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Humans commonly engage in tasks that require or are made more efficient by

coordinating with other humans. In this paper we introduce a task dynamics approach

for modeling multi-agent interaction and decision making in a pick and place task where

an agent must move an object from one location to another and decide whether to

act alone or with a partner. Our aims were to identify and model (1) the affordance

related dynamics that define an actor’s choice to move an object alone or to pass it

to their co-actor and (2) the trajectory dynamics of an actor’s hand movements when

moving to grasp, relocate, or pass the object. Using a virtual reality pick and place

task, we demonstrate that both the decision to pass or not pass an object and the

movement trajectories of the participants can be characterized in terms of a behavioral

dynamics model. Simulations suggest that the proposed behavioral dynamics model

exhibits features observed in human participants including hysteresis in decision making,

non-straight line trajectories, and non-constant velocity profiles. The proposed model

highlights how the same low-dimensional behavioral dynamics can operate to constrain

multiple (and often nested) levels of human activity and suggests that knowledge ofwhat,

when, where and how to move or act during pick and place behavior may be defined

by these low dimensional task dynamics and, thus, can emerge spontaneously and in

real-time with little a priori planning.

Keywords: behavioral dynamics, affordance dynamics, joint-action, pick and place, dynamical systems theory

INTRODUCTION

Living and working in shared spaces often requires that individuals coordinate their actions
together to accomplish shared behavioral goals. From a busy family preparing for the day to a
couple casually loading a dishwasher together after a dinner party, interpersonal coordination often
results in tasks being achievedmore quickly and efficiently. Indeed, the addition of other individuals
within a task action space constructively increases the complexity of (sub-)task behaviors over time
by creating new (and destroying old) opportunities for action. Previous attempts to understand
how the behavioral order of such joint-action coordination emerges over time have largely focused
on identifying the representational and neural structures that support successful joint-action,
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including social action understanding and the perception of
others intentional states (e.g., Rizzolatti and Craighero, 2004;
Newman-Norlund et al., 2007; Graf et al., 2009; Sebanz and
Knoblich, 2009). Equally important, however, is identifying the
dynamical processes or laws that not only operate to constrain
what and when behavioral actions are afforded during joint-
activity, but also naturally shape the movements patterns or
trajectories employed in the actualization of task relevant action
possibilities.

Interestingly, previous research investigating the dynamical
processes of coordinated joint-action and multiagent activity
has demonstrated that the behavioral order of such activity
is often self-organized and synergistic, naturally emerging from
the task-relevant physical, biomechanical, and informational
couplings and constraints that exist between co-actors and
within a joint-action task space (e.g., Schmidt et al., 1990, 2012;
Schmidt and O’Brien, 1997; Marsh et al., 2006; Frank and
Richardson, 2010; Richardson et al., 2010; Riley et al., 2011;
Anderson et al., 2012; Richardson and Kallen, 2015; Washburn
et al., 2015). In turn, a growing number of researchers have
also argued that multiagent activity is best conceptualized as a
complex dynamical system and, moreover, that the behavioral
order of self-organized, synergistic multiagent coordination can
be understood and modeled using low-dimensional task or
behavioral dynamics principles (e.g., Schmidt et al., 1990, 1998;
Warren, 2006; Lagarde, 2013; Dumas et al., 2014; Richardson and
Kallen, 2015; Richardson et al., 2015).

Motivated by this latter claim, the objective of the current
study was to identify and model the dynamics that are relevant
to social and joint-action object moving and passing tasks. As an
initial exploration of these dynamics, a relatively simple object
pick and place task was employed, in which one actor had
to move objects from one tabletop location to another either
alone or by passing the object to another co-actor. Of particular
concern was identifying and modeling the affordance related
dynamics that defined an actor’s choice to move an object alone
or to pass it to their co-actor and the trajectory dynamics of
an actor’s hand movements when moving to grasp, relocate, or
pass the object. With regard to the latter aim, we were interested
in determining whether the simple behavioral dynamics model
of route selection and locomotory path navigation previously
developed by Fajen and Warren (2003, 2004; also see Warren,
2006; Warren and Fajen, 2008) could be successfully generalized
to model the smaller scale handmovement trajectories that occur
during object pick and place tasks. We were also interested in
determining whether an actor’s choice of pass/release location
is modulated by the location of the intended target location
and/or the location of a co-actors hand. Below, we briefly review
research and theory most relevant to these issues, prior to further
detailing the specifics of the current study and the hypotheses
being investigated.

Affordances and Affordance Dynamics
Affordances are opportunities for action within an agent-
environment system (Gibson, 1979; Michaels and Carello,
1981; Shaw and Turvey, 1981; Turvey et al., 1981; Reed,
1996; Chemero, 2003). More specifically, affordances are

lawful agent-environment action potentials that capture the
complementary relation (the “fit”) between an agent and the
environment. For instance, a surface of a given height affords
climbing (or not) in relation to an individual’s body height and
leg length (Warren, 1984).When sitting, an object is reachable (or
not) based on the distance of the object relative to the arm-torso
extension capabilities of the reaching agent.

Of course, if a human agent is allowed to stand and walk
then any object is reachable and affords grasping so long as its
size and weight are within the strength and grasping capabilities
of the agent concerned. In addition to standing and walking
over to grasp an object, a human agent could also use a stick
or a pole to move an object within reaching distance. Similarly,
if another agent with sufficient lifting capabilities is standing
closer to a goal object, the human agent who wishes to reach
and grasp the object in question could always ask that other
agent move the object to a location within their reach or simply
pass it directly into their hand. The significance of these latter
examples is that they highlight how affordances are not only
defined in relation to the bodily capabilities of an individual
agent, but are also defined in relation human-tool systems (Shaw
et al., 1995; Smitsman, 1997; Bongers et al., 2004) and joint-
action or multiagent systems (Stoffregen et al., 1999; Richardson
et al., 2007, 2010). The significance of this is that extending
or increasing the degrees-of-freedom of one’s perceiving-acting
system via the embodiment of tools and cooperative co-action
not only increases the number of different ways in which a certain
affordance can be actualized, but can also increase the number
of action possibilities or affordances that are available within
an agent-environment system. For instance, a nail only affords
hammering for a hammer-hand system. A large sofa only affords
lifting and moving for a two-or more-person system.

With regard to understanding the dynamics of human and
multiagent coordination, affordance research has revealed that
action- or body-scaled ratios that capture the intrinsic relation
between action relevant properties of an agent or multiagent
system, A, and an environmental surface or object, E, can be used
to predict critical shifts in the perception and/or actualization
of affordances (e.g., Warren, 1984; Mark, 1987; Warren and
Whang, 1987; Kinsella-Shaw et al., 1992; Richardson et al.,
2007). For example, individuals spontaneously transition from
reaching by extending their arm, to reaching by bending at the
hip and extending their arm, to reaching by bending from an
upright posture while extending their arm at critical action-
scaled (E/A) ratios characterizing relevant relations between
object distance and height in terms of the agent-environment
system (e.g., Carello et al., 1989; Mark et al., 1997). Similarly,
individuals’ exhibit abrupt transitions between one-hand and
two-hand grasping, and between one-person and two-person
grasping at critical object-size/hand-size and object-size/arm-
span ratios, respectively; typically at an E/A ratio of 0.75 (e.g., van
der Kamp et al., 1998; Richardson et al., 2007). Accordingly, E/A
(where E is a measured action relevant environmental property
and A is the measured action relevant property the agent)
represents a generic control parameter that not only defines
the afforded state(s) of an agent-environment system, but also
characterizes the stability of the behavioral modes employed to
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actualize those afforded states (e.g., Warren, 1984; Mark et al.,
1997).

With this control parameter in hand, subsequent research
investigating the dynamics of affordance actualization has
revealed that individuals do not always transition from one
behavioral mode to another at the same critical E/A ratio (i.e.,
exhibit critical point transitions). Rather, individuals typically
exhibit hysteresis, in that they transition between different
affordance related behavioral modes at different E/A values
depending on whether E/A is increased over time or decreased
over time (e.g., Fitzpatrick et al., 1994; van der Kamp et al.,
1998; Richardson et al., 2007). For instance, individuals transition
between one-hand and two-hand, and between one-person and
two-person grasping at a higher E/A ratios when object size is
scaled from small to large (approximately 0.85) than when object
size is scaled from large to small (approximately 0.65; e.g., van der
Kamp et al., 1998; Richardson et al., 2007). The significance of
hysteresis with regard to understanding the dynamics of human
behavior is that it implies multi-stability (two or more states or
modes of behavior are stable over a range of control parameter
settings), as well as nonlinearity (e.g., Strogatz, 1994; Kelso,
1995; Richardson et al., 2014). As such, affordance transitions
can be conceptualized as bifurcation events, with affordance
dynamics modeled as a nonlinear dynamical system (e.g., Frank
et al., 2009; Lopresti-Goodman et al., 2011; Harrison et al.,
2016).

Joint-Action Pick and Place Behavior
In its simplest form a pick and place task involves an individual
picking up a specified object andmoving that object to a specified
location. Understanding the nested sequencing of sub-action
movements entailed by such behavior is non-trivial, however,
given the large number of redundant degrees-of-freedom of the
human movement systems and the underdeterminacy in end-
point trajectories and/or joint angle configurations that this
redundancy creates. Accordingly, there has been an extensive
amount of research on such behavior, including research on
the relationship between movement time, velocity, distance, and
target goal size, path or trajectory length minimization, end-state
comfort dynamics, end-effector vs. limb-joint control, hand-eye
coordination, and so on (e.g., Fitts, 1954; Flash and Hogan, 1985;
MacKenzie et al., 1987; Dean and Brüwer, 1994, 1997; Wolpert,
1997; Flash and Sejnowski, 2001; Jax et al., 2007; Rosenbaum
et al., 2012). Of particular relevance here, is the well-established
finding that given an obstacle free environment, humans tend
to reach for and move hand-held objects along (i) a relatively
straight line trajectory between pickup and drop-off locations,
with (ii) a non-stationary, bell shaped, velocity profile that
minimizes jerk and has a peak velocity between a 1/3 and 1/2 of
the way through a movement (e.g., Fitts, 1954; MacKenzie et al.,
1987; Dean and Brüwer, 1997; Flash and Sejnowski, 2001; Jax and
Rosenbaum, 2007).

There is also a growing body of literature on joint-action pick
and place behavior, including the effects of action observation
on an actors’ hand movement trajectories and grasping behavior
(e.g., Becchio et al., 2008, 2012; Costantini et al., 2011; Ellis
et al., 2013), the movement and action decision dynamics of

individuals working independently of one another in a shared
task space (Meulenbroek et al., 2007; Lorenz et al., 2014; Meyer
et al., 2016; Scharoun et al., 2016), and when and how participants
grasp, hold, and move objects together (e.g., Georgiou et al.,
2007; Richardson et al., 2007; Vesper et al., 2009). As detailed
above, joint-action pick and place behavior can also involve
one agent passing an object to another agent when there is
sufficient interaction between co-actors (Becchio et al., 2008;
Meyer et al., 2013), with such interaction further increasing
the constructive under-determinacy of how individuals are able
to move an object from one location to another. Interestingly,
although there is some recent evidence to suggest that individuals
tend to pass objects to co-actors in a manner that maximizes the
beginning-state comfort of the co-actor (so called, third–order
motor planning; e.g., Ray and Welsh, 2011; Meyer et al., 2013),
little is known about the location where actors choose to place
or release an object for another co-actor in an under-constrained
joint-action pick and place task. Indeed, when one actor chooses
to pass, place, or release an object for another individual to move
within a real-world context, a specific release/passing location
is rarely pre-defined or specified prior to the passing action. A
modest number of studies have started to examine this latter
question within the context of human-robot interaction (e.g.,
Cakmak et al., 2011; Strabala et al., 2013) and have found that
individuals prefer predictable pass locations and orientations.
However, the highly constrained nature of the task contexts and
object hand-over manipulations employed in these latter studies
means that it is hard to generalize the results of these studies to
human-human pick and place behavior (also see Shibata et al.,
1995). Accordingly, a sub-aim of the current study was to begin
to address this gap in the literature and, in particular, begin to
identify the degree to which individuals spontaneously choose
object pass and release locations as a function of a waiting co-
actors hand location and/or the final target goal location of the
to-be-moved object.

Both the previous research outlined in this section and
our own piloting indicated that when neither co-actor was
constrained, it was not clear whether pass decisions and locations
depended on co-actor movements while awaiting a pass, co-
actor movements once they received a pass (i.e., the passer’s
perception of the receiver’s action capabilities), or all decisions
depended only on features of the task environment. Often the
person waiting on the pass would move prior to receiving the
pass, though what drove that movement was not clear from
the data. Notably, this means that in order to interpret and
model joint-action pick and place behavior, we first needed to
model and understand features of pass decisions in a social
pick and place task, where interactions between co-actors are
minimized. Thus, while the current task involved social action
it was not a joint-action task (Becchio et al., 2008, 2012). By
starting with the current social action task, the results of the
current experiment will facilitate understanding and modeling
joint-action pick and place behaviors when pass decisions and
behaviors are relatively unconstrainted and co-actor behaviors
become more interdependent. As such, the task we present in
this paper is important for joint-action research because it fills
significant gaps in the literature on joint-action pick and place
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tasks, including understanding where and when individuals pass
to a human co-actor in an otherwise unconstrained task space.

Modeling Behavioral Dynamics
The term “behavioral dynamics” refers to a general framework for
understanding and modeling the complex movement dynamics
that characterize the behavior of actors within an agent-
environment system. First detailed by Warren (2006) in order
to understand the complex movement patterns of individuals
performing solo-action tasks, the approach employs task specific
models (Saltzman and Kelso, 1987) to discern the dynamics of
coordinated behavior, and is equally applicable to joint-action
and multiagent activity (e.g., Dachner andWarren, 2014; Rio and
Warren, 2014; Richardson et al., 2015). Consistent with the more
general dynamical and complex systems approach to human
behavior (e.g., Kugler et al., 1980; Saltzman and Kelso, 1987;
Thelen et al., 1994; Richardson et al., 2014), it places a strong
emphasis on self-organization and contextual emergence, and, in
turn, attempts to formally (mathematically) model human and
multiagent behavior as emerging from the lawful interaction of
physical and informational processes, biomechanical couplings,
and contextual constraints.

A key requirement for modeling the behavioral dynamics
of a specific action or movement task effectively is to define a
functional, yet low-dimensional description of the corresponding
task space. This includes appropriately defining (i) the task goal
in terms of the relevant terminal objective, (ii) the minimal
number of task dimensions (i.e., axes and task variables) required
to express this terminal objective, and (iii) the task dynamic
topology (equations of motion) for each task dimension and
degree-of-freedom (Saltzman and Kelso, 1987; Warren, 2006).
A foundational example of such task dynamics modeling is
provided by the work of Fajen and Warren (Fajen and Warren,
2003, 2004; also see Warren, 2006; Warren and Fajen, 2008 for
a review), in which the authors successfully modeled the self-
organized behavioral dynamics of human locomotory navigation
and route selection. Although the complete model proposed by
Warren and Fajen is able to successfully capture route switching
dynamics in relation to moving and stationary environmental
goal locations and obstacles, of primary relevance here is
the simple manner by which they modeled the locomotory
trajectories of agents moving from an arbitrary start location to
a fixed goal position. In this (sub)model, a locomoting agent was
defined abstractly (at the whole-body level) as a directional point-
mass within a Euclidian (x, y) planar task environment, with
the agent’s heading direction, ϕ, and the angle of the target goal
location, θg , defined with respect to one of the planar task axes
(i.e., an exocentric reference frame was employed). The terminal
objective of the locomoting agent was then defined as simply
turning toward a target goal location by changing their heading
direction or turning rate, ϕ̇, until ϕ−θg = 0. The topology of this
terminal objective was captured using the adapted mass-spring
system.

ϕ̈ = −bg ϕ̇−kg
(

ϕ−θg
)

f (dg), (1)

where ϕ̇, and ϕ̈, corresponds to the velocity and acceleration
of the agent’s heading angle, ϕ, and b and k are damping and

spring/stiffness terms, such that −bg ϕ̇ acts as a friction force
on the turning rate, and the function −kg

(

ϕ − θg
)

operates
to minimize the difference between the agent’s current heading
angle, ϕ, and the angle, θg , that will lead the agent toward the
goal. Finally, f (dg) is a function that modulates the rate of change
in heading angle as a function of the distance, dg , to the goal—
typically this is set such that the closer the goal the more rapid
deviations of ϕ away from θg are minimized.

Although it might be hard to imagine that a simple system
such as Equation (1) could effectively capture any form of
complex human movement behavior, the ability of Equation (1)
to successfully predict the steering and locomotory navigation
behavior of human agents has been verified across numerous
experimental procedures and environmental task contexts and
with the addition of a similar obstacle avoidance function1 the
model has provided strong evidence that such behavior can
emerge without a priori planning as a self-organized result of
interacting environmental attractors and repellers (see Warren,
2006; Warren and Fajen, 2008 for reviews). Recent research
has also demonstrated how similar route selection equations
can be extended to a range of complex multi-agent locomotion
or pedestrian tasks (e.g., Dachner and Warren, 2014; Rio and
Warren, 2014) and that the behavioral dynamics approach more
generally can be employed to understand and identify the low-
dimensional dynamics laws the underlie a wide range of joint-
action and multiagent movement coordination tasks (e.g., Lucas
et al., 2015; Richardson et al., 2015, 2016).

Current Study
As stated above, the objective of the current study was to begin
to explore the behavioral dynamics that underlie social and joint-
action object moving and passing tasks using a relatively simple
object pick and place task, in which one participant had to move
objects from one tabletop location to another either alone or
by passing the object to a co-actor. The key manipulation was
the relative distance of the starting (appearance) and target goal
(drop-off) locations of the to-be-moved object with respect to the
standing position of the participant and co-actor, with a specific
range of appearance and drop-off locations chosen to identify
and model three central facets of social and joint-action pick
and place behaviors, namely: (1) the affordance dynamics that
characterized an actor’s choice to move an object alone (i.e., not
passing) or passing it to the co-actor; (2) where an participant
chooses to pass/release an object and the degree to which this
pass location is modulated by the location of the intended target
location; and (3) the trajectory dynamics of the participant’s hand
movements when moving toward, with, or passing an object.

1Fajen and Warren (2003) have modeled the change in ϕ with respect a stationary

point-mass obstacle as by adding the function +
N
∑

i
ko (ϕ − θoi) e

−|ϕ−θoi |f
(

doi
)

to

Equation (1), where + kg (ϕ − θo) operates push the agent’s heading direction, ϕ,

away from the heading angle, θo, that leads toward the obstacle as a function of

distance, f (do). Here, the addition of the exponential function, (e|−ϕ−θo |) , ensures

that the angular acceleration away from an obstacle quickly rises near the obstacle

and results in a positive (right) truing rate when heading to the right of θo and a

negative (left) truing rate when heading to the left of θo.
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Based on the previous research outlined above, we expected
that participants would transition between passing and
not-passing behavior as a function of their arm/torso
reach capabilities. Of more interest, was determining what
environmental variables operated to define the corresponding
E/A control parameter. For the current task, we expected that
target location would largely moderate a participant’s passing
decision. However, it was possible that an object’s appearance
distance might also operate to constrain passing decisions. We
also expected that participants would exhibit hysteresis when the
relative distance of the target location from the grasping agent
was increased vs. decreased over time, indicative of a multistable,
nonlinear dynamical process that could be modeled accordingly.

We had no a priori predictions with regard to the location
that participants would choose to pass/release objects for their
co-actor to pick up given the lack of previous research on this
question. In general, however, we did expect that participants
would exhibit a stationary and highly predictable pattern of
behavior (Shibata et al., 1995; Cakmak et al., 2011; Strabala
et al., 2013), either choosing a single pass/release location or
passing/releasing objects in a position functionally related to the
intended target location and the co-actors hand position.

With regard to the hand-movement trajectories of
participants, we expected that the spatial dynamics of these
movements would be qualitatively similar to the goal directed
locomotory movements observed by Fajen and Warren (2003,
2004) and, thus, could be model using a adapted (extended)
version of Equation (1). Note, however, that in contrast to
the constant velocity assumption underlying the Fajen and
Warren behavioral dynamics model of locomotory movements,
we expected participant movements to exhibit a non-constant
velocity profile and that a corresponding non-constant velocity
function would need to be developed in order to successfully
model the pick and place movements investigated here.

MATERIALS AND METHODS

Participants
SixteenUniversity of Cincinnati students (aged 18–28 years) were
recruited to participate in the experiment. 8 male and 8 female
participants took part in the study. Participants received credit as
a part of a class requirement for an undergraduate Psychology
course. All participants provided written consent prior to
completing the study, with the procedures and methodology
employed reviewed and approved by the University of Cincinnati
Institutional Review Board.

Materials and Apparatus
An illustration of the experimental task setup is displayed in
Figure 1. As can be seen from an inspection of this figure, the
participant and co-actor stood in front of 1.5 × 0.89 × 1.15m
table in a 3 × 4.9m laboratory room and completed the object
moving and passing task in a room-scaled virtual environment
in which the virtual laboratory and table were isomorphic in size
and location. The co-actor (henceforth confederate co-actor) in
this experiment is a lab assistant and is known to the participant
to be a labmember. The physical table acted as a solid surface that

both limited the participant and confederate co-actor movements
within the virtual environment and created a surface on which
the participant and confederate co-actor could move a hand-
held wireless Polhemus Latus motion-sensor (Polhemus Ltd,
Vermont, USA) that tracked their right hand movements within
the virtual environment at 96Hz. The participant was positioned
on one side of the table, standing half way between the middle of
the table and the pickup location, with the confederate co-actor
positioned in the middle of the table on the opposite side.

The virtual environment, task objects, and task controllers
were designed using the Unity 3D game engine (version 5.2.0;
Unity Technologies, San Francisco, California) and Sketchup
2015 (Tremble Navigation Technologies, Sunnyvale, California).
The virtual environment and task objects were presented to
participants using an Oculus Rift DK2 headset (Oculus VR,
Irvine, California), which had a vertical field of view of 105◦ and
a horizontal field of view of 94◦. The participant and confederate
co-actor’s head movements were also tracked using Oculus Rift
DK2 head tracking system. Separate computers connected by
a LAN connection powered the Oculus Rift DK2 HMDs, with
each computer handling the rendering of the virtual environment
and controlling the head movements for the participant
and confederate co-actor. The Host computer (participant)
handled the motion tracking inputs, task controllers, and
data recording. The maximum display latency between the
participant and confederate co-actor real-world movements and
their movements in the virtual environment was 33 ms. The
experimental task states, including positions of participant and
confederate co-actor’s hands and head position, the appearance
state and position of the target objects, and which individual
was in possession of a target object, were continuously recorded
at 70Hz.

Virtual reality was employed for the current experiment
because it offered two immediate advantages over a real world
pick and place task: (1) the task reset time between trials can
be instantaneous when using virtual reality allowing for a large
number of trials to be completed in a timely manner and (2)
the virtual environment allows for improved control of possible
confounds, limiting visual task and behavioral information
available to each co-actor to only that which is being explicitly
tracked during the task, i.e., task states, right hand movements,
and head movements. Moreover, as a future goal of this line of
research is implementation of the proposed dynamical model in
artificial agents, the virtual reality paradigm provides an ideal
apparatus for obscuring the identity/origin of co-actor behaviors.

Within the virtual environment, the participant and
confederate co-actor were represented as identical virtual
avatars modeled after a crash test dummy with a height of
1.8m, with the virtual environment being identical for the
participant and confederate co-actor except for the fact that
they were positioned on the opposite sides of the virtual table.
The height of the participant and confederate co-actor’s visual
field was also calibrated such that their viewing height was
equivalent regardless of their actual height. Both the participant
and confederate co-actor’s right hands were represented by a
semi-transparent blue sphere at the end of the dummy’s right
wrist in order to simplify interaction with the task environment.
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FIGURE 1 | (Top) Illustration of experimental setup. Before a trial began only the blue ready squares appeared on the table. When the trial began one yellow disc

appeared on the participant’s left and one red target square appeared on their right. (Bottom left) The experimental room set up. (Bottom Center) The virtual

environment and avatars at the beginning of a trial. (Bottom right) The view of the participant at the beginning of a trial as seen in the head mounted display.

The participant and confederate co-actor’s hand-held wireless
Polhemus Latus motion-sensors controlled the movements
of this sphere. An inverse kinematics controller (model and
controller supplied by Root Motion, Tartu, Estonia) driven by
these motion sensor movements and the head movements of
the participant and confederate co-actor controlled the right
arm and body movements of the participant and confederate
co-actor’s virtual avatar, respectively. The resulting arm and body
movements were not identical to the real world arm and body
movements of the participant and confederate co-actor, but were
close enough to render any differences between the real and
virtual body postures of the participant and confederate co-actor
unnoticeable or not functionally relevant.

Experimental Task
The experimental task required a participant to move virtual
disc objects that appeared on one side of the virtual tabletop to
an indicated target location on the opposite side of the virtual
table, with a choice of either moving the object alone or passing
the object to the confederate co-actor. The disc objects always
appeared on the participant’s left side and the target location,
specified by a red square, always appeared on the participant’s
right. A trial began when both the participant and confederate
co-actor indicated they were ready by placing their sphere/hand
in a blue ready location (blue square) displayed directly in
front of them on the virtual table. When both the participant
and confederate co-actor’s virtual hands were ready, the ready
locations would disappear and a disc would appear in one of 5

pickup locations along with one of 20 red target locations. The
participant was instructed to pick up the disc when it appeared
and attempt to move it to the target location. A pickup occurred
when the participant’s sphere came in contact with the disc.
When picked up, the disc moved with the participant’s hand
until it reached the target or the participant passed the disc. The
participant was informed that if the reach to the target was either
too far or uncomfortable, they could pass it to the confederate
co-actor. A pass involved picking up the disc and then releasing
it somewhere on the table by lifting their hand from the table.
Importantly, the confederate co-actor was instructed to remain
at the ready position unless the participant initiated a pass (i.e.,
they were instructed not tomove prior to a participant initiating a
pass by releasing the object for them to pick up). This instruction
insures that pass decisions and locations are not influenced by
anticipatory or communicative movements initiated by the pass
receiver. While such movements may be important to more
complicated pick-and-place task, they can obscure how task
features and passer preference affect pass behavior2. To complete
a pass, the confederate co-actor would pick up the disc and
move it to the target. A trial was completed when the disc
reached the target. Upon trial completion the disc and target
would disappear and the ready boxes for the next trial would

2In particular, note that interpretation of pass receiver movements as playing

either a communicative or anticipatory role in task performance requires some

understanding of the task dynamics driving the passer’s decisions and behaviors

independent of those movements.
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appear. The participant’s preferred reach was recorded before
completing the experiment by asking the participant (inside the
virtual environment) to reach to the farthest comfortable point
along a blue line that appeared along the left side of the table. This
reach distance was then used to scale the 5 appearance pickup
locations to each participant’s preferred reach distance. The 5
disc appearance/pickup positions, illustrated as yellow circles in
Figure 1, were located along the same axis as the calibration
line on the table extending perpendicular to the participant.
These appearance/pickup locations corresponded to 20, 40, 60,
80, and 100% of a participant’s preferred reach distance (i.e., E/A
ratios of 0.2, 0.4, 0.6, 0.8, and 1.0)—the average reach distance
of participants was 52.2 cm (SD = 6.98 cm). Relative to the
ready/start location these object pickup locations were positioned
at a negative x-distance of 32.3 cm and had mean y-positions of
−1.4, 7.2, 15.8, 24.4, and 33 cm, respectively.

The same 20 unscaled target locations on the right side of the
table were used for all participants. These target locations were
equally spaced from the near to the far edge of the participants’
side of the table. Relative to the start/ready location these had
positive x-distance of 103.7 cm and y-positions from −7 cm to
59.5 cm in 3.5 cm steps.

Procedure
Participants were told that the experiment was investigating
the dynamics of object pick and place behavior and that they
would be completing a simple pick and place task with a
confederate co-actor. The participants and confederate co-actor
were then embedded within the virtual environment using the
HMD and viewing height, sensor, and appearance location
calibration was performed. Task instructions were then provided
to the participant and after participants indicated that they
understood the task procedure and goal, experimental trials
began. Participants were told that the task would involve 600
trials and that if the reach to the target was either too far or
uncomfortable, they could pass the object to the confederate
co-actor. Moreover, participants were encouraged not to strain
themselves in order to reach a target. No further instructions
regarding when or where to pass were given to participants.

Experimental trials were broken up into 3 blocks of
200 trials (i.e., 5 appearance/pickup locations × 20 target
locations × 2 trials for each appearance-target location
combination). In the first and third blocks of trials, the
discs appeared sequentially, either progressively moving away
from the participant (ascending) or toward the participant
(descending) over trials with appearance order counterbalanced
across participants. During these blocks, each pickup/appearance
location was presented 40 times in a row with each presentation
occurring twice for each of the 20 target locations, once while
target locations appeared in an ascending order and once when
they appeared descending order. Participants always experienced
the same ascending-descending or descending-ascending order
across appearance locations in the first and third trial blocks,
with these target appearance conditions counterbalanced across
participants. In the second block of trials, each pickup-target
location pair was presented twice in a random order from trial to
trial. After each 200 trial block, the participant and confederate

co-actor were given an opportunity to rest before continuing to
the next block. Blocks lasted between 10 and 15min.

RESULTS AND DISCUSSION

The current pick-and-place task was designed to address three
related questions. First, what task variables determined the
participants’ decision to pass or not pass an object and what were
the associated affordance related dynamics of these behavioral
events? Second, where did participants choose to release the
object when passing the object to a co-actor and to what degree
was the pass location functionally related to the intended object
goal location and/or the confederate co-actors hand location.
Third, what were the trajectory dynamics of the participant’s
hand movements when moving to grasp, relocate, or pass an
object within a two-dimensional task space. Below we consider
each of these questions in turn.

What Drove Pass Decisions?
For the pick and place task investigated here, there were
essentially two relevant distance-related task variables that
were likely to have influenced the participant’s pass/no-pass
behavior: the distance from the participant’s ready location
to the object pickup location and the distance from the
participant’s ready location to the object target drop-off location.
Note that, by instructing the confederate co-actor to passively
wait for passes, we have effectively eliminated the possible
complicating (but potentially important) role anticipatory or
communicative movements on behalf of the pass receiver. As
a preliminary examination of the relationship between these
two task variables and the participants’ dichotomous, pass or
not pass decisions, separate point-bi-serial correlations were
conducted on the trial-by-trial pass/no-pass data series for
each participant for each trial block (i.e., ascending-descending,
random, and descending-ascending target location trial blocks).
As can be seen from an inspection of Table 1, only target location
was significantly correlated with the participant’s pass/no-
pass behavior across trials, with an overall average correlation
between the participant’s trial-by-trail pass/no-pass behavior and
target location of 0.796 (SD = 0.074; p < 0.001)3. In other
words, the distance of the object pickup location appeared
to have no effect of pass/no-pass behavior, with pass/no-pass
behavior almost completely driven by the distance of target
goal location4.

With regard to the target distance that participants
transitioned between passing and moving the object alone,

3Herarchical logistic regression analyses were also performed to confirm that target

distance was the only task variable to significantly predict participant pass/no-

pass behavior. Not only did this analysis further confirm that there was no

correlation between participant trial-by-trail pass/no-pass decisions and object

pick location, but it also verified that the variable interaction between pickup

and target location did not predict participant trial-by-trail pass/no-pass behavior

beyond that predicted by target distance alone.
4Aparticipant-by-participant hierarchical logistic regression analysis with decision

to pass on current trial as the dependent variable and the current target location

and previous pass decision as an independent variable resulted in an average

Nagelkerke’s R2-value of .903 and .943 for the ascending a descending conditions,

respectively (all χ2 > 200.00, p < 0.001).
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this occurred at an average y-target distance of 42.4 cm
(SD = 9.17), which corresponded to an E/A ratio (i.e., y-
target-distance/participant comfort reach distance) of 0.823
(SD = 0.19). Consistent with previous affordance research (e.g.,
Fitzpatrick et al., 1994; van der Kamp et al., 1998; Richardson

TABLE 1 | Average point-bi-serial correlations for participant’s trial pass decision.

Pickup Target

locations location

Block 1 (Ascending-Descending) rpb −0.031 0.817

(SD) (0.093) (0.040)

p 0.444 0.000

Block 2 (Random) rpb 0.001 0.782

(SD) (0.022) (0.100)

p 0.856 0.000

Block 3 (Descending- Ascending) rpb 0.009 0.791

(SD) (0.045) (0.081)

p 0.601 0.000

et al., 2010), participants also exhibited hysteresis with the
pass/no-pass transition occurring at an average E/A ratio of
0.853 (SD = 0.24; target y-distance of 43.7 cm) for the ascending
target distances and 0.797 (SD = 0.21; target y-distance of
40.8 cm) for descending target distances, indicating that the
relative stability of passing and non-passing behavior was
more or less equivalent across this E/A parameter range (see
Figure 2). To verify that this hysteretic effect was significant, a
one-way repeated measures ANOVA comparing the distance
(target location) that participants switched between passing and
non-passing behaviors as a function of target location order
(i.e., ascending, descending, and random), was conducted.
Using a Greenhouse-Geisser correction this analysis revealed
a significant effect of target location order, F(1.44, 21.606) =

8.908, p = 0.003, η2p = 0.373, with Bonferroni post hoc analysis
indicating that pass/no-pass transition distance for the ascending
target order was significantly higher compared to the pass/no-
pass transition distance for the descending target order (p =

0.027). There was no difference between the ascending and
random target location orders (p = 0.541), but there was a
significant difference between descending from random location
orders (p= 0.015).

FIGURE 2 | Percent passes for each target location (n = 20) for 3 example participants (Top left and right and Bottom left) and averaged over all participants

(Bottom right). The red dashed line indicates the percentage of passes for each target as the targets are moving away from the participant. The blue solid line

indicates the percentage of passes as the targets are moving toward participant. Random target appearance order is represented by the black dotted line. Asterisks

represent the point at which 50% of decisions were passes and 50% were not (note that this point could occur between target locations). Each target location was

presented 5 times each per Ascending and Descending conditions and 10 times for the Random condition.
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Where did participants release/Pass
Objects?
A Pearson correlation analysis revealed that, for a majority of
participants, the (x, y) tabletop location where they released
(passed) objects for the confederate co-actor during passing
trials was significantly correlated with (i) the pass location
chosen on the previous passing trial, (ii) the target location,
and (iii) to a much lesser extent, the object pickup location (see
Table 2). Separate hierarchical linear regression analyses were
conducted on each participant’s passing trial event series as a
function of trial block, with trial pass location as the dependent
variable and location of the previous pass, target location, and
pick-up location sequentially entered as independent variables.
As can be seen from an inspection of Table 3, this analysis
revealed that on any given passing trial a participant’s previous
object release/pass location was the dominant predictor of a
participant’s current object release/pass location, with current
target location and pickup location only slightly increasing
the percentage of variance accounted for. This suggests that
participants tended to more or less pick a location to release/pass
the object for the confederate co-actor during early passing trials
and then stick with that location across passing trials. To further
verify the latter possibility, a cluster analysis was conducted,
using the K-means cluster analysis algorithm, which finds cluster
centers that minimize the sum of squared error (SSE) for a given
number of clusters, k. We analyzed the release/pass locations to
determine whether these locations typically clustered around 1,
2, or 3 cluster centroids. The optimal number of clusters was
defined as the value of k such that the difference of the SSE for
a reference distribution, determined by Monte Carlo sampling
of a reference distribution, was greatest compared to the other
values of k.

The results of this K-means cluster analysis can be seen
in Table 4. As expected given the preliminary correlation
and regression analysis reported above, for the majority of
participants the optimal number of clusters was 1 within the
same trial block. However, as can be seen from an inspection
of Figure 3, participants appeared to adopt one of two object
release/pass location strategies. That is, release/pass locations
tended to occur in one of two general areas of the task space,
with some participants exhibiting a tendency to release/pass
objects nearer to the confederate co-actor’s hand, while other
participants tended to release/pass the objects nearer to the object
target (drop-off) locations. This is particularly clear from an
inspection of the 3D histograms of all participant pass locations
in the bottom panel of Figure 3, where two distinct peaks
appear in the histograms corresponding to the two passing
regions. Using k-means cluster analysis to define these 2 location
clusters (i.e., specifying k = 2 clusters for all participant pass
locations) we observed that 8 participants made more than
50% of their release/passes in the cluster region closest to the
confederate co-actor’s ready/start location (near-confederate co-
actor region; see middle panel of Figure 3) and 6 participants
made more than 50% of their release/passes in the cluster
region closest to the targets (near-target region; see top panel of
Figure 3). The remaining two participants began the experiment

TABLE 2 | Average correlations between participants’ trial-by-trial pass locations

and object pickup and target locations, as well as participants previous pass

decision, as a function of trial block.

Pickup Target Pass decision

locations location previous trial

Block 1 r −0.153 0.462 0.541

(SD) (0.367) (0.262) (0.162)

p 0.107 0.100 0.000

(SD) (0.186) (0.259) (0.001)

% sig. < 0.05 68.75% 87.5% 100%

Block 2 (Random) r −0.098 0.344 0.243

(SD) (0.143) (0.219) (0.130

p 0.451 0.167 0.167

(SD) (0.316) (0.294) (0.224)

% sig. <0.05 12.5% 68.75% 50%

Block 3 r −0.038 0.172 0.405

(SD) (0.234) (0.271) (0.178)

P 0.306 0.339 0.057

(SD) (0.336) (0.357) (0.124)

% sig. <0.05 50% 37.5% 81.25%

% sig. <0.05 equals to the percentage of participants who exhibited a significant

relationship between pass location and the corresponding task variable.

releasing/passing in the near-target region, but then in blocks 2
and 3 released/passed most of their passes in the near-assistant
region. For those who always released/passed in the same region,
the near-target participants (n= 6) released/passed objects in the
near target region on average 94.8% of the time in the near-target
region and the near-confederate co-actor participants (n = 8)
released/passed objects in the near confederate co-actor region
on average 89.1% of the time, further indicating that individuals
tended to pick a general table location to pass/release objects for
the confederate co-actor and then continue pass to that region
across passing trials.

The center of the near-confederate co-actor and near-target
cluster regions had (x, y) locations of (46.4 cm, 46.07 cm)
and (66.95 cm, 58.93 cm) respectively. This corresponded to an
average distance of 61.5 and 89.6 cm from the participants,

respectively, and 19.8 and 50.7 cm from the confederate co-
actor’s position, respectively. It remains unclear whether these
locations represent a comfort-mode location, either with respect
to the participant or the confederate co-actor. Consistent with
previous research on third–order motor planning, it is possible
that the reason why the distances of the two release/pass
locations are beyond the participants’ comfort reach distance
(i.e., correspond to E/A ratios of 1.18 and 1.72, respectively) is
because the actors (consciously or unconsciously) are attempting
to maximize the beginning state comfort of the confederate co-
actor (i.e., Gonzalez et al., 2011; Ray and Welsh, 2011; Meyer
et al., 2013). For the current task, however, determining what
constitutes the comfort-mode location or location of least-
energy expenditure for the confederate co-actor is non-obvious
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TABLE 3 | Average hierarchical linear regression results for participants’ trial-by-trial pass locations as a function of trial block.

Model 1

Location of previous pass

Model 2

Location of previous pass

target location current trial

Model 3

Location of previous pass

target location current trial

pickup location

Block 1 (Ascending-Descending) r 0.583 0.640 0.678

(SD) (0.182) (0.189) (0.179)

F 99.655 62.553 49.971

p [% sig.] 0.000 [100%] 0.001 [100%] 0.002 [100%]

Block 2 (Random) r 0.239 0.454 0.485

(SD) (0.125) (0.167) (0.164)

F 6.214 18.380 13.869

p [% sig.] 0.167 [50%] 0.062 [81%] 0.078 [81%]

Block 3 (Descending- Ascending) r 0.405 0.442 0.467

(SD) (0.184) (0.186) (0.181)

F 35.629 23.683 16.511

p [% sig.] 0.057 [81%] 0.082 [75%] 0.113 [75%]

[% sig.] equals to the percentage of participants who exhibited a significant relationship between pass location and the corresponding task variable.

TABLE 4 | P-value of distribution fita,b and optimal number of clusters.

Gaussian Exponential Log-normal Clusters = 1 Clusters = 2 Clusters = 3

Block 1 Avg 0.37 0.04 0.41

(SD) (0.31) (0.10) (0.27)

% p > 0.1 62.5% 12.5% 87.5%

% Optimalc 62.5% 25% 12.5%

Block 2 Avg 0.30 0.06 0.57

(SD) (0.26) (0.10) (0.30)

% p > 0.1 68.75% 18.75% 93.75%

% Optimalc 68.75% 12.5% 18.75%

Block 3 Avg 0.30 0.11 0.56

(SD) (0.27) (0.17) (0.30)

% p > 0.1 62.5% 31.25% 93.75%

% Optimalc 87.5% 6.25% 6.25%

ap-value > 0.1 indicates good fit.
bDistribution fit determined from the average center of drop locations in a given participant block.
cOptimality defined as the number of clusters (1, 2, or 3) which results in the greatest reduction in variability of individual drop location distances from the cluster center.

and likely corresponds to a manifold of possible release/pass
locations. Thus, it seems more likely that participants employed
very little third–order motor planning from trial-to-trial and
more or less picked a release/pass location very close to the
confederate co-actor or within the reach of the confederate co-
actor but closer to the target location. Thus, while participants
tended to settle into one of two stable passing locations, it is
unclear from the current experiment what about the participants
or task-space drives the selection of a given pass location.

Finally, in order to better understand the within cluster trial-
to-trial pass/release location variability, that was not clearly
accounted for by variation in target location or previous pass
location, we classified the distribution of pass locations around

the average center of pass locations for each participant and
block. This was done by first calculating the squared Euclidean
distance of each pass from the average center of all pass locations
for each participant in a given condition. The probability
distribution of this data was then estimated using a kernel
density estimation and the probability distribution was fit to
a Gaussian, Exponential and Log-normal distribution. A One-
sample Kolmogorov-Smirnov test was used to determine the
probability that the distribution of distances from the average
center came from one of the possible sample distributions.
Results of this analysis are displayed in Table 4 and illustrated
in Figure 4. Consistent with recent research demonstrating
how human behavioral variability over time exhibits significant
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FIGURE 3 | Pass locations split by pass location strategy. The top row of each pass strategy section provides a 2d plot of all pass locations for that strategy. The

optimal number of clusters was calculated as above, using either 1 or 2 clusters, and k-means cluster analysis was performed. Conditions with more than 1 cluster

have red and blue drop locations. The bottom plots in each section provide a 3-d histogram of the drop locations in order to illustrate frequency of drops in a given

region and location. The red circle in the bottom right corner of each plot illustrates the size of the disc object.

degrees of persistence (e.g., Holden, 2002, 2005; Stephen and
Mirman, 2010 for reviews), this analysis revealed that the
distribution of pass locations around the average center tended
to be log-normal (Table 4).

How did the participants move?
To determine the trajectory dynamics of participant movement
we separated the participant’s pick and place movements
into 3 sub-task movements: (1) object pickup movements or
movements from the ready/start location to the object pickup

location; (2) object pass movements or movements from object
pickup to object release/pass; and (3) object target movements
or movements from the object pickup to the object target
drop-off location. The beginning and end of pickup and target
movements corresponded to the first sample at which the center
of the participant’s hand-held motion sensor crossed the outer
boundary of the corresponding start/object/target location. The
beginning and end of pass movements corresponded to the first
sample at which the center of the participant’s hand-held motion
sensor crossed the object pickup location (after picking up the
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FIGURE 4 | Example results from analysis of the distribution of pass locations around the average center of passes for a participant in a given condition. The top row

is a time series plot of the distance from the average center on each passing trial. The middle row provides a histogram for each condition scaled to a log-normal

curve (red line) fit to the data for that trial. The bottom row is the histogram for all participants in each of the conditions scaled to a log-normal curve fit to all of the

participants’ data for that condition.

object) and the moment the participant released the object for
the confederate co-actor.

An illustration of the spatial trajectories observed for the
different sub-task movements is provided in Figure 5 (left).
These heat-map plots were created by dividing the table into
310 × 170 grid for pass and target trajectories and 930 × 510
grid for pickup trajectories due to the greater number of pickup
trajectories. For each sub-task movement the number of times
the participant’s location was recorded in a given grid cell was
recorded to create a histogram of trajectory locations in table
coordinates. Colors are assigned to each cell from a color map
with 64 colors. Overall, these heat-map plots revealed a consistent
pattern of sub-task movement trajectories across participants.
What is most apparent is that during pass and target movements
participants consistently deviate from a straight-line path. More
often than not, target and pass sub-task trajectories curved down
toward the participant’s standing position before curving back to
the corresponding goal pass/release or target position. Although
pickup movements trajectories were much closer to straight-line
paths, there was also a consistent curve to the pickup movements
for the closest and furthest pickup locations, albeit to a much
lesser degree compared to pass and target sub-task movement
curvature. Accordingly, the analysis of the sub-task movements
focused on (a) the degree to which participants’ total trajectories
curved away from the shortest, straight line path between the
start and end locations of the movement, (b) the deviation of
the participants’ initial heading or movement angle from the
angle of the straight line path, and (c) the initial heading or
movement angle (direction) of movement, as well as (d) the peak
velocity and velocity profile of the sub-task movements. These
trajectory measures were also important for determining whether

the behavioral dynamics of these sub-task movements could be
captured by an adapted version of the Fajen and Warren (2003,
2004) model described above.

The magnitude of movement curvature was quantified for
each sub-task movement trajectory by calculating the area (m2)
between the actual sub-task trajectory and the straight-line
trajectory calculated from the first and last (x, y) location of
the corresponding movement time-series. The area between the
actual trajectory and straight-line trajectory was determined
using the trapezoidal method of numerical integration. Prior to
computing trajectory curvature, a spline interpolation procedure
was employed to time-normalize the movement trajectories
(to length of 512 points) in order to minimize variation in
area estimations due to movement time variations. The initial
movement or heading angle of each sub-task movement was
calculated as the angle between the 1st and 9th points of the time-
normalized movement trajectories. The angle (in degrees) was
calculated with reference to the positive x-axis of the tabletop,
such that horizontal straight-line movements directly across the
tabletop from left to right would have an initial heading angle
of 0◦ and horizontal straight-line movements directly across the
tabletop from right to left would have an initial heading angle of
180◦. The deviation from the straight-line angle was calculated
as the initial participant movement angle minus the straight-line
path angle, such that negative values corresponded to participant
movement angles that were less than (under shot) the straight
line path angle and positive values corresponded to participant
movement angles that were greater than (over shot) the straight
line path angle.

As can be seen from an inspection of Figure 6, the average
degree of movement curvature for pickup and pass movements
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FIGURE 5 | (Left) Heat maps illustrating all participant trajectories for the ready-pickup (Top left), pickup-pass (Left middle), and pickup-target (Left bottom)

task-goal movements.

exhibited a somewhat linear change from positive to negative
values as the action-scaled distance of pickup location increased,
where positive curvature corresponded to movements that
curved above the straight-line trajectory between the beginning
and end locations of the movement and negative curvature
corresponded to movements that curved below the straight-
line trajectory between the beginning and end locations of
the movement. Separate one-way repeated measures ANOVAs
comparing the participant mean curvature values as a function
of pickup location for pickup and pass sub-task movements
revealed that this change was statistically significant [all F(4, 60)
> 120.97, p < 0.001, η2p > 0.90].

The data plotted in Figure 6 also indicates that degree and
direction (positive vs. negative) of trajectory curvature for all sub-
task movement types was directly related to the deviation of the
initial movement angle from the straight-line angle between the

beginning and end points of a movement. More importantly,
although there was a change in initial movement angle as a
function of the action-scaled pickup location for all sub-task
movements [all F(4, 60) > 25.54, p < 001 η2p > 0.63], initial
movement angle for the pass and target sub-task movements
were largely independent of the end state distance or location
of the movement. Specifically, for pass movements there was
no significant difference between the participant mean initial
movement angle for near-confederate co-actor and near-target
participants, [F(1, 12) = 2.24, p > 0.16, η2p = 0.16]. Similarly,
for target movements there was no change in participant mean
initial movement angle as a function of target distance. This latter
finding can be clearly discerned from inspection of Figure 7,
where the overall mean initial movement angle is plotted for each
pickup-target location combination for which target movements
occurred. Taken together, this suggests that the trajectories
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FIGURE 6 | Mean trajectory curvature and deviation from straight-line angle (SLA) between the beginning and end point of a movement (A,C), as well as an initial

movement angle (B,D), for pickup (top: A,B) and pass (bottom: C,D) sub-task movements as a function of the five action-scaled pickup locations. The black lines in

(B,D) correspond to the best-fit line detailed in each plot. Error bars represent stand errors of the mean.

exhibited by participants for each sub-task movement type were
a result of participants employing a fixed, non-straight-line initial
movement angle for each pickup location.

The highly predictable relationship between pickup location
and initial movement angle for each sub-task movement type
is illustrated in Figures 6B,D, 7C. For pickup movements this
relationship was linear, with the range or change in the overall
mean initial movement angle (185.88◦–201.59◦) much smaller
than the range of mean straight-line angles (171.83◦–236.15◦)
between the start/ready location and the five action scaled
pickup locations. Again, this accounts for the positive to negative
degrees in movement curvature as the pickup distance increased
(see Figure 7A and Right-top panel of Figure 6). For the pass
and target sub-task movements, the relationship between the
overall mean initial movement angle was nonlinear, with the
magnitude of change in initial movement angle decreasing as
the distance of the pickup location increased. In addition, the
initial movement angles employed when moving away from
each pickup location were nearly exactly the same for the pass
(range: 31.21◦ to −35.15◦) and target movements (range: 31.35◦

to−33.89◦), further emphasizing the fact that for the current task
the intended end-point location played, on average, very little
role in determining the initial movement angle when moving the
object away from the pickup location. From the current study

it is not clear what accounts for the observed initial trajectory
angles. One possibility is that the observed initial angle ranges are
the result of biomechanical constraints imposed on participant
movements while reaching across the table.

Finally, the velocity of each sub-task movement was calculated
from the non-normalized trajectory time-series. The resulting
velocity time-series were then time normalized using the same
512 point spline interpolation procedure defined above. The
overall average time-normalized velocity profiles for each sub-
task movement are displayed in Figure 5 (right). As expected,
participants exhibited non-constant, positively skewed velocity
profiles for all sub-task movement types. There was no
meaningful effect of pickup, release/pass, or target location with
minimal variation in peak velocity across sub-task movements:
pickup (Mdn = 1.473, Q1 = 1.43, Q3 = 1.494), pass (Mdn
= 1.757, Q1 = 1.731, Q3 = 1.76); target (Mdn = 1.798,
Q1 = 1.758, Q3 = 1.833). However, a Greenhouse-Geisser
corrected one-way ANOVA did revealed a significant difference
in peak velocity between the sub-task movements, [F(1.187, 1.039)
= 10.013, p= 0.004], with Bonferroni post-hoc analysis revealing
that the peak velocity for the shorter distance pickup movements
was significantly lower (M = 1.46 m/s, SD= 0.04 m/s) compared
to the pass (M = 1.75 m/s, SD = 0.32 m/s) and target (M = 1.8
m/s, SD= 0.31m/s) sub-taskmovements (both p< 0.025). There

Frontiers in Psychology | www.frontiersin.org 14 June 2017 | Volume 8 | Article 1061

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lamb et al. To Pass or Not to Pass

FIGURE 7 | Mean trajectory curvature (A) and initial movement angle (B) average over participants for the target sub-task movements as a function of pickup and

target location. Target location distance corresponds to the y-axis distance of the target location with respect to the start/ready hand location of participants.

(C) Overall average initial movement angle as a function of the five action-scaled pickup locations. The black line in (C) corresponds to the best-fit line detailed in the

plot. Error bars represent stand errors of the mean.

was no significant difference in peak velocity between the pass
and target sub-task movements (p > 0.05).

MODELING BEHAVIORAL DYNAMICS

The current study had two overall aims. The first aim was to
identify the behavioral dynamics that underlie a relatively simple
object pick and place task, in which one participant had to move
objects from one tabletop location to another either alone or by
passing the object to another co-actor. Of particular interest was
how the changes in relative distance of the starting (appearance)
and target goal (drop-off) locations of the to-be-moved objects

with respect to a participant’s standing position would influence
(1) the affordance dynamics that characterized an actor’s choice
to move an object alone or to pass it to a confederate co-actor,
(2) the location that a participant would choose to release an
object when passing it to the confederate co-actor, and (3) the
trajectory dynamics of the participant’s hand movements when
moving toward, with, or passing an object.

With regard to the affordance dynamics that characterized
a participant’s choice to move an object alone or to pass it
to a confederate co-actor, results revealed that the participant’s
decision to pass or not-pass an object was a function of
the intended target distance, with participants exhibiting a
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nonlinear phase transition between passing and not-passing
at an average E/A ratio of 0.82 (i.e., ratio of y-distance
of target/comfort reach distance of participant). Moreover,
participants exhibited hysteresis, transitioning at a higher E/A
ratio when target distance was increasing over trials compared
to when target distance was decreasing over trials (i.e., 0.85 and
0.80 respectively), implying that the dynamics underlying this
affordance actualization process were not only nonlinear, but
were also multi-stable. Interestingly, although each participant
was somewhat consistent with regard to the location that they
chose to release/pass the objects to the confederate co-actor
during passing events, the specific location chosen did not
appear to be too dependent on the pickup location of the
objects, nor the end target location. Rather, it appeared that
participants either picked a location relatively close to the
confederate co-actor’s hand or relatively closer to the drop-off
target locations and simply continued to release/pass objects in
that same general location over the course of a trial block. Finally,
participants exhibited a consistent pattern of curved movement
trajectories across pickup, pass, and target movements, with
movement curative a result of participants employing a stable
set of non-straight-line initial movement angles that co-varied
with pickup location. In addition, participants exhibited non-
stationary velocity profiles, with peak velocity occurring within
the first ½ of a corresponding pickup, pass, or target movement.

The second aim of the current study was to determine whether
a simple behavioral dynamics model could be employed to
capture these dynamics. More specifically, we were interested in
whether an adapted version of the Fajen andWarren (2003, 2004)
behavioral dynamics model of human locomotory navigation to a
stationary target goal could be employed to capture the pick and
place movements investigated here. We anticipated that at least
two extensions would be required: (i) a non-stationary velocity
function would have to be employed when modeling the hand-
movement trajectories of participants; and (ii) a nonlinear action
selection process to define whether participants passed or not.
Below, we detail a preliminary model that not only incorporates
these extensions, but exhibits the same qualitative movement and
affordance dynamics exhibited by participants.

Hand-Movement Dynamics
To model the dynamics of the participant’s hand movements
during object pickup, pass and target movements, a task
specific parameterization of Equation (1) was employed. More
specifically, the heading direction or angle, ϕA, of a participant’s
(from this point on referred to as “agent,”A) hand or end-effector
during pickup, pass and target movements was defined by

ϕ̈A= −bg ϕ̇A−kg
(

ϕA−θg
)

(e−c1dg+c2), (2)

where ϕ̇A, and ϕ̈A, correspond to the velocity and acceleration
of the agent’s end-effector heading angle, respectively, and b
and k are damping and spring/stiffness terms, such that −bg ϕ̇A

acts as a friction force on turning rate, and the function
−kg

(

ϕA − θg
)

operates to minimize the difference between the
current heading angle, fA, and the angle θg , of the corresponding
sub-task goal/target location (i.e., the pickup location for pickup

movements, the release/pass location for passing movements,
and the target/drop-off location for target movements). A novel

feature of Equation (2) is the presence of the factor (e−c1dg +

c2) in the second addend of the right-hand side. This factor
modulates the effect of the term in Equation (2) operating
to minimize the distance between the heading angle and the
target angle. Specifically, it introduces an exponentially decaying
function characterized by a constant offset parameter c2 and
an exponential decay rate which is a function of the constant
parameter c1 and the function

dg =
[

(

Xg−xA
)2
+

(

Yg−yA
)2]1/2

, (3)

where
(

Xg ,Yg

)

and
(

xA, yA
)

are the coordinates of the current
sub-task goal location and the current location of the agent’s
end-effector (hand), respectively (see Fajen and Warren, 2004;
for more details). The parameter c2 simply ensures that the rate
of change in heading direction never goes to zero (Fajen and
Warren, 2004).

It is important to appreciate that θg and dg (defined in
Equation 3), change as the position of the agent’s hand/end-
effector changes and are defined by

θg = cos−1

[

(

Yg − yA
)

dg

]

, (4)

Now, recasting Equation (2) as a system of first-order differential
equations and adding two extra equations defining the change in
the

(

xA, yA
)

position of the agent’s end-effector over time results
in the following system of equations,

ż1 = z2 = ϕ̇A

ż2 = z̈1 = ϕ̈A= −bgz2−kg
(

z1−θg
)

(e−c1dg+c2)

ż3 = ẋA = vA sin z1

ż4 = ẏA = vAcos z1, (5)

where vA is the movement velocity of the agent’s end-effector
(hand). In order for the model to capture the non-constant
velocity profile observed in participants vA is defined by means
of the additional 2nd order differential equation

v̈A= −bvv̇A−kv

(

vA−Cv(1−e−dg )
)

, (6)

where bv and kv operate as damping and stiffness terms on
the rate of change of vA, which increases and decreases as a
function of the target (goal) distance, dg . When the agent’s end-

effector or hand is far away from the target location, (1− e−dg )
approaches 1 and vA increases. As the distance to the goal
location decreases, however, (1 − e−dg ) begins to approach zero
and vA decreases accordingly. Cv is a constant parameter that
specifies the maximum velocity in m/s, such that the same
equation can be used for a wide range of different movement
distances, with differential peak velocities resulting for shorter
and longer distances. Combining Equations (6) and (7) into a
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system of first order differential equations results in the end-
effector (hand) movements or trajectories of an agent begin
captured by

ż1 = z2 = ϕ̇A

ż2 = z̈ 1 = ϕ̈ A = −bgz2 − kg
(

z1 − θg
)

(e−c1dg + c2)

ż3 = ẋA = z5 sinz1

ż4 = ẏA = z6 cos z1,

ż5 = z6 = v̇A

ż6 = −bvz6 − kv

(

z5 − Cv(1− e−dg )
)

, (7)

Action Selection Dynamics
The dynamics of action selection observed in the current
experiment were modeling using the equation

ẋ = −α + x− x3 (8)

where x represents the state variable for action section (i.e.,
affordance mode) and α corresponds to the re-normalized E/A
ratio calculated as

α =

(

σ −
dg

RA

)

δ (9)

Here, dg is the distance of the agent’s end-effector (hand) to the
target location, RA is a measure of the agent’s maximal preferred
reach. α is the E/A ratio participants typically switch between
behavioral modes, and σ and δ are constant scaling factors. As
can be seen from an inspection of Figure 8, where Equation (8) is
plotted as the potential function

V (x) = αx−
x2

2
−

x4

4
(10)

this system results in a saddle-node bifurcation as α is scaled
up or down past ±αc (approximately ±αc = 0.35). Moreover,
the system exhibits a region of bi-stability between ±αc and
corresponding hysteretic behavior. More specifically, for α <

−αc and α > +αc the system has a single stable fixed point at
−xst and +xst , respectively. For −αc < α < +αc, however, the
system has two stable fixed points at,−xst and+xst , respectively,
as well as an unstable fixed point between the two. This
system has previously been employed to capture the nonlinear
transitions in categorical speech perception (Tuller et al., 1994;
Tuller, 2005), attitude change (Richardson et al., 2014) and
conciliation dynamics during conflict situations (Coleman et al.,
2007), and appears to represent a generic nonlinear decision or
action selection process (van Rooij et al., 2013). For the current
pick and place task, we arbitrarily defined convergence on a stable
fixed point at−xst to specify non-passing (i.e. moving alone) and
convergence on a stable fixed point at +xst to specify passing.
Accordingly, when α < −αc and α > +αc the system is
mono-stable and the agent always converges on the one stable
corresponding action mode. However, when −αc < α < +αc

the action selection dynamics are bistable, with the likelihood of
converging on one of the two corresponding action modes (i.e.,
passing or not-passing) a function of the relative stability of the
two fixed points and the previous state of system.

MODEL SIMULATION

To determine whether the movement trajectory dynamics
defined by Equation (7) and the action selection dynamics
defined by Equation (8) were able to qualitatively capture the
behavioral dynamics exhibited by participants in the current pick
and place task, a MATLAB (2014a) simulation was conducted.
A flow diagram illustrating the structure of the simulation is
provided in Figure 9. The simulated environment consisted of a
1.50 × 0.89 meter rectangular space matching the experimental
table’s dimensions. Pickup locations were calculated based on
the average participant comfort reach distance of 52.2 cm. The
initial model and simulation target locations matched the ready
and target locations in the original task setup. Eight different
simulations sequences were conducted, with each simulation
sequence consisting of 3 blocks (ordered, random, ordered) of
200 trials (600 trails in total for each simulation sequence).
For four of the simulations the passing location corresponded
to the near-target passing location (0.7695, 0.5893) observed
in the experimental data. For the other four simulations the
passing location corresponded to the overall average near-
confederate co-actor passing location (0.464, 0.5607) observed
in the experimental data. Experimentally observed pass location
variability is likely due to the many complex interactions from
which this passing behavior emerges (Holden, 2002, 2005;
Stephen and Mirman, 2010). However, in our model this
variability is simulated using a sequence of random values
generated from a lognormal distribution that were added to the
passing location in order to produce a pass location distribution
that was similar to the original data.

The action selection dynamics (Equation 8) were integrated
for 1,500 steps using the MATLAB ODE45 function with the end
state of the integration used to drive the decision to pass or go to
the target. The output state of the action selection equation was
stored as an input for integration of the action selection equation
in the next trial (x = 0 for the first trial in a sequence). Based on
the results of the original experiment, the initial trajectory angles
for each sub-task movement type for each trial was calculated
using the regression equations in Figures 6, 7 for pickup and
pass/target movements, respectively. Random noise was added
to the initial angle from a uniform distribution with min/max
values of ± 20◦. The movement dynamics (Equation 7) were
integrated separately for each sub-task movement using the Euler
integration (0.01 time step), with integration terminated when
the model location was within 4 cm of the target location.
Random noise was added to the model heading direction, ϕA,
at each time step of the integration using a uniform distribution
with min/max values of± 1.14◦.

Heat-maps were created using the same method as in the
original experiment; however, due to the reduced variation in the
model a 1,240 × 680 grid was used for pickup trajectories. As
can be seen from an inspection of Figure 10 the overall heat-
map plots revealed patterns of sub-task movement trajectories
similar to those observed in the original experiment. As observed
in actual participants, the model deviates away from a straight-
line path during pass and target movements with a trajectory
that tended to curve down toward the bottom of the task space
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FIGURE 8 | Illustrations of the potential function plots for Equation (8) for changes in the value of α. In (A), the value of α increases from α < 0 to > 0. As α

approaches 0, the system becomes bi-stable but continues to converge on a stable solution at −xst. As α increases and −xst becomes less stable the system

eventually converges on the solution at +xst. In (B) the value of α decrease from α > 0 to α < 0, exhibiting the same characteristics as illustrated in (A) but in the

opposite direction.

FIGURE 9 | Flow diagram illustrating the implementation of the behavioral

dynamics model for data simulations. Movement trajectory dynamics for the

pickup, pass, and target movements defined by Equation (7). Action selection

dynamics defined by Equation (8). Note, that the orange circle is a Heaviside

function that defines the goal location as either the pass location or the target

location depending on the output of the action selection dynamics.

before curving back to the corresponding goal pass/release or
target position. This curvature is driven in the model by the
initial trajectory angle set at the beginning of each sub-task
movement.When the initial angle is calculated using the straight-
line angle between the initial trajectory location and the sub-task
goal location, the model does not exhibit this curving behavior,
even with noise added to the heading direction. This suggests that

when participants pick up the object they immediately start
toward the other side of the table but do not decide exactly where
they are going until later in the trajectory. The observed curved
trajectories emerge from the initial conditions of the sub-task
trajectory and the dynamics of the system. Velocity also plays a
role in the curvature of the trajectory, with trajectories tending to
curve more and longer when the velocity is high. As can be seen
in the heat-map of the passing trajectories, the curve toward the
passing locations tends to be less abrupt in the simulations than
observed in the original experiment. One possibility that might
account for this difference may be that the decision to pass occurs
at some point after pickup before the participant has located the
target location. Future studies could look at factors that further
affect trajectory curvature, including the possibility that action
selection occurs online and not at a single point within a task-goal
trajectory.

Figure 11 illustrates the percentage of passes performed for
each target location depending on the appearance order of the
targets (ascending, descending, or random). As can be seen in
Figure 11, the action selection dynamics of the model exhibit
hysteresis similar to observations in the original experiment
(see Figure 2). To verify that the hysteretic effect observed in
the simulation experiment was significant, a one-way repeated
measures ANOVAwas conducted comparing the distance (target
location) that the model switched between passing and not
passing as a function of target location order (i.e., ascending,
descending, and random) in each simulation run. This analysis
revealed a significant effect of target location order, [F(2, 12.007)
= 13.946, p < 0.001, η2p = 0.666], with Bonferroni post hoc
analysis indicating that pass/no-pass transition distance for the
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FIGURE 10 | (Left) Heat maps illustrating all simulation run trajectories for the pickup (left top), pass (left middle), and target (left bottom) sub-task goal

movements. (Right) Average simulation velocity profile for each sub-goal trajectory, ready-pickup (right top), pickup-pass (right bottom), and pickup-target (right

bottom), in meters per second with 5% and 95% confidence intervals indicated in gray.

ascending target order was significantly higher compared to the
pass/no-pass transition distance for the descending target order
(p = 0.005). There was no significant difference between either
the ascending or descending and random target location orders
(p > 0.05).

Finally, as can be seen in Figure 10 (right), the shape of the
average velocity profile is qualitatively similar to the average
velocity profile observed in the original experiment. The peak
velocity occurs around the first 1/3rd of the trajectory, with a
difference in the magnitude of average peak velocities between
the pickup sub-task goal and the target and pass sub-task
goals.

CONCLUSION

The current study identified and modeled the affordance and
nested sub-task movement dynamics of a simple pick and place
task. As expected, the results revealed a consistent pattern of

behavioral action across participants, with the transition between
social (object passing) and solo action (not passing or moving
the objects alone) determined by an intrinsic relation between
the participant’s action capabilities and the physical task-relevant
constraints (Warren, 1984; Mark, 1987; Warren and Whang,
1987; Kinsella-Shaw et al., 1992; Richardson et al., 2007; Harrison
et al., 2016). The hysteretic nature of the transition from solo-
to social-action was also expected and provided further evidence
that the perception and actualization ofmutually destructive (and
constructive) affordance possibilities is governed by nonlinear,
multi-stable dynamical processes (Kelso, 1995; Frank et al.,
2009; Richardson and Kallen, 2015). The verified implication of
these findings was that a simple nonlinear bifurcation function
(Equation 8), parameterized by a normalized E/A ratio of the
participant’s comfort reach capabilities relative to the distance
of the intended object target goal location (Equation 9) could
be employed to effectively capture the affordances dynamics
exhibited by participants (see Figure 11).
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FIGURE 11 | Percent passes for each target location (n = 20) for a single simulation run (Left) and for all 8 simulation runs (Right). The red dashed line indicates the

percentage of passes for each target as the targets are moving away from the participant. The blue solid line indicates the percentage of passes as the targets are

moving toward participant. Random target appearance are represented by the black dotted line with handles. Asterisks represent the point at which 50% of decisions

were passes and 50% were not (note that this point could occur between target locations). Each target location was presented 5 times each per Ascending and

Descending conditions and 10 times for the Random condition.

Interestingly, participants consistently released/passed the
object in roughly the same location throughout the experiment,
either near the targets or near the co-actor. Although nearly all
participants settled on one of these two pass location strategies,
it remains unclear why any particular participant chose one
passing location over the other and further research is needed
to investigate how and why these location preferences emerged.
It is significant, however, that the pass location chosen by a
given participant was dependent on task-invariant features of
the task-space, namely, the confederate co-actor’s hand location
or the confederate co-actor’s hand location relative to the
target locations. Together with the fact that a participant’s
chosen pass location was independent of changes in trial-
to-trial object appearance and target distance locations, this
suggests that participants chose their pass location with respect
to the global structure of entire task context. This suggests
that predictions about a participant’s pass location can be made
without reference to smaller scale fluctuations that occur as the
task unfolds. Moreover, precise prediction about the specific
release/pass location chosen by a given participant appears to be
of little importance with regards to functional task completion
or with regards to modeling the behavioral dynamics observed.
That is, so long as an object is released/passed in a location
that can be easily reached by the confederate co-actor, the
object can be picked up and moved effectively by the co-
actor. This is not to say that there are not locations that
would result in more efficient or optimal patterns of behavior
(and less overall energy expenditure); rather this appears to
be less important than the predictability of current and future
release/pass locations (Cakmak et al., 2011; Strabala et al., 2013).
Indeed, the specification of a pass in the current task context
was defined by the invariance of returning to the same chosen
release/pass location, not the degree to which the release/pass
location corresponds to some optimal pass location. Accordingly,
the degree to which third–order motor planning (Ray andWelsh,
2011; Meyer et al., 2013) operated to constrain the behavior of
participants appeared to be minimal in the current task.

The results of the current study also demonstrated how
the trajectory dynamics of the participant’s sub-task hand
movements, including movement velocity, could be effectively

captured by an adapted version of the Fajen and Warren (2003,
2004) behavioral dynamics model of locomotory path navigation.
The significance of this finding is twofold. First, it highlights how
the same low-dimensional behavioral dynamics can operate to
constrain multiple (and often nested) levels of human activity.
Second, it suggests that, with the exception of pass locations
that require further investigation, knowledge of what, when,
where and how to move or act during a social interaction is
often lawfully defined by these low dimensional task dynamics
and, thus, can emerge spontaneously and in real-time with little
a priori planning. Indeed, participants in the current task did
not appear to plan out their sub-task movement trajectories
from the outset, nor did they even appear to plan their sub-
task movement with regards to the shortest path of the final
end state or task goal. In fact, participants did not adjust their
initial angle to the specific sub-task goal location on a given
trial, even when the location of the sub-task goal was predictable.
Instead, participants essentially moved in the general direction
of the next sub-task goal, shaping the needed trajectory over the
course of movement. As a result, the movement trajectory and
velocity profiles that occurred were simply an emergent product
of historically dependent initial conditions (parameterizations)
operating within a set of well-defined task constraints.

Clearly, the confederate co-actor in the current pick and place
task played a minimal role. It is therefore possible that the
observed dynamics would have been different if the confederate
co-actor was more engaged in the task (e.g., picked up and
passed objects also). In particular, when two or more agents
are simultaneously active in a shared task space the decisions
on whether to pass and where to pass are dependent on the
behavioral movements and action possibilities of both actors
together. Although future research is planned to investigate the
behavioral dynamics of a more complex joint-action pick and
place scenario, it is possible that very minimal changes to the
current pick and place model will be required to capture the
dynamics of such joint action behavior. That is, it seems likely
that the movement trajectory dynamics of actors in a truly joint
action pick and place task would be almost identical to those
observed in the current task, with the only addition needed to
Equation (2) being an obstacle avoidance coupling to prevent the
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actors bumping into each other. The action selection dynamics of
the actors would also need to be coupled, such that the affordance
dynamics of each actor are mutually dependent. However, these
minimal changes are easily implemented and would not increase
the dimensionality of the system of equations detailed above. Of
major interest, would be whether such minimal changes could
produce patterns of behavioral joint-action as complex as those
that would be expected during real human-human behavior—i.e.,
the emergence of complexity from non-complexity.

Finally, the Fajen and Warren model of path navigation
has been successfully implemented in robotic systems for local
obstacle avoidance and path navigation in novel environments
(Huang et al., 2006; Nemec and Lahajnar, 2009). Building on
this previous work and the current research, a future next step
is to explore the application of the proposed model in human-
robot and human-virtual avatar joint-action pick and place tasks.
Demonstrating how this and other task or behavioral dynamics
models can be employed for the development of robust human-
machine systems will not only further validate the effectiveness
of the such models for effectively capture human multiagent
behavior, but will also further emphasize the degree to which such
models are able to provide a grounded explanation of multiagent
behavior in general.

ETHICS STATEMENT

This study was carried out in accordance with the
recommendations of the University of Cincinnati Institutional

Review Board with written informed consent from all subjects.
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
University of Cincinnati Institutional Review Board.

AUTHOR CONTRIBUTIONS

ML: Collected and analyzed data, developed, tested and
parameterized model. RK: Contributed to experimental design
as well as theory and model development. SH: Contributed to
model development and testing. Contributed to data analysis
and interpretation. MD: Contributed to model development
(instrumental in development of velocity model). Contributed
to data interpretation. AM: Contributed to experimental design.
Contributed to data analysis and interpretation as well as
model development and testing. MR: Contributed to model
development, characterization, and testing. Contributed to
data analysis, interpretation, and presentation. Contributed to
experimental design.

ACKNOWLEDGMENTS

This research was funded by The National Science
Foundation (NSF#1513801) and National Institute of Health
(R01GM105045-01). We would also like to thank Patrick
Nalepka and Conner Wolfe for help with data collection and
Krasimira Tsaneva-Atanasova, Richard Schmidt, and Elliot
Saltzman for helpful comments.

REFERENCES

Anderson, M. L., Richardson, M. J., and Chemero, A. (2012). Eroding the

boundaries of cognition: implications of Embodiment1. Top. Cogn. Sci., 4,

717–730. doi: 10.1111/j.1756-8765.2012.01211.x

Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G.,

and Castiello, U. (2012). Social grasping: from mirroring to

mentalizing. Neuroimage, 61, 240–248. doi: 10.1016/j.neuroimage.2012.

03.013

Becchio, C., Sartori, L., Bulgheroni, M., and Castiello, U. (2008). The case of Dr.

Jekyll and Mr. Hyde: a kinematic study on social intention. Consciousn. Cogn.

17, 557–564. doi: 10.1016/j.concog.2007.03.003

Bongers, R. M., Michaels, C. F., and Smitsman, A.W. (2004). Variations of tool and

task characteristics reveal that tool-use postures are anticipated. J. Mot. Behav.

36, 305–315. doi: 10.3200/JMBR.36.3.305-315

Cakmak, M., Srinivasa, S. S., Lee, M. K., Kiesler, S., and Forlizzi, J. (2011).

“Using spatial and temporal contrast for fluent robot-human hand-overs,” in

Proceedings of the 6th International Conference on Human-robot Interaction

(New York, NY: ACM), 489–496.

Carello, C., Grosofsky, A., Reichel, F. D., Solomon, H. Y., and Turvey, M.

T. (1989). Visually perceiving what is reachable. Ecol. Psychol. 1, 27–54.

doi: 10.1207/s15326969eco0101_3

Chemero, A. (2003). An outline of a theory of affordances. Ecol. Psychol. 15,

181–195. doi: 10.1207/S15326969ECO1502_5

Coleman, P. T., Vallacher, R. R., Nowak, A., and Bui-Wrzosinska, L.

(2007). Intractable conflict as an attractor a dynamical systems approach

to conflict escalation and intractability. Am. Behav. Sci. 50, 1454–1475.

doi: 10.1177/0002764207302463

Costantini, M., Committeri, G., and Sinigaglia, C. (2011). Ready both to your

and to my hands: mapping the action space of others. PLoS ONE 6:e17923.

doi: 10.1371/journal.pone.0017923

Dachner, G. C., and Warren, W. H. (2014). Behavioral dynamics of heading

alignment in pedestrian following. Transport. Res. Proc. 2, 69–76.

doi: 10.1016/j.trpro.2014.09.010

Dean, J., and Brüwer, M. (1994). Control of human arm movements in two

dimensions: paths and joint control in avoiding simple linear obstacles. Exp.

Brain Res. 97, 497–514. doi: 10.1007/BF00241544

Dean, J., and Brüwer, M. (1997). Control of human arm movements in two

dimensions: influence of pointer length on obstacle avoidance. J. Mot. Behav.

29, 47–63. doi: 10.1080/00222899709603469

Dumas, G., Guzman, G. C., de, Tognoli, E., and Kelso, J. A. S. (2014). The human

dynamic clamp as a paradigm for social interaction. Proc. Natl. Acad. Sci. U.S.A.

111, E3726–E3734. doi: 10.1073/pnas.1407486111

Ellis, R., Swabey, D., Bridgeman, J., May, B., Tucker, M., and Hyne, A.

(2013). Bodies and other visual objects: the dialectics of reaching

toward objects. Psychol. Res. 77, 31–39. doi: 10.1007/s00426-011-

0391-y

Fajen, B. R., and Warren, W. H. (2003). Behavioral dynamics of steering,

obstable avoidance, and route selection. J. Exp. Psychol. 29:343.

doi: 10.1037/0096-1523.29.2.343

Fajen, B. R., and Warren, W. H. (2004). Visual guidance of intercepting a moving

target on foot. Perception 33, 689–716. doi: 10.1068/p5236

Fitts, P. M. (1954). The information capacity of the human motor system

in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391.

doi: 10.1037/h0055392

Fitzpatrick, P., Carello, C., Schmidt, R. C., and Corey, D. (1994). Haptic and visual

perception of an affordance for upright posture. Ecol. Psychol. 6, 265–287.

doi: 10.1207/s15326969eco0604_2

Flash, T., and Hogan, N. (1985). The coordination of arm movements: an

experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703.

Flash, T., and Sejnowski, T. J. (2001). Computational approaches to motor control.

Curr. Opin. Neurobiol. 11, 655–662. doi: 10.1016/S0959-4388(01)00265-3

Frontiers in Psychology | www.frontiersin.org 21 June 2017 | Volume 8 | Article 1061

https://doi.org/10.1111/j.1756-8765.2012.01211.x
https://doi.org/10.1016/j.neuroimage.2012.03.013
https://doi.org/10.1016/j.concog.2007.03.003
https://doi.org/10.3200/JMBR.36.3.305-315
https://doi.org/10.1207/s15326969eco0101_3
https://doi.org/10.1207/S15326969ECO1502_5
https://doi.org/10.1177/0002764207302463
https://doi.org/10.1371/journal.pone.0017923
https://doi.org/10.1016/j.trpro.2014.09.010
https://doi.org/10.1007/BF00241544
https://doi.org/10.1080/00222899709603469
https://doi.org/10.1073/pnas.1407486111
https://doi.org/10.1007/s00426-011-0391-y
https://doi.org/10.1037/0096-1523.29.2.343
https://doi.org/10.1068/p5236
https://doi.org/10.1037/h0055392
https://doi.org/10.1207/s15326969eco0604_2
https://doi.org/10.1016/S0959-4388(01)00265-3
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lamb et al. To Pass or Not to Pass

Frank, T. D., and Richardson, M. J. (2010). On a test statistic for the Kuramoto

order parameter of synchronization: an illustration for group synchronization

during rocking chairs. Phys. D Nonlinear Phenomena 239, 2084–2092.

doi: 10.1016/j.physd.2010.07.015

Frank, T. D., Richardson, M. J., Lopresti-Goodman, S. M., and Turvey,

M. T. (2009). Order parameter dynamics of body-scaled hysteresis

and mode transitions in grasping behavior. J. Biol. Phys. 35, 127–147.

doi: 10.1007/s10867-009-9133-4

Georgiou, I., Becchio, C., Glover, S., and Castiello, U. (2007). Different action

patterns for cooperative and competitive behaviour. Cognition 102, 415–433.

doi: 10.1016/j.cognition.2006.01.008

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA:

Houghton Mifflin.

Gonzalez, D. A., Studenka, B. E., Glazebrook, C. M., and Lyons, J. L. (2011).

Extending end-state comfort effect: do we consider the beginning state comfort

of another? Acta Psychol. 136, 347–353. doi: 10.1016/j.actpsy.2010.12.009

Graf, M., Schütz-Bosbach, S., and Prinz, W. (2009). “Motor involvement in action

and object perception similarity and complementarity,” in Grounding Sociality:

Neurons, Minds, and Culture, eds S. Semin and G. Echterhov (New York, NY:

Psychology Press), 27–52.

Harrison, H. S., Turvey, M. T., and Frank, T. D. (2016). Affordance-based

perception-action dynamics: a model of visually guided braking. Psychol. Rev.

123, 305–323. doi: 10.1037/rev0000029

Holden, J. G. (2002). Fractal characteristics of response time variability. Ecol.

Psychol. 14, 53–86. doi: 10.1080/10407413.2003.9652752

Holden, J. G. (2005). “Gauging the fractal dimension of response times from

cognitive tasks,” in Contemporary Nonlinear Methods for Behavioral Scientists:

A Webbook Tutorial, eds M. A. Riley and G. C. Van Orden (Arlington, VA:

NSF), 267–318.

Huang,W. H., Fajen, B. R., Fink, J. R., andWarren,W. H. (2006). Visual navigation

and obstacle avoidance using a steering potential function. Rob. Auton. Syst. 54,

288–299. doi: 10.1016/j.robot.2005.11.004

Jax, S. A., and Rosenbaum, D. A. (2007). Hand path priming in manual

obstacle avoidance: evidence that the dorsal stream does not only

control visually guided actions in real time. J. Exp. Psychol. 33, 425–441.

doi: 10.1037/0096-1523.33.2.425

Jax, S. A., Rosenbaum, D. A., and Vaughan, J. (2007). Extending Fitts’

Law to manual obstacle avoidance. Exp. Brain Res. 180, 775–779.

doi: 10.1007/s00221-007-0996-y

Kelso, J. A. S. (1995). Dynamic Patterns: The Self-Organization of Brain and

Behavior. Cambridge, MA: MIT Press.

Kinsella-Shaw, J. M., Shaw, B., and Turvey, M. T. (1992). Perceiving “Walk-on-

able” Slopes. Ecol. Psychol. 4, 223–239. doi: 10.1207/s15326969eco0404_2

Kugler, P. N., Scott Kelso, J. A., and Turvey, M. T. (1980). “1 On

the concept of coordinative structures as dissipative structures:

I. Theoretical lines of convergence∗,” in Advances in Psychology,

Vol. 1, eds G. E. S. and J. Requin. 3–47. Available online at:

http://www.sciencedirect.com/science/article/pii/S0166411508619366

Lagarde, J. (2013). Challenges for the understanding of the dynamics of

social coordination. Front. Neurorobot. 7:18. doi: 10.3389/fnbot.2013.

00018

Lopresti-Goodman, S. M., Turvey, M. T., and Frank, T. D. (2011). Behavioral

dynamics of the affordance “graspable.” Attent. Percept. Psychophys. 73,

1948–1965. doi: 10.3758/s13414-011-0151-5

Lorenz, T., Vlaskamp, B. N. S., Kasparbauer, A.-M., Mörtl, A., and Hirche,

S. (2014). Dyadic movement synchronization while performing incongruent

trajectories requires mutual adaptation. Front. Hum. Neurosci. 8:461.

doi: 10.3389/fnhum.2014.00461

Lucas, U., Walton, A., Kallen, R., Coey, C., and Richardson, M. J. (2015). “Joint

navigation on the virtual table,” in Studies in Perception and Action XIII:

Eighteenth International Conference on Perception and Action eds J. Weast-

Knapp, M. Malone, and D. Abney (New York, NY; London: Psychology

Press).

MacKenzie, C. L., Marteniuk, R. G., Dugas, C., Liske, D., and Eickmeier, B.

(1987). Three-dimensional movement trajectories in Fitts’ task: implications

for control. Q. J. Exp. Psychol. A 39, 629–647. doi: 10.1080/1464074870

8401806

Mark, L. S. (1987). Eyeheight-scaled information about affordances: a

study of sitting and stair climbing. J. Exp. Psychol. 13, 361–370.

doi: 10.1037/0096-1523.13.3.361

Mark, L. S., Nemeth, K., Gardner, D., Dainoff, M. J., Paasche, J.,

Duffy, M., et al. (1997). Postural dynamics and the preferred critical

boundary for visually guided reaching. J. Exp. Psychol. 23, 1365–1379.

doi: 10.1037/0096-1523.23.5.1365

Marsh, K. L., Richardson, M. J., Baron, R. M., and Schmidt, R. C. (2006).

Contrasting approaches to perceiving and acting with others. Ecol. Psychol. 18,

1–38. doi: 10.1207/s15326969eco1801_1

Meulenbroek, R. G. J., Bosga, J., Hulstijn, M., and Miedl, S. (2007). Joint-

action coordination in transferring objects. Exp. Brain Res. 180, 333–343.

doi: 10.1007/s00221-007-0861-z

Meyer, M., van der Wel, R. P., and Hunnius, S. (2013). Higher-order action

planning for individual and joint object manipulations. Exp. Brain Res. 225,

579–588. doi: 10.1007/s00221-012-3398-8

Meyer, M., van der Wel, R. P., and Hunnius, S. (2016). Planning my actions to

accommodate yours: joint action development during early childhood. Philos.

Trans. R. Soc. B 371:20150371. doi: 10.1098/rstb.2015.0371

Michaels, C. F., and Carello, C. (1981). Direct Perception. Englewood Cliffs, NJ:

Prentice-Hall.

Nemec, B., and Lahajnar, L. (2009). “Control and navigation of the skiing robot,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009,

IROS 2009 (Edmonton, AB), 2321–2326. doi: 10.1109/IROS.2009.5354807

Newman-Norlund, R., Noordzij, M., Meulenbroek, R. G., and Bekkering, H.

(2007). Exploring the brain basis of joint action: co-ordination of actions, goals

and intentions. Soc. Neurosci. 2, 48–65. doi: 10.1080/17470910701224623

Ray, M., and Welsh, T. N. (2011). Response selection during a joint action task. J.

Mot. Behav. 43, 329–332. doi: 10.1080/00222895.2011.592871

Reed, E. (1996). Encountering the World: Toward an Ecological Psychology. New

York, NY: Oxford University Press.

Richardson, M. J., Dale, R., and Marsh, K. L. (2014). “Complex dynamical

systems in social and personality psychology,” in Handbook of Research

Methods in Social and Personality Psychology, 2nd Edn., eds H. T. Reis

and C. M. Judd (Cambridge: Cambridge University Press), 253–282.

doi: 10.1017/CBO9780511996481.015

Richardson, M. J., Harrison, S. J., Kallen, R. W., Walton, A., Eiler, B. A., Saltzman,

E., et al. (2015). Self-organized complementary joint action: behavioral

dynamics of an interpersonal collision-avoidance task. J. Exp. Psychol. Hum.

Percept. Perform. 41:665. doi: 10.1037/xhp0000041

Richardson, M. J., and Kallen, R. W. (2015). “Symmetry-breaking and the

contextual emergence of humanmultiagent coordination and social activity,” in

Contextuality from Quantum Physics to Psychology, 229–286. Available online

at: http://scholar.google.com/scholar?cluster=7563107133202352796&hl=en&

inst=13859563645705285075&inst=569367360547434339&oi=scholarr

Richardson, M. J., Kallen, R. W., Nalepka, P., Harrison, S. J., Lamb, M.,

Chemero, A., et al. (2016). “Modeling embedded interpersonal and multiagent

coordination,” in Proceedings of the 1st International Conference on Complex

Information Systems (Rome), 155–164. doi: 10.5220/0005878101550164

Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R., and

Schmidt, R. C. (2007). Rocking together: dynamics of intentional and

unintentional interpersonal coordination. Hum. Mov. Sci. 26, 867–891.

doi: 10.1016/j.humov.2007.07.002

Richardson, M. J., Marsh, K. L., and Schmidt, R. C. (2010). “Challenging the

egocentric view of coordinated perceiving, acting, and knowing,” inTheMind in

Context, eds B.Mesquita, L. F. Barrett, and E. R. Smith (NewYork, NY: Guilford

Press), 307–333.

Riley, M. A., Richardson, M. J., Shockley, K., and Ramenzoni, V. C. (2011).

Interpersonal synergies. Front. Psychol. 2:38. doi: 10.3389/fpsyg.2011.00038

Rio, K., and Warren, W. H. (2014). The visual coupling between

neighbors in real and virtual crowds. Transport. Res. Proc. 2, 132–140.

doi: 10.1016/j.trpro.2014.09.017

Rizzolatti, G., and Craighero, L. (2004). The mirror-neuron system. Annu. Rev.

Neurosci. 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230

Rosenbaum, D. A., Chapman, K. M., Weigelt, M., Weiss, D. J., and van der Wel, R.

(2012). Cognition, action, and object manipulation. Psychol. Bull. 138, 924–946.

doi: 10.1037/a0027839

Frontiers in Psychology | www.frontiersin.org 22 June 2017 | Volume 8 | Article 1061

https://doi.org/10.1016/j.physd.2010.07.015
https://doi.org/10.1007/s10867-009-9133-4
https://doi.org/10.1016/j.cognition.2006.01.008
https://doi.org/10.1016/j.actpsy.2010.12.009
https://doi.org/10.1037/rev0000029
https://doi.org/10.1080/10407413.2003.9652752
https://doi.org/10.1016/j.robot.2005.11.004
https://doi.org/10.1037/0096-1523.33.2.425
https://doi.org/10.1007/s00221-007-0996-y
https://doi.org/10.1207/s15326969eco0404_2
http://www.sciencedirect.com/science/article/pii/S0166411508619366
https://doi.org/10.3389/fnbot.2013.00018
https://doi.org/10.3758/s13414-011-0151-5
https://doi.org/10.3389/fnhum.2014.00461
https://doi.org/10.1080/14640748708401806
https://doi.org/10.1037/0096-1523.13.3.361
https://doi.org/10.1037/0096-1523.23.5.1365
https://doi.org/10.1207/s15326969eco1801_1
https://doi.org/10.1007/s00221-007-0861-z
https://doi.org/10.1007/s00221-012-3398-8
https://doi.org/10.1098/rstb.2015.0371
https://doi.org/10.1109/IROS.2009.5354807
https://doi.org/10.1080/17470910701224623
https://doi.org/10.1080/00222895.2011.592871
https://doi.org/10.1017/CBO9780511996481.015
https://doi.org/10.1037/xhp0000041
http://scholar.google.com/scholar?cluster=7563107133202352796&hl=en&inst=13859563645705285075&inst=569367360547434339&oi=scholarr
http://scholar.google.com/scholar?cluster=7563107133202352796&hl=en&inst=13859563645705285075&inst=569367360547434339&oi=scholarr
https://doi.org/10.5220/0005878101550164
https://doi.org/10.1016/j.humov.2007.07.002
https://doi.org/10.3389/fpsyg.2011.00038
https://doi.org/10.1016/j.trpro.2014.09.017
https://doi.org/10.1146/annurev.neuro.27.070203.144230
https://doi.org/10.1037/a0027839
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Lamb et al. To Pass or Not to Pass

Saltzman, E., and Kelso, J. A. (1987). Skilled actions: a task-dynamic approach.

Psychol. Rev. 94:84. doi: 10.1037/0033-295X.94.1.84

Scharoun, S. M., Scanlan, K. A., and Bryden, P. J. (2016). Hand and grasp selection

in a preferential reaching task: the effects of object location, orientation, and

task intention. Front. Psychol. 7:360. doi: 10.3389/fpsyg.2016.00360

Schmidt, R., Bienvenu, M., Fitzpatrick, P., and Amazeen, P. (1998). A

comparison of intra- and interpersonal interlimb coordination: coordination

breakdowns and coupling strength. J. Exp. Psychol. 24, 884–900.

doi: 10.1037/0096-1523.24.3.884

Schmidt, R. C., Carello, C., and Turvey, M. T. (1990). Phase transitions and critical

fluctuations in the visual coordination of rhythmic movements between people.

J. Exper. Psychol. 16:227. doi: 10.1037/0096-1523.16.2.227

Schmidt, R. C., and O’Brien, B. (1997). Evaluating the dynamics of unintended

interpersonal coordination. Ecol. Psychol. 9, 189–206.

Schmidt, R. C., Morr, S., Fitzpatrick, P., and Richardson, M. J. (2012). Measuring

the dynamics of interactional synchrony. J. Nonverbal Behav. 36, 263–279.

doi: 10.1007/s10919-012-0138-5

Sebanz, N., and Knoblich, G. (2009). Prediction in joint action: what, when, and

where. Top. Cogn. Sci. 1, 353–367. doi: 10.1111/j.1756-8765.2009.01024.x

Shaw, R. E., Flascher, O. M., and Kadar, E. E. (1995). “Dimensionless invariants for

intentional systems: measuring the fit of vehicular activities to environmental

layout,” in Global Perspectives on the Ecology of Human–Machine Systems, Vol.

1, eds J. M. Flach, P. A. Hancock, J. Caird, and K. J. Vicente (Hillsdale, NJ:

Lawrence Erlbaum Associates, Inc), 293–357.

Shaw, R., and Turvey, M. T. (1981). Coalitions as models for ecosystems: a realist

perspective on perceptual organization. Percept. Organ. 343–415.

Shibata, S., Tanaka, K., and Shimizu, A. (1995). “Experimental analysis of handing

over,” in Proceedings of 4th IEEE International Workshop on Robot and Human

Communication, 1995. RO-MAN’95 (Tokyo), 53–58.

Smitsman, A. W. (1997). “The development of tool use: changing boundaries

between organism and environment,” in Evolving Explanations of Development:

Ecological Approaches to Organism–Environment Systems, eds C. Dent-

Read and P. Zukow-Goldring (Washington, DC: American Psychological

Association), 301–329.

Stephen, D. G., and Mirman, D. (2010). Interactions dominate the dynamics of

visual cognition. Cognition 115, 154–165. doi: 10.1016/j.cognition.2009.12.010

Stoffregen, T. A., Gorday, K. M., Sheng, Y.-Y., and Flynn, S. B. (1999).

Perceiving affordances for another person’s actions. J. Exp. Psychol. 25, 120–136.

doi: 10.1037/0096-1523.25.1.120

Strabala, K. W., Lee, M. K., Dragan, A. D., Forlizzi, J. L., Srinivasa, S., Cakmak, M.,

et al. (2013). Towards seamless human-robot handovers. J. Hum. Robot Inter.

2, 112–132. doi: 10.5898/JHRI.2.1.Strabala

Strogatz, S. H. (1994).Nonlinear Dynamics and Chaos:With Applications to Physics,

Biology, Chemistry, and Engineering. Reading, MA: Westview Press.

Thelen, E., Smith, L. B., Karmiloff-Smith, A., and Johnson, M. H. (1994). A

dynamic systems approach to the development of cognition and action. Nature

372, 53–53.

Tuller, B. (2005). “Categorization and learning in speech perception as dynamical

processes,” in Tutorials in Contemporary Nonlinear Methods for the Behavioral

Sciences, eds M. A. Riley and G. C. Van Orden (Arlington, VA: NSF), 353–400.

Tuller, B., Case, P., Ding, M., and Scott, J. A. (1994). The nonlinear dynamics of

speech categorization. J. Exp. Psychol. Hum. Percept. Perform. 20, 3–16.

Turvey, M. T., Shaw, R. E., Reed, E. S., and Mace, W. M. (1981). Ecological laws

of perceiving and acting: in reply to Fodor and Pylyshyn (1981). Cognition 9,

237–304. doi: 10.1016/0010-0277(81)90002-0

van der Kamp, J., Savelsbergh, G. J. P., and Davis, W. E. (1998).

Body-scaled ratio as a control parameter for prehension in

5- to 9-year-old children. Develop. Psychobiol. 33, 351–361.

doi: 10.1002/(SICI)1098-2302(199812)33:4<351::AID-DEV6>3.0.CO;2-P

van Rooij, M. M., Favela, L. H., Malone, M., and Richardson, M. J.

(2013). Modeling the dynamics of risky choice. Ecol. Psychol. 25, 293–303.

doi: 10.1080/10407413.2013.810502

Vesper, C., Soutschek, A., and Schubö, A. (2009). Motion coordination affects

movement parameters in a joint pick-and-place task. Q. J. Exp. Psychol. 62,

2418–2432. doi: 10.1080/17470210902919067

Warren, W. H. Jr., and Whang, S. (1987). Visual guidance of walking through

apertures: body-scaled information for affordances. J. Exp. Psychol. 13,

371–383.

Warren, W. H. (1984). Perceiving affordances: visual guidance of stair climbing. J.

Exp. Psychol. 10, 683–703. doi: 10.1037/0096-1523.10.5.683

Warren, W. H. (2006). The dynamics of perception and action. Psychol. Rev. 113,

358–389. doi: 10.1037/0033-295X.113.2.358

Warren, W. H., and Fajen, B. R. (2008). “Behavioral dynamics of visually guided

locomotion,” in Coordination: Neural, Behavioral and Social Dynamics, eds A.

Fuchs and V. K. Jirsa (Berlin; Heidelberg: Springer), 45–75.

Washburn, A., Evans, J., Lamb, M., Kallen, R. W., Harrison, S. J., and Richardson,

M. J. (2015). “Behavioral dynamics of a joint-action object movement and

passing task,” in Studies in Perception and Action XIII: Eighteenth International

Conference on Perception and Action, eds J. Weast-Knapp, M. Malone, and D.

Abney (New York, NY; London: Psychology Press).

Wolpert, D. M. (1997). Computational approaches to motor control. Trends Cogn.

Sci. 1, 209–216. doi: 10.1016/S1364-6613(97)01070-X

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Lamb, Kallen, Harrison, Di Bernardo, Minai and Richardson.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Psychology | www.frontiersin.org 23 June 2017 | Volume 8 | Article 1061

https://doi.org/10.1037/0033-295X.94.1.84
https://doi.org/10.3389/fpsyg.2016.00360
https://doi.org/10.1037/0096-1523.24.3.884
https://doi.org/10.1037/0096-1523.16.2.227
https://doi.org/10.1007/s10919-012-0138-5
https://doi.org/10.1111/j.1756-8765.2009.01024.x
https://doi.org/10.1016/j.cognition.2009.12.010
https://doi.org/10.1037/0096-1523.25.1.120
https://doi.org/10.5898/JHRI.2.1.Strabala
https://doi.org/10.1016/0010-0277(81)90002-0
https://doi.org/10.1002/(SICI)1098-2302(199812)33:4<351::AID-DEV6>3.0.CO;2-P
https://doi.org/10.1080/10407413.2013.810502
https://doi.org/10.1080/17470210902919067
https://doi.org/10.1037/0096-1523.10.5.683
https://doi.org/10.1037/0033-295X.113.2.358
https://doi.org/10.1016/S1364-6613(97)01070-X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive

	To Pass or Not to Pass: Modeling the Movement and Affordance Dynamics of a Pick and Place Task
	Introduction
	Affordances and Affordance Dynamics
	Joint-Action Pick and Place Behavior
	Modeling Behavioral Dynamics
	Current Study

	Materials and Methods
	Participants
	Materials and Apparatus
	Experimental Task
	Procedure

	Results and Discussion
	What Drove Pass Decisions?
	Where did participants release/Pass Objects?
	How did the participants move?

	Modeling Behavioral Dynamics
	Hand-Movement Dynamics
	Action Selection Dynamics

	Model Simulation
	Conclusion
	Ethics Statement
	Author Contributions
	Acknowledgments
	References


