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Abstract

A synthetic biology workflow is composed of data repositories that provide infor-

mation about genetic parts, sequence-level design tools to compose these parts into

circuits, visualization tools to depict these designs, genetic design tools to select parts

to create systems, and modeling and simulation tools to evaluate alternative design

choices. Data standards enable the ready exchange of information within such a work-

flow, allowing repositories and tools to be connected from a diversity of sources. This

paper describes one such workflow that utilizes, among others, the Synthetic Biology

Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Lan-

guage (SBML) to model these designs, and SBOL Visual to visualize these designs. We

describe how a standard-enabled workflow can be used to produce types of design in-

formation, including multiple repositories and software tools exchanging information

using a variety of data standards. Recently, the ACS Synthetic Biology journal has

recommended the use of SBOL in their publications.

Introduction

Reproducibility is a critical and growing issue in synthetic biology.1 Substantial effort is

often required to design a new biological system, with input from many researchers with

different backgrounds, including biology, mathematics, computer science, physics, chemistry,

etc. Extracting information in order to reuse or build upon the contributions made by

these researchers, however, is often extremely challenging. At present, information about

genetic circuit design is often incomplete or buried in textual descriptions. Even scientific

publications often fail to fully convey this information: designs are often available only as

visual depictions that provide abstract representations or as unannotated sequences, and

frequently some of the genes or gene products are not even captured, making it nearly

impossible to reuse these designs. Capturing DNA sequences is key as a first step, but this

information may also not be available, may require lengthy and error-prone manual lookups



based on gene identifiers, or may only be derivable by search and extraction of the partial

sequences given in forward and reverse primers. Even then, deriving exact sequences of

designs may be impossible when full information about the final design, such as its exact

assembly process, cloning strategy, or the spacer sequences between constituent genes and

their components, are not clearly specified.

Further complicating matters, experimental measurements may vary between different

labs due to the differences in sequences, chassis organisms or the lack of information about

experimental conditions. Even single nucleotide differences between sequences in the design

itself or the host chassis can significantly change the functionality of genetic circuits. Notably,

modifications in non-coding sequences can strongly affect the rates of transcription and

translation processes, resulting in unexpected behaviors.2–5 As the scale and the complexity

of designs increases, these problems bring more challenges.

As synthetic biology continues to develop as an engineering discipline, practitioners are

grappling with these problems and adopting the same sort of strategies that enable manage-

ment of complexity in every mature engineering discipline, such as standardization, abstrac-

tion, modularity, and automation. Applications are created through design-build-test cycles

and automation is key to achieve faster cycles for commercialization. There are already a

wide variety of available computational tools that can be used in different stages of design,

manufacturing, testing, and analysis. Often, tools are specialized in performing specific func-

tions, and synthetic biology engineers need to flexibly coordinate the operation of these tools

in complex design workflows. As a result, computational access to and exchange of informa-

tion without any loss is crucial. Finally, the use of standards to capture design information

also enhances reproducibility and reusability,6 effectively allowing the products of one work-

flow to be consumed by other workflows. Computational access particularly facilitates the

storage and retrieval of these designs, making them ever more accessible. Practitioners can

therefore more easily find designs that are created by other practitioners in a timely manner,

make modifications or reuse them, and electronically share their new designs and data.



Synthetic Biology Open Language (SBOL)

The Synthetic Biology Open Language (SBOL) is one of the key technologies that can support

the emerging standards-driven approach to synthetic biology engineering workflows. SBOL

is a free and open community standard for the description and exchange of biological designs,

supported by a diverse international community of researchers. This standard provides a

“common core” set of relatively abstract representations of biological structure, function, and

sequence, with a focus on abstraction and composition, and is broadly applicable across a

wide range of workflow elements. Critically, SBOL also supports machine-interpretable links

between this shared core and more specialized representations, such as numerical models,

protocol automation scripts, LIMS tracking, and measurement data, allowing SBOL to serve

as a “hub” for linking together a wide range of more specialized tools and processes without

loss of information as shown in Figure 1.

The development of SBOL was motivated by the shortcomings of prior standards, such

as FASTA7 and GenBank,8 with respect to describing the engineering of biological systems.

These prior standards focus on the recording and annotation of natural nucleic acid or protein

sequence data, which has different challenges and requirements than the engineering of novel

human-designed biological constructs. For example, the description of engineered systems

requires the representation of the abstraction and composition of (at least partially) modular

components. To serve these needs, in 2008, the SBOL community developed first an initial

draft standard called PoBol,9 which evolved into first the SBOL 1 standard,10,11 focusing on

the genetic structure of engineered DNA sequences. SBOL 1 recently evolved into the SBOL

2 standard,12,13 which represents both structure and function of genetic designs as depicted

in Figure 2.

Complementary to this data model, the SBOL visual standard provides a common vi-

sual language for communication about engineering biological constructs, much as diagram

languages for electrical engineering14,15 and architecture16,17 do in those fields. SBOL Vi-

sual (SBOLv)18,19 enables diagrams for SBOL 1 constructs, and is in the process of being



extended and integrated with Systems Biology Graphical Notation (SBGN)20 to support the

functional representations of SBOL 2 as well. SBOL visual is formally related to the SBOL

data representation by means of the Sequence Ontology (SO),21 which is used by the SBOL

data model to designate the roles of components as shown in Figure 3. Namely, each glyph

in SBOL visual is mapped to one or more ontology terms, enabling automatic computational

mapping from SBOL data models to diagrams, by selecting for each component the most

specific glyph whose term covers the component’s role or roles and organizing these glyphs

according to the sequence and order relationships specified in the data model.

Supporting Reproduction and Reuse with SBOL

In order to support effective reproduction and reuse, practitioners must not only have the

capability to represent information about engineered biological organisms, but must also

use those capabilities to encode enough information of the right types to enable others to

reproduce or build upon their results. In mature engineering fields, this typically takes

the form of formalized datasheets, such as the component datasheets used in electronics or

Materials Safety Data Sheets used in chemistry. Although biological organism engineering

aspires to this level of rigor (e.g.,22), in practice the field has not yet attained that level of

maturity.23 In other areas of biology, the challenges of reproduction and reuse are addressed

with a variety of minimum information standards ,24 which aim to at least ensure that enough

information on protocol and context is included that a practitioner can determine whether

an attempt to reproduce or reuse works as expected. For example, MIAME establishes

minimum information standards for reporting on micro-array experiments,25 and MIFlowCyt

establishes minimum information standards for reporting on flow cytometry experiments.26

By making it easier to compare the products of different efforts, such minimum information

standards have significantly improved data quality and accelerated discovery in the areas in

which they have been established.



Similarly, reproduction and reuse of genetic constructs should be able to be accelerated

by establishing a reporting standard for the minimum information about a genetic construct.

Such minimum information about a genetic construct or collection of constructs needs to

include at least the following:

• The full sequence of all of the “base” components used in a genetic construct. For

example, a library made by combining pairs of promoters and coding sequences would

need to include the full sequence of every promoter and every coding sequence.

• Information sufficient to unambiguously determine the sequence of every complete

construct. For example, the promoter/coding-sequence library would record all com-

binations made, but not necessarily the sequence of each combination, if that can be

determined from the combination and the sequences of the individual components.

• Identification of the role played by each significant designed feature. For example,

explicitly recording that each promoter is, in fact, a promoter.

• Identification of identities between construct components, such as by the composition

of sub-components. For example, it should be easy to tell if two promoter/coding-

sequence constructs share the same promoter.

• The assembly method used, if any, for composing smaller components into larger com-

ponents, and any effects this is expected to have on the resulting sequence.

• Any required additional modifications of the base sequence, such as methylation.

• The vector or integration point used for transformation of the host organism. For

example, a plasmid used to deliver a construct to bacteria, or the location targeted for

CRISPR-based integration into a chromosome.

• An unambiguous identification of the host organism for the construct, sufficient for

determining genome and other relevant features.



The core representations of SBOL readily support most of this information, while the re-

mainder can be linked to SBOL representations via the annotation mechanisms provided by

SBOL, and an effort is ongoing within the SBOL community to formalize these recommen-

dations.

Already, journals have shown interest in using SBOL to improve the ability of readers to

reproduce and reuse elements of the papers they publish. In 2016, ACS Synthetic Biology

became the first journal to formally embrace SBOL as a means of enhancing reproduction

and reuse of synthetic biology research,27 with a workflow including validation and review

of submitted designs and their deposit into a design repository linked with the paper and

with interfaces for access by both humans and genetic design automation tooling as shown

in Figure 4. As minimum information standards are established and adopted, they can

integrate with such workflows in order to improve the ability of the research community to

reproduce and to build upon one another’s results. In parallel, we may expect such standards

to provide a basis for development of a wide variety of new capabilities, services, and business

models in the industrial community, much as shared standards have already done in other

communities, such as software, electronics, and mechanical systems.

Software Support for SBOL

Crucial to the success of SBOL is software infrastructure to support developers’ integration

of this standard within their tools. In particular, several libraries have been developed that

provide access to the data model through an application programming interface (API). These

libraries also permit both the serialization of data objects into RDF/XML and the parsing of

SBOL files into SBOL data objects for ease of interaction and manipulation within software

tools. There are currently four main libraries maintained in loose federation by members of

the SBOL community: libSBOLj (Java),28 libSBOL (C/C++), pySBOL (Python), and sboljs

(JavaScript). The Java library provides methods for converting to/from FASTA, GenBank,



SBOL 1, and SBOL 2, as well as methods to check an SBOL document against the validation

rules outlined in the SBOL specification.29 The SBOL Validator/Converter provides a web

service that can be leveraged by non-Java software to access these functionalities.

Leveraging these libraries, a number of software applications that support the SBOL

standard have been developed as shown in Table 1. These tools can be loosely divided into

data repositories for storing genetic design information, sequence editors, visualization tools,

genetic design compilers, and modeling and simulation tools. Many of these applications

actually cover more than one of these functions. While most of these tools support either

SBOL 1 or SBOLv, an increasing number of tools supporting SBOL 2 are being released.

The rest of this section provides a brief description of some of these software tools. More

detailed descriptions can be found in the supplemental material.

Several data repositories have been developed that can store genetic design information

using the SBOL data standard. ICE30 is an open-source software tool that provides a Web-

based platform to register and manage DNA parts, and an instance of this platform is used as

the ACS Synthetic Biology Registry.27 SynBioHub is an open-source repository built upon

the SBOL Stack31 RDF (resource description framework) database back-end, and it provides

both a user-friendly web-based front-end and programmatic access via either libSBOLj or

a RESTful API. SBOLme is a Web-based open-access repository that has recently been

developed to promote the use of the SBOL for metabolic engineering applications.32 The

first release of SBOLme contains annotated SBOL parts of 28,437 chemical compounds,

6,883 enzyme classes, 9,909 metabolic reactions, and 3,173,238 proteins from 3,908 different

organisms. Finally, the Virtual Parts Repository supports CAD tools by providing readily

accessible modular and reusable models of biological components that can be individually

joined together for simulation.33

Sequence editors are software tools for the design of DNA, RNA, and/or protein se-

quences. The task of designing sequences incorporates the manipulation, composition, and

annotation of sequences. There are many tools developed or being developed with these



functions, we highlight here a few with the best SBOL support, while more are described in

the supplemental material. Eugene enables the specification of rules in order to automati-

cally enumerate composited designs based on biological knowledge.34 The Joint BioEnergy

Institute (JBEI) develops DeviceEditor35 to visually design combinatorial DNA constructs

based on part types (e.g., promoter, CDS, terminator), VectorEditor for a graphical preview

of the design, and j5 for DNA assembly design automation. SBOLDesigner is a modular se-

quence design tool that combines the SBOL 2 data model with SBOLv symbols to construct

genetic designs hierarchically using parts fetched from SBOL data repositories.36 The Build-

Optimization Software Tools (BOOST)37 enable the design of DNA sequences in order to

maximize the success rate of their synthesis via codon optimization, verification of sequence

constraints, and decomposition into synthesizable blocks.

SBOLv defines a set of agreed symbols to denote commonly used genetic elements and

best-practices for how biological designs should be visualized. Many point-and-click genetic

design tools have adopted these symbols (see Table 1) and several dedicated pieces of software

are now available to simplify the process of generating compliant diagrams. One of the first

tools to help automate the production of standardized SBOLv diagrams was Pigeon,38 which

converts a textual input description of a genetic construct into a diagram where each part

is represented by its associated SBOLv symbol. Highly customized SBOLv diagrams can

be created by using the DNAplotlib computational toolkit.39 VisBOL is a Web-based tool

that in addition to supporting the Pigeon syntax can also convert directly from an SBOL 2

document into SBOLv symbols.40 Finally, SBOL visual symbols have been adopted into the

widely used general graph visualization toolkit, Graphviz.

Genetic circuit design involves constructing biological systems that implement logical

functions similar to those found in electronic circuits. Circuit designers usually build cir-

cuits by connecting parts or modules found in a library to form larger and more complex

constructs. Many tools have been developed that attempt to assist engineers in genetic cir-

cuit design. Proto BioCompiler takes in specifications of computations, transforms them into



a data-flow representation of the computation to be carried out by the biological organism,

then selects parts from a genetic library, and finally optimizes the circuit design.41 iBioSim

adapts a graph-based technology mapping procedure from digital electronic circuit design

to map a specified genetic regulatory model into a network of genetic gates specified using

SBOL.42 Finally, Cello provides a platform where users can describe the desired function

of their genetic circuit using Verilog, a hardware description language commonly used to

specify electronic circuits, and then translate it into a directed acyclic graph of connected

2-input NOR and NOT gates implementing the logic.43

Finally, SBOL allows for the association of genetic circuit designs with computational

models. The most commonly used data standard for models of biological systems is the

Systems Biology Markup Language (SBML).44 SBML models can be analyzed using a large

selection of different analysis methods including deterministic and stochastic simulation,45

flux balance analysis,46 and stochastic model checking.47 To facilitate the construction of

SBML models, a converter from SBOL to SBML has been developed.48 It is also possible

to begin with an SBML model annotated with SBOL49 and produce an SBOL description

for the genetic design.48 Given an SBML model for a genetic design, it is then possible to

analyze this model using a variety of SBML modeling tools including those optimized for

genetic circuit design, such as iBioSim,50,51 Tellurium,52 and TinkerCell.53

A Standard-Enabled Workflow for Synthetic Biology

A key design principle in the development of SBOL is that it would not attempt to cover

all aspects of genetic design, but rather it would leverage existing standards whenever pos-

sible. A key example of this is the use of SBML for modeling. To pursue this goal, SBOL

recently joined the COMBINE (COmputational Modeling in BIology NEtwork) community

of standards.6 COMBINE is an open community initiative to coordinate the development

of standards and formats for systems and synthetic biology. Figure 5 depicts a complete



synthetic biology computational design workflow that leverages COMBINE standards. This

workflow assumes that data required for design must come from a variety of data reposi-

tories. While some are SBOL repositories, others store their information in other formats

such as GenBank or BioPAX ,54 another COMBINE standard. Converters can be utilized

to translate this knowledge into SBOL to be utilized during sequence design using any of

the sequence editors and visualization tools described earlier. Next, genetic modeling, anal-

ysis, and design tools can be utilized to construct and evaluate complete genetic designs.

These models would be constructed using a COMBINE modeling language such as SBML

or CellML,55 and their analyses should be encoded using the Simulation Experiment De-

scription Markup Language (SED-ML).56 Next, SBOLv only represents DNA constructs,

so a visualization standard such as SBGN could be leveraged to represent the biochemical

aspects of the design. Finally, each of these files can be packaged together, shared, and dis-

tributed using a COMBINE Archive.57 Throughout, the data conversions required by this

standard-enabled workflow are enabled by the use of common ontologies, such as the BioPAX

Ontology,54 the Sequence Ontology (SO),58 and the Systems Biology Ontology (SBO)59 with

URIs taken from identifiers.org,60 whenever possible.

Conclusion

Standards are an important enabler for data sharing and reproducibility in synthetic bi-

ology. Collaborations within the COMBINE community are essential to create new work-

flows enabled by these standards. The ultimate goal of these collaborations is a complete

standard-enabled workflow for synthetic biology. For more information about SBOL, please

see our website: http://www.sbolstandard.org/, and YouTube channel that includes sev-

eral demonstrations of the standard-enabled workflow that we are developing.
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Figure 1: SBOL provides a shared representation for flexibly constructing workflows that
may involve many different types of biological engineering resources, tools, and processes.
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Figure 2: SBOL extends beyond prior sequence-centric formats like FASTA and GenBank
to enable modular, hierarchical representations of both structure and function of a genetic
design. SBOL 1 enables hierarchical composition of DNA components, some perhaps without
sequences assigned, while SBOL 2 allows for more types of components and their interactions
to be expressed (figure courtesy of Zundel et al.29).
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Figure 3: SBOLv is linked to the SBOL data model by shared use of SO terms (figure
courtesy of Zhang et al.36)
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Figure 4: ACS Synthetic Biology workflow for integration of published articles with machine-
readable SBOL representations of the biological constructs described by those articles. The
author constructs their design using the genetic design automation (GDA) tool(s) of their
choice producing a description in FASTA, GenBank, or preferably SBOL. Their design is
then converted into a valid SBOL 2 document that is deposited in an SBOL repository. A
link to this data and potentially an SBOLv diagrarm are published with the article (figure
courtesy of Zundel et al.29).
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Figure 5: A standard-Enabled Workflow for Synthetic Biology using COMBINE standards.
The use of standards provides rich data repositories, consistent annotations, lossless data
conversions, intuitive visualizations, and seamless connections of tools.


