃^T by the method of Middlemost (1989).

	⁸⁷ Sr/ ⁸⁶ Sr	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁷⁶ Hf/ ¹⁷⁷ Hf	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	ε _{Nd}	€ _{Hf}	Δ7/4	Δ8/4
F14-1	0.703655 ± 15	0.512774 ± 7	0.282940 ± 5	18.9901 ± 08	15.5642 ± 7	38.8462 ± 19	2.65	5.93	1.47	26.01
F14-2	0.703669 ± 12	0.512769 ± 7	0.282946 ± 5	18.9993 ± 09	15.5625 ± 8	38.8509 ± 23	2.55	6.15	1.20	25.38
F14-5	0.703689 ± 10	0.512762 ± 8	0.282954 ± 4	18.9811 ± 10	15.5588 ± 9	38.8470 ± 24	2.43	6.42	1.03	27.19
F14-6	0.703638 ± 09	0.512781 ± 7	0.282951 ± 5	18.9766 ± 10	15.5618 ± 9	38.8578 ± 21	2.79	6.33	1.37	28.80
F14-7	0.703613 ± 09	0.512789 ± 8	0.282946 ± 5	18.9717 ± 10	15.5632 ± 9	38.8341 ± 23	2.94	6.15	1.57	27.03
F14-10	0.703647 ± 10	0.512772 ± 7	0.282959 ± 5	18.9799 ± 07	15.5611 ± 7	38.8467 ± 15	2.62	6.62	1.27	27.30
F14-11	0.703656 ± 10	0.512773 ± 7	0.282938 ± 4	19.0008 ± 10	15.5609 ± 8	38.8553 ± 22	2.63	5.88	1.03	25.63
F14-14	0.703626 ± 09	0.512769 ± 6	0.282958 ± 5	18.9859 ± 09	15.5590 ± 7	38.8480 ± 18	2.55	6.57	0.99	26.70

Table II: Isotope analyses for selected samples

S1 Click here to download Background dataset for online publication only: S1-Photos.docx S2 Click here to download Background dataset for online publication only: S2- Standards, duplicate and blank_2017.xlsx S3 Click here to download Background dataset for online publication only: S3- Mineral Chemistry and Glass compositions_2017.xls S4 Click here to download Background dataset for online publication only: S4- Normative Compositions.xlsx S5 Click here to download Background dataset for online publication only: S5- Modelling.xlsx