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ABSTRACT: Excited states formed by electron promotion to an antibonding ¢* orbital
are now recognized as key to understanding the photofragmentation dynamics of a broad
range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their
aromatic analogues. Such excited states may be populated by direct photoexcitation, or
indirectly by nonadiabatic transfer of population from some other optically excited state
(e.g, a z* state). This Perspective explores the extent to which the fast-growing literature
pertaining to such (n/7)c*-state mediated bond fissions can inform and enhance our
mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.

II but a few very small molecules absorb near-ultraviolet
(UV) photons. Absorption results in formation of elec-
tronically excited molecules, which can display a diverse range
of photophysical behaviors. Some molecules are remarkably
photostable, and return to their ground state by fluorescing.
Dye molecules (fluorophores) such as those used in dye lasers,
in single molecule spectroscopy, and in super-resolution
imaging constitute obvious examples.' > Other molecules like
the DNA bases® or commercial sunscreen ingredients like
avobenzene, oxybenzone, or many cinnamate derivatives’ have
extremely short-lived excited states, show no fluorescence, and
yet are also deemed photostable. In these cases, the excited
state molecules find efficient nonradiative decay paths back to
the ground state. Such nonradiative decay depends on nuclear
distortions that bring the potential energy surfaces (PESs) for
the excited and ground electronic states of the molecule
into near degeneracy, ie., so-called regions of conical inter-
section (CI) between the PESs." "> Examples of nuclear
motions that enable excited state population to funnel through
such CIs include intramolecular proton transfers (e.g., keto- <
enol-isomerism), cis- <> trans-isomerism, and, in the case of
cyclic molecules, out-of-plane ring distortions. Photostability
in these cases requires that (i) the excited state PES has an
appropriate topography, specifically that there is no significant
energy barrier between the geometry at which the photoexcited
molecule is prepared and that of the CI, and (ii) the nuclear
distortions driving the internal conversion (IC) process are
eventually “corrected” after crossing to the ground state PES,
thereby ensuring that the molecule suffers no net change as a
result of the ‘excitation—recovery’ cycle.”
Photodamage—wherein the starting molecule is effectively
transformed or destroyed—is another limiting fate of UV
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photon absorption. Photoinduced bond fission (i, photo-
dissociation) is a common example of such a process, and is the
theme of this Perspective. Many recent studies have recognized
the key roles of (n/7)c* states in enabling excited state bond
fissions."” These are states formed by promoting an electron
from a lone pair (n) or bonding (7) molecular orbital to an
antibonding ¢* orbital, which, from here on, will often simply
be generically labeled as 7mo*. One further aspect of book
keeping: throughout, labels like 'mo* will be reserved for
diabatic states, and Sy, S;, S,, etc. are used when referring to the
adiabatic singlet states.

The lead players (molecules) in this Perspective—dimethyl-
sulfide (MeSMe), thioanisole (PhSMe), thiophene, and various
thiophene derivatives—are shown in Figure 1. The Perspective
starts by summarizing aspects of the near UV photochemistry of
MeSMe and PhSMe in the gas phase. Both molecules contain a
C—S—C linkage and undergo 'mo*-state-mediated S—C bond
fission. Thioanisole (and thiophenols) have been featured in
recent studies aimed at determining the extent to which
dynamical insights from gas phase studies can inform our
knowledge and understanding of the early time dynamics induced
by UV photoexcitation of the corresponding molecules in
solution. The parallels revealed by such comparative studies, in
turn, encourage the use of solution-phase samples and ultrafast
pump—probe transient absorption (TA) methods to demonstrate
!776*state-mediated S—C bond extension and fission in hetero-
cycles like 2(SH)-thiophenone (2-thiophenone from hereon)—a
simple five-membered heterocyclic a-carbonyl compound that
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Figure 1. Equilibrium structures of dimethylsulfide, thioanisole,
thiophene, 2-thiophenone, and 2-bromothiophene, highlighting the
C—S—C motif common to all five species, with S, C, O and Br atoms
represented in yellow, black, red, and purple, respectively.

also contains a C—S—C linkage. We conclude by returning to the
gas phase and surveying recent progress in exploring dynamical
aspects of the photoinduced ring-opening of other thiophene
derivatives and, then, of other cyclic molecules.

Gas Phase Photochemistry of MeSMe and PhSMe. Figure 2
shows cuts through the PESs for the ground and first few
excited singlet states of MeSMe, PhSMe, and thiophene, along
one S—C bond. The PECs for extending an S—Me bond
(Rs_me) in dimethylsulfide shown by red lines in Figure 2a
apply for the ground state equilibrium geometry (£CSC
~ 99°). The ground state of MeSMe has 'A” symmetry (in C,)
and, at this bent geometry, its PEC correlates with ground
(X)-state Me and MeS radical products. The first excited state,
a dissociative state of 'A” symmetry formed by excitation
from the highest occupied molecular orbital (HOMO), the
S(3p,(a”)) orbital, to a ¢*(a’) orbital localized along one
S—Me bond, correlates to this same limit. This is one of two
near-degenerate states of 'A” symmetry reached by vertical
excitation from the ground state minimum energy geometry
(the other state has substantial Rydberg character). The dia-
batic PECs for these two 'A” states exhibit a conical inter-
section at small Rg ;. (labeled CI-1 in Figure 2a), and the
interaction of these two 'A” states is revealed by the diffuse
resonance structure apparent in the parent absorption
spectrum.'®'® Figure 2a shows one higher energy PEC as a
red line. This is for a dissociative 'wo* state of ‘A’ symmetry
that, at bent geometries, correlates to ground-state Me(X) plus
electronically excited (A state) MeS products. The starting
orbital in this case is an in-plane ~sp*(a’) orbital on the S atom.

Note, these PECs are just what is implied by the acronym:
one-dimensional cuts through multidimensional PESs, which
may—and in this case do—have very different topographies
in other coordinates. This is illustrated by the black lines in
Figure 2a, which show the corresponding potentials when
£CSC = 180°. In this higher symmetry (linear) limit, the
ground state of MeSMe has the term symbol ', and its PEC
correlates diabatically with Me(X) + MeS(A) products. The
S atom in the MeS radical supports five nonbonding electrons,
distributed between two p (r) orbitals and an on-axis sp-hybrid
(0) orbital. Viewed in this way, the X and A states of the MeS
radical have respective configurations 7°6* and 7'6' and, as
Figure 2a shows, the collinear approach of ground state Me and
MeS radicals results in a repulsive interaction. This is the long-
range part of a 'II excited state of (linear) MeSMe formed by
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Figure 2. Calculated PECs along the S—C bond highlighted in the
accompanying structure for the ground and first few singlet excited
states of (a) MeSMe, at its equilibrium bent geometry (red lines) and
at £CSC = 180° (black lines), (b) PhSMe, and (c) thiophene—both
at planar geometries. Solid and dashed lines are used to distinguish
states of A" and A” symmetry, respectively, and conical intersections
CI-1 and CI-2 are indicated in each case. Further details are provided
in the Supporting Information.

c* < n7(HOMO) promotion, which splits into the dissociative
'A” and 'A’ states on bending the C—S—C frame. As Figure 2a
also shows, the former potential is (relatively) unaffected by
such bending, whereas the latter forms a conical intersection
(CI-2 in Figure 2a) with the ground state PES. Interested
readers are referred to ref 13 for more examples of the impor-
tance of such wo* states in the excited state photochemistry of
numerous molecular prototypes.

S—Me bond fission following near-UV photoexcitation of jet-
cooled MeSMe has been investigated by velocity map imaging
(VMI) methods.">'® Figure 3a,b shows images of the Me and
MeS fragments formed by photoexcitation of jet-cooled
MeSMe molecules at 227.5 nm and detected using “universal”
(118 nm) photoionization. Both images are annular, confirming
that the fragments are formed translationally excited. The radial
distribution in each image allows determination of the
respective fragment recoil velocities, confirms that the two
sets of products are momentum matched, and allows calcula-
tion of the total kinetic energy of the Me + SMe products.
Energy conservation considerations confirm that both frag-
ments are formed in their electronic ground states. The
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Figure 3. Images of the (a) Me (all v) and (b) MeS (all v) fragments
formed by photolysis of jet-cooled MeSMe at 227.5 nm and ionised by
118 nm single photon ionization, and (c) Me (v = 0) fragments
formed by photolysis of jet-cooled PhSMe at 289.8 nm and detected
by 2 + 1 REMPI at 333.6 nm. The inner annulus in image b is the
(unwanted) 118 nm-laser-only signal. The electric vector of the photo-
lysis laser radiation in all cases was vertical, in the plane of the detector,
as shown by the double headed arrow in image b.

(comparative) narrowness of the annuli shows that both frag-
ments are formed in a limited spread of internal (vibrational,
rotational) energy states. Comparison with previously reported
images obtained using resonance-enhanced multiphoton
ionization (REMPI) methods'>'® confirms that most of the
Me fragments are formed in their zero-point (v = 0) vibrational
level. The image is also anisotropic, revealing an angular
distribution consistent with prompt fission of one S—Me bond
following 6*(a’) < 3p,(a”) excitation, the transition dipole
moment for which lies perpendicular to the molecular plane.
These findings are fully consistent with dissociation on the
l76%(*A") PES.

Now consider S—Me bond fission following near UV
excitation of thioanisole, the equilibrium geometry of which
has all the heavy atoms in a plane, with ZCSC ~ 104°. In this

3442

high symmetry limit, the ground state PEC correlates
diabatically with a Me radical and electronically excited PhS(A)
products (Figure 2b). In contrast to MeS, the 3p, and 3p,
orbitals of the S atom in the PhS radical are not degenerate,
as the 3p, orbital conjugates with the 7-system of the ring. The
parent — product correlations in this case can be derived by
focusing on just three electrons in these S 3p.(a”) and Spy(a’)
orbitals of the radical. The X and A states of PhS can be
represented by the respective configurations (a’)*(a”)" and
(a’)!(a")* The in-plane approach of ground-state PhS and Me
radicals results in a repulsive interaction which, again, can be
attributed to the long-range part of the diabatic 'z6* PEC. The
ground and 'me* PECs again exhibit a conical intersection
(CI-2 in Figure 2b) at extended Rg_p.. Figure 2b also shows
that the lowest singlet state of PhSMe reached by photo-
excitation is actually the first 'zz* state, the PEC for which
shows a conical intersection (CI-1) with the 'zo* state at small
Rs_pe- Both CIs become regions of avoided crossing as the
molecule distorts from planar.

Several VMI studies of the Me(v = 0) fragments resulting
from near UV photoexcitation of thioanisole and substituted
thioanisoles have been reportecl,17_20 and full-dimensional
PESs and state-couplings for the three states of PhSMe featured
in Figure 2b are also available.”! Focusing specifically on bare
PhSMe, molecules in the 'zz*(v = 0) level decay so slowly
(nsec time scale) that the parent absorption spectrum shows
resolved rovibronic structure.”> Nonetheless, molecules in this
level do predissociate. Me radicals are formed and, as Figure 3¢
shows, these can be imaged. The Me(v = 0) fragments are
formed translationally excited with, in this case, a near-isotropic
recoil velocity distribution (consistent with the long excited
state lifetime). Again, the relative narrowness of the annular
ring indicates that the partner PhS fragments are formed in a
fairly narrow spread of internal energy states; more detailed
analysis reveals that >90% of them are formed in the excited
(A) electronic state.'”*°

Viewed from the perspective of
PhSMe molecules in the
zr*(v = 0) level, CI-1 presents an
energy barrier.

1

These observations are all consistent with the dissociation
dynamics implied by the PECs shown in Figure 2b. Population
excited to the 'mz* state first has to transfer to the 'mo*
continuum by nonradiative coupling in the region of CI-1.
Viewed from the perspective of PhSMe molecules in the
7% (v = 0) level, CI-1 presents an energy barrier. The magni-
tude of this barrier is reduced if the molecule distorts from
planarity, but the barrier still represents an impediment to
dissociation and accounts for the observed (long) excited state
lifetime. The dissociating molecules thus access the 'zo* PES
with nonplanar geometries, and move toward the local mini-
mum associated with CI-2, where their ultimate fate is
determined. Any molecules that approach CI-2 with (near)
planar geometries are optimally poised for nonadiabatic
coupling to the ground state PES and eventual dissociation to
Me + PhS(X) products. However, the VMI data implies that
most dissociating molecules sample the region of CI-2 without
recovering planarity, remain on the excited state PES, and
dissociate to Me + PhS(A) products.”’20

DOI: 10.1021/acs jpclett.7b01219
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The simple few-electron picture used to rationalize CI-2 and
the electronic branching in the radicals formed upon S—Me
bond fission in PhSMe can be extended to show how analogous
photoinduced S—C bond extension in S-containing hetero-
cycles can promote nonadiabatic population transfer (i.e., inter-
nal conversion) to the S; PES and, potentially, result in ring-
opening. To this end, Figure 4a shows the occupancy of key
orbitals in the ground and Lz6* excited states of PhSMe, and in

e e

A(A) +Me
hv:
i
S, (A) X (A") + Me

Figure 4. Diagram highlighting the evolving occupancy of key orbitals
following near UV photoexcitation leading to (a) S—Me bond fission
in PhSMe, (b) S—C bond extension in thiophene, and (c) O—C(O)
bond extension in a-pyrone. The key orbitals are the S(3p,) orbital in
iamges a and b and the 2p, orbital of the O atom in the ring in image c,
all shown in blue, and the 6 (pink) and 6* (green) orbitals localized
around the extending bond. Electron density in the 7% orbital of
a-pyrone is indicated using a white dot in the O(2p,) orbital. S, O, and
C atoms are depicted in yellow, red, and gray, respectively. For clarity,
only atoms associated with the breaking bond are colored.
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the Me + PhS(X/A) products. The key occupied orbitals in
PhSMe(S,) are taken as the nonbonding S 3p,(a”) orbital and
the 65_y.(a’) orbital localized on the bond that is destined to
break. In this representation, the ground state parent mole-
cule has configuration (a’)*(a”)? the dissociative 'zo* state is
described as (a')*(a”)'(6s_p.™, @)Y, the X and A states of the
PhS radical have respective configurations (a’)*(a”)! and
(a’)'(a")? and the parent — product correlations for planar
geometries are as shown in Figure 2b.

Figure 2c shows analogous PECs for (planar) thiophene,
with the key ¢ and ¢* (a’) orbitals centered on one S—C bond.
As Figure 4b shows, photoinduced rupture of this bond
following population of the 'mo* state would, in a diabatic
picture, result in a biradical with a” symmetry, and we can
anticipate a conical intersection between this and the S, PES
upon extending one S—C bond. Again, this is labeled CI-2,
since the long wavelength UV absorption of thiophene involves
7* «— 7 excitation and the resulting 'zz* state population can
access the '76* state via a CI between the 'zz* and '7o* PESs
(CI-1) at shorter Rg_ bond lengths, as shown in Figure 2c.
Support for this predicted ring-opening following UV photo-
excitation of thiophene and nonadiabatic coupling to the
ground state PES at CI-2 is provided by more rigorous
electronic structure calculations™ > and (indirectly) by the
results of photofragment translational spectroscopy (PTS)
experiments employing universal (synchrotron) vacaum UV
(Vuv) phot01omzat10n detection following 193 nm hoto—
excitation,”® and by both time-resolved photoelectron”’ and
resonance Raman”® spectroscopy studies.

Recent ultrafast UV pump,
broadband TA probe studies in
solution offer some of the most

direct evidence for the formation
of ring-opened products follow-
ing UV excitation of such
heterocycles.

Photochemistry of PhSH and PhSMe in Solution. Recent
ultrafast UV pump, broadband TA probe studies in solution
offer some of the most direct evidence for the formation of
ring-opened products following UV excitation of such hetero-
cycles. Before presenting data from such studies, however, it is
necessary to consider the extent to which photophysical
insights derived from gas phase studies can usefully inform
our understanding of the corresponding system in solution, and
vice versa, since the transferability between these very different
environments is not immediately obvious. The photodissocia-
tion of an isolated gas-phase molecule can be viewed as a closed
problem: energy and momentum are conserved, and any bond
fission is irreversible. The same is not true in the solution-
phase. The proximal solvent molecules may modify the PESs
relative to those of the isolated solute molecule. Interaction with
solvent molecules may dissipate some of the photoexcitation
energy prior to bond fission, and will dissipate any excess energy
partitioned into the dissociation products. Products that have no
analogue in the corresponding gas-phase study may also arise by,
for example, geminate recombination.

Nonetheless, there is growing literature showing that gas
phase studies can provide a useful guide to the early time
photofragmentation dynamics of the corresponding solute

DOI: 10.1021/acs jpclett.7b01219
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molecule in a weakly interacting solvent. Thiophenols have
proven popular test-systems. For example, the H atoms formed
in the near UV photolysis of gas-phase 4-methylthiophenol
(4-MePhSH) molecules display an anisotropic, bimodal
velocity distribution. Theory returns PECs along Rg_y similar
to those shown for PhSMe in Figure 2b, though the ener%y
barrier under CI-1 (from the 'zz*(v = 0) level) is smaller.””
Analyses of data recorded at different excitation wavelengths
indicate photoexcitation to the 'zz* and 'mo* states, prompt
S—H bond fission on the '76* PES (on a time scale that is
short compared to the period of molecular rotation) and
formation of both X and A state 4-MePhS radical products.
Ultrafast pump—probe TA measurements following 267 nm
excitation of 4-MePhSH in cyclohexane solution show an
absorption centered at ~480 nm appearing within the ~100 fs
instrument response time. This transient absorption is
attributable to 4-MePhS(X) radicals,’”’" and signifies prompt
photoinduced S—H bond rupture (as in the gas phase); it
narrows and declines in amplitude with increasing pump—
probe time delays, t. The narrowing reflects the dissipation of
vibrational energy from the nascent radical products to the
solvent bath, while the decreasing amplitude is a signature of
geminate recombination. Careful scrutiny of the TA spectra
reveals a feature at very early t attributable to 4-MePhS(A)
products—an outcome that, again, broadly mimics the gas
phase photophysics. These electronically excited radicals are all
quenched to their ground state by t ~ 300 fs.”* Another
absorption feature, at ~380 nm, grows over a longer time scale,
and shows the same kinetics as the (partial) decay of the
4-MePhS(X) radical signal. This ~380 nm band is attribut-
able to a tautomer (cyclohexa-2,4- (or 2,5-) diene-1-thione) of
4-MePhSH formed by geminate recombination of the primary
photoproducts.***!

Time-resolved infrared (TRIR) absorption studies following
267 nm excitation of 4-MePhSH also reveal prompt formation
of 4-MePhS(X) radical products, with an out-of-equilibrium
vibrational state population distribution.”® Again, the evolving
spectral profile reflects the relaxation of this product vibrational
excitation through interaction with the solvent. The TRIR
measurements also provide a direct probe of the parent ground
state population. UV photoexcitation introduces “bleach”
features in the IR TA spectrum, that partially recover with
increasing t. This recovery confirms that geminate recombina-
tion leads not just to the above tautomer but also to some
regeneration of the 4-MePhSH precursor. Nonetheless, the
finding that the parent bleach does not fully recover indicates
some “photodamage”, and the late-time observation of
4-MePhS(X) radical absorption confirms that some primary
photoproducts escape the primary solvent cage and remain
separated from the geminate partner.’

TRIR spectra taken following UV photolysis of 4-MePhSMe
(in acetonitrile-d;) show similarities, but also one notable differ-
ence.”> As with 4-MePhSH, bleach features due to photo-
induced depopulation of the parent S; state are evident at the
earliest #, and a (weak) absorption attributable to 4-MePhS(X)
radicals (formed by S—Me bond fission in this case) grows with
increasing t. However, these TRIR spectra also show another,
intense, absorption attributable to 4-MePhSMe molecules in
their 'zz* state. This excited state absorption shifts to higher
frequencies at early t (reflecting the vibrational relaxation
of the 4-MePhSMe('z7*) molecules) and decays to zero by
t ~ 1.5 ns. Kinetic analysis returns solvent-dependent rate
coeflicients, but the principal findings are that the dissociation
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rate constant for 4-MePhSMe('zz*) molecules scales with the
internal (vibrational) excitation and is always much smaller
than that for 4-MePhSH('zz*) molecules.”®> Both findings
mirror trends in excited state lifetime found in gas-phase studies
of thiophenols and thioanisoles, and can be understood in light
of the potential barrier associated with CI-1 (Figure 2b).

Dynamics of Photoinduced Ring-Opening in Solution. As already
noted, orbital correlation arguments (Figure 4b) and ab initio
theory (Figure 2c, and refs 23—25) suggest that 'mo*-state-
mediated asymmetric ring-expansion constitutes a route by
which photoexcited thiophene molecules can couple to the S,
PES and ring-open. Stenrup” (and others’®) have also
identified a rival IC pathway initiated by out-of-plane defor-
mation at the S atom, and qualitatively similar ring-puckered
'nn*/S, ClIs have also been reported for various substituted
thiophenes.” Experimental studies capable of revealing the
dynamics of photoinduced ring-opening processes are still in
their infancy, however. The challenges are substantial. Near-UV
photoexcitation of thiophene typically populates a 'zz* state.
Such population can access the 'mo* PES by nonadiabatic
coupling in the region of CI-1, evolve toward CI-2 by extending
Rs_c further, transfer to the Sy PES and complete the ring-
opening. The available experimental data®’ suggests that the
initial coupling out of the 'mz* state (e.g, via CI-1) is an
ultrafast process (<100 fs). Given the topography of the 'zo*
PES, the subsequent evolution toward CI-2 is also likely to
occur on a time scale characteristic of a molecular vibration.
The initial ring-opened species is an isomer of the starting
heterocycle, so cannot be distinguished simply by mass spec-
trometric detection methods. The large geometry change upon
ring-opening is likely to ensure that the products are formed
with high levels of internal (vibrational) excitation. Indeed, the
internal energy within the nascent ring-opened isomer(s) may
well be sufficient to allow further isomerization, and even frag-
mentation. Without subsequent collisional relaxation, measure-
ment and assignment of spectra of the ring-opened species are
likely to be challenging.

Identifying a measurable that allows visualization of the early
time dynamics is a challenge for experimental studies of photo-
induced ring-opening. Hence the recent interest in substituted
heterocycles carrying a “reporter” group whose spectral signa-
ture changes as the ring opens. Molecules like 2-thiophenone
(Figure 1), for example, are well suited to study by ultrafast UV
pump, broadband TRIR probe methods. As Figure Sa,f shows,
the TRIR spectrum obtained following 267 nm photoexcitation
of 2-thiophenone in acetonitrile displays an immediate parent
bleach at ~1685 cm™ and a broad TA centered at ~2150 cm™;
the “reporter”, the carbonyl vibration in 2-thiophenone, evolves
into a ketene asymmetric stretch mode in the ring-opened
product. The breadth of the latter feature, and its subsequent
narrowing and shift to higher wavenumber, confirms prior
expectations that the ring-opened product will be formed vibra-
tionally excited and then relax (on a picosecond time scale) by
coupling with the solvent bath. In this particular case, the
decline in the amplitude of the parent bleach signal with
increasing t implies that ~60% of the photoexcited molecules
ultimately ring-close again to reform 2-thiophenone.*®

Results from similar UV-pump, TRIR absorption studies of
four other carbonyl-bearing heterocycles—2(SH)-furanone
(henceforth 2-furanone), N-methyl-2-pyridone, a-pyrone, and
coumarin—are shown in Figure S, along with their associated
structures. The solvent in each case was acetonitrile. Relative to
2-thiophenone, the UV absorption spectrum of 2-furanone is
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Figure 5. TRIR data for the 1500—1800 and 1950—2250 cm™" regions
following excitation of 2-thiophenone at 267 nm (panels a and f),
2-furanone at 225 nm (b and g), N-methyl-2-pyridone at 330 nm
(c and h), a-pyrone at 310 nm (d and i) and coumarin at 330 nm (e),
all in solution in acetonitrile, along with the corresponding equilibrium
structures. These data are adapted from refs 36, 37, and 40, and are
also displayed with the time delays specified in the Supporting
Information.

shifted to shorter wavelengths, and the data shown here were
recorded following 225 nm excitation. Photoinduced depletion
of the ground state (i.e., ring closed) parent is revealed by the
bleach signals centered at ~174S and 1775 cm™' (Figure Sb)
and the formation and subsequent vibrational relaxation of the
ring-opened ketene is shown by the broad absorption that
narrows and progressively shifts to an eventual center wave-
number of ~2145 cm™" (Figure 5g). Kinetic analysis of the
time evolving bleach signals indicates that only ~10% of the
photoexcited species return to the S, state of 2-furanone.*
Again, these solution phase studies are consistent with
!7c*-state mediated asymmetric ring expansion leading to the
formation of ring-opened ketene products.

The electronic absorption spectrum of N-methyl-2-pyridone
stretches to longer UV wavelengths than that of 2-thiophenone,
and the displayed TRIR data were taken following excitation at
330 nm. Bleach features are again evident (Figure Sc), as is a
developing absorption at ~2120 cm™' (Figure 5h).”” However,
the time scales are all much slower than in the cases of
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2-thiophenone or 2-furanone; kinetic analyses return a parent
excited state lifetime of ~100 ps. Most (>90%) of the excited-
state population returns to the parent S, state (i.e., N-methyl-2-
pyridone is relatively photostable, like many N-containing
heterocycles’®*”). However, Figure 5c and Sh also shows that a
small (<10%) fraction of the photoexcited molecules react to
form two ketenes, which are in equilibrium. The identity of
these ketenes remains an open question. Initial analysis iden-
tified a prefulvenic CI between the S; and Sy PESs with the C=
O group out of the plane defined by the other five heavy atoms,
encouraging suggestions that the ketene isomers arose via ring
contraction,”” but our more recent calculations identify two
energetically accessible CIs between the S; and S, PESs
characterized by extended N—C(O) bond lengths.

The remaining panels in Figure 5 show TRIR spectra
measured following excitation of a-pyrone and coumarin (1,2-
benzopyrone) at, respectively, 310 and 330 nm.” a-pyrone is
another 6-membered heterocycle, but with an O atom adjacent
to the carbonyl group; fusing a-pyrone with a benzene ring
constitutes coumarin. Photoexcitation of a-pyrone vyields
the expected bleach signal in the carbonyl stretch region
(Figure 5d), and an absorption that narrows and shifts to higher
wavenumber (~2120 cm™) with increasing ¢ (Figure 5i). Again,
this is the signature of vibrationally excited ketene products that
“cool” by coupling with the surrounding solvent. Tracking the
early time bleach recovery in the case of a-pyrone suggests an
initial quantum yield ¢ ~ 0.68 for IC and reformation of the
parent in its S, state (¢ ~ 0.60 when photoexciting at
267 nm""). The ketene feature reveals the presence of at least
two isomers, and temperature-dependent studies show that
these undergo further (thermally driven E — Z) isomerization
processes that provide a (slower) route to eventual near-total
recovery of the starting a-pyrone(S,) population.*'

Coumarin shows very different behavior. As Figure Se shows,
the parent S, molecule is reformed with essentially unit
efficiency following excitation at 330 nm."” Yet the two lowest
energy conical intersections (Cl-a and CI-b) between the S;
and S, states of @-pyrone and coumarin have remarkably similar
geometries. Both involve O—C(O) bond extension and loss of
planarity; the torsion angle between the carbonyl and ketene
moieties at Cl-a in both cases is ~35°; at CI-b it is ~90°.*%**
PECs calculated along linearly interpolated internal coordinates
linking the respective Franck—Condon regions (ie., the geo-
metries at which @-pyrone and coumarin are initially excited)
and the respective Cls show no significant energy barriers to
ring-opening. Intrinsic reaction coordinate analysis offers a
rationale for the very different ring-opening probabilities. Such
analyses, initialized at the CI-a and CI-b geometries, suggest
that only CI-b in a-pyrone promotes ring-opening.*’ However,
such analyses also remind us that knowledge of the nuclear
geometry at a CI is necessary but generally is not sufficient
information to allow prediction of the nuclear dynamics.
Ab initio molecular dynamics (AIMD) simulations are finding

rowing use for exploring nonadiabatic excited state dynam-
ics,"”*** but applying such methods to systems like a-pyrone
and coumarin is a challenge. In both cases, photoexcitation
yields excited states with reported lifetimes in the psec range,
which are likely to be subject to a range of nonadiabatic
couplings with close-lying states both within the Franck—
Condon region, and en route to and at CI-a and CL-b. #0424
AIMD simulations thus require use of suitably high level elec-
tronic structure methods, long propagation times and, even-
tually, proper inclusion of solvent effects. Our work to date,
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involving just the isolated molecules, suggests that only in the
case of CI-b in a-pyrone are the out-of-plane momenta
sufficient to enable asymptotic ring-opening.

Knowledge of the nuclear
geometry at a Cl is necessary but
generally is not sufficient
information to allow prediction of
the nuclear dynamics.

These solution phase studies provide clear evidence for the
formation of ring-opened ketene products following near UV
photoexcitation of a-pyrone. Electronic structure calculations
imply the operation of a similar asymmetric ring expansion
following near UV photoexcitation of coumarin but, in this
case, the forces acting during nonadiabatic coupling in the
region of Cl-a/b favor reformation of the ring-closed parent.
Theory also reveals low energy Cls between the S, and S, PESs
of N-methyl-2-pyridone characterized by N—C(O) bond exten-
sions such as could lead to ring-opening, but the structures of
the (minor yield) of ketene products formed following near UV
photoexcitation of this molecule remain to be established.

It is now instructive to consider the extent to which the
parent — product correlations shown for thiophene (Figure 4b)
apply to the heterocycles featured in Figure 5. Following 7* « #
excitation of 2-thiophenone or 2-furanone, efficient nonadiabatic
coupling to the near-resonant 'z* PES (via CI-1) can direct
population toward CI-2, where it transfers to the S, PES and
eventual branches to either reform the ring-closed parent or form
one or more ring-opened products.”® There must be a rival '76*
PES that facilitates extension of the other S—C (O—C) bond in
each of these molecules, but in both cases, the rival zo* PES will
lie at higher energy and correlate with less stable ring-opened
products. The other molecules featured in Figure S show several
important photophysical differences. The photoprepared states of
2-thiophenone and 2-furanone have lifetimes shorter than the
~1 ps response time in the reported experiments, whereas the
excited state lifetimes of a-pyrone and coumarin and of N-methyl-
2-pyridone are in the few picoseconds and 100 ps ranges,
respectively. Second, S—C(O) (O—C(0O)) bond fission in 2-thio-
phenone or 2-furanone yields a biradical. One or more H atom
migrations are then required en route to the experimentally
observed ketenes, reminiscent of the thermal suprafacial/
antarafacial [n + m]-sigmatropic shift reactions observed in
many conjugated hydrocarbons.***” Ketene formation following
photoinduced N—C(O) bond fission in N-methyl-2-pyridone or
O—C(O) bond fission in a-pyrone or coumarin, by contrast,
would simply require an electrocyclic rearrangement; the nuclei
are appropriately configured from the outset. These latter reactions
show parallels with the photoinduced ring-opening of various
cyclic-hydrocarbons, the outcomes of which accord with the
Woodward—Hoffmann rules.*”*® Such rules should be expected
to extrapolate to, and describe, the photoinduced ring-opening of
N-methyl-2-pyridine, a-pyrone, and coumarin also. Third, the first
excited 'zzr* states in these latter molecules all lie at much lower
energy than the corresponding 'zz* state in 2-thiophenone or
2-furanone, i.e.,, the vertical energy separations between the lowest
'77% and '7o* states in the featured six-membered heterocycles
are substantially larger. This will reduce the probability of (and at
sufficiently low excitation energies completely rule out) non-
adiabatic coupling to the 'zo* PES at the analogue of CI-1
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as a route to asymmetric ring expansion following long wavelength
¥ « 7 excitation of N-methyl-2-pyridone, a-pyrone, or
coumarin.

This can also be illustrated with the help of schematic
4-electron orbital correlation diagrams such as that shown for
a-pyrone in Figure 4c. The key orbitals in this case are the
partially conjugated 2p,(a”) orbital on the ring oxygen atom, a
relatively low-lying excited z*(a”) orbital, and the bonding
00-c(0)(a’) and antibonding 64_c(0)*(a’) orbitals localized on
the extending bond. In this description, the S, parent molecule
has the configuration (a’)*(a”)%. The 'zz* state has configu-
ration (a’)*(a”)'(a”)" at planar geometries, but an appropriate
combination of twisting and O—C(O) stretching motion
provides an energetically feasible nonradiative route back to
the S, state and possible ketene formation in the event of full
0-C(O) bond fission.** Clearly, state labels like 'zz* progres-
sively lose their meaning as the molecule distorts from pla-
narity. The 'zo* state, with configuration (a’)z(a”)lcro_c(o)*,
(a’)", lies higher in energy and, importantly, correlates with an
excited state ring-opened species, as illustrated in Figure 4c.
The ring-opening revealed in Figure Shii, following near UV
photoexcitation of N-methyl-2-pyridone and a-pyrone, can thus
most plausibly be rationalized in terms of nonradiative coupling
between the S; (predominantly 'zz*) and S, states at distorted,
twisted geometries. Such behavior is reminiscent of that shown
following 7* « 7 excitation of 1,3-cyclohexadiene, for example,
which undergoes a conrotatory ring-opening to form 1,3,5-
hexatriene (vide infra) with an inherent stereochemistry that
can be understood by means of an orbital energy and symmetry
correlation diagram linking the reactant and product.”” Such
orbital correlation concepts can be expected to account for
the out-of-plane ring-opening in a-pyrone also. The present
analysis thus does not exclude a role for “classic” 'zo*-state
mediated N—C(O) bond fission in N-methyl-2-pyridone (and
O—C(O) bond fission in a-pyrone and, plausibly, coumarin), at
shorter excitation wavelengths, to electronically excited ring-
opened products, but this has yet to be demonstrated.

For completeness, we note that many of these same ring-
opening processes had been previously recognized via IR
spectroscopy measurements following prolonged broadband
UV irradiation of, for example, 2-thiophenone, 2-furanone, and
a-pyrone in an inert matrix."”> The recent solution phase
studies (and accompanying theory) give greater insight into the
primary photochemistry, and the mechanisms and quantum
yields of ring-opening,™™*"*>*! but still cannot claim to be a
direct probe of the ring-opening dynamics. Gas phase studies,
allied with appropriate theory, offer the means of getting yet
closer to this “holy grail”.

Gas-Phase Studies of Photoinduced Ring-Opening. As noted
earlier, the 193 nm PTS results for thiophene®® are consistent
with 'zo*-state mediated asymmetric ring expansion, non-
adiabatic coupling to the Sy PES and subsequent unimolecular
decay. Recent imaging studies of the products formed by near
UV photolysis of 2-bromothiophene (shown in Figure 1) and
2-iodothiophene provide further circumstantial evidence for
photoinduced ring-opening in (substituted) thiophenes.”'
As Figure 6a shows, the image of the ground state Br atoms
(detected by 2 + 1 REMPI) formed following ~265 nm photo-
excitation of 2-bromothiophene reveals a quite sharply defined,
anisotropic velocity distribution. These products arise via
prompt C—Br bond fission. Figure 6b shows an image of the
partner thiophenyl radicals formed at a similar photolysis
wavelength, and detected by 118 nm VUV ionization.”
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Figure 6. Br atom and partner C,H,S (m/z 83) fragment images from
photolysis of jet-cooled gas phase 2-bromothiophene molecules at
~265 nm (a,b) and 245 nm (c,d). Data adapted from refs 51 and 52.

Reassuringly, this image shows the same recoil anisotropy, and
the high velocity edge of its profile is momentum matched with
that of the Br atoms. Analysis of these data reveal addi-
tional details including, for example, that the quantum yield for
forming spin—orbit excited Br atoms at these wavelengths is
small and that the slower thiophenyl fragments are under-
detected in Figure 6b as a result of (unintended but unavoid-
able) dissociative photoionization by the 118 nm probe laser
pulse.”® In the present context, however, the corresponding
data taken when exciting at ~245 nm (Figures 6¢ and 6d)
are most noteworthy. Despite the increase in photon energy,
the Br atom and partner m/z 83 radical images are both much
smaller, and 1sotrop1c 15 Compa.mon electronic structure calcula-
tions suggest that this evolving behavior reflects the onset of a rival
excited state decay pathway, involving no*-state mediated
asymmetric S—C(Br) bond extension, nonadiabatic coupling to
the Sy PES and formation of one or more excited ring-opened
isomers with sufficient internal energy to exceed the energetic
threshold for unimolecular decay and loss of a (slow) Br
atom.”’

The oxygen-containing analogue of thiophene is furan. PTS
studies of furan following excitation at 193 nm identified three
fragmentation pathways (a radical channel giving C;H; + HCO
products, and two molecular channels yielding, respectively,
C;H, + CO and H,CCO + C,H,).”* These observations, and
the respective product energy disposals, were rationalized by
invoking photoinduced ring-opening and subsequent unim-
olecular decay of the ring-opened species, but it was several
years before the ultrafast excited state decay dynamics following
excitation at 200 nm were explored by time-resolved photo-
electron spectroscopy (TRPES),”* and mo*-state mediated
asymmetric ring expansion identified as a nuclear distortion
capable of driving nonadiabatic coupling to the S, PES.”
As Figure 7a shows, the calculated PECs along this O—C
elongation coordinate leading to CI-2 in (planar) furan are very
similar to those for the analogous asymmetrlc expansion in
thiophene (Figure 2c). As in thiophene,™ theory also identifies
a rival CI in furan with a ring-puckered geometry, which could
also promote IC to the S state.”>*” Ultrafast TRPES studies of
furan suggest that the excited-state population formed by
200 nm photoexcitation returns to the S, state within ~100 fs,
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Figure 7. Calculated PECs for (a) the Sy and lowest excited singlet
states of furan along an Ro_c ring-opening coordinate and (b) the S,
and lowest excited singlet (shown in red) and triplet (in blue) states of
1,3-cyclopentadiene along the corresponding Rc_¢ ring-opening
coordinate. All ring atoms are constrained to lie in a plane, and
solid and dashed lines are used to distinguish states of A" and A”
symmetry, respectively. Further details are provided in the Supporting
Information.

and accompanying molecular dynamlcs simulations suggest
contributions from both IC pathways.*®

Other notable recent studies include a theoretical work
proposing 6* « & excitation as a driver for O—C bond fission
(i.e., ring-opening) in a spiropyran,”” and an ab initio study of
the excited state photophysics of a carbohydrate molecule (f3-p-
glucopyranose) that predicts both 'no*-state-mediated O—C
bond fission (i.e., ring-opening) and 'no*-state-mediated fission
of the pendant O—H bonds.” The saturation of the
carbohydrate molecule is attractive in the present context, as
it greatly reduces the range of possible orbital promotions. It is
tempting to suggest that similar 6* « n excitations could
trigger O—C bond extension, IC to the S, state, and the
eventual fragmentation reported followmg 193 nm photo—
excitation of the cyclic ethers oxetane®' and tetrahydrofuran.®”
An early theoretical study of photoinduced ring-opening of
oxirane also hinted at such a mechanism.®*

Pyrrole and 1,3-cyclopentadiene are isoelectronic with furan,
but these unsaturated S-membered cyclic systems show quite
distinctive excited state photophysics. The near UV photo-
chemistry of pyrrole is dominated by prompt N—H bond
fission following excitation from the () HOMO to a 6™ orbital
localized on the N—H bond.'*** TRPES studies at these
near UV wavelengths return excited state lifetimes of ~20 fs.”
Other excited states are accessed upon tuning to shorter
wavelengths; these excited states decay more slowly, by non-
adiabatic coupling to the 'zoy_y*-continuum and N—H bond
fission, and by rival nonradiative decay pathways to the S, PES
and subsequent unimolecular decay. The latter processes are
revealed via an increased yield of slow H atoms and of products
other than H + pyrrolyl fragments Theory identifies Cls
involving both ring-puckered and asymmetric ring-expanded
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geometries, but these dissociation pathways involving heavy
atom distortions struggle to compete with the ultrafast N—H
bond fission process.”” The latter can be slowed by substituting
a Me group in place of the H atom. Studies of N-methylpyrrole
reveal formation of translationally excited Me products, on a
hundreds of picoseconds time scale, when exciting at wave-
lengths in the range 240—250 nm (ie. to the '7oy_y.*-con-
tinuum )%’ Tuning to shorter wavelengths, the excited state
lifetime drops substantially, and the Me fragments display a
slow, essentially “statistical” kinetic energy distribution. Such
observations have been rationalized by invoking the onset of a
rival fast population loss process (IC to the S state driven by
ring-puckering and/or asymmetric ring-expansion) and sub-
sequent unimolecular decay.®®® Excited-state photophysics
similar to that for pyrrole has been predicted for imidazole”
where, again, IC via ClIs involving both ring-puckered and
asymmetric ring-expanded geometries have been identified as
potential competitors to N—H bond fission”" at higher excita-
tion energies.

Unlike the O atom in furan or the N atom in pyrrole, the
corresponding (sp® hybridized) C atom in 1,3-cyclopentadiene
supports no 7 electrons. As Figure 7b shows, the ring-opened
biradical in this case associates with just one singlet PES (which
correlates with the S, state of the ring closed molecule) and a
repulsive triplet potential. The 'mo* state correlates to an
electronically excited state of the biradical, and cannot mediate
nonadiabatic coupling to the Sy PES by appropriate elongation
of the C1—CS5 bond. Rather, theory (AIMD simulations) > and
experiment (TRPES)”*”” both suggest that the ultrafast non-
radiative decay following #* <« 7 excitation in 1,3-cyclo-
pentadiene involves initial (in-plane) motion along the bond-
alternation coordinate followed by out-of-plane torsional
motion about the C=C double bonds (reminiscent of the
nuclear motions following 7* « 7 excitation of ethene’) so as
to access regions of CI with the S, PES. The eventual fate of the
resulting highly vibrationally excited S, molecules in a collision-
free gas phase experiment remains an open question.

The photoinduced ring-opening of 1,3-cyclohexadiene has
been studied more extensively.””~** As with 1,3-cyclopenta-
diene, near UV absorption results in population of a “bright”
'77% excited state. A recent TRPES study’” questions the
previous consensus view that the very early time dynamics
following photoexcitation involves nonradiative coupling to an
optically dark (2A) state. Thereafter, however, there is little
doubt that the topography of the excited state PES(s)
encourages C5—C6 bond extension and torsion around the
C=C double bonds, thereby priming the molecule for
radiationless transfer though a CI with the S, state and full
ring-opening (to 1,3,5-hexatriene) or reversion to the ring-
closed starting molecule. Again, the valency of the relevant
C atoms in 1,3-cyclohexadiene is saturated, so there is no ‘zo*
excited state to promote any rival nonadiabatic coupling
pathway to the S, PES by C5—C6 bond extension.

Conclusions and Prospects. The recent literature contains
many experimental and theoretical demonstrations of near UV
photoinduced bond fission in heteroatom containing molecules
following population of a '76* excited state."’ Theory points to
the likelihood of analogous '76*-state-mediated bond fission as
a ring-opening mechanism in heterocycles,24’25’28’55'56’58 and
there is a growing body of experimental literature illustrating
near-UV photoinduced ring-opening in such mole-
cules,*»3¢37404L3152 The jnitial absorption in most systems
studied to date involves a 7* <« 7 excitation, however, and it

remains a challenge to confirm whether an observed ring-
opening is driven by nonadiabatic coupling to, first, the 'zc*-
state and then, after further asymmetric ring-expansion, to the
Sy PES, rather than by a rival 'zz*/S, coupling enabled by
suitable out-of-plane distortions.

'76y_c*-state (X = S, O)-mediated bond fission is argued
to play an important role in the ultrafast ring-opening of the
S-membered heterocycles thiophene and furan, and analogues
like 2-thiophenone, 2-furanone, and 2-bromo- and 2-iodothio-
phene, but the recently observed near UV photoinduced ring-
opening of N-methyl-2-pyridone and a-pyrone is more likely
driven by nonadiabatic coupling at Cls between the 'zz* and
So PESs at nonplanar geometries. Comparisons between
a-pyrone and coumarin serve to emphasize the importance of
both structure and dynamics in determining the nonadiabatic
coupling probability at any given CI, and to highlight the
challenges of realistic dynamical calculations involving such
systems. N-methyl-2-pyridone, a-pyrone, and coumarin must
possess 'oy_c* (X = N, O) states, but these will typically lie at
higher energies than have been investigated to date. The 'zc*
states in these latter heterocycles all correlate with an excited
state of the ring-opened species, so ring-opening may not be an
exoergic option following near UV photoexcitation. Such
energetic constraints are likely to fade in importance on tuning
to shorter (vacuum) UV excitation wavelengths, however,
where electron promotions to the appropriate bond localized
o* orbital (and from bond localized o orbitals) are both likely
to exhibit progressively larger partial absorption cross sections.

Apart from its intrinsic photophysical interest, 1,3-cyclo-
hexadiene has also been a popular test system for demon-
strating new experimental routes for probing the dynamics of
photoinduced ring-opening. The works cited at the end of the
previous section include early examples of ultrafast condensed
phase pump—probe studies,”” ultrafast transient ionization
studies,”” TRPES"”*>* and femtosecond X-ray spectroscopy
studies,®*"®> all of which either have been, or soon can be
expected to be, applied to the various types of asymmetric ring
expansion and heterocyclic ring-opening featured in this
Perspective. To this growing armory of techniques, one can
also anticipate growing interest in the use of Coulomb
explosion imaging methods. Correlations and/or covariances
revealed using such methods have already been shown to offer a
direct probe of the photoinduced torsional dynamics of
strategically substituted biphenyl derivatives on their ground-
state PES®" and are now starting to find use in probing photo-
isomerizations™ ™" and excited state bond fission processes.
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