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I. Introduction 

The primary excitatory neurotransmitter in the vertebrate CNS, L-glutamate, 

activates three distinct families of ligand-gated ion channel receptors that are named for 

agonists by which they are selectively activated, N-methyl-D-aspartate (NMDA), (S)-2-

amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and kainate (Monaghan 

et al., 1989; Watkins and Evans, 1981; Watkins et al., 1990). While AMPA and kainate 

receptors underlie fast excitatory synaptic transmission in the CNS, NMDA receptors 

(NMDARs) activate relatively slow currents that trigger multiple calcium-dependent 

intracellular responses that play key roles in learning, memory, and cognition. Excessive 

NMDAR activation contributes to neuronal cell death in stroke, traumatic brain injury 

and various neurodegenerative diseases (Kamat et al., 2016; Koutsilieri and Riederer, 

2007; Pivovarova and Andrews, 2010), whereas too little NMDAR activity impairs CNS 

function and, in particular, may cause symptoms seen in schizophrenia and autism 

(Coyle, 2006; Kantrowitz and Javitt, 2010; Lisman et al., 2008). Thus, the recent 

development of agents that augment NMDAR activity (positive allosteric modulators, or 

PAMs) offers an alternative approach for treating neuropsychiatric disorders such as 

schizophrenia that are not fully managed by currently available therapies. Of the genetic 

defects associated with schizophrenia, some would be expected to cause global NMDAR 

hypofunction – for example a defect in D-serine racemase (Luykx et al., 2015; 

Schizophrenia Working Group of the Psychiatric Genomics, 2014), whereas other defects 

would be expected to affect subpopulations of NMDARs such as defects in genes which 

code for individual NMDAR subunits (Greenwood et al., 2012; Sun et al., 2010). Thus, 

global and subtype-specific NMDAR PAMs may each have patient-specific indications. 
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NMDAR complexes are composed of subunits from seven genes - GluN1, 

GluN2A-GluN2D, and GluN3A-GluN3B (Ishii et al., 1993; Mishina et al., 1993; Monyer 

et al., 1994). These subunits assemble into hetero-tetrameric complexes in various 

combinations resulting in functionally-distinct NMDARs. Many NMDARs are thought to 

be composed of two GluN1 subunits and two GluN2 subunits. The different alternatively 

spliced GluN1 isoforms have largely similar pharmacological and physiological 

properties whereas the GluN2 subunits confer distinct physiological, biochemical, and 

pharmacological properties to the NMDAR complex (Buller et al., 1994; Hollmann et al., 

1993; Ikeda et al., 1992; Monyer et al., 1994; Sugihara et al., 1992; Vicini et al., 1998). 

These properties, combined with their varied developmental profiles and anatomical 

distributions (Watanabe et al., 1992, 1993), imply that GluN2 subtype-selective agents 

would have distinct physiological and therapeutic properties.  

Previously we have reported multiple aromatic ring structures substituted with a 

carboxylic acid group that display NMDAR PAM and/or NAM activity with varied 

patterns of subunit selectivity (Costa et al., 2012; Costa et al., 2010; Irvine et al., 2012; 

Irvine et al., 2015). These agents are allosteric modulators interacting at the ligand 

binding domain (LBD) but they do not compete with either glutamate or glycine binding, 

nor do they bind at the N-terminal regulatory domain or within the ion channel (Costa et 

al., 2010). In contrast to agents that potentiate NMDARs containing specific GluN2 

subunits, e.g. pregnenalone sulphate (PS) (Horak et al., 2006), UBP710 - 

GluN2A/GluN2B; UBP512 - GluN2A (Costa et al., 2010); GNE-8324 - GluN2A 

(Hackos et al., 2016); CIQ – GluN2C/GluN2D (Mullasseril et al., 2010); PYD-106 – 

GluN2C (Khatri et al., 2014), the phenanthroic acid derivative UBP646 (Costa et al., 
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2010) and the cholesterol derivative SGE-201 (Paul et al., 2013) potentiate all four 

GluN1/GluN2 subtypes. Thus, in cases where it would be useful to augment global 

NMDAR function, agents with these properties may be beneficial.  

In this study, we characterize the functional properties of two naphthoic acid 

derivatives related to UBP646 which robustly enhance currents at each of the four 

GluN1/GluN2 NMDARs, UBP684 (6-(4-methylpent-1-yl)-2-naphthoic acid) and 

UBP753 ((RS)-6-(5-methylhexan-2-yl)-2-naphthoic acid). We also identify mechanisms 

by which these agents can enhance NMDAR currents.  

 

2. Methods 

2.1 Compounds 

UBP684, UBP753 and UBP792 ((E)-3-hydroxy-7-(2-nitrostyryl)-2-naphthoic acid) were 

synthesized and their structures were confirmed by 1H- and 13C-nuclear magnetic 

resonance (NMR) as well as mass spectroscopy. All compounds had elemental analyses 

where the determined percentage of C, H and N were less than 0.4 % different from 

theoretical values. Details of synthesis and purification will be reported elsewhere. Stock 

solutions were prepared in dimethyl sulfoxide at a concentration of 50 mM. The working 

solution was prepared in recording buffer just before the experiment. Other chemicals 

were obtained from Sigma unless stated otherwise.  

2.2 GluN1 Subunit Expression in Xenopus oocytes 

cDNA encoding the NMDAR GluN1-1a subunit was a generous gift of Dr. 

Shigetada Nakanishi (Kyoto, Japan). cDNA encoding the GluNA, GluN2C and GluN2D 

subunits were kindly provided by Dr. Peter Seeburg (Heidelburg, Germany) and the 
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GluN2B [5
’
UTR] cDNA was the generous gift of Drs. Dolan Pritchett and David Lynch 

(Philadelphia, USA). GluN1 and GluN2A constructs with cysteine substitution at N499C 

and Q686C in GluN1 (hereafter GluN1C) and at K487C and N687C in GluN2A (hereafter 

GluN2AC) were kindly provided by Dr. Gabriela Popescu (University of Buffalo, USA). 

Plasmids were linearized with Not I (GluN1a, GluN1C, GluN2AC), EcoR I (GluN2A, 

GluN2C and GluN2D) or Sal I (GluN2B) and transcribed in vitro with T3 (GluN2A, 

GluN2C), SP6 (GluN2B) or T7 (GluN1a, GluN2D) RNA polymerase using mMessage 

mMachine transcription kits (Ambion, Austin, TX, USA).  

Oocytes were removed and isolated from mature female Xenopus laevis (Xenopus 

One, Ann Arbor, MI, USA) as previously described (Buller et al., 1994). Procedures for 

animal handling were approved by the University of Nebraska Medical Center’s Animal 

Care and Use Committee in compliance with the National Institutes of Health guidelines. 

NMDAR subunit RNAs were dissolved in sterile distilled H2O. GluN1a and GluN2 

RNAs were mixed in a molar ratio of 1:3. 50 nl of the final RNA mixture was 

microinjected (15-30 ng total) into the cytoplasm of oocyte. Oocytes were incubated in 

ND-96 solution at 17°C prior to electrophysiological assay (1-5 days). 

2.3 Two electrode voltage clamp electrophysiology  

Electrophysiological responses were measured using a standard two-microelectrode 

voltage clamp (Warner Instruments, Hamden, Connecticut, model OC-725B) designed to 

provide fast clamp of large cells. The recording buffer contained (mM) 116 NaCl, 2 KCl, 

0.3 BaCl2, 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.005 

EGTA (or 0.01 diethylenetriaminepentaacetic acid, DTPA), and pH was adjusted to 7.4. 

Response magnitude was determined by the steady-state plateau response elicited by bath 
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application of 10 µM L-glutamate plus 10 µM glycine at a holding potential of –60 mV 

unless stated otherwise. Response amplitudes for the four heteromeric complexes were 

generally between 0.2 to 1.5 µA. Compounds were bath applied in recording buffer 

(Automate Scientific 8- or 16-channel perfusion system) and the responses were digitized 

for quantification (Digidata 1440A and pClamp-10, Molecular Devices). Dose-response 

relationships were fit to a single-site (GraphPad Prism, ISI Software, San Diego, CA, 

USA), using a nonlinear regression to calculate IC50 or EC50 and % maximal response. 

2.4 Hippocampal neuron whole-cell patch clamp recordings. 

Whole-cell electrophysiology was conducted as previously described (Chopra et al., 

2015). Briefly, mice (~30-35 day old) were anesthetized by isoflurane and decapitated in 

accordance with the approved protocols of Creighton University IACUC. The brain was 

rapidly removed and placed in ice-cold artificial cerebrospinal fluid (ACSF) of the 

following composition (in mM): 130 NaCl, 24 NaHCO3, 3.5 KCl, 1.25 NaH2PO4, 0.5 

CaCl2, 3 MgCl2 and 10 glucose saturated with 95% O2/5% CO2. 300 μm thick sagittal 

sections were prepared using vibrating microtome (Leica VT1200, Buffalo Grove, IL, 

USA). Whole-cell patch recordings were obtained from CA1 pyramidal neurons in 

voltage-clamp configuration at +40 mV with an Axopatch 200B (Molecular Devices, 

Sunnyvale, CA, USA). Glass pipette with a resistance of 5–8 mOhm were filled with an 

internal solution consisting of (in mM) 110 cesium gluconate, 30 CsCl, 5 HEPES, 4 NaCl, 

0.5 CaCl2, 2 MgCl2, 5 BAPTA,2 Na2ATP, and 0.3 Na2GTP (pH 7.35). Slices in the 

recording chamber were initially maintained in artificial cerebrospinal fluid (ACSF) 

containing 1.5 mM CaCl2 and 1.5 mM MgCl2. NMDAR responses were then recorded in 

ACSF in the presence of 0.5 μM tetrodotoxin, 100 μM picrotoxin and 10 μM NBQX with 
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and without UBP684 in calcium-free recording buffer to improve compound solubility. 

Signal was filtered at 2 kHz and digitized at 5 kHz using an Axon Digidata 1440A 

analog-to-digital board (Molecular Devices, CA).   NMDAR responses were obtained by 

briefly applying agonists (100 µM NMDA + 100 µM glycine) dissolved in the 

extracellular buffer using a Picospritzer II. The application duration ranged from 30-50 

ms. UBP684 (60 µM) was applied to the bath solution and changes in agonist responses 

were noted.   

2.5 HEK cell patch-clamp recordings 

Cell transfection and electrophysiology were performed as described previously (Bresink 

et al., 1996). Briefly, HEK 293 cells were transfected with GluN1a and GluN2A in the 

presence of 5 μg of eGFP (enhanced Green Fluorescent Protein) DNA in order to aid 

visualization of the transfected cells. Electrophysiological experiments were performed at 

room temperature. External bath solution contained (in mM): 145 NaCl, 2 KCl, 10 

HEPES, 10 Glucose, 0.5 CaCl2, 0.01 EDTA, 0.05 Glycine. Internal pipette solution 

contained (in mM): 110 Cs Gluconate, 5 HEPES, 0.5 CaCl2, 2 Mg ATP, 0.3 mM Na 

GTP, 30 CsCl2, 8 NaCl, 5 BAPTA; pH 7.35. Cells were visualized using a 20 x objective 

and phase contrast optics on an inverted microscope (Nikon, Japan). Epifluorescence of 

the cells expressing eGFP was excited using standard fluorescein filters and most of the 

cells expressing eGFP gave strong glutamate-mediated responses. Rapid application of 

glutamate and glycine was achieved using a 2-barreled theta glass pipette driven by a 

piezoelectric translator (Burleigh). NMDAR-mediated currents were recorded in either 

whole-cell or outside-out patch-clamp mode (Multiclamp 700A, Axon), digitized and 
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stored on a PC for off-line analysis (Signal software, Cambridge Electronic Design 

Limited). 

2.6 Data analysis 

The association time constant (KON) of UBP753, was calculated by determining the 

association time (τONSET) of L-glutamate/glycine-evoked current responses at different 

concentrations of UBP753 that were fit with a single exponential. Linear regression 

analysis of a plot of 1/ τONSET versus UBP753 concentration gave the KON (slope) and 

KOFF (y-intercept) values which were used to calculate the KD (KD=KOFF/KON). 

2.7 Statistical analyses 

All values are expressed as mean ± SEM. Paired and unpaired t-test was used for 

comparing two numbers and comparisons with more than 2 groups were evaluated by 

one-way ANOVA followed by a Tukey’s or Bonferroni’s multiple comparison test. 

Comparisons were considered as statistically significant if p < 0.05.
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3. Results 

3.1 The effects of agonists on PAM activity and of PAMs on agonist activity  

The ability of a PAM to potentiate NMDARs can depend upon the effect of agonist 

concentrations on PAM activity. And in a reciprocal manner, PAM binding can alter 

agonist activity. Thus, we determined the effect of different agonist concentrations on 

PAM activity. UBP684 dose-response relationships were determined for the potentiation 

of GluN2A-D NMDAR responses evoked by 10 µM L-glutamate /10 µM glycine or by 

300 µM L-glutamate / 300 µM glycine (Fig. 1, Table 1). UBP684 potentiated responses 

to low agonist concentrations at each of the NMDAR types with similar EC50s of 

approximately 30 µM and a maximal potentiation of 69 to 117 % (Table 1). In the 

presence of high agonist concentrations (Fig. 1C), UBP684 retained its ability to 

potentiate NMDAR responses. The degree of maximal potentiation was not significantly 

changed at GluN1a/GluN2A, GluN1a/GluN2C, and GluN1a/GluN2D receptor subtypes 

and was decreased by 40% at GluN1a/GluN2B receptors. High agonist concentrations 

enhanced UBP684 potency at receptors containing GluN2A and GluN2B subunits as 

reflected by a 63% and 28% reduction in EC50, respectively (Table 1), while UBP684 

potency at the GluN2D subtype was lowered (93% increase in the EC50).  

To determine if UBP684 has PAM activity at native NMDARs, we briefly applied 

100 µM NMDA plus 100 µM glycine to CA1 pyramidal cells in hippocampal slices from 

1 month-old mice. We found that bath application of UBP684 significantly increased the 

amplitude of agonist-induced currents (99.0 ± 34.7 % potentiation, p = 0.046, t-test) 

relative to the initial agonist response (Figure 1D).  The potentiation was fully reversible 

with no detectible potentiation after UBP684 washout (-3.6 ± 8.3 % potentiation. The 

potentiated response was significantly different from the washout condition (p = 0.021). 
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To further define the effect of the PAMs on agonist responses, we determined the 

effect of 50 µM UBP684 on the dose-response relationship for L-glutamate and for 

glycine (Fig. 2, Table 2). Depending upon the subunits studied, PAM activity was 

associated with small shifts in agonist potencies as well as an increase in the maximal 

response to both agonists. UBP684 increased L-glutamate potency (32% reduction in L-

glutamate EC50), but not glycine potency at GluN2A-containing receptors.  In contrast, at 

GluN2B-containing receptors, UBP684 increased glycine potency (30% reduction in 

glycine EC50), but not L-glutamate potency (Fig. 2 and Table 2). Since UBP684 increases 

glycine potency, then it is expected that UBP684 would increase GluN1/GluN2B 

responses more at low glycine concentrations than at high glycine concentrations. This is 

consistent with the partial reduction we observed in the maximum potentiation of 

GluN1a/GluN2B responses by UBP684 when high agonist concentrations were used 

(Table 1). In contrast, at GluN2C- and GluN2D-containing receptors, UBP684 reduced 

L-glutamate potency (58% and 59% increase in EC50, respectively) and did not 

significantly change glycine potency (Table 2). Overall, and consistent with the low / 

high agonist concentration experiments, UBP684 increases the maximal effect of both 

agonists at all NMDARs at saturating agonist concentrations and additionally has minor, 

subtype-specific effects on agonist potencies.  

UBP753 has an apparent potency that is similar to that of UBP684 and effectively 

potentiates all four GluN1/GluN2 receptors (Table 1; Fig. 3). However, the limited 

solubility of UBP753 at concentrations above 100 µM made it difficult to establish 

saturating conditions to accurately define the EC50. To independently estimate potency, 

UBP753 on-rate and off-rates were determined at different concentrations (Fig. 3B). The 
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resulting rate constants indicated a Kd of 73 µM for UBP753 that was 2-fold higher than 

the EC50 for UBP753 estimated by concentration-response analysis. Of relevance to other 

experiments described below (section 3.2), the slow, dose-dependent on-rates, and dose-

independent off-rates for UBP753 indicate that UBP753 binding/unbinding is 

significantly slower than the solution turnover time.  

The ability of UBP684 to reduce L-glutamate potency at GluN1/GluN2D was 

unexpected for a PAM, although consistent with the greater PAM activity seen with high 

agonist concentrations (Table 1). Thus, we also evaluated UBP753, for its effect on 

agonist activity at GluN1a/GluN2D receptors.  Like UBP684, UBP753 decreased L-

glutamate potency (Fig. 3, Table 2) and had no effect on glycine potency. UBP753 

increased both the maximal glycine response and the maximal L-glutamate response. 

3.2 PAM potentiation is not use-dependent 

The ability of a PAM to potentiate NMDAR responses can also be a function of 

receptor state.  For example, neurosteroids preferrentially bind to the agonist-unbound, 

inactive receptor state rather than to the active receptor state resulting in “disuse-

dependent” PAM activity (Horak et al., 2004). To determine if the PAMs can bind to the 

inactive receptor state as well as the active state, we evaluated PAM potentiation using 

different drug-application paradigms (Horak et al., 2004). When UBP753 or UBP684 was 

applied prior to agonist application, the subsequent GluN1/GluN2B NMDAR agonist 

response was immediately and fully potentiated (Fig. 4A).  This was seen when either 

applying the PAM alone followed by agonist alone (sequential application), or by pre-

applying the PAM followed by PAM co-application with agonist (pre & coapplication). 

The on-rate of PAM potentiation when it was applied after attaining a steady-state 
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agonist response (cotemporaneous application) was significantly slower than the agonist 

alone on-rate. Thus, if agonist binding was required for the PAM to access its binding 

site, then the onset rate of the agonist response in the pre-coapplication condition should 

be significantly slower than the agonist alone onset rate – which it was not.  Likewise, 

agonist activation was rapid in the sequential application condition and the magnitude of 

initial potentiation was not decreased compared to the cotemporaneous application. Co-

application of agonist and PAM without prior PAM exposure gave an intermediate initial 

rate of activation consistent with a rapid agonist action combined with a slower PAM 

binding and potentiation (Fig. 4A, B).  These results suggest that UBP753 and UBP684 

can bind to the agonist-unbound state of the NMDAR in addition to the agonist-bound, 

active state.  Unlike the neurosteroid PS (Horak et al., 2004), the degree of potentiation 

was similar for the different drug application paradigms (Fig. 4C).  

3.3 pH Dependence of PAM activity 

We determined the effect of pH on PAM activity for two reasons. One is that 

under pathological conditions such as hypoxia and schizophrenia, the extracellular pH in 

the brain can change (Chesler and Kaila, 1992; Halim et al., 2008; Siesjo, 1985) which in 

turn can change the effect of NMDAR modulators (Kostakis et al., 2011; Mott et al., 

1998). Secondly, as exemplified by the potentiating actions of spermine on NMDARs 

(Traynelis et al., 1995), reversing proton inhibition is a potential mechanism of action for 

an NMDAR PAM. As shown in Fig. 5B, UBP684 was an effective PAM at each of the 

NMDARs at pH 7.4, but was inhibitory at pH 8.4, with very weak inhibitory effects at 

receptors containing GluN2A and progressively greater inhibition at NMDARs with 

GluN2B, GluN2C, and GluN2D subunits. For comparison, we evaluated UBP753 at 
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GluN1a/GluN2C (Fig. 5C) and found that, like UBP684, UBP753 inhibited NMDAR 

responses at pH 8.4 and potentiated responses at pH 7.4. Further decreasing the pH to 6.4 

resulting in yet greater potentiation. 

Given the unexpected inhibitory activity we observed for UBP684 and UBP753 at 

alkaline pH, we compared this activity to other, structurally-distinct PAMs (Fig. 5D-F).  

The neurosteroid PS potentiated GluN1a/GluN2A and GluN1a/GluN2B receptor 

responses at pH 7.4, but this activity was significantly reduced (~50%) at pH 8.4.  

Similarly, the potentiating effect of CIQ, a GluN1/GluN2C/D PAM, was also 

significantly reduced at pH 8.4. Thus, unlike UBP684/753, neither PS nor CIQ displayed 

NAM activity at pH 8.4. The GluN2A-selective PAM GNE-8324, on the other hand, was 

like UBP684/753 and did display inhibitory activity at pH 8.4 (Fig. 5F).  

We next determined if the compounds are affecting the sensitivity of NMDARs to 

UBP in a manner similar to that seen for spermine potentiation of NMDARs which can 

be described as a decrease in proton inhibition (or relief of proton block) (Traynelis et al., 

1995). Thus, spermine is an effective GluN1a/GluN2B potentiator at acidic pHs (where 

high proton concentrations inhibit NMDAR function), but at alkaline pH spermine is a 

weak potentiator. Consequently, spermine potentiation corresponds to a reduction in the 

ability of protons to inhibit GluN1a/GluN2B receptor responses and thus increases the 

proton IC50. Thus, we wanted to determine the effect of UBP684 (50 µM) on proton 

inhibition of GluN1a/GluN2B receptor responses and to compare this to GluN1/GluN2D 

responses which behaved differently in Fig. 5B. At both receptor types, there was a 

reduction in the inhibitory potency of protons in the presence of the PAM (Fig. 6). 

Consistent with Fig. 5B, at pH 8.4, UBP684 not only had a reduced potentiation but 
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caused inhibition in the receptor response at GluN2D-containing receptors (~50% 

inhibition) (Fig. 6B). And this inhibition was greater than at receptors containing GluN2B 

subunits (~25% inhibition).  Interestingly, in the pH range 7.0-7.4, UBP684 potentiated 

GluN1a/GluN2D NMDAR responses well above those seen for the alkaline pH control-

response where there is little proton inhibition. Without UBP684, increasing proton 

concentration from pH 7.4 to 7.0 inhibits the NMDAR response, whereas in the presence 

of UBP684, increasing proton concentration increased the response. This proton-

dependent potentiation in the presence of UBP684 was not seen for GluN1a/GluN2B 

receptors, which only displayed a reduction in the proton sensitivity (a right-shift in the 

proton inhibition curve, Fig. 6A).  Thus, UBP684 appears to reduce proton inhibition at 

both GluN2B and GluN2D-containing receptors, but at GluN2D-containing receptors 

UBP684 has an additional proton-dependent potentiation. 

Since UBP684 potentiation is sensitive to pH, we evaluated the effect on PAM 

activity of the 21 amino acid insert in the GluN1 N-terminal domain that is coded for by 

exon 5. This insert reduces spermine potentiation by possibly interacting with the N-

terminal proton sensor (Traynelis et al., 1995). The presence of this insert also reduces 

PYD-106 potentiation of GluN1/GluN2C receptors (Khatri et al., 2014) while enhancing 

PS potentiation of GluN1/GluN2A receptor responses and enhancing PS inhibition of 

GluN1/GluN2D receptors (Kostakis et al., 2011). To evaluate the effect of the N-terminal 

insert on both the PAM and NAM activities of UBP684, we evaluated the effect of 

UBP684 on responses at GluN1a/GluN2D (- exon 5) and GluN1b/GluN2D (+ exon 5) 

receptors at pH 7.4 and 8.4.  At pH 7.4, UBP684 PAM activity was unchanged by the N-

terminal insert (Fig. 6C). At pH 8.4, UBP684 NAM potency was weakly increased (from 
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IC50 ~30 µM to ~20 µM) by inclusion of exon 5 (Fig. 6D). Thus, unlike spermine, PS, 

and PYD-106, the N-terminal insert did not affect UBP684’s PAM activity, but it did 

enhance NAM potency as seen with PS. 

3.4 The effect of redox state and membrane potential on PAM activity 

In addition to pH, redox potential also modulates NMDAR function.  Reduction 

of cysteine residues by the addition of dithiothreitol (DTT) potentiates NMDAR 

responses (Kohr et al., 1994; Sullivan et al., 1994). Thus, it is possible that UBP684/753 

cause a similar conformational change without needing to change the oxidation state of 

the receptor or that these two sites interact. We compared the PAM potentiating activity 

before and after treatment of GluN2D-containing NMDARs with 3 mM DTT for 3 min 

followed by a one-minute wash. As reported by others, DTT exposure caused a 70.7 ± 

9.8 % (n = 9) increase in L-glutamate/glycine-evoked GluN1/GluN2D responses.  For 

both UBP684 and UBP753, the magnitude of potentiation were unaffected by prior 

exposure to DTT (Fig. 7). Similar results were also found for GluN1/GluN2A receptors 

(data not shown). Consequently, the potentiation by UBP684/UBP753 appears to be 

independent of the cysteine reduction potentiation mechanism. The PAM activity of 

UBP684 and UBP753 were also found to be voltage-independent; a similar degree of 

potentiation was observed for responses when the cells were held at either -60 mV or +20 

mV (Fig. 7). 

3.5 UBP684 increases NMDAR open channel probability and slows receptor deactivation 

time 

Since UBP684 can still potentiate NMDAR responses to saturating concentrations 

of agonist, UBP684 appears to be increasing the receptor response in the agonist-bound 

state and not just simply increasing agonist potency. Thus, UBP684 is likely to be 
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increasing channel open probability Popen and/or channel conductance. To evaluate the 

potential effects of UBP684 on open probability, we determined the rate of block by the 

open channel blocker MK-801, a conventional method to estimate relative open 

probability (Dingledine et al., 1999). Since UBP684/753 do not show voltage-dependent 

activity at GluN1a/GluN2D receptors (Figure 7), they are unlikely to be interacting with 

MK-801 at the channel. Using GluN1a/GluN2C receptors that normally display a 

relatively low open probability (Dravid et al., 2008), and consequently a relatively slow 

rate of channel blockade (Monaghan and Larson, 1997), we found that UBP684 

accelerated the rate of inhibition by 1 µM of MK-801 (control:  = 3.7 ± 0.9 s; with 

UBP684:  = 1.1 ± 0.15 s; p = 0.02; unpaired t-test) (Fig. 8).  Similar results were found 

for UBP684 and UBP753 on GluN1a/GluN2D receptors (Fig. 8). In contrast, the rate of 

receptor blockade by the allosteric inhibitor UBP792 was unaffected by the presence of 

UBP684. These results suggest that UBP684 (and UBP753) increases the Popen of 

NMDARs. 

A potential mechanism by which UBP684 could be enhancing NMDAR 

responses could be by prolonging the deactivation of the activated receptor upon agonist 

removal. This property could in turn change the NMDAR response to repetitive 

stimulation.  Since GluN1a/GluN2D receptors have a remarkably slow deactivation time 

(Monyer et al., 1994), we were able to readily measure the effect of UBP684 and 

UBP753 on receptor deactivation time.  In the presence of 50 µM UBP684, receptor 

deactivation was significantly slower as shown in Fig. 9A. The single-component, decay 

time following agonist removal was  = 9.6 ± 1.6 s (n = 11 oocytes) in the presence of 

UBP684 which was significantly slower than the control (4.1 ± 0.6 s; n = 23 oocytes; p < 
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0.001). UBP753 did not, however, significantly change receptor deactivation time.  To 

determine if the prolonged deactivation time was due to a slowing of steps related to L-

glutamate or to glycine dissociation/inactivation, we determined the effect of UBP684 on 

the deactivation time associated with removing L-glutamate or glycine in the continued 

presence of the other agonist. Neither UBP684 nor UBP753 slowed the deactivation time 

induced by glycine removal in the presence of L-glutamate (Fig. 9B). However, 

deactivation time due to L-glutamate removal (and in the presence of glycine) was 

significantly slowed by UBP684 (Fig. 9C, control:  = 9.6 ± 1.7 s, n = 6 oocytes; with 

UBP684  = 20.2 ± 4.1 s, n = 7 oocytes, p = 0.04). Consistent with the result for 

deactivation due to removal of both agonists, UBP753 did not slow the deactivation time 

for L-glutamate removal (Fig. 9C).  

To determine whether the effects of UBP684 on deactivation was specific to 

GluN2D, which has unusually slow deactivation kinetics, or is a generalized mechanism, 

we also studied deactivation in the rapidly deactivating GluN1a/GluN2A receptor. To 

accomplish this, we expressed this receptor in HEK cells and studied the patch clamp 

response to rapid agonist application (< 10 ms). Rapid application of 30 μM glutamate 

(Glu) and 50 μM glycine (Gly) evoked macroscopic NMDAR–mediated currents that 

declined with a τ value of ~50 ms (Fig. 10A, black waveform). Bath application of 

UBP684 on its own had no effect on the HEK293 cells but enhanced NMDAR currents 

evoked by agonist application (Fig. 10A, red waveform). NMDAR currents peak 

amplitude increased two-fold (217 ± 8%, n = 4, Fig. 10B) and currents decayed much 

slower (356 ± 54%, n  = 4, Fig. 10B), suggesting a reduction in the deactivation rate of 

the channels. In support of this, prolonged opening of channels was observed in isolated 
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outside-out patches excised from HEK293 cells in the presence of UBP684 in response to 

a very brief pulse of agonist.  In patches with only one or a small number of channels, 

there was no observable change in single channel conductance. The observation that the 

peak response was potentiated by UBP684 during a rapid agonist pulse is consistent with 

experiments described above (section 3.2) suggesting that UBP684 can bind in the 

absence of agonist. 

3.6 PAM activity requires a conformational change in the GluN2 ligand binding domain 

Analysis of single channel state transitions modified by UBP684 suggest that 

PAM activity is associated with a reduction in long-lived shut states (unpublished 

observations) thought to correspond to GluN2 gating (Kussius and Popescu, 2010).  This 

finding is consistent with the observation that UBP684 potentiation is reduced in the 

NMDAR construct where two opposing cysteine mutations across the cleft of the ligand 

binding domains (LBD) of GluN2A constrain the LBDs in the closed-cleft conformation 

(unpublished observations). To confirm this latter finding with UBP753, we co-expressed 

the disulfide crosslinked GluN1 subunit (GluN1C) with wildtype GluN2A and separately 

co-expressed wildtype GluN1 with crosslinked GluN2A (GluN2AC) and evaluated 

UBP753 potentiation. As previously reported (Kussius, Popescu 2010), receptors 

containing GluN1C were activated by L-glutamate alone and not by glycine alone, and 

receptors containing GluN2AC were activated by glycine and not by L-glutamate (Fig. 

11).  Interestingly, UBP753 potentiation was differentially affected in these mutant 

constructs. Compared to wildtype receptors, GluN1C containing GluN2A receptors 

displayed a similar level of potentiation by UBP753 whereas the GluN2AC containing 

receptor displayed significantly less potentiation by UBP753 (****p˂0.0001, one way 
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ANOVA followed by Tukey’s multiple comparison test). The potentiation of NMDAR 

responses by UBP753 at WT GluN2A, GluN1C-containing receptors and GluN2AC-

containing was 51.3 ± 3.7 % (n = 17 oocytes), 39.4 ± 6.5 % (n = 9 oocytes), and 6.3 ± 1.4 

% (n = 17 oocytes) respectively (Fig. 11). These results demonstrate that potentiation by 

UBP753 requires a conformational change in the GluN2 LBD.  

 

4. Discussion 

In the present study we have characterized the prototype NMDAR pan-PAM, 

UBP684 and confirmed select experiments with the structurally similar compound, 

UBP753. UBP684 robustly potentiates responses at native NMDARs and at all 

GluN1/GluN2 subtypes and displays several functional properties that make it 

mechanistically suitable for enhancing NMDAR activity. At GluN1/GluN2A and 

GluN1/GluN2B, UBP684 causes a small increase in L-glutamate and glycine agonist 

affinity, respectively.  In addition, PAM activity is retained at all subtypes under 

saturating agonist conditions. Thus, they are appropriate for enhancing NMDAR 

responses to the mM L-glutamate levels seen in the synapse (Clements, 1996; Diamond 

and Jahr, 1997). These agents are also appear to be use-independent, and therefore can 

potentiate NMDAR responses to both phasic and tonic agonist exposures. 

UBP684/UBP753 activity is enhanced with lowered pH and hence would be expected to 

have greater potentiating activity in brain tissue of patients with schizophrenia which has 

a lower pH (Eastwood and Harrison, 2005; Halim et al., 2008; Lipska et al., 2006; 

Prabakaran et al., 2004; Torrey et al., 2005). Mechanistic studies indicate that these 

PAMs can increase the NMDAR open probability, and in the case of UBP684, can slow 

receptor deactivation time due to L-glutamate removal. Together with the observation 
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that conformational change at the GluN2 LBD is necessary for PAM activity, we propose 

that these agents stabilize the GluN2 LBD in a more active conformation.  

4.1 Interactions between PAMs and agonists 

Agonist concentrations can have complex effects on allosteric modulator activity.  

Elevated agonist concentrations can increase a modulator’s potency and conversely a 

PAM can increase agonist potency, as seen for SGE201 (Linsenbardt et al., 2014) and 

GNE-8324 (Hackos et al., 2016). In such cases, saturating agonist concentrations may 

mask potentiating activity if the primary PAM action is to increase agonist occupation.  

Alternatively, high agonist concentration can increase the magnitude of the PAM’s 

potentiation as with UBP512 (Costa et al., 2010). Increasing agonist concentration can 

also decrease modulator potency as seen for the GluN2C PAM PYD-106 (Khatri et al., 

2014) and the NAM TCN-213 (Bettini et al., 2010). For UBP684 and UBP753, we find 

that potentiation of NMDAR responses remains effective at high agonist concentrations. 

This finding is consistent with the observation that maximal L-glutamate and glycine 

responses were enhanced by UBP684 and UBP753.  Additionally, UBP684 caused a 

small increase in L-glutamate potency at GluN1/GluN2A and glycine potency at 

GluN1/GluN2B. Since these agents do not increase GluN1/GluN2B, GluN1/GluN2C, or 

GluN1/GluN2D L-glutamate potency, they should not preferentially increase 

extrasynaptic NMDAR currents which are exposed to lower ambient L-glutamate 

concentrations. Such an effect may be deleterious since extrasynaptic NMDAR activation 

has been associated with excitotoxicity (Hardingham and Bading, 2010). The maximal 

potentiation of GluN1/GluN2B responses by UBP684 was, however, reduced by 

approximately 40% with high agonist concentrations. This effect is consistent with the 
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modest increase in glycine affinity for GluN1/GluN2B receptors due to UBP684. 

Similarly, the neurosteroid PS causes a small increase in glycine potency and a reduction 

in maximal potentiation specifically at GluN1/GluN2B (Malayev et al., 2002).   

Unexpectedly, UBP684 and UBP753 caused a small reduction in L-glutamate 

potency at GluN1/GluN2D receptors even though they are both PAMs at this receptor. 

Similarly, UBP684 reduced L-glutamate potency, but not glycine potency at 

GluN1/GluN2C receptors. Conversely, high agonist concentrations reduced UBP684 

potency specifically at GluN1/GluN2D. These changes in agonist potency, however, are 

offset by an increase in the response magnitude, especially at higher agonist 

concentrations. This PAM action to reduce L-glutamate potency is potentially beneficial 

by reducing extrasynaptic GluN2C or GluN2D-containing receptor responses to ambient 

extracellular L-glutamate while still augmenting synaptic NMDAR responses. Overall, 

these findings indicate that UBP684/753 potentiate, partially by increasing agonist 

potency in a subtype-specific manner (at GluN1/GluN2A and GluN1/GluN2B receptors) 

and by potentiating all GluN1/GluN2 receptors by an additional mechanism which 

increases responses to saturating concentrations of agonist.  

4.2 Use-independent PAM activity 

The PAMs in this study display use-independent activity as their prior application 

fully potentiates subsequent agonist responses.  This conclusion is also supported by 

experiments using rapid agonist application to receptors expressed in HEK cells (Fig. 10). 

Thus, UBP684 and UPB753 appear to bind to both the agonist-unbound, inactive receptor 

state and the agonist-bound, active state. These studies also demonstrate that 

UBP684/UBP753 are unlike PS which has been termed “disuse-dependent” due to a loss 
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of potentiating activity following agonist binding (Horak et al., 2004). A potential caveat 

is that UBP684/UBP753 could be slowly associating with the membrane and rapidly 

associating with the receptor from within the membrane. However, use-dependency was 

still not seen with very rapid agonist applications to HEK cells. 

4.3 PAM interactions with pH 

 A third factor that can alter PAM activity is pH. Protons strongly inhibit NMDAR 

activity and can alter the function of allosteric modulators (Traynelis and Cull-Candy, 

1990). For example, spermine potentiates NMDAR responses at physiologic and mild 

acidic conditions, but not under more alkaline conditions (Traynelis et al., 1995).  

Spermine causes a right-shift in the proton inhibition curve, thus spermine potentiation 

may be due to dis-inhibition of NMDARs inhibited by protons. Conversely, ifenprodil 

inhibition of NMDAR responses is associated with an increased proton sensitivity of 

GluN1a/GluN2B receptors (Mott et al., 1998).  In the present study, we found that pH 

also has a strong effect on the potentiating activity of UBP684 and UBP753.  Potentiation 

is enhanced at lower pH, and at high pH (e.g. 8.4), these PAMs display inhibitory 

activity. At both GluN1a/GluN2B and GluN1a/GluN2D receptors, UBP684 caused a 

right-shift in the proton inhibition curve. Thus, in the presence of UBP684, higher 

concentrations of protons are necessary to cause the same level of inhibition.   

While it is possible that PAM binding partially obstructs a proton sensor, PAM 

binding may be simply promoting receptor conformations that over-ride the negative 

modulation by protons. Amino acid residues in the M3, the M3-S2 linker, and the S2-M4 

linker mediate proton inhibition of NMDARs (Low et al., 2003) and these regions are 

closely associated with channel gating as modulated by the N-terminal and S1/S2 
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domains. Thus, PAM binding in the S1/S2, or in the linker regions, may allosterically 

counter the inhibitory effects of protons near the channel gate. Conversely, at a proton-

uninhibited alkaline pH, the coupling of agonist and channel-gating may be sufficiently 

optimal that PAM binding can not further increase coupling. The inhibitory activity of 

UBP684, UBP753, and GNE-8324 under alkaline conditions suggests the possibility that 

PAM binding may be stabilizing conformations intermediate between the proton-

inhibited and proton-uninhibited states thus making UBP684/UBP753 binding inhibitory 

at pH 8.4. Alternatively, inhibitory activity could result from UBP684 and UBP753 

binding to a second site that is inhibitory whose activity is revealed at alkaline pH. 

Neurosteroids and compounds structurally-related to UBP684/UBP753 display both 

NAM and PAM activity at distinct sites and often display greater inhibitory activity at 

GluN2C and GluN2D as seen here (Costa et al., 2010; Horak et al., 2006; Irvine et al., 

2012; Malayev et al., 2002).  

UBP684 has an additional effect at GluN1a/GluN2D receptors wherein increasing 

proton concentration from pH 8.5 to pH 7.5 leads to a 3-fold increase in receptor 

response. Then, further increases in H+ concentration (pH 7.5 to pH 5.5) decrease the 

response in accord with proton inhibition. The UBP684-potentiated GluN1/GluN2D 

response at pH 7.5 is significantly larger (~50%) than the response in the absence of 

UBP684 at pH 8.5 where there is little proton inhibition (Traynelis and Cull-Candy, 

1990). Thus, unlike spermine, UBP684 potentiates more than what can be accounted for 

by reversal of proton inhibition. Another distinction between UPB684 and spermine is 

that spermine potentiation is mostly prevented by the presence of the N-terminal insert of 

GluN1b whereas UBP684 potentiation is unaffected.  
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Greater PAM activity under more acidic conditions has potential therapeutic 

implications. In the brain from patients with schizophrenia, there is a nearly 0.2 decrease 

in pH (Eastwood and Harrison, 2005; Halim et al., 2008; Lipska et al., 2006; Prabakaran 

et al., 2004; Torrey et al., 2005).  Thus, NMDAR hypofunction should be worsened in 

schizophrenia and a PAM that shows increased activity under more acidic conditions 

should show greater effects in patients with schizophrenia than in healthy subjects.  

4.4 PAM mechanism of action 

UBP684 and UBP753 accelerate the rate of MK-801 inhibition.  As an open 

channel blocker, MK-801’s rate of blockade is proportional to the channel open 

probability (Dingledine et al., 1999). Thus, the acceleration of MK-801 blockade by 

UBP684 or UBP753 suggests that the PAM increases open channel probability. 

Furthermore, UBP684 had no effect on GluN1/GluN2A channel conductance. Thus, 

together with the observations that UBP684/UBP753 can potentiate without increasing 

agonist potency, these observations support the idea that these agents potentiate by 

increasing open probability.  Precisely which gating steps account for the increased open 

probability remains to be determined. 

The modulation of the receptor deactivation rate also contributes to UBP684 

PAM activity. In the presence of UBP684, GluN1/GluN2A and GluN1/GluN2D 

deactivation rate is slowed following L-glutamate removal. Thus, the PAM appears to 

either slow L-glutamate dissociation and/or slow a channel-gating deactivation step after 

L-glutamate dissociation. If there were only a slowing of L-glutamate dissociation, one 

would expect that UBP684 would increase L-glutamate potency at GluN1/GluN2A and 

GluN1/GluN2D receptors. There is an increase in potency at GluN2A, but a decrease at 
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GluN1/GluN2D receptors. Thus, at GluN2D-containing receptors, there may be some 

other compensation such as a decrease in the L-glutamate association rate. Similarly, at 

GluN1/GluN2C, the PAM CIQ also slows receptor deactivation without increasing 

agonist potency (Mullasseril et al., 2010). 

Slowing of GluN1/GluN2A deactivation was also seen in separate experiments in 

the dialyzed, whole-cell recording mode in which steady-state potentiation of 

GluN1/GluN2A responses by UBP684 are eliminated (unpublished observations). Thus, 

the effects of UBP684 on steady-state potentiation and receptor deactivation appears to 

have at least partially distinct mechanisms.  

Interestingly, the ability to modulate receptor deactivation differs significantly 

between PAMs, even for those with closely related structures. We find that unlike 

UBP684, UBP753 does not slow the GluN1/GluN2D deactivation time upon L-glutamate 

removal. Similarly, GNE-8324, but not the related PAM GNE-6901, slows the L-

glutamate deactivation rate (Hackos and Hanson, 2017). Of other PAMs, PS slows the 

deactivation rate (Ceccon et al., 2001), CIQ does not (Mullasseril et al., 2010), and PYD-

106 accelerates the deactivation rate even though it is a PAM (Khatri et al., 2014). These 

differences are expected to have functional implications; PAMs that slow deactivation 

may increase summation of synaptic responses during a stimulus train of the appropriate 

frequency. 

UBP753 potentiation requires conformational flexibility at GluN2A but not at 

GluN1 subunits. Thus, locking the GluN2 LBD in the closed, active conformation by 

disulfide bonds appears to obscure PAM activity, suggesting that the PAM stabilizes the 

glutamate-bound conformation or associated channel-gating conformations. This result is 
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consistent with that found for UBP684 potentiation of NMDAR responses and with 

analysis of single channel state transitions as modified by UBP684 (unpublished 

observations). Thus, PAM activity may stabilize the glutamate-bound conformation and 

thereby slow glutamate dissociation, but only UBP684, and not UBP753, slowed 

deactivation upon glutamate removal. A potential caveat for these studies is that the 

GluN2 locked-LBD receptor may have a maximal open probability, thereby obscuring 

further potentiation. However, this construct is potentiated by a similar amount as are 

wildtype receptors when potentiated by a biochemical method which maximizes open 

probability (Blanke and VanDongen, 2008).  

While more work is necessary to fully define the binding site(s) for 

UBP684/UBP753, what is currently known is consistent with an action at the GluN2 

LBD/LBD-TM linker region which could account for the physiological properties 

describe above. Our prior studies with the structurally-related PAMs, UBP512 (GluN2A-

selective) and UBP710 (GluN2A/B-selective) were able to use their subtype selectivity 

and GluN2A/GluN2C chimeras to show that their activity is associated with the S2 

segment of the GluN2 LBD. Also, their PAM activity is not eliminated by deletion of 

both the GluN1 and GluN2 N-terminals. Thus, these agents do not appear to be acting at 

the N-terminal binding site as found for spermine (Paoletti and Neyton, 2007; Traynelis 

et al., 1995) nor at the LBD/N-terminal interface at which PYD-106 is thought to bind 

(Khatri et al., 2014). They also do not appear to bind at the pre-M1/M1 site proposed for 

CIQ (Mullasseril et al., 2010) and do not compete for agonist binding within the LBD 

(Costa et al., 2010). The involvement of the S2 domain, suggests that these agents may be 

binding at the LBD dimer interface as recently shown for GNE-6901 (Hackos et al., 
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2016). They could also possibly be binding at the overlapping S2 /S2-TM linker as 

proposed for neurosteroids (Kostakis et al., 2011). Potentially, either of these locations 

could account for the stabilization of the L-glutamate-bound open channel receptor 

conformation as suggested by the present results.   

5. General conclusions 

The alkyl-naphthoic acid PAMs characterized here add to the pharmacodynamic 

diversity of the rapidly expanding list of NMDAR PAMs such as PS (Chopra et al., 2015; 

Horak et al., 2006; Horak et al., 2004; Jang et al., 2004; Kostakis et al., 2011; Wu et al., 

1991), UBP512, UBP646 (Costa et al., 2010), UBP714 (Irvine et al., 2012), CIQ 

(Mullasseril et al., 2010), PYD106 (Khatri et al., 2014), SGE201 (Linsenbardt et al., 

2014; Paul et al., 2013), and GNE6901 (Hackos et al., 2016). These agents differ in their 

subtype-selectivity, N-terminal insert-sensitivity, pH-sensitivity, use/disuse-dependency, 

and their effects on agonist potency, efficacy and deactivation. They also differ in how 

their modulatory activity is affected by different agonist concentrations. These varied 

properties means that it is possible to pharmacologically target distinct NMDAR 

populations in specific physiological conditions. Thus, there is significant potential to 

develop NMDAR PAMs with optimal properties for cognitive enhancement and for 

improving function in conditions of NMDAR hypofunction such as schizophrenia.  
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Table 1 Potentiation by UBP684 and UBP753 of GluN1/GluN2 NMDAR responses 

 

EC50 values (mean ± S.E.M.) for PAM potentiation of GluN1/GluN2 NMDAR responses. 

Values in parenthesis represent the maximal potentiation (% EMax) expressed as a 

percentage (± S.E.M.) above the agonist-alone response (10 µM L-glutamate and 10 µM 

glycine).  

*p < 0.05 and **p < 0.01 (unpaired t-test) vs EC50 value for UBP684 potentiation at 10 

µM L-glutamate and 10 µM glycine. 

###p < 0.001 (unpaired t-test) vs % EMax value for UBP684 potentiation at 10 µM L-

glutamate and 10 µM glycine. 

  

Compound Glu/Gly. GluN2A GluN2B GluN2C GluN2D 

UBP684 10 µM /  

10 µM 

28.0 ± 4.6 

(68.6 ± 16.2) 

34.6 ± 3 

(102.0 ± 17.8)### 

37.2 ± 2.8 

(117.2 ± 22.3) 

28.9 ± 4.1 

(88.4 ± 9.6) 

UBP684 300 µM / 

300 µM 

10.3 ± 4.8* 

(50.3 ± 14.1) 

24.8 ± 2.8* 

(61.5 ± 4.2) 

33.8 ± 9.7 

(108.2 ± 37.9) 

55.8 ± 4.1** 

(119.3 ± 37.9) 

UBP753 10 µM / 

10 µM 

39.4 ± 27.5 

(277.2 ± 36.8) 

25.0 ± 11.6 

(192.3 ± 46.6) 

36.2± 5.7 

(262.6 ± 33.9) 

30.6 ± 7.5 

(240.3 ± 63.6) 
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Table 2 The effect of UBP684 and UBP753 on the potency and maximal effect of L-

glutamate and glycine at NMDAR containing different GluN2 subunits. 

  Glutamate 

  EC50 (µM) % Control Max  N 

GluN2A - UBP684 4.62 ± 0.32 99.0 ± 1.25  12 

 + UBP684 3.12 ± 0.52* 120.4 ± 4.5  12 

GluN2B - UBP684 2.01 ± 0.19 104.6 ± 1.8  9 

 + UBP684 2.08 ± 0.12 152.3 ± 6.3  7 

GluN2C - UBP684 1.32 ± 0.1 96.7 ± 2.0  16 

  + UBP684 2.09 ± 0.18** 136.5 ± 3.1  13 

GluN2D - UBP684 0.88 ± 0.05 99.6 ± 1.2  10 

 + UBP684 1.4 ± 0.1*** 141.1 ± 5.5  7 

GluN2D - UBP753 0.93 ± 0.06 100.7 ± 1.6  15 

 + UBP753 1.3 ± 0.1** 128.3 ± 3.8  6 

      

               Glycine 

  EC50 (µM) % Control Max    

   

N 

GluN2A - UBP684 0.42 ± 0.05 98.3 ± 2.2  9 

 + UBP684 0.46 ± 0.03 124.5 ± 2.3  8 

GluN2B - UBP684 0.87 ± 0.07 101.9 ± 2.7  19 

 + UBP684 0.61 ± 0.05** 119.4 ± 3.0  19 

GluN2C - UBP684 0.68 ± 0.08 99.6 ± 2.1  9 

 + UBP684 0.72 ± 0.04 137.2 ± 1.8  12 

GluN2D - UBP684 0.32 ± 0.04 97.0 ± 2.6  9 

 + UBP684 0.25 ± 0.01 131.0 ± 2.9  6 

GluN2D - UBP753 0.2 ± 0.04 96.5 ± 2.9  14 

 + UBP753 0.22 ± 0.03 135.4 ± 3.8  7 
 

EC50 values (mean ± S.E.M.) and maximal response size for PAM potentiation of 

GluN1/GluN2 NMDAR responses. *p < 0.05, **p < 0.01 and ***p < 0.001 for differences 

between agonist EC50 values without UBP684 (or UBP753) at the same NMDAR 

subtype.  % Control Max  is the maximal response as a % of the maximal control response 

in the absence of the PAM.  N = number of experiments.  
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Figure Legends 

 

Figure 1.  

Potentiation of GluN2A-D and native NMDARs by UBP684.  

(A) Chemical structures of UBP684 and UBP753. (B) Representative current traces showing 

UBP684 (100 μM, gray bar) enhancement of GluN1a/GluN2A-D receptor-mediated currents 

evoked by 10 μM L-glutamate and 10 μM glycine (black bar). Scale: X-axis = 17 s, 10 s, 10 s, 

and 17 s and y-axis = 60 nA, 115 nA, 75 nA and 85 nA for GluN1/GluN2A, GluN1/GluN2B, 

GluN1/GluN2C, and GluN1/GluN2D traces respectively. (C) Dose-response for UBP684 

potentiation of currents evoked by low (left panel) agonist concentrations (10 μM L-glutamate 

and 10 μM glycine, left panel) and high (right panel) agonist concentrations (300 µM L-glutamate 

and 300 µM glycine) at NMDARs containing GluN2A (red), GluN2B (green), GluN2C (blue), or 

GluN2D (gray) subunits. Values represent mean ± SEM % potentiation over the agonist-alone 

response. N = 5 - 12 oocytes per subunit. (D) Whole-cell recordings of CA1 pyramidal cell 

NMDAR responses to picospritzer pulse applications of 100 µM NMDA plus 100 µM glycine in 

the absence (control), presence of 60 µM UBP684 in the bath, or after UBP684 washout.  The 

potentiation by UBP684 (60 µM) of NMDAR currents was reversed upon UBP684 washout 

(wash) and the NMDAR currents were blocked by 100 µM DL-AP5.  Histogram (right) shows 

the mean ± S.E.M. potentiation relative to the initial agonist peak response for bath applied 

UBP684 and following washout.  * significantly different from 0 % potentiation and from the 

wash condition (n = 5, p < 0.05). 
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Figure 2.  

Effect of UBP684 on L-glutamate and glycine potency and maximal response. 

Concentration-response for L-glutamate (left panel) and glycine (right panel) excitation of 

GluN2A- (A), GluN2B- (B), GluN2C- (C) and GluN2D- (D) containing NMDARs in the absence 

(black) or presence (red, GluN2A; green, GluN2B; blue, GluN2C; and gray, GluN2D) of 50 μM 

UBP684. In each experiment, the co-agonist (L-glutamate or glycine) was used at 10 µM. The 

responses from each oocyte were individually normalized with the response obtained from the 

highest concentration of the agonist-alone application in the same oocyte. Data represent mean ± 

S.E.M., n = 6 - 19 oocytes.  

 

Figure 3.  

UBP753 potentiation of NMDAR activity and its effect on agonist affinity. 

(A) UBP753 concentration-response for the potentiation of NMDAR-mediated current induced 

by 10 μM of L-glutamate and 10 μM glycine and expressed as % potentiation of agonist-alone 

induced responses (n = 5-12 oocytes). (B) Single exponential fits the onset (on) and offset (off) 

for UBP753 potentiation of GluN2D-containing NMDARs at different concentrations of UBP753 

were plotted as 1/as a function of UBP753 concentration. Rates were determined by single-

exponential fit of the onset-rates and offset-rates. As expected, onset was concentration-

dependent and off-set was concentration independent. On-rate and off-rate was used to calculate 

Kd as described in the text. L-glutamate (C) or glycine (D) dose-response in the absence (black) 

or presence (red) of 30 μM UBP753 at GluN2D-containing NMDARs (n = 6 - 15 oocytes per 

curve). Co-agonist was present at 10 µM in both C and D. Data represent mean ± S.E.M. 
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Figure 4.  

UBP684/753 bind to both agonist-bound and agonist-unbound states of NMDARs.  

(A) UBP753 (top panel) and UBP684 (bottom panel) potentiation of agonist-evoked 

GluN1/GluN2B responses in five different drug-application protocols - left to right: agonist 

alone, sequential, co-application, pre-co application, and cotemporaneous.  Drugs were applied as 

indicated by bars above the responses (black, 10 μM L-glutamate and 10 μM glycine), UBP753 

(red, 100 μM) and UBP684 (green, 50 µM). Scale bar: horizontal = time in sec, vertical = current 

in nA. (B) Average agonist response onset rates (τw, weighted fit) for the different application 

protocols for UBP684, except for cotemporaneous which represents the onset of UBP684 

potentiation. (C) Magnitude of UBP684 potentiation in the different drug application paradigms. 

Data represent mean ± SEM, **p˂0.01, ***p˂0.001, ****p˂0.0001 (one-way ANOVA followed 

by Tukey’s multiple comparison test, n = 8 oocytes).  

 

Figure 5.  

Effect of extracellular pH on the modulation of NMDAR activity by UBP684.  

(A) Representative current traces showing the effect of extracellular pH (7.4 and 8.4) on 

UBP684 activity at recombinant GluN1/GluN2A-D receptors. During a steady-state 

response evoked by 10 μM L-glutamate / 10 μM glycine (black bar), UBP684 (100 μM, 

green bar) was co-applied with the agonists.  UBP684 potentiated NMDAR responses at 

pH 7.4 (left trace, see also Fig. 1A) and inhibited all responses at pH 8.4 (4 traces on right). 

(B) Percent response potentiation by UBP684 (100 µM) at the 4 GluN1a/GluN2 receptors 

at pH 7.4 (blue) and pH 8.4 (red). Values represent mean ± SEM, n = 6 - 9 oocytes.  

Inhibition is reflected by negative % potentiation values. (C) UBP753 (50 μM) 

modulation of GluN1a/GluN2C receptors at pH 6.4, 7.4, and 8.4, n = 14 or more oocytes).  
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(D) Pregnenolone sulfate (PS, 100 µM) potentiation of GluN1a/GluN2A and 

GluN1a/GluN2B receptor responses evoked by 10 μM L-glutamate / 10 μM glycine at pH 

7.4 (blue) and pH 8.4 (red), n = 8 oocytes. (E) Effect of pH on potentiation of 

GluN1a/GluN2C NMDAR responses by 30 μM CIQ, a GluN2C/GluN2D-selective PAM, 

n = 11 oocytes. (F) Effect of pH on 30 μM GNE-8324 potentiation of GluN1a/GluN2A 

receptor responses. Inhibition is reflected by negative % potentiation values, n = 15 

oocytes.  Data represent mean ± SEM, *p<0.05, **p<0.01, ****p<0.0001.  

 

Figure 6.  

UBP684 interaction with protons and the N-terminal GluN1 insert.  

Proton inhibition of GluN2B- (A) and GluN2D- (B) containing NMDARs was determined in the 

absence (black) or presence (green) of 50 µM UBP684. Responses from each oocyte were 

normalized to the NMDAR response obtained at pH 8.5 in absence of UBP684 from the same 

oocyte, n = 8 - 12 oocytes. (C) UBP684 potentiation of GluN1a/GluN2D (blue, solid curve) and 

GluN1b/GluN2D (blue, dotted curve) receptors at pH 7.4. Values represent the % potentiation 

above the agonist-alone control response, n = 5 - 6 oocytes. (D) UBP684 inhibition of 

GluN1a/GluN2D (red, solid curve) and GluN1b/GluN2D (red, dotted curve) receptors at pH 8.4, 

n = 5 - 7 oocytes.  Values represent the mean ± SEM % inhibition.  

 

Figure 7.   

Effect of redox modulation and membrane potential on PAM activity.  

(A) Average % potentiation by UBP684 (50 µM, green bars) and UBP753 (50 μM, red bars) 

before (open bars) and after (solid bars) 3 mM DTT treatment of GluN2D-containing NMDARs 

for 3 min (n = 8 oocytes). (B) Top: represented traces showing the potentiation by UBP684 and 
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UBP753 when membrane potential was held at + 20 mV (gray) or at – 60 mV (black). Bottom: 

Histogram showing average potentiation by UBP 684 (50 μM, green bars) and UBP753 (50 μM, 

red bars) at GluN1/GluN2C receptors when the membrane potential was held at + 20 mV or at – 

60 mV (n = 4 oocytes). Data represent mean ± SEM.  

 

Figure 8.  

Effect of UBP684 and UBP753 on the rate of MK-801 channel blockade as a 

measure of open channel probability.  

(A) GluN1/GluN2C receptor responses to 10 μM L-glutamate and 10 μM glycine and blocked by 

co-application of 1 μM MK-801 in the absence (left) or presence (right) of 100 µM UBP684.  

Drug applications are as indicated by the bars above the traces.  Scale bars indicate current (nA) 

and time (sec). (B) Left: Normalized trace of MK-801 inhibition in the absence (black) and the 

presence (green) of UBP684. Right: Normalized trace of NMDAR response inhibition by 10 µM 

UBP792 in the absence (black) and the presence (green) of UBP684. (C) The mean rate of 

inhibition of GluN1/GluN2C and GluN1/GluN2D responses by MK-801 (left and middle graph) 

and UBP792 inhibition of GluN1/GluN2D responses (right graph) in the absence (open bars; n = 

3 - 6 oocytes) and in the presence (solid bars; n = 4 - 6 oocytes) of 100 μM UBP684 or 50 μM 

UBP753 as indicated. Data represent mean ± SEM *p˂0.05, * p<0.01.  

 

Figure 9.  

UBP684 slows the deactivation time of NMDARs.  

(A) Receptor deactivation time was studied by removing agonists (10 μM L-glutamate or10 μM 

glycine) after obtaining GluN1-1a/GluN2D steady-state response with /without UBP753 (50 μM) 

or UBP684 (50 μM). The deactivation time constant was obtained by fitting a two-component 

exponential function. A representative trace of agonist deactivation in absence or presence of 
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UBP684 is shown in the middle and the superimposed, normalized deactivation trace with (green) 

and without (black) UBP684 is shown on the right (n = 7 - 15 oocytes per group). Data represent 

mean ± SEM ***p˂0.001 (one-way ANOVA followed by Bonferroni’s multiple comparison 

test). (B) Deactivation time for glycine removal was studied in presence of L-glutamate and in the 

presence or absence of UBP684 (green) or UBP753 (red). Traces in the middle show the 

deactivation kinetics upon glycine removal with (green) and without (black) UBP684. Traces on 

the right are the corresponding normalized deactivation traces (with UBP684, green; without 

UBP684, black; n = 5 oocytes per group). Data represent mean ± SEM (C) The deactivation time 

for L-glutamate removal in the presence of glycine and in presence/absence of UBP 684 or 

UBP753. The trace in the middle shows the deactivation kinetics following L-glutamate removal 

and the trace on the right is the normalized trace of the deactivation kinetics (n = 6-7 oocytes per 

group). Scale bar: horizontal = time in sec, vertical = current in nA.  Data represent mean ± SEM, 

*p˂0.05 (one-way ANOVA followed by Bonferroni’s multiple comparison test).  

 

Figure 10. 

Whole cell and single channel recordings in response to rapid agonist application; effects of 

UBP684 on responses by GluN1/GluN2A receptors expressed in HEK cells. 

(A) An NMDAR current evoked by a short pulse of Glu (30 µM) with (red trace) or without 

(black trace) 30 µM UBP684. (B) Quantification of the effect of UBP684 on peak amplitude and 

decay time constant (n = 4). (C) Effect on NMDAR single channel currents (representative traces 

from patch believed to contain only one channel), elicited by a short pulse of Glu. (D) An 

ensemble current (mean) composed of single channel responses as in C with (red) and without 

(black) 30 µM UBP684.  
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Figure 11.    

Effect of the LBD cleft conformation on potentiation by UBP753.  

(A) Representative recordings showing the effect of 10 µM L-glutamate (open bar), 10 µM 

glycine (gray bar), or both agonists (black bar) on wildtype (GluN1/GluN2A), GluN1 LBD-

locked (GluN1c/GluN2A) and GluN2A LBD-locked (GluN1/GluN2Ac) NMDARs expressed in 

Xenopus laevis oocytes and (lower panel) the effect of 100 µM UBP753 (red bar) on agonist 

responses in the same three receptors as indicated.  Scale bar: horizontal = time in sec, vertical = 

current in nA. (B) Histogram showing the average potentiation by UBP753 of agonist-induced 

(10 μM L-glutamate and 10 μM glycine) responses from oocytes expressing WT (black, n = 17 

oocytes), GluN1 LBD-locked (blue, n = 9 oocytes) and GluN2A LBD-locked (yellow, n = 16 

oocytes) receptors. Data represent the mean ± SEM, ****p˂0.0001 (one-way ANOVA followed 

by Tukey’s multiple comparison test). (C) Schematic representing the two cysteine point 

mutations in the LBD region of GluN1 (N499C and Q686C) leading to the glycine binding site-

locked conformation and in the LBD of GluN2A (K487C and N687C) leading to the L-glutamate 

binding site-locked conformation.  
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