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Modelling an articulated raft wave energy converter

I.F. Noad1 and R. Porter

School of Mathematics, University Walk, Bristol, BS8 1TW, UK

Abstract

In this paper we develop an efficient mathematical solution method for an articulated raft wave
energy converter. Representative of Pelamis and the Cockerell raft design, it is comprised of
a series of floating pontoons connected via hinges. Power is generated through the relative
motions of adjacent elements which are excited by the incident wave as it passes along the length
of the device. Using an efficient semi-analytic solution we are able to generate results more
quickly than would be possible using a panel-based numerical code such as WAMIT. This allows
us to explore the parameter space quickly and thus to develop an understanding as to what
elements of raft-type wave energy converter design allow it to generate power so successfully.
We find that the capture factor increases proportionately to the number of pontoons, a focusing
effect that allows the device to absorb far more power than that which is directly incident upon
its frontage. Hinge position and device proportions are also significant with results favouring
long, narrow rafts made up of pontoons of increasing length from fore to aft.
Keywords: hydrodynamic, wave energy converter, articulated raft, optimisation, mathematical
model.

1. Introduction

Ocean waves have long been of interest as an abundant source of energy and a wide variety
of devices has been conceived over the years with the intention of harnessing their potential.
Indeed, in response to the oil shortage of the 1970’s the UK government initiated a major Wave
Energy programme. This attracted the attention of a wide range of scientists and engineers and5

many ideas for capturing wave energy were proposed. Of particular note is the seminal work
of Stephen Salter [15], published in Nature in the mid 1970’s it demonstrates that efficiencies up
to 80% may be achieved by a cam-shaped cylindrical device called the Salter ’duck’. This was
one of the earliest wave energy designs to gain funding from the programme along with the
Bristol cylinder of Evans [3], the NEL oscillating water column [6] and the Cockerell raft of Sir10

Christopher Cockerell [2].
In general, wave energy device concepts fall into three main categories: terminators, attenua-

tors and point absorbers. Terminators are oriented perpendicular to the incident wave direction
to provide the maximum wave frontage of the device. Meanwhile, attenuators extend parallel
to the incident wave direction with the intention of progressively extracting energy along the15

length of the device and point absorbers are small relative to the incident wavelength, generally
being deployed in large arrays. All are designed with the intention of converting the oscillatory
motion of sea waves into a usable form of renewable energy. An assessment of the performance
of various wave energy device types can be found in [14], for example.

Early work was predominantly focused on terminator type devices, perhaps in part due20

to the extensive use of two-dimensional wave tank testing in which a device filled the entire
width of the tank. Salter’s ‘duck’, the Bristol Cylinder and the NEL are all terminator type
devices and whilst Cockerell’s raft was originally conceived as a longer attenuator type raft
chain, early experiments were disappointing and the design quickly evolved into a terminator
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type device too. With a single hinge and a wide frontage, this modified design was shown25

both theoretically and in wave tank testing to be capable of efficiencies comparable to Salter’s
‘duck’. However, terminators are not the only successful wave energy devices and more recently
attenuator type wave energy converter design has been advocated in the development of the
Pelamis, an articulated raft-type device of Ocean Power Delivery [19]. This used many of
the early findings of the Cockerell raft as a starting point. Returning to an attenuator-type30

design by employing a longer, narrower planform than the original it consists of five articulated
sections. Although having now ceased to operate, Pelamis attracted substantial investment
with promising results seen in numerical modelling and tank testing leading to its full-scale
deployment. Indeed, bought by E-ON UK in 2009, it was the first wave power machine to be
purchased by a utility company.35

Work based around the modelling of articulated raft-type devices has been largely driven
by particular device concepts. The contributions of Haren, Mei and Newman, inspired by the
Cockerell raft, are of particular note. In [4] Haren and Mei analyse the performance of a two-
dimensional raft numerically using shallow water theory. They found that a raft made up of
‘two or three’ pontoons is sufficient and additional pontoons don’t significantly contribute to40

performance. This is a feature of the two-dimensional theory and is due to the attenuation of
the wave along the device’s length, little energy being available to the aft pontoons in a two-
dimensional setting. Newman and Mei [5] found that for optimal operation of an attenuator as
much power must be absorbed by the aft section as by the fore, something which we see is not
possible for a long chain of rafts in a two-dimensional setting. Meanwhile, in Newman’s work45

[7] a slender-body theory was employed to produce theoretical upper bounds on the power
which may be absorbed by a small system of pontoons. It was found there that for a system of
three pontoons, both fore and aft hinges contribute equally to power absorption, the focusing
effect of the raft supplying wave power to the aft of the device from beyond the wave frontage of
the device. However, this is only investigated for a small raft made up of three pontoons. More50

recently, much of the development work associated with the Pelamis device has been carried
out using numerical CFD and experimental wave tank testing.

In this paper we have set out to develop a better understanding as to what elements of raft-
type wave energy converter design allow it to generate power so successfully. In particular, a
number of questions remain unanswered: Is an articulated raft wave energy converter better55

suited to an attenuator-type design or terminator? What are the optimal device dimensions
and how many pontoons are needed? Does the wave focusing effect found for a small, slender
system apply for a larger number of hinges? Rather than concentrating on a particular device
concept, such as the slender aspect ratio of the Pelamis or the wider planform of the Cockerell
raft, a more general model will be considered. This allows a larger parameter space of applica-60

bility when considering the factors which play a role in device performance. Another interesting
factor is the role played by the positioning of the hinges along the length of the device. It was
suggested to be important in [4] for a two-dimensional device, asymmetry being beneficial to
the performance, whilst in [7] the optimum power absorbed by a system of three pontoons was
found to be insensitive to variations in the hinge positions when analysed using a slender-body65

theory and equal spacings were favoured in this work. So, what effect do the hinge positions
have and how dependent on device proportions are they?

Numerical solvers such as WAMIT [18] could be used to answer such questions. However,
we take advantage of the configuration of the raft and, by assuming a shallow draught, can
apply analytic methods to the problem which leads to efficient computations. This allows us to70

explore parameter space quickly to the extent that we have embedded the solution of the three-
dimensional problem within an optimisation scheme. Thus, in this paper we are concerned
with a three-dimensional model for an articulated raft-type wave energy converter comprised
of a series of buoyant, rectangular pontoons hinged together about a series of horizontal axes
and situated in deep water. The pontoons oscillate as the incident wave propagates along the75

length of the raft and power take-off mechanisms are applied in the hinges, designed to resist
the relative motions of adjacent pontoons.

In developing a mathematical solution we adopt a linearised hydrodynamic theory and
exploit it to decompose the problem for a system of N pontoons into N + 2 component parts.
The complete wave structure interaction is thus described by a scattering problem associated80
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with the scattering of waves by a rigid plate along with N + 1 additional problems associated
the radiation of waves due to forced oscillatory motion in a set of generalised modes. We take
advantage of the recent work of Porter [13] for the efficient solution to problems involving rigid
plates lying on the surface of the water and extend it here. It is shown how an application of
Fourier transforms in the plane of the free surface leads to N + 2 integral equations in terms of85

unknown functions relating to the hydrodynamic pressure forces exerted on the underside of
the raft. Application of a Galerkin expansion method with a prudent choice of basis functions
then reduces each integral equation to a low-order system of linear equations the solutions of
which may generally be efficiently and accurately computed. However, there are some cases
in which the solution becomes numerically intense. In the case of large aspect ratios, when90

the raft becomes either particularly wide or particularly long, more terms are required in the
Galerkin expansions increasing the numerical expense. The number of pontoons is also a factor
in computation time since the number of integral equations increases with N. These cases will
be considered in another paper [10], where approximations will be developed from the full
theory presented here, leading to greatly simplified computations.95

Theoretical results for the optimisation of power from a single device are well-known [17]
and using these early results optimum power take-off may be readily identified for a system of
two symmetrical pontoons. However, for larger systems with multiple points for power take-off
then little analytic progress has been made. In [8] the maximum power take-off is determined
for a symmetric configuration of three pontoons in antisymmetric and symmetric modes of100

motion. However, since the optimal tuning required in each of these modes is distinct their
superposition provides a theoretical upper bound rather than an achievable optimum for the full
device motion. Meanwhile, in [11] analytic results determining bounds on the optimal tuning
of power take-off were derived for an array of two symmetric flap-type devices. Here, through
a judicious choice of generalised modes we may extend those results to produce tight analytic105

bounds on optimal mechanical damping for practical power take-off systems in a symmetric
configuration of three pontoons.

In section 2 of the paper we outline the hydrodynamic problems associated with the scatter-
ing and radiation of waves by the articulated raft model. We then go on to develop a description
of the device motions in section 3. The use of generalised modes of motion is discussed broadly110

along with various sensible choices which may be made to suit our purposes. Section 4 deals
with expressions for power absorption. A general expression for power take-off is derived and
two special cases in which further analytic progress may be made are set out in more detail.
The method of Porter [13] is then extended in section 5 to derive integral equations associated
with the radiating modes, approximate solutions of which are then presented in section 6. Key115

elements of the numerical calculations are discussed in section 7 with results being presented
in section 8. A variety of factors are considered, from the overall device proportions to the
hinge positions and the number of pontoons of which the raft is comprised. Finally, in section
9 conclusions are drawn and suggestions for future work are given.

2. Formulation120

We use Cartesian coordinates with the origin located in the mean free surface level and the
fluid extending into z < 0. The fluid has density ρ and is of infinite depth, inviscid and in-
compressible. Fluid motions are irrotational and of small amplitude. A hinged raft of thickness
h and density ρs < ρ floats on the surface of the water with shallow draught d = ρsh/ρ. It is
made up of a series of N rectangular sections as shown in Figure 1, each of width 2b and hinged
along x = Xn for n = 1, ..., N − 1, −b < y < b. This definition is extended to the fore and aft
end-points which are located at x = X0, XN so that the planform of the nth pontoon is given by

Dn = {(x, y)|Xn−1 < x < Xn,−b < y < b} (2.1)

and its length by an = Xn − Xn−1. Choosing to centre the raft at the origin and to denote its
overall length by 2a we may identify X0 = −a and XN = a. The horizontal plane occupied by
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x = X0 X1 Xn−2... Xn−1 Xn Xn+1 ... XN−1 XN

z = 0

an
−ζn−1

ζn

Figure 1: Some key parameters imposed on a side view (and close-up) of the articulated raft converter used in the
hydrodynamic model.

the entire raft is then

D =
N⋃

n=1

Dn = {(x, y)| − a < x < a,−b < y < b} . (2.2)

Damping devices placed along each hinge enable power take-off, exerting a force opposing
and in proportion to the rate of change of angle made between adjacent plates, Θ̇n(t) for n =
1, ..., N − 1.

We assume time-harmonic incident waves of small steepness and angular frequency ω, mak-
ing an angle θ with respect to the positive x-direction. The governing equation to be satisfied125

by the velocity potential Φ(x, y, z, t) is then

∇2Φ = 0, for z < 0 (2.3)

with the combined linearised dynamic and kinematic free surface condition

Φz +
1
g

Φtt = 0, on z = 0 for (x, y) 6∈ D (2.4)

where g is the gravitational acceleration. Meanwhile, the kinematic condition on the raft itself
is

Φz(x, y, 0, t) =
(x− Xn−1)ζ̇n(t) + (Xn − x)ζ̇n−1(t)

Xn − Xn−1
for (x, y) ∈ Dn, n = 1, ..., N (2.5)

where ζn(t) is the vertical displacement of the node at x = Xn for n = 0, ..., N and dots denote130

time derivatives. Finally, there is decay in the velocity far from the surface,

|∇Φ| → 0 as z→ −∞, (2.6)

and diffracted and radiated waves are outgoing in the far field.
The assumptions resulting in the linearised equations above allow us to both factor out

harmonic time-dependence, working instead in the frequency domain, and to decompose the
velocity potential into two component parts. Thus, we write

Φ(x, y, z, t) = <
{(
−iAg

ω
φS(x, y, z) + φR(x, y, z)

)
e−iωt

}
and ζ̇n(t) = <

{
ηne−iωt

}
(2.7)

where A is the amplitude of the incident wave, φS(x, y, z) represents the scattering of the inci-
dent wave by a fixed horizontal raft and φR(x, y, z) represents the radiation of waves due to the
forced oscillatory motion of the raft. Using (2.7) in (2.3), (2.4) and (2.6) we find that φS and φR

4



satisfy

∇2φS,R(x, y, z) = 0 on z < 0 (2.8)

along with decay in the velocity far from the surface

|∇φS,R| → 0 as z→ −∞ (2.9)

and the combined kinematic and dynamic free surface condition

φS,R
z (x, y, 0) = KφS,R(x, y, 0) for (x, y) /∈ D (2.10)

where, K = ω2/g is the wavenumber. Further, from (2.5) the kinematic condition on the fixed
raft associated with the scattering problem is

∂φS

∂z
(x, y, 0) = 0 for (x, y) ∈ D, (2.11)

whilst the forced motions of the radiation problem are described by

∂φR

∂z
(x, y, 0) =

(x− Xn−1)ηn + (Xn − x)ηn−1

Xn − Xn−1
for (x, y) ∈ Dn, n = 1, ..., N. (2.12)

Finally, the incident wave is given by

φI (x, y, z) = eiK(x cos θ+y sin θ)eKz (2.13)

and the potentials φR and φD ≡ φS − φI describe outgoing waves at large distances from the
raft.135

In order to study the performance of the device we must first develop a description of its
motion. It is possible to derive a system of equations in terms of the rotational and vertical
motions of each of the individual pontoons. Indeed, this is the method used in [4] for a two-
dimensional raft. These equations may then be solved for the unknown vertical velocities of the
nodes ηn determining the right-hand-side of the kinematic condition (2.12). However, due to140

the mismatch of vertical and rotational parameterisations this leads to a somewhat untidy set
of equations. Here, we instead describe the motion of the entire raft as the superposition of a
set of generalised modes as advocated in [8].

3. Generalised Modes

We exploit the linearity of the governing equations to decompose the motion of the raft into
the sum of N + 1 linearly independent ‘plate modes’ (e.g. [8],[9]). Thus, we write the kinematic
condition on the raft (2.12) as

φR
z (x, y, 0) =

N

∑
n=0

Un fn(x) (3.1)

where the functions fn(x) are prescribed functions forming a basis for the plate motion (defined
later) and the coefficients Un are unknown generalised velocities for n = 0, ..., N. Correspond-
ingly, we further decompose the radiation velocity potential, writing

φR(x, y, z) =
N

∑
n=0

Unφn(x, y, z) (3.2)
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where φn(x, y, z), for n = 0, ..., N, represent radiation potentials associated with the forced
motion of the raft in each of the N + 1 modes and satisfy

∂φn

∂z
(x, y, 0) = fn(x) for (x, y) ∈ D. (3.3)

The generalised velocities used in this approach to describe the motion of the raft are determined145

by a set of equations of motion which will be outlined below.

3.1. Equations of Motion
The equations of motion of the articulated raft are written in terms of the generalised modes

as

−iωMU = XS + (iωA− B)U + Xe −
i
ω

CU (3.4)

where XS is the exciting force vector with components given by

XS
n = ρgA

∫∫
D

φS(x, y, 0) fn(x) dx dy for n = 0, ..., N (3.5)

and A and B are the real, symmetric added mass and radiation damping matrices associated
with the radiation of waves with components defined by

iωAmn − Bmn = iωρ
∫∫
D

φm(x, y, 0) fn(x) dx dy for n, m = 0, ..., N. (3.6)

Meanwhile, C and M encode the symmetric hydrostatic restoring and inertial forces, with ele-
ments given (e.g. [8]) by

Cmn = ρg
∫∫
D

fm(x) fn(x) dx dy and Mmn = ρsh
∫∫
D

fm(x) fn(x) dx dy for n, m = 0, ..., N.

(3.7)

Finally, Xe is the vector of external mechanical torques due to the power take-off in the hinges,
each having a real damping rate λn for n = 1, ..., N − 1. It is given by

Xe = −DU (3.8)

where D incorporates the power take-off parameters λn and depends on the choice of modes.
Since we have not chosen to specify the functions fn(x) yet we cannot specify D at this stage:
this will follow in section 3.2. However, we note that a choice of modes of motion in which150

at most one hinge is engaged by each mode would result in a diagonal matrix D. This has
advantages in the power take-off calculations of section 4 where we will consider the optimal
tuning of the power take-off parameters.

Defining the the so-called impedance matrix

Z = B− iω
(

M + A− C/ω2
)

(3.9)

then allows us to rewrite the equation of motion (3.4) as

(D + Z)U = XS. (3.10)

3.2. Choice of modes
There are various sensible choices which may be made for the modes of motion, each of

which has its own benefits. One possible choice is a system of modes in which each node is
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allowed to oscillate in turn whilst all others remain fixed, this is represented by the functions

f k
n(x) =

(x− Xm−1)δm,n − (x− Xm)δn ,m−1

Xm − Xm−1
when x ∈ Dm for n = 0, ..., N (3.11)

where δm,n is the Kronecker delta. This allows the algebraic connection between the generalised155

modes described above and the equations of motion formulated in [4] in terms of the rotational
and vertical motions of each of the pontoons to be easily identified. Meanwhile, the choice of
decomposition into symmetric and antisymmetric modes made by Newman in [7] for a system
of three pontoons allows for optimal tuning of each mode and gives an insight into the contri-
butions made by symmetric and antisymmetric motions. However, since the conditions on the160

power take-off parameters required for optimum performance in each of the two modes cannot
in general be achieved simultaneously their sum produces a theoretical maximum instead of an
achievable optimum for the power absorbed by the combined motion.

f0(x) f1(x)

f3(x)

f2(x)

Figure 2: Illustration of ‘plate modes’ for a raft made up of three pontoons.

The choice which will be discussed in detail here is different to that proposed by Newman
in [8] and suits our ultimate goal of assessing power. The rigid body modes associated with
heave and pitch are isolated and each of the remaining N − 1 modes are chosen to engage just
a single hinge. The two rigid body modes are represented by

f0(x) = 1 and fN(x) = x, (3.12)

corresponding to heave and pitch respectively, whilst the remaining N − 1 hinged modes are
given by

fn(x) = |x− Xn| for n = 1, ..., N − 1. (3.13)

For an illustration of the modes in the case of a raft made up of three pontoons, see Figure 2.
The generalised velocities associated with this choice of modes and contained within U =165

(U0, ..., UN), describe the vertical velocity in the heave mode for n = 0 and angular velocities
associated with the hinged and pitching modes for n = 1, ..., N. Meanwhile, the key advantage
of this choice is seen in the components of the vector of external mechanical torques Xe which
are given by Xe,n = −λnUn. Thus, since each bending mode engages just a single hinge, the
power take-off is conveniently described by the diagonal matrix D = diag{0, λ1, ..., λN−1, 0}.170

4. Power

Since we are interested in the performance of the raft as a wave energy converter our atten-
tion now turns to the time-averaged power absorption due to wave forces on the raft. This can
be written as

W =
1
2
<
{

X†
wU
}

(4.1)
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where Xw = XS + (iωA− B)U is the wave force and the dagger denotes the conjugate trans-
pose. Then, using (3.4) and noting that C and M are real and symmetric, we find

W = −1
2
<
{

X†
e U
}
=

1
2

U†DU, (4.2)

the second equality resulting after substitution for the external mechanical torque from (3.8)
since D is a real, diagonal matrix. Next, substituting for the velocity U = (Z + D)−1 XS from
(3.10) we gain

W =
1
2

X†
SE†DEXS (4.3)

where E = (Z + D)−1. Since the power take-off mechanism takes the form of mechanical
damping in the hinges power is only absorbed in the N − 1 bending modes and not in the
rigid body modes. Despite this the elements in the expression for power given in (4.3) have
dimension N + 1. It is thus convenient to rearrange such that the rigid body modes correspond
to the first two entries in any row or column. E may then be determined using a standard block
matrix inversion formula (e.g. [1], (2.8.18)) resulting in the following expression for power

W =
1
2
X †

S

(
Z† + Λ

)−1
Λ (Z + Λ)−1 XS. (4.4)

This process has resulted in an expression for power dependent on the full, diagonal power
take-off matrix Λ = diag(λ1, ..., λN−1). The elements of the matrix Z = (Znm) are given by

Znm = Znm −
Z0nZ0m

Z00
− ZnN ZmN

ZNN
for n, m = 1, ..., N − 1, (4.5)

and the elements of the vector XS = (X S
n ) are given by

X S
n = XS

n −
Z0n

Z00
XS

0 −
ZnN
ZNN

XS
N for n = 1, ..., N − 1 (4.6)

in which cursive capitals have been used to identify the newly defined matrices and their ele-
ments. The matrix size has thus been reduced from N + 1 in (4.3) to N− 1 in (4.4) reflecting the
fact that the two rigid body modes do not contribute to power.

Differentiating (4.4) with respect to λi and setting it equal to zero for i = 1, ..., N results in175

a system of N non-linear equations for λi, i = 1, ..., N. These equations determine the optimal
values for the power take-off in the hinges, λi, i = 1, ..., N. In general these equations must be
solved numerically. However, further analytic progress may be made in two particular cases.
The first is a system of two identical pontoons with a single hinge and the second is a system
of three symmetrically configured pontoons with identical power take-off in both hinges. When180

considering the factors that play a role in device performance it is sensible to start with the
simplest configuration and build up the picture from there. The analytic results that follow will
be very useful for efficiently assessing device performance in the early stages of this process.

4.1. Case N=2: two pontoons
In the particular case of two identical pontoons with a single hinge then (4.4) gives

W =
1
2

λ1|X S
1 |2

|Z11 + λ1|2
. (4.7)

After using the identity |λ1 +Z11|2 = 2λ1 (<{Z11}+ |Z11|) + (λ1 − |Z11|)2 this may be rewrit-
ten as

W =

∣∣X S
1

∣∣2
4(< {Z11}+ |Z11|)

(
1− (λ1 − |Z11|)2

|λ1 +Z11|2

)
. (4.8)

8



By inspection we may then see that the raft is optimally tuned when λ1 = |Z11| and so

Wopt =

∣∣X S
1

∣∣2
4(< {Z11}+ |Z11|)

. (4.9)

This is then maximised when = {Z11} = 0, a condition which is determined by hydrodynamics
alone and gives

Wmax =

∣∣X S
1

∣∣2
8< {Z11}

. (4.10)

If the maximum is achieved when ω = ω∗ then setting the damping to λ1 = B11 − B2
01/B00 −185

B2
N1/BNN ensures the maximum power is extracted at ω = ω∗.

4.2. Case N=3: three pontoons
In the case of three symmetrically configured pontoons with two hinges and uniform power

take-off parameters λ1 = λ2 ≡ λ, then we may extend the results of [11], for an array of two
identical surging wave energy devices, to give

W =
λ

2

(
|X S

1 +X S
2 |2

|Z11 +Z12 + λ|2 +
|X S

1 −X S
2 |2

|Z11 −Z12 + λ|2

)
. (4.11)

This is equivalent to a decomposition into symmetric and antisymmetric modes. Writing

f±(x) =


±|x− X1| for X0 < x < X1

0 for X1 < x < X2

|x− X2| for X2 < x < X3

(4.12)

then we find that X S
± = (X S

2 ±X S
1 )/2 and Z± = (Z11 ±Z22)/2 and so (4.11) may be rewritten

as

W =
λ

2

(
|X S

+|2

|Z+ + λ/2|2 +
|X S
−|2

|Z− + λ/2|2

)

=

∣∣X S
+

∣∣2
4(< {Z+}+ |Z+|)

(
1− (λ/2− |Z+|)2

|λ/2 +Z+|2

)
+

∣∣X S
−
∣∣2

4(< {Z−}+ |Z−|)

(
1− (λ/2− |Z−|)2

|λ/2 +Z−|2

)
(4.13)

where the second line results after substituting for |λ/2 + Z±| as in (4.8). The optimal tuning
in the symmetric and antisymmetric modes is thus given by λ = 2|Z+| = |Z11 + Z22| and
λ = 2|Z−| = |Z11 − Z22| respectively. Optimal tuning of the entire system is a compromise
between the antisymmetric and symmetric modes resulting in bounds on the optimal power
take-off parameter being given by

min {|Z11 +Z12|, |Z11 −Z12|} ≤ λopt ≤ max {|Z11 +Z12|, |Z11 −Z12|} . (4.14)

Unfortunately, there aren’t any cases in which this can be found exactly since the physical set
up doesn’t allow us to prescribe X S

1 = ±X S
2 unless θ = π/2 in which case X S

1 = X S
2 ≡ 0 and

there is no power absorption anyway. However, in practice the bounds are fairly tight and may190

be used to either approximate the optimum damping or accelerate its determination through
numerical optimisation.

A typical example of the bounds on λ given in (4.14) is shown in figure 3, results having
been computed using the solution method which follows in sections 5 and 6. |Z11 −Z12| (short
dashed line), |Z11 +Z12| (long dashed line) and λopt as computed using an optimisation proce-195

dure (crosses) are plotted as a function of Ka in figure 3(a). We see that the numerical optimum
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Figure 3: Figures demonstrate the bounds on the optimum power take-off. In figure (a) we see the power take-off
parameter, λ and in (b) the capture factor, l̂, each plotted as a function of Ka. Results are shown for a system of three
equally sized pontoons with a/b = 3 and d/2b = 0.15. The crosses show results computed using an optimisation
procedure to find optimal λ at each incident wave frequency whilst the dashed and dotted lines show lower and upper
bounds on optimal λ. The solid line shows results for a particular, fixed value of λ which has been chosen to fit within
the bounds as much as possible.

clearly lies within the analytic bounds for the full range frequencies. A particular, fixed value
of λ (solid line) is also chosen by eye to lie within the bounds for a broad range of frequencies.
Figure 3(b) plots the capture factors achieved by setting λ to the different values shown in figure
(a) with line styles chosen correspondingly. We see that since the bounds on λ are fairly tight200

the capture factor computed using the single fixed value of λ (solid line) lies fairly close to the
numerical optimum, making this a good way to either choose a fixed λ directly or to accelerate
the numerical optimisation by providing tight bounds.

The choice of symmetric and antisymmetric modes used here is related to that made by
Newman in [7]. In Newman [7] this provided a useful insight into the role played by the205

symmetric and antisymmetric modes and was also used to provide a theoretical upper bound
on the maximum power absorption, Wmax. This was determined by superposition of theoretical
maximum power absorption achieved in each of the symmetric and antisymmetric modes. The
tuning and resonance conditions required to achieve maximum power absorption were not
considered. Here, we have shown that the conditions required for optimum power absorption210

in each of the modes cannot be simultaneously satisfied except where there is no available
power. Thus, we instead consider a compromise between the optimum power absorption in
each mode, providing tight bounds on the optimum power take-off parameter λ for the entire
system.

5. Derivation of integral equations215

Advantage can be taken of the recent work of Porter [13] and the mathematical techniques
proposed therein for the solution of problems involving rigid plates lying on the surface of the
water are extended here.

5.1. The scattering problem
The scattering problem deals with the diffraction of the incident wave by a fixed, horizontal

raft and thus the solution in this case is simply an application of [13]. This gives an integral
representation for φS(x, y, z),

φS(x, y, z) = φI(x, y, z) +
K

4π2

∫ ∞

−∞

∫ ∞

−∞

P(α, β)

K− k
eiαxeiβyekz dα dβ, (5.1)
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where k =
√

α2 + β2 and

P(α, β) =
∫∫
D

φS(x, y, 0)e−iαxe−iβy dx dy. (5.2)

Then, setting z = 0 results in an integral equation for φS(x, y, 0),

φS(x, y, 0) +
(
KφS

)
(x, y, 0) = eiK(x cos θ0+y sin θ0) for (x, y) ∈ D, (5.3)

where

(Kφ) (x, y, 0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

K
k− K

∫∫
D

φ(x′, y′, 0)e−iαx′ e−iβy′ dx′ dy′ eiαxeiβy dα dβ. (5.4)

5.2. The radiation Problem220

The solution method for the radiation problem is an extension of the above with the forcing
provided by the incident wave being replaced by the forced oscillatory motions of the raft. We
outline the mathematical development in more detail in the following. First, we define the
Fourier transform of φn(x, y, z) by

φn(α, β, z) =
∫ ∞

−∞

∫ ∞

−∞
φn(x, y, z)e−iαxe−iβy dx dy for n = 0, ..., N. (5.5)

Then, taking Fourier transforms of (2.8) and (2.9), it follows that(
d2

dz2 − k2
)

φn(α, β, z) = 0 for z < 0 (5.6)

where k is defined as in the scattering problem above and φn → 0 as z → −∞ for n = 0, ..., N.
Using (2.10) and (3.3) the kinematic and free surface conditions combine to give(

d
dz
− K

)
φn(α, β, 0) = In(α, β)− KPn(α, β) for n = 0, ..., N. (5.7)

where

Pn(α, β) =
∫∫
D

φn(x, y, 0)e−iαxe−iβy dx dy (5.8)

and

In(α, β) =
∫∫
D

∂φn

∂z
(x, y, 0)e−iαxe−iβy dx dy =

∫∫
D

fn(x)e−iαxe−iβy dx dy. (5.9)

Thus, we find that the Fourier transformed velocity potential is given by

φn(α, β, z) =
In(α, β)− KPn(α, β)

k− K
ekz for n = 0, ..., N. (5.10)

Invoking the inverse Fourier transform of (5.10) then results in an integral representation for
φn(x, y, z),

φn(x, y, z) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

In(α, β)− KPn(α, β)

k− K
eiαxeiβyekz dα dβ for n = 0, ..., N. (5.11)

Setting z = 0, as before, we gain a set of integral equations for φn(x, y, 0) for n = 0, ..., N,

φn(x, y, 0) + (Kφn) (x, y, 0) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

In(α, β)

k− K
eiαxeiβy dα dβ, for (x, y) ∈ D (5.12)
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where K was defined in (5.4).

6. Solution of integral equations

To access numerical solutions of (5.3) and (5.12) we employ a Galerkin expansion method.
We thus expand the unknown functions associated with the scattered waves in terms of a com-
plete set of orthogonal basis functions

φS(x, y, 0) '
∞

∑
p=0

∞

∑
r=0

cS
prvp

( x
a

)
vr

(y
b

)
(6.1)

for n = 0, ..., N where vr(t) = 1
2 eirπ/2Pr(t) and Pr(t) are orthogonal Legendre polynomials

satisfying ∫ 1

−1
Pr(t)Ps(t) dt =

2δr,s

2r + 1
and

∫ 1

−1
Pr(t)e−iσt dt = 2e−irπ/2 jr(σ), (6.2)

where jr(σ) denote Spherical Bessel functions. This choice of orthogonal Legendre polynomials
is identical to that made in [13]. This is not the only possible choice of basis functions, we
could have used Fourier series for example, but Legendre polynomials provide the maximum
simplification in the numerical system. Substituting for this expansion in the integral equation
(5.3), multiplying through by v∗q(x/a)v∗s (y/b) and integrating over (x, y) ∈ D results in the
following system of linear equations

cS
qs

4(2q + 1)(2s + 1)
+

∞

∑
p=0

∞

∑
r=0

cS
prKpqrs = DS

qs for s, q = 0, 1, 2, .... (6.3)

Using a similar expansion for φn(x, y, 0) in which the coefficients in (6.1) are replaced by 4ac(n)pr
then results in

c(n)qs

4(2q + 1)(2s + 1)
+

∞

∑
p=0

∞

∑
r=0

c(n)pr Kpqrs = D(n)
qs for s, q = 0, 1, 2, ... and n = 0, ..., N (6.4)

where

Kpqrs =
Kab
4π2

∫ ∞

−∞

∫ ∞

−∞

jp(αa)jq(αa)jr(βb)js(βb)
k− K

dα dβ, (6.5)

whilst

DS
qs = jq(Ka cos θ)js(Kb sin θ) (6.6)

and

D(n)
qs =

Kab
4π2

∫ ∞

−∞

∫ ∞

−∞

jq(αa)js(βb)j0(βb)
k− K

Fn(αa) dα dβ with Fn(t) =
1

2Ka

∫ 1

−1
fn(aζ)e−iζt dζ

(6.7)

for n = 0, ..., N. We note that the right-hand side of (6.4) is of a similar form to the integral Kpq0s
only with the replacement jp(αa)→ Fn(αa).

Due to the symmetries of the integrand Kpqrs vanishes if either p + q or r + s is odd. This re-
dundancy results in the reduction of (6.3) to a set of four uncoupled systems of linear equations

cS
2q+ν,2s+µ

4(4q + 2ν + 1)(4s + 2µ + 1)
+

∞

∑
p=0

∞

∑
r=0

cS
2p+ν,2r+µK2p+ν,2q+ν,2r+µ,2s+µ = DS

2q+ν,2s+µ (6.8)
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for s, q = 0, 1, 2, ... and ν, µ = 0, 1 whilst (6.4) is similarly reduced to a set of two uncoupled
systems of linear equations

c(n)2q+ν,2s

4(4q + 2ν + 1)(4s + 1)
+

∞

∑
p=0

∞

∑
r=0

c(n)2p+ν,2rK2p+ν,2q+ν,2r,2s = D(n)
2q+ν,2s (6.9)

for s, q = 0, 1, 2, ..., ν = 0, 1 and n = 0, ..., N where

K2p+ν,2q+ν,2r+µ,2s+µ =
Kab
π2

∫ ∞

0

∫ ∞

0

j2p+ν(αa)j2q+ν(αa)j2r+µ(βb)j2s+µ(βb)
k− K

dα dβ, (6.10)

along with

D2q+ν,2s+µ = j2q+ν(Ka cos θ)j2s+µ(Kb sin θ) (6.11)

and

D(n)
2q+ν,2s =

Kab
2π2

∫ ∞

0

∫ ∞

0

j2q+ν(αa)j2s(βb)j0(βb)
k− K

(Fn(αa) + (−1)νFn(−αa)) dα dβ. (6.12)

7. Numerical Calculations225

7.1. Numerical computation of integrals and truncation of infinite summations
For computational purposes it is convenient to express the functions fn(x) in terms of the

Legendre polynomial basis functions when evaluating Fn(αa). Using the first two Legendre
polynomials, P0(x) = 1 and P1(x) = x, the rigid body modes may be written as

f0(x) = 2v0

( x
a

)
and fN(x) = −iav1

( x
a

)
(7.1)

whilst the bending modes defined in (3.13) may be expressed using more complicated argu-
ments as

fn(x) =

(Xn + a)
[
v0

(
2x+(a−Xn)

Xn+a

)
+ iv1

(
2x+(a−Xn)

Xn+a

)]
if x ≤ Xn

(a− Xn)
[
v0

(
2x−(Xn+a)

a−Xn

)
− iv1

(
2x−(Xn+a)

a−Xn

)]
if x ≥ Xn

(7.2)

for n = 1, ...., N − 1. Thus,

Fn(αa) =

{
1

Ka j0(αa) for n = 0
−i
2K j1(αa) for n = N

(7.3)

and

Fn(αa) =
1

4Ka2

[
(Xn + a)2e−iα(a−Xn)/2 (j0 (α(a + Xn)/2) + ij1 (α(a + Xn)/2))

+ (Xn − a)2e−iα(a+Xn)/2 (j0 (α(a− Xn)/2)− ij1 (α(a− Xn)/2))
]

for n = 1, ..., N − 1. This allows us to express the integrals defining D(n)
qs in terms of a linear

combination of trigonometric functions and spherical Bessel functions of more complicated
arguments.

In order to evaluate the integrals defining Kpqrs and D(n)
qs numerically we follow the numeri-230

cal methods outlined in [13] leading to principal-value integrals which decay like O(1/k4). The
numerical systems also converge rapidly and infinite summations are truncated at p = q =
2P + 1 and r = s = 2R + 1 for the sake of numerical computation. Numerical experimenta-
tion suggests that as few as P = R = 5 modes in the Galerkin approximation are sufficient to
produce results which are accurate enough for graphical purposes in all results presented.235
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For comparison, panel methods numerical codes would require in the order of N = 1000−
10, 000 panels for a large structure [12] and the numerical effort would be of order N3. In con-
trast, the developed here is a spectral method which requires inversion of systems of equations
between N = 10− 100 in size, although there is also numerical effort involved in calculating
matrix elements. A direct comparison of numerical effort has not been assessed.240

7.2. The Response Amplitude Operator
The formulation is based on a linearised theory of water waves and there has been an a priori

assumption that excursions of the raft from its equilibrium position are small in order that the
results retain validity. We must therefore be careful to ensure that this assumption is justified
in the results presented. To do this we consider the size of the response of nth node, given in
terms of the generalised modes of motion as

ηn =
N

∑
m=0

Um fm(Xn) = fT(Xn)U. (7.4)

We recall from (3.10) that

U = (D + Z)−1 XS (7.5)

and so, since from (2.7) the maximum vertical excursion of the nth node for a particular incident
wave frequency is given by |ζn| = |ηn/ω|, we have

∣∣∣∣ ζn

H

∣∣∣∣ = |ηn|
Hω

=

∣∣∣fT(Xn) (D + Z)−1 XS

∣∣∣
Hω

, (7.6)

the (dimensional) measure of the maximum vertical displacement of the nth node per unit
height of incident wave. This is termed the RAO or response amplitude operator.

7.3. The physical parameters of the device
We define the following matrices of dimensionless quantities

Â =
M−1

w AM−1
w

16ρa2b
, B̂ =

M−1
w BM−1

w
16ρωa2b

, and D̂ =
M−1

w DM−1
w

16ρωa2b
(7.7)

where Mw = diag (Mw,n) is the matrix with diagonal elements given by Mw,0 = 1 and Mw,n = a
for n = 1, ..., N. Thus, the impedance is represented by

Ẑ =
M−1

w ZM−1
w

16ρωa2b
(7.8)

whilst the dimensionless exciting force is given by

X̂S =
M−1

w XS
16ρgAab

. (7.9)

To determine a measure of the effectiveness of the device we also need to normalise the power.
In order to do this we use the capture width of the wave energy converter. This is defined by

l =
W

Winc
(7.10)

for an incident wave Winc = ρg|A|2/4K and represents the equivalent crest length of incident
wave from which all the energy has been absorbed. This still has the dimensions of length, so for
the purpose of results we use the so-called capture factor, which is further non-dimensionalised
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Figure 4: The figures show (a) the maximum capture factor l̂max , (b) the condition for resonance = {Z11} /< {Z11},
(c) the condition for tuning |Z11| and (d) a realisation of the capture factor l̂ with λ tuned to the peak of l̂opt. Results
correspond to a system of two pontoons with a centrally positioned hinge and d/2b = 0.125 fixed along with a/b = 0.5
(solid line), 1 (dashed line), 5 (dotted line) and 10 (chained line).

by the width of the device

l̂ = l/2b (7.11)

Thus, for a value of l̂ greater than one then wave energy is absorbed from beyond the wave245

frontage on the device.
A uniform power take-off λ1 = λ2 = ... ≡ λ will be used throughout results as little im-

provement was seen when greater freedom was allowed. In addition, a specific gravity of 0.5
is chosen to be physically reasonable and numerical experimentation with this parameter has
shown it to have little qualitative effect.250

8. Results

In this paper we have applied and extended the mathematical techniques proposed by Porter
in [13] for problems involving rigid plates wherein results for rigid body modes have been
validated. In a subsequent paper by the authors [10] results for power absorption, dependent
on the hinged modes, are compared to various limiting approximations. Good agreement with255

two-dimensional and slender body results is seen for limiting aspect ratios along with rapid
convergence to a continuously-flexible model with increasing N.

Since the focus of the present paper is on the energy absorbing capacity of the articulated
raft wave energy converter our attention now turns to the capture factor, l̂, defined by (7.11).
Throughout the results we will explore the different factors which play a role in the success260

of raft-type devices, from the device proportions to hinge positioning and the number of con-
stituent pontoons. To this end, we begin to build up our picture with the simplest case of two
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pontoons connected via a single hinge. In this case we have analytic results for optimum and
maximum power take-off as discussed in section 4.1. This allows us to get a clear idea of how
the pontoon dimensions and hinge position impact performance.265

There are three key ingredients in the determination of the capture factor for a single hinged
raft. First the upper bound set by l̂max, which (from (4.10)) is given by

l̂max =
|X S

1 |2

16b< {Z11}Winc
. (8.1)

This wants to be as high as possible and depends on the exciting force so is key to directionality.
Second,

2< {Z11}
< {Z11}+ |Z11|

=
2

1 +
√

1 + (= {Z11} /< {Z11})2
(8.2)

which determines resonance, multiplying l̂max to set l̂opt. Clearly this wants to be as close to
unity as possible, something which may be achieved by minimising the factor = {Z11} /< {Z11};
resonance occurs when this is equal to zero. The final factor to play a part is

1− (λ− |Z11|)2

|λ +Z11|2
(8.3)

which incorporates the power take-off parameter λ. This describes the tuning of the device and
multiplies l̂opt to set l̂, the actual capture factor which may be achieved for a fixed value of λ.
Optimal tuning requires λ = |Z11| and in general we want |Z11| to vary as little as possible to
allow for broad-banded tuning.

We begin by considering the optimum device dimensions. In figure 4, the elements which270

play a role in power absorption are illustrated for a variety of pontoon proportions in the
simplest case of a two pontoon system with a centrally positioned hinge. We vary the length to
width ratio, considering a/b = 0.5, 1, 5 and 10 whilst the cross-sectional aspect ratio remains
fixed at d/2b = 0.125, experimentation having shown little quantitative change as a result of
varying this parameter within the small draught regime. Realisations of the capture factor tuned275

to the peak of l̂opt are shown in 4(d). The capture factor l̂ increases for large values of a/b with
the peak exceeding 1 for long and narrow devices. This demonstrates the device’s capacity to
absorb power beyond that which is directly incident on its frontage. In order to understand the
elements which play a role in this behaviour we turn our attention to figures 4(a)-(c). First, we
examine the positioning of the resonant peak under the upper bound set by l̂max. Resonance280

is a key factor in wave energy converter design and we would like the device to be resonant
where the upper bound is at its highest. However, comparison of figures 4(a) and (b) shows
that for all aspect ratios resonance occurs at a much larger value of Ka, positioning the resonant
peak beneath l̂max where it is at its lowest. However, in the case of long devices the peak of
the capture factor does not coincide with resonance. Instead an advantageous non-resonant285

peak in the optimum capture factor is seen for lower wave numbers, where the upper bound is
higher. This is due to = {Z11} /< {Z11} remaining small for values of Ka less than the resonant
frequency resulting in a near-resonant effect. The other factor to play a part is the tuning.
The raft is optimally tuned when λ = |Z11|, a quantity which is shown in figure 4(c). Large
fluctuations are seen for short rafts, ruling out broad-banded tuning in this case, whilst for long290

rafts |Z11| has a shallower gradient and l̂ consequently sits close to l̂opt for a broad range of
frequencies. These factors combine to favour large values of a/b as seen in 4(d), though it is
worth noting that this increase in power absorption is not proportionate to the increase in length
and so a balance must be struck between the increase in capture factor and the device cost. For
all subsequent results we select an average pontoon length corresponding to an/2b = 2.5 since295

this displays the beneficial behaviour of a longer device whilst also accounting for the increasing
costs. For example, tuning the peak of figure 4(d) with a/b = 10 to an incident wave period
T = 9s would result in a raft 130m long and 26m wide with 3m draught.

Performance may be improved further by varying the hinge position. In figure 5(a)-(d)
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Figure 5: In all figures results are shown for a/b = 5 and d/2b = 0.125 whilst solid, dashed, dotted and chained
curves correspond to pontoon ratios 1:1, 3:5, 2:6 and 1:7 respectively. Figures (a)-(c) show the effect of moving the hinge
position on the maximum capture factor, resonance and tuning whilst figure (d) shows the actual capture factors for
hinge positions forwards of centre when the raft is tuned to the peak of l̂opt.

results are shown for a system of two pontoons with a central hinge position (solid line) along300

with pontoon ratios 3:5 (dashed), 2:6 (dotted) and 1:7 (chained). The three key ingredients in
the capture factor mentioned above are shown in figures 5(a-c) whilst the actual capture factors
achievable for hinge positions forwards of centre are shown in figure (d). Realisations in which
the raft is optimally tuned at the peak of l̂opt have been selected for the purposes of illustration.
The first ingredient, l̂max, is key to the directional bias of the asymmetry since it is the only point305

at which the exciting force plays a role. This upper bound increases as the hinge position moves
towards the fore of the raft and decreases as it moves towards the aft. The second factor is shown
in 5(b) and demonstrates resonance. The raft has the lowest resonant frequency when the hinge
is positioned centrally with the resonant peak moving to higher wave numbers as the hinge
position becomes increasingly asymmetric. For small asymmetries, like a 3:5 ratio, this effect310

is outweighed by the higher upper bound, but for more extremely asymmetric configurations
it leads to a lower peak in l̂. Finally, tuning is demonstrated in figure 5(c) and here the least
variation is seen for the 1:7 pontoon ratio (the greatest asymmetry). It is clear that a shorter
aft pontoon is universally detrimental to performance whilst some gains may be seen with a
shorter fore. A relatively small introduction of asymmetry with the ratio 3:5 sees an overall315

improvement over the symmetric case whilst the benefit of more extreme ratios is seen mostly
for larger values of Ka. Choosing the ideal pontoon ratio thus depends on the size of the raft
relative to the incident wavelength (which sets Ka). For the purposes of the present work we
decide to use the ratio 3:5 when considering hinge positioning for larger systems.

Based on the pontoon ratios investigated for two pontoons we now consider larger systems320

of 3 and 5 pontoons. Realisations of the capture factor tuned to the peak of the numerically
determined optimum are plotted in figure 6(a) for a system of three pontoons. We consider the
four configurations shown to scale in 6(b), all variations in pontoon size following a 3:5 ratio.
Results follow the same pattern established for a single hinged raft with an overall improve-
ment seen for the configuration with shorter pontoons positioned to the fore whilst positioning325
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ratio. Solid, dotted, dashed and chained curves correspond to different configurations as shown in figure (b).
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3:5 ratio. In figure (a) the optimum capture factor is plotted as a function of Ka for the various configurations shown in
figure (c). In figure (b) the optimum capture factor l̂opt corresponding to increasing pontoon length from fore to aft is
then plotted (solid line) along with three realisations of l̂ (dotted, dashed and chained lines).
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Figure 8: In figure (a) the normalised actual capture factor l̂/N is plotted against Ka/N for an/2b = 2.5 and d/2b =
0.125 fixed. Systems of N = 2, 3, 4, 5, 6 and 7 pontoons are shown by solid, long dashed, short dashed, dotted, long
chained and short chained curves respectively. The power take-off parameter λ is tuned to the peak of the l̂opt. In figure
(b) the corresponding average displacement per unit height of incident wave of the hinges and end-points |ζn/H| is
shown for n = 0 (the fore end-point, solid curve), n = 1, 2, 3 (the hinges, long dashed, short dashed and dotted curves)
and n = 4 (the aft end-point, chained curve) in the case when N = 4.
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Figure 9: The capture factor due of the fore hinge l̂1 and the capture factor of the aft hinge l̂N−1 associated with
systems of N = 3, 4 and 5 pontoons are plotted in figure (a). The solid, dashed and dotted line styles correspond to
systems made up of N = 3, 4 and 5 pontoons respectively. Meanwhile, figure (b) shows the capture factor associated
with each hinge for a system made up of N = 5 pontoons, l̂n for n = 1, .., 4. Solid, long dashed, short dashed and
dotted curves correspond to l̂1, l̂2, l̂3 and l̂4 respectively. In all cases an/2b = 2.5 and d/2b = 0.125 are fixed and the
power take-off parameter λ is tuned to the peak of l̂opt.

shorter pontoons to the aft can be seen to be detrimental to performance. The symmetric con-
figuration shifts to favour larger Ka, but is otherwise equivalent to equal sizing. In figure 7 we
then consider hinge positioning for a system of 5 pontoons. The hinges are positioned so that all
variations in pontoon sizing follow a 3:5 ratio. The optimum capture factor is shown as a func-
tion of Ka for a variety of configurations in figure 7(a). Again, decreasing pontoon length from330

fore to aft is universally detrimental to performance, the best results being seen with shorter
pontoons positioned to the fore. Increasing pontoon length with a larger variations in sizing
(three sizes within a single configuration, shown by the dotted line) we see a broad-banded
response. The realisations shown in figure 7(b) demonstrate the potential to tune such a device
to a variety of incident wave spectra.335

Finally, we consider the effect of increasing the number of pontoons in the system. We fix the
pontoon proportions at an/2b = 2.5 and d/2b = 0.125. Figure 8 shows the normalised actual
capture factor l̂/N, tuned to the peak of the optimum capture factor for systems of 2, 3, 4, 5,
6 and 7 pontoons. The capture factor can be seen to be of order N, the focusing effect of the
raft drawing in waves from oblique angles towards the aft of the device. Thus, each additional340

pontoon contributes to power absorption equally, allowing the device the potential to absorb
far more energy than that which is directly incident upon its frontage. This limitless increase
in capture factor with length was also identified in [16] in which the maximum capture width
Wmax/Winc for an attenuating line absorber was considered. The vertical excursions (or RAO)
|ζn/H| were computed in all cases and are shown for the example of a system of 4 pontoons in345

figure 8(b). The peak displacement remains less than the incident wave height, validating the
use of linear theory. The fore end-point undergoes a considerably larger maximum excursion
than the hinges, the motion then being attenuated along the length of the raft until the tail end
where a slight increase in excursion is seen as the remaining wave energy is transmitted beyond
the device. This behaviour is consistent across all system sizes considered.350

It is of interest to see how power absorption is divided between the hinges along the length
of the device. To that end we consider the capture factor associated with each individual hinge
l̂n = Wn/(2bWinc) for n = 1, ..., N − 1. Here, Wn is the power absorbed by each hinge and is
given by the rate of working of the mechanical torque against the motion of the raft in the nth
mode,

Wn = −1
2
<
{

X∗e,nUn
}
=

1
2

λn|Un|2
2bWinc

for n = 1, ..., N − 1, (8.4)

in which the ∗ notation denotes the complex conjugate. Figure 9(a) shows the behaviour of
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the capture factor associated with fore and aft hinges, l̂1 and l̂N−1, with increasing N. We see
that for N = 3, 4 and 5 pontoons there is little change in power absorption, with the fore hinge
seeing a small improvement due to the addition of pontoons and the aft pontoon seeing a small
deterioration. This behaviour continues for larger N. Meanwhile, the power absorption of the355

hinges along the length of the device in the 5 pontoon case is shown in figure 9(b). Here we see
that the power absorption potential attenuates along the length of the device, with the largest
contribution being made by the fore hinge and the smallest by the aft. Since the contributions
to power due to the fore and aft hinges see little change with increasing pontoon number this
results in the contribution to the capture factor due to the addition of pontoons consistently360

falling in the middle with its peak at l̂n ' 0.5. In all cases the power take-off parameter λ has
been tuned to the peak of l̂opt (λ̂ = 0.000119/

√
Kh in the case of N = 5, for example).

9. Conclusions

In this paper we have developed an analytical approach to calculations assessing the per-
formance of an articulated raft wave energy converter. The solution method is fully three-365

dimensional and this along with its high efficiency has allowed us to explore a large parameter
space quickly and easily when considering the factors which play a role in the success of raft
type converters. We have compared a wide variety of possible configurations rather than fo-
cusing on parameters specific to a particular design such as Pelamis or Cockerell’s raft. Three
significant factors are the device proportions, the hinge position and the number of pontoons370

of which the raft is comprised. A long, narrow raft has been shown to perform best, favour-
ing an attenuator type raft design. Positioning the hinges such that pontoon length increases
from fore to aft of the raft also has clear benefits whilst placing shorter pontoons to the aft is
universally detrimental to performance. Relatively small deviations from equal pontoon sizing
provide a small, but broad-banded improvement whilst greater variation in pontoon lengths375

allows for tuning to a multi-peaked spectrum. Finally, the number of pontoons used in the raft
is of particular interest. In this paper we have shown the capture factor to be of order N for
large rafts, thus demonstrating the capacity of a slender raft-type device to continue to absorb
as much energy from the aft pontoon as the number of pontoons increases. This focusing effect
is a cornerstone of the success of attenuator type devices and allows an articulated raft to absorb380

far more energy than that which is directly incident on its frontage.
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