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The application of uncertainty analysis, including probabilistic and non-probabilistic 

approaches, to the prediction of the dynamic pressure at which flutter occurs is considered 

for the S4T Semi-Span Super-Sonic Transport wind-tunnel model. A SVD based reduced 

order modelling approach, along with the Polynomial Chaos Expansion and Fuzzy Analysis 

methods for uncertainty quantification, are described and used to explore the effects that 

variations in the structural mass, resembling variations in the fuel load, have on the linear 

flutter analyses for a range of subsonic and supersonic speeds. All the approaches are able to 

efficiently quantify the effects of structural uncertainty on the aeroelastic behavior.   

I. Introduction 

Supersonic flight for civil aircraft has been of interest since the 1960s when several supersonic commercial airline 

projects started, and eventually the Anglo-French Concorde and the Russian Tupolev Tu-144 entered into service. 

Political, environmental and economic issues hindered the commercial running of these aircraft, and Concorde was 

withdrawn from service in 2003. There are a wide range of technical challenges that impede the development of 

supersonic passenger aircraft including: noise, cruise efficiency, sonic boom modeling, high altitude emissions and 

durability at high temperatures, and thus there are currently no supersonic commercial configurations being 

developed. It is odd that, unlike the last three decades of the 20th century, it is not possible nowadays for paying 

passengers to cross the Atlantic by air at supersonic speeds. In order to enable supersonic aircraft to utilize their full 

capability and overcome technical and financial barriers, a detailed investigation is required. 

In the mid- to late-1990s, the NASA High Speed Research (HSR) program undertook research in the areas of 

computational and experimental aeroelasticity to investigate supersonic flight. Several aeroelastic wind-tunnel 

models were designed, manufactured and tested; in order to investigate experimentally the aeroelastic behavior of 

the Technology Concept Aircraft (TCA), an aeroelastically scaled semi-span wind-tunnel model was designed, 

called the Semi-Span Super-Sonic Transport (S4T) [1]. Following this work, the Supersonics Project was 

established in 2006 under the NASA Fundamental Aeronautics Program in which the Aeroservoelasticity (ASE) 

Element was tasked with the modeling, analysis, and prediction of aeroelastic and ASE phenomena associated with 

supersonic configurations.  

 The S4T wind-tunnel model was the subject of four wind-tunnel tests in the Transonic Dynamics Tunnel (TDT): 

two open-loop (no feedback control) tests and two closed-loop (with feedback control) tests, between 2007 and 2010 

[1]. The goals of the open-loop tests were to acquire system identification data to enable the design of ASE control 

laws. The goals of the closed-loop tests were to evaluate several candidate ASE control laws in the performance of 

gust load alleviation (GLA), ride quality enhancement (RQE), and flutter suppression (FS) looking at both 

independent and combined functions. The S4T model provided a sophisticated test-bed for developing multi-

disciplinary numerical and experimental capabilities for supersonic aircraft and is a scaled semi span wind-tunnel 
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model, equipped with three active surfaces (ride control vane, aileron and horizontal tail) and flow-through nacelles 

with flexible mounts [1].   

 The importance in considering and quantifying the presence of uncertainty due to variations in the structure, 

materials, aerodynamic characteristics and control system in the design of aerospace structures, as well as in a wide 

range of other scientific fields, has recently become recognized; however, the presence of uncertainty increases the 

complexity and computational requirements of the analysis. There are several previous applications of uncertainty 

analysis in the aeronautical field, concerning critical conditions due to loads [2-5] and self-induced oscillations such 

as shimmy [6-7] and flutter [8-14].   Initial uncertainty quantification (UQ) studies relating to the S4T model can be 

found in references [14] and [15]. 

II. S4T MODEL and PARAMETER UNCERTAINTY 

The Semi-Span Super-Sonic Transport vehicle (S4T) is an aeroelastically-scaled wind-tunnel model of a cruise 

aircraft, designed and constructed at NASA Langley in order to conduct transonic experimental and numerical 

studies related to gust alleviation, ride quality, flight dynamics and propulsion. Figure 1 shows the physical and 

finite element model displaying the three active surfaces (ride-control vane, wing aileron and all-movable horizontal 

tail), the engine nacelles, the flexible fuselage beam and wing [14].  

Uncertainties of the fuselage and engine masses were considered in this work. In particular, the uncertainty has been 

described considering 5 scale factors applied to groups of concentrated masses: 

 

1. 11 concentrated masses along the flexible fuselage 

2. 4 groups of concentrated masses at engine nacelles (inboard and outboard engines): 2 groups of 8 and 

15 concentrated masses per  each engine 

 

 

 

 

 

 

 

 

 

 

A. Singular Value Decomposition Based Method 

 This work considers the uncertainty quantification of the flutter analysis of the S4T wind tunnel model. A range 

of different methodologies (Singular Value Decomposition (SVD) based technique, Polynomial Chaos and a Fuzzy 

Logic based methodology) are applied to data generated from tightly coupled numerical models (Finite Element and 

Doublet Lattice aerodynamic codes) in order to demonstrate their effectiveness in assessing the uncertainty of the 

flutter analysis subject to variations in some of the structural parameters.    

Figure 1: S4T model. 
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A Singular Value Decomposition (SVD) based method [2,3] was used to quantify the system uncertainty, describing 

probabilistically the flutter pressure dynamic trend with Mach number changes, and also identifying the worst case 

scenario. The method is summarized in Figure 2 and explained in the following. 

 

 

Step 1 - Probabilistic Parameter Variation  

 The input uncertainties, varying the concentrated masses in the finite element model, were described in a 

probabilistic manner. A normal distribution was adopted for each mass and, as proposed in [14], coefficients of 

variation of 0.1 and 0.3333 were selected to scale the groups of concentrated masses at the flexible fuselage and 

engine nacelles, respectively. The engine nacelle mass variation was very high and thus a limitation in terms of the 

cumulative density function (CDF) was considered; maximum and minimum values of (0.905, 0.095) and (0.7, 0.3) 

were considered for the CDF related to the flexible fuselage and nacelles. 

 

Step 2 - Sampling of Data  

 Initially, the sampling plane to be considered for the generation of interested quantities (IQs), is defined. A 

suitable sampling method (e.g. Latin Hypercube Sampling, Hamilton or Sobol sequences) is selected and the IQs 

determined for three types of sampling points, using the numerical model that best represents the analysed problem. 

Here, the IQ is the flutter dynamic pressure and the Latin Hypercube Sampling method was adopted. The sampling 

points are: 

 training points, which are used to train surrogate models adopted to speed up the Uncertainty Quantification 

(UQ) 

 validation points for the surrogate models, which are needed to validate the trained surrogate models  

SVD based method - Speed up process 

1) Iterative technique for Rank Reduction 
identification 

2) ‘Store’ bases for IQs 

3) Train Surrogate Models in terms of selected 

Sampling Plane  

Training and Validation Points 

Data Generation 

Flutter Analysis (PKNL 

Uncertainty Quantification using Surrogate 
Models 

Input Uncertainty Description 

Figure 2: Flow chart of the SVD Based ROM Approach 
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 validation points for the results given by the UQ, which are used to obtain an `actual' but time consuming UQ 

 

The `actual' UQ is performed using Monte Carlo Simulations (MCS) analysis.  There would be no benefit in 

performing this last step in practice due to computational limitations and it would also negate the reason for 

developing these methodologies. 

 
Step 3 – Flutter Dynamic Pressure Identification 

 The identification of the flutter dynamic pressure was performed using the PKNL method [16]. The flutter 

analysis was computed for different sets of Mach numbers and velocities and, for each set, the density ratio 𝜌 was 

changed until a change in the sign of the damping ratio (𝑐) of one mode occurs. The flutter analysis is iterative and 

considers a set of values for the density ratio for each selected set of Mach number and velocity. A linear 

interpolation was used between the two sets of density and damping ratio (𝜌𝑖 , 𝑐𝑖  𝑖 = 1, 2 ) for which a change of the 

sign of the damping ratio occurs; the value of the density at flutter occurrence, 𝜌𝐹 is approximated as  

     𝜌𝐹 ≅ − 𝑐2 ⋅
𝜌1−𝜌2

𝑐1−𝑐2
+ 𝜌2           (1) 

 
and the flutter dynamic pressure 𝑞𝐹 is given by 

      𝑞𝐹 =
1

2
𝜌𝐹𝑉

2       (2) 

 
Step 4   - Generation of Data Matrix 

 Once the data of interest has been generated, in this case the flutter speed for given mass variation and 

Mach numbers, a data matrix is constructed from the values of the flutter dynamic pressure related to the training 

points. The SVD can then be applied for feature extraction [2-7]. The matrix defined for the flutter dynamic pressure 

has as many rows as the number of parameter variations (e.g. concentrated masses) (D) and as many columns as the 

number of Mach considered in the flutter analysis (B). A SVD is applied to the data matrix A using the training data 

such that  

     𝐀 = 𝐔𝚺𝐕𝐓        (3) 

 

The rank of the data matrix 𝐀 (and so of the model order) is reduced by selecting the most significant singular 

values in 𝚺. The product of the reduced ‘singular values matrix’ 𝚺k and the transpose of the ‘right singular vector 

matrix’ 𝐕𝑘
T is adopted as the “basis” and this is assumed to remain constant over the considered parameter variation 

range.  A surrogate model is then constructed for each column of the reduced ‘left singular vector matrix’ 𝐔k. For 

any desired set of parameter values, a time history can be reconstructed by multiplying the basis 𝚺k 𝐕𝑘
T by the 

surrogates of  𝐔k evaluated at the selected parameter values. The surrogates can then be used to perform the 

uncertainty quantification. Figure 3 shows the formulation of data matrix A and its decomposition into the three sub-

matrices (U, Σ, V); clarifying how the surrogate models are developed for the analyzed problem. 

 

DOE Mach 1 … Mach B 

1 
 

… 
 

… … … … 

D 
 

… 
 

 
 
 
 

Figure 3: Data Matrix Formulation  

 

A = A = U Σ 𝑉𝑇 ≅ Uk Σk 𝑉𝑘
𝑇 =   

𝑢11

⋮
𝑢𝑚1

   …     

𝑢1𝑘

⋮
𝑢𝑚𝑘

      Σk    𝑉𝑘
𝑇 
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In order to speed up the process, the terms to be retained are identified by fixing the maximum acceptable error 

caused by the rank reduction. Once this error is chosen, the energy ‘captured’ by the reduced matrix and the singular 

values to be retained can be identified. This energy is linked with the Frobenius norm and is determined by using the 

captured energy criterion to identify the required amount of rank reduction. The energy captured criterion consists of 

selecting enough singular values of the matrix of interest, such that the sum of their squares is a certain percentage 𝑡 

of the total sum of the squared values. Such an approach has given very encouraging results on previous examples. 

In this work, the singular values (surrogate models) characterizing the SVD are automatically obtained once the 

maximum acceptable error is defined. However, the percentage 𝑡% that should be taken as the threshold is problem 

dependent and is often difficult to know a-priori.  

 The authors have considered an iterative procedure shown in Figure 4, where the number of singular values is 

increased, and so the percentage 𝑡%, and the rank reduction updated until the desired maximum error is met. The 

Mean Average Percentage Error (MAPE) [2-7] is considered here with the average being taken in terms of all the 

considered training points. Once the sampling plane for the training has been defined and the rank reduction selected 

with the procedure presented above, 𝚺k 𝐕𝑘
T  ∈ ℝ𝑘×𝑛 is considered as a basis which is assumed not to change 

throughout the design space. 

 The dynamic pressure at flutter is the IQ and the variation in terms of five groups of concentrated masses were 

considered. It is recommended to consider different surrogate models and to evaluate the one that performs best 

using the responses obtained at the validation points. In the present analysis, the Blind Kriging methodology is 

adopted since it is particularly good at dealing with a Gaussian process. Although such as approach is still 

“supervised learning”, the ‘training data is harnessed in a subtler way’ [17] and good performance has been found in 

the presence of strong trends [18] 

 

Step 5 – Uncertainty Propagation  

 Having identified the basis and surrogate models to be used with the SVD based method, the uncertainty in the 

system can be propagated without recourse to the full numerical model, thereby saving computational time but still 

obtaining a high accuracy. This aim is accomplished here by constructing a 5D sampling plane (five scaled factors 

were adopted) with an arbitrary high number of data points and evaluating the trained surrogate models for all the 

considered set of points. Then the flutter dynamic pressure at the ith point in the defined sampling plane is 

determined for all the selected Mach numbers and velocities multiplying the row of surrogate models [𝑢𝑖1 …𝑢𝑖𝑘] by 

the previously determined basis  𝚺𝐤𝑽𝒌
𝑻. 

 

 

 

 

 

For each value of Mach and velocity, a statistical description for the flutter dynamic pressure can be depicted using 

the Matlab function ksdensity and values of the flutter dynamic pressure for fixed quantiles can be obtained using 

the Matlab function quantile. The worst case scenario and the relative bounds for the flutter dynamic pressure can be 

Fix the maximum acceptable error in terms of MAPE (𝑀𝐴𝑃𝐸𝑎𝑐𝑐 ), which is related to the IQ  

𝑴𝑨𝑷𝑬𝒆𝒗𝒂𝒍 ≤ 𝑴𝑨𝑷𝑬𝒂𝒄𝒄  ? 

𝑵𝑶 
𝒀𝑬𝑺 end 

Figure 4: Iterative technique for Rank Reduction identification. 
𝑀𝐴𝑃𝐸𝑒𝑣𝑎𝑙  and 𝑀𝐴𝑃𝐸𝑎𝑐𝑐  are the mean average percentage errors obtained  

having fixed the rank reduction and defined as acceptable, respectively. 

Define the rank reduction to be considered 

percentage 𝒕%  (captured energy criterion)  number of the singular values to be retained 
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dealt with by considering the quantiles equal to 0 and 1. A major advantage of the developed method is the 

possibility to reduce the computational time required by a Monte Carlo Simulation (MCS) and completely identify 

the configurations (e.g. concentrated mass) for which the flutter occurs whilst still maintaining a good accuracy. 

 

B.    Polynomial Chaos Expansion 
Stochastic expansion techniques, such as Polynomial Chaos Expansion (PCE) and Stochastic Collocation (SC), 

expand the output response in a series of random variables for uncertainty quantification and propagation with 

reduced computational effort. The development of the stochastic expansions started when Wiener [19] introduced a 

mathematical model, in an effort to describe the irregularities appeared in Brownian motion using a multiple 

stochastic integral with homogeneous chaos. Ito [20] then modified Weiner’s work and showed that any stochastic 

process can be described as a Weiner process. Ghanem and Spanos [21] defined a simple definition of the PCE as a 

convergent series of the form 

         
1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 2 1 2 3

0 0 1 2 3

1 1 1 1 1 1

,       + , ,

i i i

i i i i i i i i i i i i

i i i i i i

u a H a H ξ a H ξ ξ a H ξ ξ ξ
  

     

      ,    (4) 

where 
1i i

ξ



represents a set of independent stochastic Gaussian variables,  

1
, ,

pp i iH ξ ξ is a set of 

multidimensional Hermite polynomials of order p  and 
1
, ,

pi ia a  are properly defined coefficients. The 

approximation of the output response u  can be rewritten using different orthogonal polynomials which belong to 

the Askey scheme, such as the Laguerre, Jacobi and Legendre if the input random variables follow the gamma, beta 

and uniform distributions respectively. 

In the present study, the uncertain parameters 
1i i

ξ



 were defined as normalized variables using expression 

 i i
i

i

x μ
ξ

σ


 , (5) 

where iμ  and
2
iσ  represent the mean value and the variance of the ith random variable. The Hermite polynomials 

with respect to the independent variable ξ  are defined by  

         2 3 4 2
 1  2  3  40

1, , 1, 3 , 6 3,                 H ξ H ξ ξ H ξ ξ H ξ ξ ξ H ξ ξ ξ         (6) 

and, as a result, in the case of a single input parameter, the Polynomial Chaos Expansion analytical formula 

truncated at the fourth order is written as 

      2 3 4 2
0 1 2 3 41 3 6 3u a a ξ a ξ a ξ ξ a ξ ξ         ,                       (7) 

whereas in the case of two uncertain variables, 1 2,  the second order stochastic expansion is obtained as 

    2 2
0 1 1 2 2 3 1 4 1 2 5 21 1u a a ξ a ξ a ξ a ξ ξ a ξ        .                                   (8) 

The unknown coefficients ia of the Polynomial Chaos Expansions can be calculated using a regression analysis or 

the statistically averaging method. Here, a linear regression process was used and the polynomial coefficients were 

predicted by solving the following system of equations for the case of a single uncertain variable such that  

 

 

01 11 1 0
1

02 12 2 1

0 1

 

p

p

n
pn n pn

H H H a
u

H H H a

u
aH H H

   
    
         
     
     

, (9) 
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where the term   i=1, ,niu for is a discrete observation of the output response, while the element piH represents 

the value of the p-th order Hermite polynomial calculated for the ith value of the input parameter. The minimum 

sample size, needed for the calculation of the coefficients ia , is defined as 

 
 !

! !

p d
n

p d


 , (10) 

where d is the number of independent variables. Indicatively, the scalability of the minimum sample size with 

respect to the dimensionality of the problem and the order of the approximation polynomials is presented in Table 1. 

 

Table 1: Minimum sample size for the regression analysis needed for the Polynomial Chaos Expansion 
approximation models. 

 

N p=1 p=2 p=3 p=4 

d=1 2 3 4 5 

d=2 3 6 10 15 

d=3 4 10 20 35 

d=4 5 15 35 70 

…
 

…
 

…
 

…
 

…
 

d=15 16 136 816 3876 

In this case where the size of the observations is larger than the minimum, the system of equations described in Eq. 

(8) is over-determined and is solved using the least square approach. The accuracy of the regression coefficients 

depends upon the quantity and the quality of the obtained observations and for this reason, an efficient sampling 

technique, such as the Latin Hypercube method, which ensures that the points of the input variables are selected 

with equal probability, is necessary. After the evaluation of the unknown coefficients, the Polynomial Chaos 

Expansion models can be emulated for given values of the uncertain parameters and predict statistical properties of 

the output response, such as the mean value, the standard deviation and the probability density function at low 

computational cost. 

 

C.  Fuzzy Analysis 
The Fuzzy logic concept was first introduced by Zadeh [22] and it is considered as a generalization of the classical 

(crisp) set. A brief description of fuzzy variable is provided in this chapter and we refer the reader to [23 – 27]. In 

the classical theory, a set consists of elements with membership values of either zero or one; a membership value of 

one indicates that the element belongs to the set, whereas zero membership value shows that the element does not 

belong to the set. 

 The fuzzy set A  is defined as 

       , ,  0 1 .
A A

A ξ μ ξ ξ μ ξ    (11) 

where the membership function  A
μ ξ  indicates the degree to which each element belongs to this set and varies 

within the range of 0 to 1. ξ  is definitely a member if   1
A

μ ξ   and is a non-member if   0
A

μ ξ  . For any 

intermediate case  0 1
A

μ ξ  the membership is uncertain. This definition is required if a clear distinction 

between membership or exclusion of the members of the set is not possible.  

 Figures 5(a) and (b) show examples for the representation of fuzzy membership functions. Figure 5(a) shows the 

fuzzy variable with triangular membership function and as it can be seen, the interval model of an uncertain 

parameter can be interpreted within the definition of the crisp set theory. Thus, the uncertain parameter ξ  which is 

represented by interval model is defined as 

  ,ξ ξ ξ 
 

 (12) 
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where ξ  and ξ  are upper and lower bounds of uncertain variable ξ . In this definition, any value of ξ  between 

upper and lower bounds  ξ ξ ξ   has membership value of one and those which are outside of this range 

  and ξ ξ ξ ξ  have zero membership function.  

 The interval model is said to be non-possibilistic since no assumption is made regarding the probability 

distribution of uncertain parameter. Under the possibilistic interpretation of fuzzy sets and using the min-operator as 

t-norm [28,29], fuzzy variables are becoming a generalization of interval variables. In this context, the α-cuts of a 

fuzzy set play a crucial role in the computational and analytical methods involving fuzzy sets. As it can be seen in 

Figure 5(c), a α-cut interval is the set of realization with membership function value greater than α: 

  ,a ξξ ξ μ α   (13) 

where aξ is an interval variable with lower bound of
a

ξ and upper bound of aξ . The Gaussian distribution can be 

approximated with a triangular membership function as depicted in Figure 5(d) [30]. The idea is to simply equate the 

area under the normalised Gaussian distribution function with the area under a triangular membership function, 

resulting in the approximation of the triangular fuzzy membership function defined as 

   max 0,1 ,
ξξ m

μ ξ
δ

  
  

  

 (14) 

where 2 ξδ πσ , ξm  and ξσ are the mean and standard deviation of the equivalent Gaussian distribution. 

 
 

Figure 5. Examples of fuzzy membership functions: (a) triangular membership function, (b) trapezoidal membership 
function and (c) linear approximation of a Gaussian distribution by triangular fuzzy number (after [30]). 

 

Once the membership functions of the uncertain input parameters of the aeroelastic system are defined, the fuzzy 

membership function of the system outputs can be calculated, for instance using the α-cuts procedure. In this case, 

the fuzzy analysis involves the application of interval analysis at a number of α-levels as illustrated in Figure 6. If 

each component of the response vector is represented by  iu ξ , the interval analysis at each α-cut is a numerical 

procedure equivalent to solving the following equation 

      max  and min  with 1,2,...,i i a i aiu u ξ u u ξ i n    (15) 

subject to: 
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 .aaa
ξ ξ ξ   

Methods applicable for interval analysis, such as classical interval arithmetic [31], affine analysis [32,33] or vertex 

theorems [34] can be used. The Neumann expansion [35], the transformation method [30,36,37] and more recently, 

response surface based methods [34,38,39] have also been proposed for fuzzy uncertainty propagation. Among the 

existing methods, optimization methods are found to be the most accurate one in fuzzy propagation analysis [26,40]. 

At each α-level two optimization studies are carried out to find the bounds of output in Eq. (15). The Kriging 

predictor can be used to speed up the optimization procedure; in particular, once the Kriging model is constructed, 

the optimization studies needed at each α-level can be carried out rapidly using the surrogate model of the 

aeroelastic system.  

 
 

Figure 6   6-Level strategy, with 4 levels, for a function of two triangular fuzzy parameters 
(after [27]). 

III. Uncertainty Quantification  

 

Uncertainty quantification (UQ) of the effect of changes to the baseline system on the flutter speed were assessed 

for the SVD, Polynomial Chaos and Fuzzy Logic approaches. In all cases comparison is made with Monte-Carlo 

simulations which can be considered to be “truth”. 

 
A. UQ Using SVD Approach 
 

Figures 7 and 8 shows the results obtained using the SVD based surrogate approach. 1000 sampling points were 

considered to perform the uncertainty propagation. The validation of the uncertainty quantification was done 

using Monte Carlo Simulation (MCS). Validation of the resulting surrogate models shows a MAPE of less than 

0.55%, with the exception of the results obtained for M=1.1. As stated before, this corresponds to the point with 

poor convergence for the PKNL method. For the sake of clarity and completeness, Table 4 shows all the evaluated 

MAPEs for all Mach numbers and quantiles. The accuracy is similar for both the considered training set of points; 

there is a slight improvement in the accuracy in terms of the probability density function if 200 training points 

were selected, as shown in Figure 9.  

  In addition, the SVD method requires much less computation than MCS. For the analyzed problem, using a 

desktop PC, the MCS takes about five days to propagate the uncertainty, whereas the SVD approach requires 

about 8 hours both to train all the surrogate models and propagate the uncertainty. Therefore, a reduction of 

approximately 95% in computation time was found. 
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Figure 7: UQ quantile bounds using the SVD based technique.  

 

 
Figure 8: Outer uncertainty bounds and PDF/CDF for flutter dynamic pressure  

using the SVD based technique.  
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a) M=0.7 b) M=0.75 

 

Figure 9: Probability Density Function (PDF) and Cummulative Density Function (CDF) for the flutter pressure dynamic 
at different Mach numbers (M) obtained using the SVD based method and MCS. 

 

B Probabilistic Results using Monte-Carlo Analysis 

The probabilistic analysis of the Semi-Span Super-Sonic Transport vehicle included the execution of a dynamic 

aeroelastic analysis. The flutter mechanisms of the aeroelastic model were identified for a range of Mach numbers 

and the corresponding flutter dynamic pressures were calculated. The computationally intensive simulation process 

was performed efficiently and rapidly on a properly configured computer cluster, leveraging hardware and software 

resources. Using the parallelization flexibility of the computer cluster, the output responses of the Monte-Carlo 

analysis, which included 5000 runs, were systematically retrieved during the probabilistic analysis for the selected 

input variables, namely the fuselage and engine nacelles masses.  

 The Probability Density Functions for the flutter dynamic pressure of the Semi-Span Super-Sonic Transport 

vehicle for a range of Mach numbers, obtained from the Monte-Carlo analysis which included 5000 runs, are 

depicted in Figure 10. In the same diagram, the maximum and minimum probabilistic values of the examined 

metrics are highlighted (dashed-dotted curves), while the flutter dynamic pressures obtained for the baseline case are 

also plotted (black dots). Observing Figure 10, it becomes apparent that the probability density function of the 

metrics is following a relatively narrow normal distribution for subsonic speeds, while for supersonic speeds the 

distributions of the flutter dynamic pressure are appearing to have higher variation, affecting significantly the 

predictability for the aeroelastic stability of the vehicle. Additionally, the mean values of the flutter dynamic 

pressure obtained from the probabilistic analysis (dashed curve) are coinciding with the curve that connects the 

corresponding deterministic values (solid curve). 
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Figure 10. Probability Density Function for the flutter dynamic pressure of the Semi-Span Super-Sonic Transport 

vehicle for a range of Mach numbers (Monte-Carlo analysis (5000 runs)). 
 

C Probabilistic Results using PCE Analysis 

The Polynomial Chaos Expansion method, described above, was used in order to predict the variability of the 

response functions and the minimum sample size for achieving a satisfying accuracy was identified through a 

parametric study. In the current study, the mathematical formulation of the PCE method was written and 

implemented in MATLAB. The uncertain variables were varied following the normal distribution and the 

Polynomial Chaos Expansion models were created using Hermite polynomials. Different oversampling ratios 

(sample size/minimum sample size) were investigated, utilizing the Latin Hypercube sampling and the Hammersley 

sequence, in an effort to monitor convergence and keep the computational cost as low as possible. Indicatively, the 

root mean square error for the approximation of the flutter dynamic pressure for Mach=0.95 is included in Table 12-

5 using 2nd and 3rd order PCE models and various oversampling ratios. It is worth noting that with the 3rd order 

approximation model, an excellent correlation was achieved for oversampling ratio of 1.2 (Figure 11). 

 
Table 5. Root Mean Square Error for the flutter dynamic pressure (Mach=0.95) using 2nd and 3rd order Polynomial 

Chaos Expansion models and different oversampling ratios. 

RMSE 
Oversampling Ratio 

1 1.2 1.4 1.6 1.8 2 

2nd Order PCE (Hermite) 0.5521 0.1507 0.0875 0.0815 0.0951 0.0795 

3rd Order PCE (Hermite) 0.3880 0.0521 0.0378 0.0388 0.0319 0.0281 
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Figure 11. Root Mean Square Error for the flutter dynamic pressure (Mach=0.95) using a 3rd order Polynomial Chaos 

Expansion model and different oversampling ratios. 

 

Accordingly, the approximated Probability Density Functions of the flutter dynamic pressure for Mach=0.95 derived 

from 2nd and 3rd order PCE models, created using Hermite polynomials, are depicted in Figure 12(a) and (b) (dashed 

curve), along with the corresponding results obtained from the Monte-Carlo analysis (solid curve). It becomes 

apparent that there is a discrepancy between the actual and predicted results for the 2nd order polynomial 

approximation (Figure 12(a)), while an excellent agreement is observed for the 3rd order model (Figure 12(b)). In 

Figure 12(c), similar results, obtained from 2nd, 3rd and 4th order PCE models created using Hermite polynomials and 

Hammersley samples of size 136, 816 and 3876, respectively, are presented. It is worth noting that as the order of 

the PCE models is increasing, the polynomial approximations are becoming more accurate. 

 
Figure 12. Probability Density Function of the flutter dynamic pressure for Mach number=0.95 obtained using 

Polynomial Chaos Expansion models of (a) 2nd order and oversampling ratio of 2, (b) 3rd order and oversampling ratio 
of 1.2 and (c) 2nd, 3rd and 4th order and oversampling ratio of 1. 
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D   Results Using Fuzzy Analysis 

The Kriging predictor coupled with the fuzzy analysis, described in this chapter, were used for uncertainty 

propagation in the flutter analysis of the Semi-Span Super-Sonic Transport vehicle. The functions of the Kriging 

predictor were written in MATLAB. The variation of the uncertain input parameters is assumed as in the previous 

test case and their triangular membership function are found according to Eq. (14). The Kriging predictor model is 

trained with 816 design points (LHS sample), similar to the previous examples, and used for optimisation studies at 

21 different α values of the fuzzy membership functions of the input parameters. 

 Figure 13(a) shows the ranges of variation for the flutter dynamic pressure of the Semi-Span Super-Sonic Transport 

vehicle versus different Mach numbers, obtained from the fuzzy analysis. The color map in this figure indicates the 

flutter dynamic pressure for each α value. As it can be seen in the figure the bounds of the flutter dynamic pressures 

are slightly higher than those obtained from the probabilistic methods (Figure 10). This is due to the fact that the 

bounds at zero values indicate the maximum possible variations of the flutter dynamic pressure. A similar trend for 

the variation of the flutter dynamic pressures versus Mach numbers can be observed where the instability bounds in 

subsonic region are relatively narrower than the corresponding variations for supersonic speeds. Equally, Figure 

13(b) shows the fuzzy membership function of the flutter dynamic pressure at Mach=0.95. The maximum variation 

at zero α value is slightly higher than the corresponding variation obtained from the probabilistic methods (Figure 

13(b)). However, as already explained, this is due to the fact that zero α values show maximum possible variations 

of the dynamic pressure, meaning that there is zero degree of belief that these variations might happen. 

 
Figure 13. (a) Fuzzy plot of the flutter dynamic pressure in function of Mach number and (b) Fuzzy membership 

function of flutter dynamic pressure at Mach=0.95. 

 

 

IV. Conclusions 

 
A Singular Value Decomposition (SVD) based reduced order model technique, Polynomial Chaos Expansion and 

Fuzzy Logic methods have been applied for the efficient prediction and propagation of uncertainty of flutter 

dynamic pressure for the S4T supersonic aircraft wind tunnel model. A very high accuracy has been achieved for 

the prediction of uncertainty bounds compared to Monte Carlo simulations with a significant reduction in 

computational requirement. Such techniques provide much promise for the investigation of the effects of 

uncertainty on aeroelastic systems, including determination of the structural parameters that have the most 

significant effect, leading to the goal of robust design. 
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