
                          Tartaruga, I., Lowenberg, M. H., Cooper, J. E., Sartor, P. N., & Lemmens, Y.
(2017). Optimization of Aerospace Structures Under Uncertainty Using an
Iterative Distribution Evolutionary Algorithm. In 58th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference [AIAA 2017-
1308] American Institute of Aeronautics and Astronautics Inc. (AIAA).
https://doi.org/10.2514/6.2017-1308

Peer reviewed version

Link to published version (if available):
10.2514/6.2017-1308

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via AIAA at https://arc.aiaa.org/doi/abs/10.2514/6.2017-1308. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.2514/6.2017-1308
https://doi.org/10.2514/6.2017-1308
https://research-information.bris.ac.uk/en/publications/optimization-of-aerospace-structures-under-uncertainty-using-an-iterative-distribution-evolutionary-algorithm(6ca87aea-a74f-46d0-8678-5da971a1095d).html
https://research-information.bris.ac.uk/en/publications/optimization-of-aerospace-structures-under-uncertainty-using-an-iterative-distribution-evolutionary-algorithm(6ca87aea-a74f-46d0-8678-5da971a1095d).html


Optimization of Aerospace Structures under

Uncertainty using an Iterative Distribution

Evolutionary Algorithm

I. Tartaruga∗,

Siemens PLM Software, 3001 Leuven, Belgium

M. H. Lowenberg†, J. E. Cooper‡and P. Sartor§,

University of Bristol, Bristol, BS8 1TR, UK

Y. Lemmens¶

Siemens PLM Software, 3001 Leuven, Belgium

An Iterative Differential Evolutionary Algorithm is proposed for the optimized identi-
fication of sets of parameter values for a system whose analysis is very time demanding
and for which it is difficult to identify and define the optimum set. The algorithm is an
evolutionary technique and reduces the number of evaluations required for both numerical
and experimental systems thanks to an iterative procedure. It exploits geometrical con-
siderations to distribute the points to be investigated in the considered parameter space,
and SVD/metamodeling based techniques to further decrease the computational burden.
The developed strategy aims to minimize the probability of failure, guaranteeing a reliable
optimum, providing an understanding of the acceptable range of uncertainties and keep-
ing robustness. The approach is validated considering the optimization of landing gear
designs minimizing the probability of occurrence of shimmy phenomena during ground
manoeuvres.

Nomenclature

B,Bm track of the main assembly and distance between the nose and the axis of the main assembly
d direction of interest
F ∗ set of tangency parameters
Fopt optimum nominal parameter value
g limit state function
L Lift
LoI locus of interest
Pmaxi maximum range of variation for the ith considered parameters
Tolε, Tolp tolerances adopted in the algorithm
W vertical load acting on the landing gear structure
W weight of the aircraft
x vector of design parameters
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I. Introduction

The adoption of optimization strategies in a design process is highly recommended in all engineering fields.
The optimization process often faces multi-objective problems and in the field of structural reliability the
minimization of occurrence of limit-state or constraints violations is analysed.1 The defined objectives can
be conflicting and so the optimum solution is not unique and may not optimize each individual objective but
is the result of a compromise. Pareto frontier analyses is often exploited to find the optimum compromise.2

Pareto frontier analysis was first introduced by V. Pareto in the economic field but it has often been applied
in the engineering field,3 such as the landing gear design process.4

The minimization of the landing gear weight as been considered as the main objective function also in
structural optimization of UAV landing gears5.6 Landing gear design can also be the result of structural
optimization based on fatigue life7 or on both fatigue life and energy absorption during landing and take off.8

Most of the time multi-body systems and/or finite element methods (FEM) have been adopted to depict
the actual complexity characterizing the aeronautical system of interest5–9 . Moreover, depending on the
task of the analysis, a metamodel can be used to speed up the process and/or to construct the optimization
strategy itself.7

In the optimization process, uncertainty in the system has not been always considered and the process is
developed adopting a deterministic analysis3–5 or sometimes introducing a safety factor.6 The consideration
of uncertainties in the development and improvement of such a strategy has recently become a particular
research of interest. In fact, the industrial companies themselves are aware that a deterministic approach,
with the application of a safety factor, involves an over or under designed system.

The consideration of uncertainties increases the difficulties in determining an optimum nominal design.
This is particularly true for systems whose numerical model is computationally expensive to be simulated.
Robust design optimization (RDO)10 and reliability-based design optimization (RBDO)11 are the two tech-
niques commonly adopted to deal with the optimization of performance of systems under uncertainty12.1

In the presence of a very computationally expensive numerical model, nonlinear behaviour and multi-
objective problems, the traditional RDO and RBDO are not always suitable because of two main problems:
the prohibitive computational cost and the neglect of higher-order moments common for the RDO and
RBDO techniques. Alternative optimization strategies have been proposed to overcome these problems, for
instance aggressive design procedures13.14 The difficulty in such an approach, is that, depending on the
problem, it is not assured that the desired target is matched ‘close’ enough or that the computational effort
is actually reduced. In this scenario, the necessity arises to develop a method that can assure reliability for
an engineering structure whose analysis is time demanding even in the absence of uncertainty.

In this paper, a novel optimization method (Iterative Distribution Evolutionary Algorithm - IDEA)
is presented and can be classified as an evolutionary algorithms.15–17 It is an iterative procedure that
aims to robustly minimize the probability of failure and to provide an understanding of the acceptable
range of uncertainties exploiting geometrical considerations to distribute the points to be investigated in
the considered parameter space, and SVD/metamodelling based techniques.18–22 The optimization strategy
is conceived in order to solve problems that are very time demanding and for which it is difficult (and
expensive) to determine derivatives and to identify and define the optimum set of parameters. The reduction
in computational time is both in terms of number of cases to be analysed directly through experiments or
run of numerical models and in the lack of a need to compute gradients. The completeness of the analysis
is fulfilled thanks to the inclusion of methodologies to perform sensitivity analysis (SA) and propagate
uncertainties in the system. The validation considers the optimization of landing gear design to avoid
shimmy phenomena during ground manoeuvre.

II. Methodology

The optimization of a system requires to first identify the dynamics that influence the most the responses
of interest. To this end techniques already adopted by the author20,22,23 to perform sensitivity analysis
(SA) and uncertainty quantification (UQ) have been adopted. Sobol indexes are used for performing SA
and SVD/metamodelling based techniques for the uncertainty propagation. Such a techniques allow a better
understanding of phenomena of interest and of the influence of input factors in order to then be able in
improving the design of engineering systems. Once the input factors most influential to the response of
interest are identified, then the optimization in terms of these factors can be performed. An optimization
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problem is formulated as it follows. A vector of values x1, x2, ..., xN for an input factor vector x is sought in
order to minimize the defined objective function f(x).

The proposed optimization strategy is considering the nominal values of the selected design factors as
uncertain. However, there is not any kind of limitation in the design/uncertain factors that can be selected.
The strategies are conceived in order to solve problems that are very time demanding and for which it is
difficult (and expensive) to determine derivatives and to identify and define the optimum set of parameters.
The reduction in computational time is both in terms of number of cases to be analyzed directly through
experiments or run of numerical models and in the lack of a need to compute gradients. The completeness of
the analysis is fulfilled thanks to the inclusion of methodologies to perform SA and propagate uncertainties
in the system.

The proposed novel optimization methods (Iterative Distribution Evolutionary Algorithm - IDEA) can
be included among the evolutionary algorithms.15–17 Evolutionary Algorithms (EAs) are population-based
metaheuristic optimization algorithm; they are exploring the set of possible solutions for sufficient set of
solutions following mechanism inspired by biological evolution, for instance reproduction, generation, mu-
tation, recombination and selection. The optimization considers the input factors as individuals belonging
to populations that are generated through mutation and recombination and that can be subjected to mu-
tation. EAs techniques are fascinating since they can be adopted whatever the problem of interest, since
no assumptions are made.24 However, the determined solution is numerical and is an approximation of the
unknown optimal one. In this scenario, it is important to remark that in engineering problems an optimum
result can be difficult to be identified and is not uniquely defined. Thus, in such a scenario evolutionary
algorithms are sensible to be adopted. The proposed optimization algorithm is a procedure that aims to
minimize the probability of failure without directly computing it since the unfeasible computational cost in
obtaining the probability density function of the quantity of interest. IDEA aims to determine the range
of variation for the input factors for which the uncertain boundary is tangent to the limit condition from
the reliable area. It also provides an understanding of the acceptable range of uncertainties exploiting geo-
metrical considerations to distribute the points to be investigated in the considered parameter space. The
proposed technique is composed of three phases, the first two are adopted to identify the range of variation
to start the optimization process. In fact, the starting step for the iterative procedure is to identify the set of
values for the parameters F∗ for which the locus of interest LoI is tangent to the defined limit-state function
g or for which the distance along the direction of interest d for which the probability of failure is highest
is a minimum, given a starting set for the parameters F. For the sake of clarity Fig. 1 shows an example
of a generic problem in which the direction of interest is connecting the origin of the space defined by the
quantities of interest (QoI), i.e. the quantities that describe the locus of interest and limit-state function,
and the point in which the limit state function is crossed.

The stated phases are:

– First phase: Preparation

– Second phase: Data Collection

– Third phase: Iterative Process

In the following sections, three phases are presented and then in section IV the specialization for the case
of interest and the obtained results are discussed.

First phase: Preparation The objectives of the optimization are established including possible accept-
able tolerances. In particular, the limit state function g that delimits the failure region has to be defined.
For the application here considered, the objective function is the variation of the vertical load on the landing
gear as the forward velocity changes during a static maneuver on the ground of an illustrative aircraft in
equilibrium conditions. The stated variation can be evaluated employing equilibrium equations. The explicit
expression of the stated variation is given by

W =
Bm
B

(W − L) L =
1

2
ρV 2SCL (1)

where Bm is the track of the main assembly, B is the distance between the nose and the axis of the main
assembly, W is the weight of the aircraft, L is the lift (Figure 2).
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𝑄𝐼2

𝑄𝐼1

Failure region

𝑂

Direction of interest: d

Probability of Failure: 𝑃𝑓

Limit state function: g

Locus of Interest (LoI) tangent to g

Figure 1: Example of how to detect the direction of interest d looking at the probability of failure.

Figure 2: Quantities needed for writing equilibrium equations.

Moreover, in the presence of a system with a lot of parameters, like in a landing gear system, sensitivity
analysis needs to be performed to detect the most influential ones for the considered objectives in the opti-
mization process. Sobol indices25,26 are adopted. Having identified the parameters to be considered during
the optimization process, the maximum negative range of variation Pmaxineg

and positive one Pmaxipos
for

the ith considered parameter (i = 1...N) are defined. In case a symmetric variation of the parameter of
interest is adopted, then Pmaxineg

is equal to Pmaxipos
and the maximum percentage is Pmaxi

. Here, this
variation has been adopted.

Second phase: Data Collection The quantities of interests (QoIs), those that describe the locus of
interest and limit-state function, are evaluated for a suitable number of points in the parameter space by
directly running the numerical model or doing experiments. These are needed to train surrogate models
adopted in the SVD based methodology.18–22 Using the SVD/metamodelling based methodology can reduce
by 95% the time consumption due to the investigation over the parameters space to look for the set of
nominal values F∗ for which the stated tangency occurs. Knowing F∗, the interval (xj,low, xj,upp) of interest
for each jth design parameter can be defined (eq. (2)).

[F ∗
i ·

1− Pmaxineg

1 + Pmaxipos

, F ∗
i ·

1 + Pmaxipos

1− Pmaxineg

] (2)

The range of variation defined in eq. 2 is the same for both the optimization strategies, but the definition
comes from considerations related to the IDEA technique, i.e. the point F∗ need to be internal to the

4 of 19

American Institute of Aeronautics and Astronautics



optimum uncertain interval of variation identified at the end of the IDEA process and that is around the
optimum nominal value Fopt. In fact, the point F∗ is the one for which the locus of interest is tangent to
the limit-state function. The steps to obtain the interval shown in eq. (2) are now explained. The possible
upper and lower bounds for the optimum nominal value, given that the point F∗ needs to be internal to the
final optimum uncertain interval of variation, are shown in eqs. (3) and (4).

Foptupp(1− Pmaxineg
) = F ∗

i (3)

Foptlow(1 + Pmaxipos
) = F ∗

i (4)

Considering the maximum possible interval of variation for the lower or upper nominal value Fopt (eq.
(5)) and substituting the lower and upper bounds using eqs. (3) and (4), the expression in eq. (2) is obtained.

[Foptlow(1− Pmaxilow
),Foptupp

(1 + Pmaxiupp
)] (5)

It is worth noticing that since the analyses are performed numerically, the tangency can be defined
as the state for which the locus of interest LoI is the nearest one to the defined limit function g a
long the direction of interest d previously identified. Mathematically, this can be expressed as F∗ :=
F|(dist(g − LoI(F∗)d) = min(dist(g − LoI(F)d).

At this point, the user can also decide to consider more than one set F∗ to continue in the optimization
process and eventually pick the best set according to other requirements, such as robustness.

Third phase: Iterative Process Figure 3 presents the flow chart describing the last phase, which is
the iterative one. Dynasys stands for the Dynamical System Toolbox,27 the Matlab version of AUTO.

The third phase is the iterative part that has evolutionary characteristics. A general evolutionary algo-
rithm has three main steps: generation, mutation and selection.15–17 Each generation consists of separate
selection and mutation steps performed iteratively. In the IDEA the generation is the region-hypercube
of interest identified for each set F∗ the user wants to use; this hypercube has as many dimensions as the
number of design factors and each value of the design factors is delimited by the defined interval (eq. (2)).
Moreover, for each generation a full factorial design is considered to define sampling points in which to eval-
uate the objective function. This consists of generating a well structured sampling plane that has the aim
to not exclude any values for a specific parameter that could match desired requirements for some precise
values of other parameters. For each generation and each point in the full factorial sampling plane, the QoI
need to be evaluated. Thanks to the surrogate models already trained, a saving in time can be achieved.
The surrogate models are used to evaluate the QoI at the points that are in the range considered in the
first phase. Depending on the obtained QoI the relative points are divided into two groups: positive and
negative. The positive points are those for which the loci identified by the QoI are not in the failure region
or if they are, the defined tolerance Tolε is fulfilled such that

dist(g − LoI(FG)d)− dist(g − LoI(F∗
G)d) <= Tolε · dist(g − LoI(F∗

G)d) (6)

where G is used here to emphasize belonging to a particular generation.
All the other points are negative and always present since the optimization process is considered for

problems that do not have an acceptable probability of failure.
The mutation consists of a subdivision of the hypercube along particular directions such that all the

new hypercubes contain the point FG. The directions for the subdivisions are identified by the negative set
of points, and in particular by the values assumed by the parameters at such a point. The directions are
identified by varying all the parameters at the negative point but one. The number of the directions for each
negative point are equal to the dimension of the hypercube, i.e. the number of design parameters. Figure
4 clarifies the procedure considering an hypercube in 2D (the black rectangle) and just one negative point
(the yellow point). The black rectangle is always the same initial hypercube and all the possible subdivisions
are shown. The blue and red rectangles are those to be neglected or considered to improve the optimization
further. At the end of the mutation step, no hypercube with negative points inside should be present.

The selection step consists of sorting the hypercube in a descending order in terms of the volume and
evaluating the QoI at the points not in the range considered in phase one. This selection can only be done
by directly running the numerical model or using experimental results. Finally, the hypercube that does
not have a tolerance greater than Tolp of points for which the loci of interest are intersecting the limit state
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Start 

Sampling – Full Factorial Design – maximum HC   

Evaluate objective function at the sampling points inside the 
initial hypercube using Surrogate Models 

Identify all possible sub-HCs not containing negative points  

Select largest sub-HC  

Select a sampling point inside the sub-HC randomly and 

evaluate objective function at such a point 

Positive Point/result 

under tolerances  

Yes 

Optimum 

Still points to be 

evaluated in the 

selected sub-HB 

Yes No 

No 

Figure 3: Flow chart describing the iterative phase characterizing the Iterative Distribution Evolutionary
Algorithm.

function is selected, having accepted also the tolerance shown in eq. (6). Tolp is defined as the percentage
of the number of negative points acceptable in the hypercube with respect to the total number of points be-
longing to the considered hypercube. The optimum set of values is given by the mean point in the hypercube.

Validation phase The optimum sets of values determined for each generation can be compared, per-
forming uncertainty quantification (UQ) for each of them and looking at the results. This comparison can
be accomplished either using just the points belonging to the optimum hypercube or adopting SVD based
methods. The desired optimum set is the one that provides the minimum probability of failure (high relia-
bility) and the least width of PDF (high robustness) or a suitable defined compromise of these properties.
Once the optimum is found, the nominal value and percentage variation can be defined as preferred, i.e.
assuming a symmetric or asymmetric distribution.

III. Test cases

The test cases of the proposed algorithm are the identification of parameter values for landing gear
systems to avoid shimmy phenomena during ground manoeuvre. In this section, the adopted test based
models is briefly presented.
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Figure 4: Example of the mutation strategy. The green point is the one related to the set F∗. The yellow
point belongs to the negative set. The black rectangle is the initial hypercube in 2D, the blue rectangle is the
one that does not need further analysis. The red rectangle is the one to improve the optimization further.

A. Landing gear model

The landing gear model, considered to validate the proposed algorithm, is a multi-body system modeled in
LMS Virtual.Lab Motion.28 Numerical models have been considered, due to the possibilities in describing
more in details the system of interest. In fact, they are adopted in industry for static and dynamic analyses
in order to limit the assumptions adopted to describe the dynamics of the landing gear model.

The multi-body landing gear model (Fig. 5) is a dual-wheel system and, considering all the adopted
constraints without considering the tyre model, it has 9 degrees of freedom and 18. The bodies and adopted
joints are shown and explained in Fig. 5. In particular, the joint between Main 1 and Main 2 has been
introduced in order to simulate spring-back/spin-up phenomena, the relative degree of freedom is out-of-
plane and the relative dynamics is described by second order differential equations in terms of β. Moreover,
a nonlinear shock absorber has been modeled and introduced as a nonlinear force acting between the Main
2 and Main 3 bodies and a tyre model based on Pacejka formulation has been developed. The tyre model
adds two degrees of freedom for each wheel since it models both the lateral and longitudinal tyre dynamics
adopting one order differential equation for each dynamic. The authors have already discussed and shown
the importance of including the longitudinal slip/wheels dynamics in a stability analysis.29

The stability of both the landing gear systems has been investigated using a bifurcation analysis30–32 and
in particular continuation methods, coupling the models with a continuation software.20,21,33 The adopted
software is the Dynamical System Toolbox,27 the Matlab version of AUTO. A key benefit of using such an
analysis is that there is no need to resort to expensive blind Monte-Carlo simulations that are required when
solely using a numerical integration route. The Dynamical System toolbox integrates AUTO into Matlab
via mex functions to perform bifurcation analysis of dynamical systems for which an analytic description
is available or that are modelled in software able to interface with Matlab. Whatever is the system of
interest and the adopted model, Figure 6 presents a flow chart that explains how the continuation analysis is
performed using AUTO. At the beginning the bifurcation parameters (P) and the independent states (U) of
the system to be considered in order to investigate the stability of the system of interest need to be selected.
Then, an equilibrium solution for the system needs to be determined in particular in terms of the selected
bifurcation parameters and independent states. These values are used to start the continuation analysis. In
order to describe how the continuation works, sub-indexes i and k are here adopted. The stated equilibrium
solution is given by the set (Pi,Uik) = (P0,U00) for i = k = 0. The index i stands for each step of the
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joint  
Main 1 

Main 2 

Main 3 

Wheels 
Wheel axle 

Trail 

Revolute Joint between the fuselage and Main 1, 
allows rotation around the ‘x-axis’ (𝜹) 

x y 

z 

Revolute Joint between Main 1  and Main 2, 
allows rotation around the ‘y-axis’ (𝜷) 

Bracket Joint between Main 2 and Main 3, 
allows translation along the ‘z-axis’ 

Revolute Joint between Main 3 and the trail, 
allows rotation around the ‘z-axis’ (𝝍) 

Revolute Joint between the trail and the wheel axle, 
allows rotation around the ‘y-axis’ (𝚫) 

2 Revolute Joints, each one is between the wheel axle and the wheel (left or right) , 
allows rotation around the ‘y-axis’ (𝛀𝐋 or 𝛀𝑹) 

y 

z 

Figure 5: Landing Gear modeled in LMS Virtual.Lab Motion

continuation analysis, the index k stands for the steps needed to AUTO to determine the correct set of
values given to the independent states (Ui), i.e. the values of the independent states (U) such that a steady
state solution is found for the considered bifurcation parameter values (Pi). At the end, a set of bifurcation
parameters and states (Pi,Uik) in the range of interest for which the system is in steady state (equilibrium
and periodic branch - LCO) can be determined together with the stability of the system along the branches.
Moreover, occurrence of bifurcations, i.e. sudden ‘qualitative’ or topological change of a system due to a
small smooth change made to the parameter values (the bifurcation parameters) can be detected. Finally,
if self-excited oscillation (Limit Cycle Oscillations such as shimmy or flutter) occurs then a characterization
(amplitude, period and steady state response) can be performed.

If a multi-body model is adopted then it is needed a coupling between a multi-body software and one that
is able to perform bifurcation analysis. In the present application, the continuation analysis is adopted to
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Bifurcation Parameters (𝑷𝒊) 
e.g. forward velocity,  

acting forces,  
parameters of interest 

 
States of the system selected to 

do the continuation (𝑼𝒊𝒌) 

System of interest 
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interfaced with MATLAB 

 
 

All the dependent states are evaluated  
given the values of 𝑷𝒊 and 𝑼𝒊𝒌 
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(𝑷𝒊, 𝑼𝒊𝒌) 
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                       𝒊, 𝒌 
NO 

Check: 
- Steady state solutions?  

(equilibrium or periodic branch-LCO) 

Stability analysis, 
occurrence of 
bifurcations, 

LCO 
characterization 

Figure 6: Flow chart that explains how the continuation analysis is performed in Matlab using the Dynamical
System Toolbox.27

perform bifurcation analysis and AUTO is the used software, in particular the Matlab version of AUTO, the
Dynamical System Toolbox.27 Regarding the multi-body softare, LMS Virtual.Lab Motion is the selected
one. LMS Virtual.Lab Motion has been interfaced with Matlab using a library available in VLM itself28 so
that all the states of the model are available in the Matlab environment. Figure 7 presents the flow chart
of the general process adopted for the coupling. In particular, it is showing the exchange of information
occurring between the AUTO version in Matlab and VLM through the Matlab interface available in VLM.

 

AUTO/dynasys in Matlab 

 

Values for:  

- Independent states 

- Bifurcation parameters 

 

Check for: 

- Steady state solution 

(equilibrium or periodic branch/LCO) 

 

Stability Analysis 

Bifurcation points detection 

 LCO characterization 

 

VLM 

 

 

 

 

 

 

 

 

Matlab Interface 
 

 

 

 

 

 

 

 

 

 

 

 

Dependent states are 
evaluated  

Derivatives are 
computed 

Info on the 
independent states 

and bifurcation 
parameters 

Info on the values of 
the derivatives 

Figure 7: Flow chart describing the exchange of information needed to perform the bifurcation analysis
coupling AUTO with VLM using the Dynamical System Toolbox27 and the Matlab interface available in
VLM to ‘handle’ the states of the multi-body model.

IV. Results

In this section the results obtained performing Sensitivity Analysis and Uncertainty Quantification for
the multi-body landing gear system and applying the Iterative Distribution Evolutionary Algorithm (IDEA)
are presented. The uncertainty quantification and sensitivity analysis are performed in terms of bifurcation
algorithms. Confidence bounds are defined for the possible occurrence of limit cycle oscillations in the pres-
ence of parametric uncertainty. These bounds are the loci of the Hopf bifurcation points and that determines
subdivision of the interested parameter space identifying the region in which limit cycle oscillations, in par-
ticular shimmy, occur.30–32 The loci of Hopf bifurcation are determined varying the vertical load W acting
on the landing gear and the forward velocity V (Fig. 8). In order to perform the Sensitivity Analysis, the
Uncertainty Quantification and then the Optimization, the locii of Hopf bifurcation are suitably discretized
as it is shown in Fig. 8. The stated locii of Hopf bifurcation are those obtained for four different sets of
parameter values of the landing gear systems that are varied during the SA (table 1).
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Parameter 1st set 2nd set 3rd set 4st set

Mass of the main fitting 1 (kg) 9.42 9.95 10.35 9.62

Mass of the main fitting 2 (kg) 5.17 5.10 5.34 4.88

Mass of the main fitting 3 (kg) 71.61 70.20 65.47 70.78

Mass of the wheel axle (kg) 103.69 95.47 105.82 94.76

Mass of the wheel (left and right) (kg) 107.62 102.42 116.73 117.41

Mass of the trail (kg) 1.98 1.92 1.87 1.76

Stiffness fuselage - main fitting 1 (N m rad−1 1.43106) 1.42106 1.57106 1.55106

Stiffness main fitting 1 - main fitting 2 (N m rad−1) 1.48106 1.57106 1.41106 1.47106

Stiffness trail body - wheel axle (N m rad−1) 2.34104 2.67104 2.62104 2.33104

Stiffness trail body - main fitting 3 (N m rad−1) 7.34105 7.60105 7.73105 7.94105

Damping fuselage - main fitting 1 (N m s rad−1) 420.78 383.20 418.48 387.57

Damping main fitting 1 - main fitting 2 (N m s rad−1 ) 7.72104 8.26104 8.34104 7.94104

Damping trail body - wheel axle ( N m s rad−1 ) 376.43 372.12 421.27 404.51

Damping trail body - main fitting 3 (N m s) 373.17 380.37 405.08 416.63

Table 1: Four combinations of values adopted to show the variation of the locii of Hopf bifurcation and the
relative discretization.

IDEA is applied with the aim of decreasing the probability of occurrence of shimmy during ground
manouevres. In particular, the loci of interest are the loci of Hopf bifurcation points and the limit state
function is the operational trend describing the variation of the vertical load W as the forward velocity V
changes during ground manoeuvres.

0 5 10 15 20 25 30 35 40
V (m/s)

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

W
(N

)

#105

Output from AUTO - 1st

Discretized - 1st

Output from AUTO - 2nd

Discretized - 2nd

Output from AUTO - 3rd

Discretized - 3rd

Output from AUTO - 4th

Discretized - 4th

NO LCO

LCO

Figure 8: Example of the description adopted for the sought branches to perform both the Sensitivity Analysis
and the Uncertainty Quantification for the landing gear model. Each line is a 2-parameter continuation of
Hopf bifurcations obtained at a particular set of parameter values (table 1).

A. Sensitivity analysis and uncertainty quantification of the multi-body landing gear system

The techniques presented by the authors18–22 have been applied to the computational expensive and complex
multi-body landing gear system obtaining very good results. For underlining the significant computational
burden, required by bifurcation analyses performed using the multi-body model, table 2 shows the time
needed to obtain a single bifurcation branch in the bifurcation diagram in terms of one (the forward velocity)
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and two bifurcation parameters (the forward velocity and the vertical load).

Bifurcation Diagram in 1 Parameter Bifurcation Diagram in 2 Parameters

6 min 20− 40 min

Table 2: Time required to compute the bifurcation diagrams using a 64-bit Operating System based laptop
with a processor Inter(R) Core(TM) i7-4810MQ CPU@2.80GHz and a RAM of 32.0 GB.

To perform SA, main and total effect indexes have been considered and Fig. 9 and 10 show the total
Sobol indices adopted to track changes in the shape and translation of locus of Hopf bifurcation (Fig. 8).23

Table 3 provides the variation considered for each parameter (±7%) together with the adopted distribution.

Parameter Label Maximum Minimum Units PDF

Mass of the main fitting 1 MMF1
9.3 10.7 kg log-uniform

Mass of the main fitting 2 MMF2
4.65 9.3 kg log-uniform

Mass of the main fitting 3 MMF3 65.1 74.9 kg log-uniform

Mass of the wheel axle MWA 93 107 kg log-uniform

Mass of the wheel (left and right) MW 102.3 117.7 kg log-uniform

Mass of the trail MT 1.753 2.017 kg log-uniform

Stiffness fuselage - main fitting 1 k1 1395000 1605000 N m rad−1 log-uniform

Stiffness main fitting 1 - main fitting 2 k2 1395000 1605000 N m rad−1 log-uniform

Stiffness trail body - wheel axle k3 23250 26750 N m rad−1 log-uniform

Stiffness trail body - main fitting 3 k4 697500 802500 N m rad−1 log-uniform

Damping fuselage - main fitting 1 d1 372 428 N m s rad−1 log-uniform

Damping main fitting 1 - main fitting 2 d2 74400 85600 N m s rad−1 log-uniform

Damping trail body - wheel axle d3 372 428 N m s rad−1 log-uniform

Damping trail body - main fitting 3 d4 372 428 N m s log-uniform

Table 3: Parameters and the range of values adopted in the sensitivity analysis and uncertainty quantification
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Figure 9: Comparison of the influence of each parameter on the change of shape of the loci considering the
total effect STi

.

Looking at the results given by the SA, k1, k4 and d1 have been selected to then propagate uncertainties
in terms of the locus of Hopf bifurcation points adopting the geometrical based method together with the
SVD/HOSVD techniques.18–22 Figure 11 shows the lower and upper confidence bounds obtained in terms
of the loci of Hopf bifurcation in dark blue and red. The black points are those belonging to the loci of Hopf
bifurcation evaluated using the SVD/HOSVD based method. The other lines are connecting points at the
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Figure 10: Comparison of the influence of each parameter on the translation of the loci considering the total
effect STi

.

same quantile, where the quantile increases from a value of 0.1 to 0.9 starting from the lower bound and
ending at the upper bound.

0 5 10 15 20 25 30 35 40
V (m/s)

0.8

0.9

1

1.1

1.2

1.3

W
(N

)

#105

LCO

NO LCO
NO LCO

LCO

Figure 11: Uncertainty bounds evaluated using the geometric based approach, the HOSVD as the method
for feature extraction and a combined side slip condition. The lower and upper confidence bounds are in
dark blue and red colors. The black points are some of the points belonging to the loci of Hopf bifurcation
evaluated using the SVD/HOSVD based method. The other lines are connecting points at the same quantile,
in particular the quantile increases from a value of 0.1 to 0.9 starting from the lower bound and ending to
the upper bound.

Looking at the results given by the UQ it is apparent the importance of including the presence of
uncertainty during a design process since the influence they have on the response of interest, if an interval
approach is considered, the occurrence of shimmy is uncertain in all the operational region between the lower
and upper bound in Fig. 11.

The validation of the performed SA and UQ has given very good results with a mean average percentage
error that is always less than 1.5%.

B. Optimization of a landing gear system

The interval of variation, the tolerances adopted in the IDEA and all the coefficients that need to be defined
in the Evolutionary Algorithm are defined as.

– the percentage variation Pmaxilow
is fixed equal to Pmaxiupp

. In what it follows, the percentage variation
will be then called Pmax and is fixed equal to 3.5%.
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– The stated tolerances Tolε and Tolp are fixed equal to 0.01 and 0.05.

– minx, maxx depend on the range of variation for the parameters.

Latin Hypercube Sampling (LHS) is the technique adopted to define the sampling planes for training the
initial surrogate models, while the full factorial design has been adopted to sample the input design factors
used in the iterative phase and the dimension is 31.

As previously stated, the optimization of the landing gear has the aim of decreasing the probability of
occurrence of shimmy during ground manouevres. In particular, this has been addressed by making the
probability of intersection between the loci of interest (loci of Hopf bifurcation) and the limit state function
(the operational trend) as lower as possible. Figure 12 shows an example of what can occur due to uncertainty
in the system.

5 10 15 20 25 30 35 40
V(m/s)

0.7

0.8

0.9

1

1.1

1.2

1.3

W
(N

)

#105

Lower Interval Bound
Upper Interval Bound
Operational Trend

NO LCO

NO LCO

NO LCO

LCO

LCO
LCO

Possible LCO

Possible LCO Possible LCO

Figure 12: Example of lower and upper confidence bounds for the loci of Hopf bifurcation points and
operational trend.

The continues blue and red lines are the lower and upper confidence bounds for the loci of Hopf bifurcation
points determined using the SVD/HOSVD based method.18–22 The dot red line is the operational trend. For
all the values of the forward velocity V between the first and second intersecting point, LCO (shimmy) can
occur since the uncertainty in the system. The optimization we are considering has also as aim to acquire
an understanding of the acceptable range of uncertainty. The performed application of IDEA considers the
nominal values of the uncertain factors as design parameters. The uncertain parameters to be considered
are those the much influential to a change of the loci of Hopf bifurcations, i.e. the stability of the system.

The coefficients used to define the limit function trend g (eq. 1) are first specified (Table 4).
In the first phase the surrogate models evaluated to perform the Uncertainty Quantification, are adopted

to identify the set of values F∗
G and the interval (eq. 2). Figures 13-15 provide the results related to the

Evolutionary phase, the green point stands for F∗
G. The hypercubes in the parameter space (in this case a

cube) are determined and sorted in an ascending order. Using a full factorial design, the hypercubes are filled
with points (red in Fig. 13b) and the QoI (W and V ) are evaluated for the points inside the initial range of
variation for which the surrogate models are trained. Negative points, i.e. those for which the locus of Hopf
bifurcation points are intersecting with the operational trend under the considered tolerance, are determined
(yellow points in Fig. 14a) and the hypercube are further subdivided as explained in section II. At this step,
AUTO and the numerical model are run for all the other sampling points inside the hypercubes that can be
further considered since containing the point F∗

G and no negative points. Finally, the hypercubes are sorted
again and the one with the greater volume is picked out for each considered generation and the optimum sets
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parameter value

B 11.04 m

xcg 9.5m

Bm Bm = B − xcg
W 70000 Kg

ρ 1.225kg/m3

S · CL 128.1306m2

Table 4: Parameter values adopted to describe the limit function for the optimization of the mutli-body
landing gear design.

are determined (Fig. 14b). A post-processing of the data can be considered and the SVD/HOSVD based
method can be applied to eventually propagate the uncertainty for the determined optimum sets (the black
points in Fig. 15).

The comparison of the initial confidence bounds and the optimum ones are shown in Figure 16. Moreover,
Figure 17 shows a comparison of the loci of quantiles for the initial and optimum confidence bound.

A comparison of PDFs obtained for the initial set of nominal values and the optimum one is shown in
Figure 18. Table 5 provides the initial set of nominal/percentage values and the optimum set and relative
acceptable uncertainties.
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(a) IDEA - one generation step - the green point is point
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Figure 14

The last result presented here is related to the probability of failure characterizing the system for which
the optimum set of values are adopted. The probability of failure is the one along the direction of interest
and is related to the points on the locus of Hopf bifurcation that are intersecting the direction of interest
and belonging to the region of failure. (Table 6).

The application to the multi body landing gear model is very encouraging for the proposed novel opti-
mization algorithm (I.D.E.A). The most critical probability of failure is decreased assuring an increment in
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Figure 15: IDEA - Optional postprocessing analysis. The loci are evaluated using the SVD/HOSVD based
method at the black points.
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Figure 16: Comparison of the initial confidence bounds and the optimum ones.

[cψ, Ipsi, L]

Starting Point [1.5 · 106, 750000, 400]

Optimum [1.5257 · 106, 794059, 411]

Initial Uncertainty Range (%) [3.5, 3.5, 3.5]

Acceptable Uncertainty (%) [4.55, 4.55, 7]

Table 5: Results obtained applying IDEA to the multi-body landing gear model.

the structure reliability.
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Figure 17: Comparison of the loci of quantile for the initial and optimum confidence bound.
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Figure 18: Comparison of PDF obtained for the initial set of nominal values and the optimum one.
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Case 1

Direction of Interest 1 2

SVD

Starting Design 0.0228 0.9391

Optimized Design 6.7582 · 10−5 0.0385

HOSVD

Starting Design 0.024 0.9339

Optimized Design 2.2704 · 10−4 0.151

Table 6: Comparison of probability of failure for the best optimum with the one characterizing the starting
landing gear design.
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V. Conclusions

The novel algorithm, Iterative Distribution Evolutionary Algorithm (IDEA), has been adopted to perform
optimization under uncertainties minimizing the probability of failure. A reliable optimization has been
obtained providing an understanding of the acceptable range of uncertainties and assuring robustness of the
system. The validation considered the optimization of landing gear systems, to avoid shimmy phenomena
during ground manoeuvre. The results have shown that the proposed method is able of guaranteeing the
reduction of probability of occurrence of shimmy phenomena during ground manoeuvre. The obtained results
have been obtained reducing the computational time required by numerical simulations thanks to the use of
surrogate models and continuation software for stability analysis.

Acknowledgments

The research leading to these results has received funding from the European Community’s Marie Curie
Initial Training Network (ITN) on Aircraft Loads Prediction using Enhanced Simulation (ALPES) FP7-
PEOPLE-ITN-GA-2013-607911. The partners in the ALPES ITN are the University of Bristol, Siemens and
Airbus Operations Ltd.

References

1Choi, S. K., Grandi, R. V., and Canfield, R. A., editors, Reliability-based Structural Design, Springer-Verlag London
Limited, 2010.

2Pareto, V., “Manuale di economia politica con una introduzione alla scienza sociale, Piccola biblioteca scientifica, Societ
Editrice Libraria,” 1906, Milano.

3Mastroddi, F. and Gemma, S., “Analysis of Pareto frontiers for multidisciplinary design optimization of aircraft,”
Aerospace Science and Technology, Vol. 28, No. 1, July 2013, pp. 4055.

4Zeljkovi, V. and Maksimovi, S., “Multilevel Optimization Approach Applied to Aircraft Nose Landing Gear,” Scientific-
Technical Review,Vol.LVI,No.2 , 2006.

5Swati, R. F. and Khan, A. A., “Design and Structural Analysis of Weight Optimized Main Landing Gears for UAV under
Impact Loading,” Journal of Space Technology Vol.4, No.1 , July 2014.

6A. K. Matta, G. V. Kumar, R. V. K., “Design Optimisation Of Landing Gear’s Leg For An Un-Manned Aerial Vehicle,”
International Journal of Engineering Research and Applications (IJERA), Vol. 2, number4 , July-August 2012, pp.2069-2075.

7Xue, C. J., Dai, J. H., Wei, T., and Liu, B., “Structural Optimization of a Nose Landing Gear Considering its Fatigue
Life,” JOURNAL OF AIRCRAFT Vol. 49, No. 1 , January-February 2012.

8Engineering, A., “Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks,” Altair HyperWorks,
October 2008.

9Chai, S. T. and Mason, W. H., Landing Gear Integration in Aircraft Conceptual Design, September 1996 (rev. March
1997), http : //www.dept.aoe.vt.edu/ mason/Masonf/M96SC.html downloaded in April, 2015.

10Beyer, H.-G. and Sendhoff, B., “Robust optimization A comprehensive survey,” Comput. Methods Appl. Mech. Engrg.,
Vol. 196, 2007.
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