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Abstract 19 

This study explores rainfall spatial variability and its influence on runoff modelling. A novel 20 

assessment scheme integrated with coefficients of variance (CV) and Moran’s I is introduced 21 

to describe effective rainfall spatial variability. CV is widely accepted to identify rainfall 22 

variability through rainfall intensity, whereas Moran’s I reflects rainfall spatial autocorrelation. 23 

This new assessment framework combines these two indicators to assess the spatial variability 24 

derived from both rainfall intensity and distribution, which are crucial in determining the time 25 

and magnitude of runoff generation. Four model structures embedded in the Variable 26 

Infiltration Capacity (VIC) model are adopted for hydrological modelling in the Brue 27 

catchment of England. The models are assigned with 1, 3, 8 and 27 hydrological response units 28 

(HRUs) respectively and diverse rainfall spatial information for 236 events are extracted from 29 

1995. This study investigates the model performance of different partitioning based on rainfall 30 

spatial variability through peak volume (Qp) and time to peak (Tp), along with the rainfall event 31 

process. The results show that models associated with dense spatial partitioning are broadly 32 

capable of capturing more spatial information with better performance. It is unnecessary to 33 

utilize models with high spatial density for simple rainfall events, though they show distinct 34 

advantages on complex events. With additional spatial information, Qp experiences a notable 35 

improvement over Tp. Moreover, seasonal patterns signified by the assessment scheme implies 36 

the feasibility of seasonal models. 37 

Keywords: rainfall spatial variability, runoff modelling, CV, Moran’s I38 
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1 Introduction 39 

Rainfall is one of the most important inputs for hydrological modelling, but it is rarely evenly 40 

distributed over the whole catchment. This is known as rainfall spatial variability and is mainly 41 

caused by the synoptic regime and catchment morphology (McMillan, Krueger, & Freer, 2012). 42 

Rainfall depth and routing paths in multiple locations over the catchment may result in 43 

dispersed runoff distribution over a spatial scale. Rises in runoff variability correspond to the 44 

increase in rainfall spatial variability (E. F. Wood, Sivapalan, Beven, & Band, 1988). Previous 45 

studies note that runoff modelling performance is significantly affected by rainfall spatial 46 

variability; for instance, a large uncertainty existed in estimated model parameters without 47 

consideration of detailed variation in the input rainfall  (Chaubey, Haan, Grunwald, & 48 

Salisbury, 1999). Moreover, peak flow and runoff volume were influenced by spatially 49 

distributed rainfall (Arnaud, Bouvier, Cisneros, & Dominguez, 2002; Singh, 1997); this finding 50 

was supported by Younger et al.(2009), who found that perturbation of rainfall in upstream 51 

and downstream areas led to distinct impact on peak time and runoff volume in the Brue 52 

catchment.  53 

A number of studies have looked into the relationship between rainfall spatial variability and 54 

model output as well as possible impact factors. Segond et al. (2007) found that model 55 

performance decreased with the increase of rainfall spatial variability after investigating spatial 56 

rainfall resolution for runoff estimation in a 1400 km2 catchment with 28 events. Convective 57 

storms were found to have greater runoff variability than stratiform rainfall (V. A. Bell & 58 

Moore, 2000). Moreover, variability in the storm core beyond the rainfall overall spatial 59 

variability could be more influential in runoff generation (Syed, Goodrich, Myers, & 60 

Sorooshian, 2003). Shah et al. (1996a) discovered that rainfall spatial distribution contributed 61 

significantly to runoff modelling when the catchment antecedent soil water condition was dry, 62 

in an investigation in the Wye catchment of a 10.55 km2 drainage area in the UK. On the other 63 
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hand, Nicótina et al. (2008) revealed that for catchments with a rainfall spatial variability scale 64 

larger than the hillslope scale, flood response was more sensitive to the average rainfall. 65 

Additionally, for large-scale catchments, runoff generation depended more on the spatial 66 

distribution of rainfall because of the heterogeneous transport paths. 67 

In contrast, a number of researchers have argued that rainfall spatial variability could be 68 

smoothed out by the rainfall-runoff process because of damping within the catchments. Obled 69 

et al. (1994) noted that rainfall spatial variability was not sufficiently organized to overcome 70 

damping in a rural medium-sized catchment. Skøien (2003) suggested that the decrease of 71 

spatial characteristic scale from catchment rainfall to runoff was a result from the superposition 72 

of small-scale variability of catchment and aquifer properties. Moreover, Zoccatelli et al. (2011) 73 

showed that the catchment acted as a space-time filter by quantifying the effect with a function 74 

of rainfall organization and catchment geomorphic information. Smith et al. (2004) indicated 75 

that all basins presented a damping effect on input rainfall signals. A catchment with high 76 

complexity suggested the use of a distributed model, while sometimes average rainfall was 77 

enough for other catchments due to the smoothing fact. A study by Bell and Moore (2000) 78 

showed that lower rainfall resolution outperformed higher resolution input in the Brue 79 

catchment. Moreover, model calibration obscured the importance of rainfall spatial information 80 

by detecting a slight improvement from a lumped model to a distributed model (Shah, 81 

O’Connell, & Hosking, 1996b). Lobligeois et al. (2014) noted that the model performance was 82 

catchment scale–dependent and event–characteristic–dependent. Despite many previous 83 

studies, it is significant not only to identify how rainfall spatial characteristics affect runoff 84 

modelling but also to link the input spatial variability with model spatial resolution. 85 

In this study, an assessment approach is required to provide insight into the potential impact of 86 

rainfall spatial variability on runoff modelling based on the analysis of observed rainfall spatial 87 

variability and corresponding model performance. Many indicators to describe rainfall spatial 88 
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characteristics have been introduced in the last decades. Coefficient of variance (CV), because 89 

of its simplicity and the ability to describe the rainfall measurement variation, has been widely 90 

used in hydrological research (Arnaud et al., 2002; Chaubey et al., 1999; Pedersen, Jensen, 91 

Christensen, & Madsen, 2010). Additionally, the inter-gauge correlations (Ciach & Krajewski, 92 

2006; Pedersen et al., 2010) and spatial deviation index (SDI) (Segond et al., 2007) have been 93 

investigated based on gauge measurements. However, the practice of seeking for a relationship 94 

between existing gauges with the aforementioned indicators is limited in terms of mapping the 95 

overall spatial correlation across the whole catchment. Some practical procedures have been 96 

implemented based upon the semi-variogram to provide the decorrelation distance of rain 97 

gauges (Bacchi & Kottegoda, 1995; Baigorria, Jones, & O’Brien, 2007); the distance was 98 

examined around 80 km based on daily rainfall in Belgium (Ly, Charles, & Degré, 2011). The 99 

drawback of this approach is the varied decorrelation distances in different locations. Due to 100 

the risk of obtaining a decorrelation distance larger than the scale of a catchment, constraints 101 

exist in applying semi-variograms to small catchments where inner rainfall gauges are in close 102 

proximity. In addition, spatial moments of catchment rainfall, as defined by Zoccatelli et al. 103 

(2011), depicted spatial rainfall organization in terms of concentration as a function of distance 104 

measured along the flow routing without considering the variation of rainfall intensities among 105 

gauges. Although there are different assessment methods already in use, most of them are not 106 

well defined and therefore difficult to apply in a consistent manner.  107 

Therefore, more research is still expected in this field to add new knowledge and evidence to 108 

find clearer patterns for rainfall variability and its relationship with rainfall-runoff modelling. 109 

In this study, we were interested in how models with various spatial resolutions respond to 110 

varied rainfall spatial variabilities, which is expected to provide a guidance for how to choose 111 

an appropriate model structure. Firstly, an assessment framework integrated with CV and 112 

Moran’s I is introduced for the first time so that we could evaluate rainfall spatial variability 113 
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attributed to both spatial dispersion and intensity variation. Models based on the Variable 114 

Infiltration Capacity (VIC) model were assigned four spatial resolutions to examine the 115 

performance on an event-based scale using hourly data from 1995 of 49 gauges in the Brue 116 

catchment, UK. Simple, medium and complex events were defined based on the results of 117 

assessing the rainfall spatial variability. Model performance, including the goodness of fit as 118 

well as the errors in peak volume (Qp) and time to peak (Tp) were evaluated for detailed analysis. 119 

2 Study area and dataset 120 

The Brue catchment is located in the southwest of England as shown in Figure 1, draining an 121 

area of 132 km2 to its river gauge at Lovington (Dai et al., 2015). The elevation of the catchment 122 

is higher in the North and East where the river rises. There is a specially designed HYdrological 123 

Radar Experiment (HYREX) dense rainfall network with 49 tipping bucket rain gauges 124 

distributed in the whole catchment, as shown in Figure 1 (Moore, Jones, Cox, & Isham, 2000). 125 

The project produced an extensive data set including data from 49 rain gauges, one runoff 126 

gauge at the outlet and climate data from 1994 to 1999 for the catchment. Data from 1995 were 127 

chosen for the study. 128 

The rainfall record in 1995 ranged from 748 mm to 957 mm as shown in the contour map 129 

plotted in Figure 1. Rainfall decayed from the east to the west, which is also identified from 130 

upstream to downstream. Due to the problems such as blockage and damage of rainfall 131 

measurement instruments, a data quality check was performed before analysis using a 132 

cumulative hyetograph to detect faulty data (S. J. Wood, Jones, & Moore, 2000). When a gauge 133 

was considered to have provided faulty data, a kriging interpolating rainfall (Borga & 134 

Vizzaccaro, 1997) using measurements from nearby gauges was used as a substitution. 135 

A total of 236 events originating from hourly data in 1995 were extracted for detailed study. 136 

The basic assumption was that the events are independent with each other when sequences of 137 
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zero-rain rates between rainfall events lasted beyond 5 hours (Güntner, Olsson, Calver, & 138 

Gannon, 2001). The starting point of a rainfall event was defined as the point when total flow 139 

started to surpass base flow, while the event ended at the point when the total flow decayed to 140 

the amount of base flow.  141 

Rainfall events from 1994 to 1999 in seasonal groups were analysed to obtain a preliminary 142 

knowledge of rainfall spatial variability in the Brue catchment. Four natural seasons are defined 143 

by Lamb (1950) on the basis of climate conditions in England, i.e., spring (30th March to 17th 144 

June), summer ( 18th June to 9th September), autumn (10th September to 19th November), winter 145 

(20th November to 29th March in the next year). We used the standard deviation (SD) to 146 

compare the average rainfall derived from fewer gauges with that from the 49 gauges. The 147 

number of gauges ranged from 1 to 48 and there were 49 sets for groups that contain 1 and 48 148 

gauges respectively. Apart from that, 100 combination sets were randomly chosen for the other 149 

groups. By comparing the average rainfall from all groups with that from the 49 gauges, the 150 

seasonal SD was generated against the number of gauges as shown in Figure 2 and Table 1. As 151 

shown in Figure 2, SD decreased with the increase of gauges, which is verified in Table 1 that 152 

one gauge occupied the largest SD. Moreover, the decreasing trend of SD plateaued when the 153 

number of gauges was beyond 10.  154 

Figure 3 illustrates that summer presented the largest standard deviation followed by autumn, 155 

while winter displayed the smallest standard deviation. The difference among seasons was 156 

more distinct when adopting only one gauge, as SD was smallest, 2.87 mm in winter and largest, 157 

4.96 mm, in summer. The average value dropped from 3.57 mm to 1.01 mm as the number of 158 

gauges rose from 1 to 10; this discrepancy is larger than the drop from 1.01 mm to 0.41 mm 159 

when the number of gauges increased from 10 to 30. Moreover, there is a slight difference 160 

between 48 and 49 gauges as the average standard deviation was as low as 0.07 mm due to the 161 

extremely high density of the rainfall network. Based on these results, increasing the number 162 



8 

 

of rainfall gauges is prone to mitigate its standard deviation. Thus, the natural spatial variability 163 

in storms is observed in the catchment, which is the main subject in this study. 164 

3 Methodology 165 

3.1 Rainfall spatial variability assessment framework 166 

Three main indicators (CV, Moran’s I and semi-variogram) were separately applied at the 167 

beginning of the study to understand the rainfall spatial characteristics. We believe that an 168 

assessment approach, to be widely adopted, should provide a diagnostic metric for model 169 

application. Due to the drawbacks of existing assessment indicators, a framework integrated 170 

with CV and Moran’s I is newly presented in this study. CV describes the variation among 171 

values, which is broadly used in rainfall variability assessment. Moran’s I, which is well-known 172 

in many geological research areas as a tool to evaluate spatial autocorrelation (Li, Calder, & 173 

Cressie, 2007; Tiefelsdorf, 1998), is introduced and specified in detail hereafter. 174 

3.1.1 CV 175 

The rainfall spatial variability expressed by the spatial coefficient of variance (CV) calculates 176 

the ratio of SD to the mean rainfall depth (Arnaud et al., 2002; Pedersen et al., 2010). The 177 

formula for CV shown in Equation 1 aims to provide the rainfall variability caused by the 178 

variation of relevant rainfall intensities; a large CV indicates the increase of rainfall variability. 179 

It is defined as 180 

𝐶𝑉 =
√∑ (𝑃𝑖−�̅�)2𝑛

𝑖=1

�̅�
        (1) 181 

in which 𝑃𝑖 is the rainfall value at the 𝑖th gauge, in mm; �̅� is the average rainfall of all 182 

gauges, in mm; 𝑛 is the number of gauges.  183 
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3.1.2 Moran’s I 184 

Spatial autocorrelation is the co-variation of properties within geographic space: characteristics 185 

at proximal locations appear to be correlated, either positively or negatively (Legendre, 1993). 186 

Moran (1950) proposed a statistic (Moran’s I) to assess the spatial autocorrelation by 187 

characterising the correlation among nearby locations in space, which is defined as  188 

𝐼 =
𝑛

∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝑊𝑖𝑗(𝑃𝑖−�̅�)(𝑃𝑗−�̅�)𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ (𝑃𝑖−�̅�)2
𝑖

𝑛
𝑖=1

              (2) 189 

in which 𝑃𝑖 , 𝑃𝑗  are the rainfall at the 𝑖 th, 𝑗th gauge, respectively, in mm; 𝑊𝑖𝑗  specified in 190 

Equation 3 is an element in a matrix of spatial weight: 191 

𝑊 =
𝑊∗

𝑊0
= [

𝑤11  
𝑤21  

⋮
𝑤𝑛1 

𝑤12  
𝑤22  

⋮
 𝑤𝑛2  

…  
…  
⋱ 
… 

 𝑤𝑛1

𝑤2𝑛

⋮
 𝑤𝑛n

]     (3) 192 

The weight matrix 𝑊  is derived by normalizing the contiguity matrix 𝑊∗ = [𝑤𝑖𝑗
∗ ] with a 193 

normalization factor 𝑊0 = ∑ ∑ 𝑤𝑖𝑗
∗𝑛

𝑗=0
𝑛
𝑖=0 . Values of the matrix 𝑤𝑖𝑗

∗  can be calculated in several 194 

ways, and are originally defined as 𝑤𝑖𝑗
∗ = 1 if 𝑖th and 𝑗th are adjacent, and  𝑤𝑖𝑗

∗ = 0 otherwise, 195 

most commonly. Since 0/1 weighting is used for discrete rather than continuous and geographic 196 

data, 𝑤𝑖𝑗 is calculated by the inverse distance method in this study, which is defined as 197 

𝑤𝑖𝑗
∗ = 𝑟𝑖𝑗

−𝑏      (4) 198 

in which 𝑟𝑖𝑗 is the distance between 𝑖th gauge and 𝑗th gauge, in m; 𝑏 is a distance parameter 199 

(𝑏 = 1 in this study).  200 

The Moran’s I formula outputs a value for the spatial correlation at proximal locations, i.e. 201 

rainfall measurements in this study, that varies from -1 to 1 (Stephens, Bates, Freer, & Mason, 202 

2012). A zero value means a random spatial pattern, and negative values indicate a dispersed 203 

spatial distribution while positive values demonstrate correlated spatial characteristics. 204 



10 

 

Moran’s I close to 1 indicates a strong level of positive spatial autocorrelation exists, and it can 205 

be explained as high/low values are collocated with high/low ones (Tiefelsdorf, 1998).  206 

3.1.3 Assessment framework of rainfall spatial variability 207 

The objective of this study was to depict rainfall spatial variability on the basis of events to 208 

provide a guidance on choosing appropriate models. Pros and cons can be found for both CV 209 

and Moran’s I, as described in Section 3.1.1and 3.1.2 above. CV describes the variance 210 

between values in the rainfall field, while a large CV shows higher variance and vice versa, the 211 

spatial distribution is neglected. On the other hand, Moran’s I represents the spatial 212 

autocorrelation among gauges without considering their values. To effectively describe 213 

variability derived from spatial distribution and rainfall intensities, we propose an assessment 214 

scheme integrated with CV and Moran’s I, as shown in Table 2. By combining CV and Moran’s 215 

I, the variability caused by both rainfall magnitude and spatial distribution is taken into 216 

consideration. With a high CV and low Moran’s I, the variability is complex, whereas a decline 217 

of CV ( and growth of Moran’s I) indicates lower variability.  218 

Three groups with different levels of rainfall spatial variability were extracted for further 219 

investigation, as seen in Section 4.2. An F-test was carried out to determine whether the groups 220 

were considerably different from each other by comparing the sample variances. The 221 

hypothesis is that if the test statistic 𝑝-value is lower than 0.05, the two groups being compared 222 

are independent from each other (Lomax & Hahs-Vaughn, 2013). 223 

3.2 Hydrological model setup 224 

The Variable Infiltration Capacity (VIC) model was first developed by Wood et al. (1992) and 225 

then extended to the widely spread VIC-2L (two-layer) and VIC-3L (three-layer) by Liang et 226 

al. (1994). VIC model introduces a variable infiltration capacity in different catchment areas, 227 

which allows for heterogeneity of fast runoff production (Beven, 2011). VIC-3L, which was 228 
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adopted in this study, adds a thin soil layer above the upper soil layer (Liang et al., 1994). The 229 

model allows a spatially variable soil moisture capacity, which has been proved to have a good 230 

performance with spatially distributed input information (V. a. Bell, Kay, Jones, Moore, & 231 

Reynard, 2009). 232 

3.2.1 Model spatial partitioning 233 

The catchment was partitioned into different numbers of hydrological response units (HRUs) 234 

in the four models as shown in Figure 3. An average rainfall intensity was derived using the 235 

Theissen Polygon method with gauges inside the HRU and selected as the rainfall input of the 236 

corresponding HRU. To avoid the influence of spatial parameters on modelling performance, 237 

all parameters were assumed to be the same for all HRUs in a model. Since the Brue catchment 238 

is relatively homogenous, such an assumption is not far from reality. 239 

3.2.2 Assessment indicators 240 

All models were calibrated separately for the whole year of 1995 with 49 gauges and optimized 241 

with the runoff data at the catchment outlet. Event-based modelled runoff was extracted from 242 

the entire year of modelling instead of simulating runoff for each event individually.  243 

Firstly, the goodness of fit was evaluated by the Nash-Sutcliffe efficiency (NSE) as 244 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)2𝑚

𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅)2𝑚
𝑖=1

          (5) 245 

in which, 𝑄𝑠𝑖𝑚,𝑖 is the simulated runoff at time 𝑖, in m3/s; 𝑄𝑜𝑏𝑠,𝑖 is the observed runoff at time 246 

𝑖, in m3/s; Qobs
̅̅ ̅̅ ̅̅  is the mean observed runoff over the modelling span, in m3/s; 𝑚 is the total 247 

number of time intervals. 248 

With more sensitivity to large values, the NSE values of relatively small events are sometimes 249 

negative, which fails to evaluate the performance. NSE was only used for assessing the full 250 

runoff record in this study, and relative root mean square error (RRMSE), which reflects the 251 
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simulation error but eliminates the influence of rainfall magnitude, was used for selected 252 

rainfall events. RRMSE is calculated as shown in the following equation: 253 

𝑅𝑅𝑀𝑆𝐸 =
1

𝑄𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅
√

∑ (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑜𝑏𝑠,𝑖)2𝑚
𝑖=1

𝑚
        (6) 254 

In addition,  the Qp and Tp of each event were taken into consideration to evaluate any possible 255 

improvement in hydrograph shape by relative absolute error (RAE) as shown in Equation 7, 256 

RAE =
|𝑄𝑝,𝑠𝑖𝑚−𝑄𝑝,𝑜𝑏𝑠|

𝑄𝑝,𝑜𝑏𝑠
×100%   (7) 257 

4 Results and discussion 258 

4.1 General performance 259 

The performance of a lumped model (1 HRU) was evaluated to obtain a general idea of how 260 

the rainfall spatial information would affect the model performance. The average rainfall of 261 

different numbers of gauges was assigned as input for the lumped model. We used the same 262 

method to choose the combinations and permutations of gauge groups as described in Section 263 

2. The goodness of fit was evaluated using NSE by comparing the modelled runoff with the 264 

observed runoff at the outlet for the whole year and is displayed in Figure 4. The boxplot was 265 

derived from all the combinations for each number of gauges. The tops and bottoms of each 266 

blue box are the 25th and the 75th percentiles and the red line in the box is the sample median. 267 

The black dash lines are the 5th and the 95th percentiles of the sample while the observations 268 

beyond the black lines are outliers. 269 

Figure 4 shows NSEs derived from different numbers of gauges from 1 to 49 for the whole 270 

year, and it displays a sharp increase from 1 to 5 gauges, followed by a relatively slow rise 271 

from 6 to 10 gauges. It is worth noting that NSE gradually plateaued around 0.810 with more 272 

than 10 gauges. There was a tendency for the model performance to move forwards higher 273 

values with the increase of rainfall information, which also eliminated the model uncertainty 274 
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(blue boxes). A large uncertainty appeared in the model with fewer gauges, while models were 275 

more stable with more gauges. However, it was also possible to find some combinations with 276 

less spatial information that outperformed those with more gauges estimated when referring to 277 

the upper boundary of the boxes in Figure 4. 278 

All four models were calibrated for the whole year with NSE increasing steadily from 0.813 (1 279 

HRU) to 0.867 (27 HRUs), while the NSEs of two intermediate models were 0.834 (3 HRUs) 280 

and 0.862 (8 HRUs). 281 

4.2 Event-based analysis 282 

4.2.1 Rainfall spatial variability analysis 283 

CV and Moran’s I were assessed for 236 events in 1995 by comparing the accumulative rainfall 284 

of all gauges for each event separately. As shown in Figure 5, CV ranged from 0.064 to 7.000 285 

and Moran’s I ranged from 0.003 to 0.292 with a slight decreasing trend between CV and 286 

Moran’s I. In 1995, summer rainfall events were located mostly in the upper part and winter 287 

events were more prevalent in the lower part. A lot of 29 of 51 summer events were present 288 

where their CV was greater than 4, while 42 events had Moran’s I smaller than 0.15, which 289 

indicates a high variability in both spatial distribution and rainfall intensity variation. In 290 

contrast, CV values were less than 2 in 62 of 79 events in the winter, while Moran’s I had 41 291 

events greater than 0.15, showing low spatial variability. Moreover, relatively low CV and 292 

Moran’s I in autumn indicated that spatial variability was mainly the consequence of dispersed 293 

spatial distribution. Spring events were distributed in a relatively scattered pattern, as seen in 294 

Figure 5 which implies that these events did not have a consistent spatial pattern. 295 

With the framework integrating CV and Moran’s I, rainfall events could be categorized into 296 

three groups based on different spatial variability levels. To explicitly distinguish rainfall 297 

events in groups, not all the events were taken into account for further analysis. Three 298 
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rectangles are plotted to define groups these in Figure 5. Events in the complex groups are 299 

defined as CV > 4  and Moran′s I ≤ 0.1 , while events with 2 < CV ≤ 4  and 0.05 <300 

Moran′s I ≤ 0.15  are assigned into the medium group. Finally, events with CV ≤ 2  and 301 

Moran′s I > 0.2 are considered as simple events. 302 

According to the results of the F-test, the 𝑝-value between the simple and medium groups was 303 

0.0036, between the simple and complex groups was 0.0011, and between the medium and 304 

complex groups was 0.012. All 𝑝-values were lower than 0.05, indicating that the three groups 305 

are significantly different with each other, which verifies that it is rational to compare the model 306 

performance within the chosen groups.  307 

4.2.2 Overall performance of events 308 

Three rainfall event groups were derived from the assessment framework described in Section 309 

4.2.1. The simulations of the events were extracted from the whole year simulation by four 310 

model structures and assessed with RRMSE respectively. Therefore, the samples in each group 311 

were RRMSEs of rainfall events within the group. Figure 6 depicts the RRMSEs of events in 312 

different groups derived from four model structures. The explanation of the boxplot is the same 313 

with the boxplot described in Section 4.1. In Figure 6, one column represents the performance 314 

in one group with one model, e.g., Sim_27 represents the performance of rainfall events in the 315 

simple group simulated by the model with 27 HRUs.  316 

The model with 1 HRU presented the worst performance in all three groups. Model 317 

performance with 27 HRUs was stable without an apparent difference in RRMSE of rainfall 318 

events among three groups. However, the other three models all displayed larger RRMSE with 319 

larger spatial variability as well as an increasing instability, as revealed by the wider ranges of 320 

error. 321 
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A decline in error appeared from 27 HRUs to 8 HRUs, followed by a rise to 1 HRU in the 322 

simple groups, which identifies the model with 8 HRUs performed best. The models with 27 323 

HRUs and 8 HRUs came up with an equally low median error in the medium group, albeit the 324 

more stable performance made the model with 27 HRUs outperform the 8 HRUs model with a 325 

narrower uncertainty, when considering the 25th and the 75th percentiles. In the complex group, 326 

it is more marked that the model with 27 HRUs defeated all the other models with a notably 327 

smaller error along with a more stable model performance. 328 

4.2.3 Assessment of event-based Qp and Tp 329 

Event-based Qp and Tp are assessed in terms of RAE and displayed in Table 3. The increase of 330 

model HRUs shows the ability to improve Qp significantly in all events as RAE drops vastly 331 

from 64.50% (1 HRU) to 16.14% (27 HRUs) in the complex group. A similar tendency with 332 

event overall performance happened in that models with a lower density of HRUs produced a 333 

much larger error of Qp in complex events than simple ones, whereas the model with 27 HRUs 334 

experienced less fluctuation. Tp was simulated better in medium and complex events when 335 

adding more partitioning in the model but not in the simple group. However, all models 336 

performed poorly in capturing Tp with RAE greater than 50% and model with finer spatial 337 

resolution did not improve the fit.  338 

5 Discussion 339 

In the results section, we looked at the overall model performance, and the timing and 340 

magnitudes of the peaks responding to different levels of rainfall spatial variability. Rainfall 341 

events with larger spatial variability were more difficult to simulate. In general, the model with 342 

a higher density of partitioning showed an improved and more stable modelling ability than 343 

one with lower density. However, models with finer resolution did not always result in a better 344 

simulation for simple events, which still even took a high computational load. Using a model 345 
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with a lower density such as 8 HRUs was sufficient to simulate simple events. However, a 346 

model with higher resolution is highly recommended when dealing with a rainfall event with 347 

large spatial variability due to its ability in capturing more detailed spatial information.  348 

Only the variation of rainfall gauge values is considered in CV without considering the spatial 349 

distribution of rainfall events, although it is one of the widely accepted indicators for spatial 350 

variability assessment. Nevertheless, the rainfall distribution, especially for the location of the 351 

rainfall core, matters significantly for runoff generation (Syed et al., 2003). An upstream 352 

rainfall centre would result in a delay and lower magnitude in peak runoff occurrence, whereas 353 

the peak would appear earlier followed by a longer recession period when rainfall centre is 354 

positioned downstream. Therefore, only considering the values of different gauges is 355 

inadequate to predict the potential errors for runoff modelling attributed to the rainfall spatial 356 

variability. On the other hand, the spatial autocorrelation in the study area is revealed by 357 

Moran’s I. Provided there is a positive Moran’s I, the more uniform the rainfall event leads to 358 

a larger Moran’s I. However, Moran’s I remains constant when detecting the same distribution 359 

of a rainfall event disregarding the rainfall values. Nevertheless, the runoff volume relies on 360 

rainfall volume more than rainfall spatial distribution. 361 

The rainfall spatial variability is prone to be over/under-estimated by CV/Moran’s I when 362 

rainfall fields are clustered together but with varying intensities, and vice versa. To overcome 363 

the limits of simply adopting either CV or Moran’s I, a framework which accounts both rainfall 364 

intensity and spatial distribution by incorporating these two elements is proposed and it 365 

quantifies the spatial variability along with identifying its source. Three groups with different 366 

rainfall spatial variability are analysed and the results prove that it is reasonable to define 367 

rainfall spatial variability based on this framework. The high CV and low Moran’s I events are 368 

defined as complex while the reverse relationship implies simple variability. Moreover, 369 

different sources of spatial variability can induce timings and magnitudes errors in hydrographs. 370 
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Tp is more liable to be affected by simple CV and complex Moran’s I, whereas Qp is more 371 

sensitive to high CV and low Moran’s I. 372 

A lumped model tends to ignore spatial information by taking an assumption of homogeneous 373 

rainfall over the whole catchment. The same average values accompanied by different spatial 374 

distributions could result in totally dissimilar peak times and peak volumes. However, it is not 375 

always true that models with a higher density of partitioning perform better than the ones with 376 

fewer HRUs. The advantage of a model with higher spatial resolution is distinct when dealing 377 

with complex spatial variability because of its ability to capture the spatial information. It is 378 

not worthwhile to carry out a model with an excessive spatial resolution for simple events, 379 

which is time-consuming and onerous for computation. A model with lower resolution is 380 

adequate for simple event simulation based on the aforementioned results. Moreover, storm 381 

patterns, including how a storm approaches a catchment like moving direction, moving velocity, 382 

etc., can be included in future studies to examine their influence on choosing a suitable model 383 

structure. An optimal model based on a more comprehensive assessment framework of storm 384 

spatial fields will benefit efficiency and accuracy in real-time flood forecasting. 385 

The framework reveals seasonal patterns in rainfall spatial variability. Convective storms 386 

mostly happen in summer, which are likely to bring unevenly distributed rainfall, while 387 

stratiform storms are relatively even over the catchment. Seasonal models with varied spatial 388 

resolutions are possible, allowing more optimal utilization of spatial information. 389 

However, it should be pointed out that there are still several limitations in this study that can 390 

be improved and further explored. 1) The grouping principle based on CV and Moran’s I is not 391 

entirely distinctive, which means information overlap exists between them. It may be possible 392 

to introduce another indicator to increase their severability (e.g., rainfall centre distance to the 393 

outlet). 2) Only one hydrological model at one catchment is explored which provides narrow 394 
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insight inside the study. Meanwhile, the effect of the heterogeneity of the catchment is 395 

worthwhile to be explored on the corresponding runoff variability. More studies are desired to 396 

provide a comprehensive view to point out where the proposed scheme works well, and where 397 

it fails. 3) Homogenous parameters for the catchment are adopted, which is proper in this study 398 

to eliminate the model heterogeneity and emphasize rainfall spatial variability, but it will be 399 

useful to explore the case where the HRUs are allowed to vary. 400 

6 Conclusion 401 

The aim of this study is to explore how to match model spatial partitioning with rainfall spatial 402 

variability. Drawbacks exist in currently used approaches to describe rainfall spatial variability. 403 

As acknowledged, CV calculates the variation between rainfall intensity of gauges, and 404 

Moran’s I reflects the autocorrelation in space. This study proposes a novel framework taking 405 

advantage of CV and Moran’s I by combining them to classify rainfall variabilities into groups. 406 

As a result, both rainfall values and distribution are taken into account with a more 407 

comprehensive indication than their individual representations. 408 

It is found that model performance decreases with the increase of rainfall spatial variability by 409 

studying groups based on the new rainfall variability classification scheme.  Additional rainfall 410 

spatial information contributes an improvement in the model performance even for a lumped 411 

model. In general, the model with higher spatial resolution outperforms the lower ones. A 412 

model with lower density is sufficient for simple events although the model with higher spatial 413 

resolution shows the most noticeable advantage when dealing with the events with the highest 414 

rainfall spatial variability. Apparently, seasonal patterns in spatial variability strongly imply 415 

seasonal models. The results are meaningful to provide a reference on configuring an optimal 416 

spatial resolution model. It is clear that the proposed scheme is still in its very early stage (as a 417 

proof of concept) and there are several weaknesses as described in the discussion section. 418 
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Nevertheless, it is important for the hydrological community to put more effort into such a key 419 

issue. We hope this research will stimulate the community to carry out more case studies using 420 

different hydrological models at different geographical locations to further evaluate and 421 

improve the proposed rainfall variability assessment scheme. 422 
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