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Abstract 

The local electrode atom probe (LEAP) has become the primary instrument used for atom 

probe tomography measurements. Recent advances in detector and laser design, together with 

updated hit detection algorithms, have been incorporated into the latest LEAP 5000 

instrument, but the implications of these changes on measurements, particularly the size and 

chemistry of small clusters and elemental segregations, have not been explored. In this study, 

we compare datasets from a variety of materials with small-scale chemical heterogeneity using 

both a LEAP 3000 instrument with 37% detector efficiency and a 532nm green laser and a new 

LEAP 5000 instrument with a manufacturer estimated increase to 52% detector efficiency, and 

a 355nm UV laser. In general, it was found that the number of atoms within small clusters or 

surface segregation increased in the LEAP 5000, as would be expected by the reported increase 

in detector efficiency from the LEAP 3000 architecture, but subtle differences in chemistry were 

observed which are attributed to changes in the way multiple hit detection is calculated using 

the LEAP 5000. 
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1. Introduction 

Atom probe tomography (APT) evolved from field ion microscopy, beginning with the one-

dimensional atom probe in the 1960s (Muller et al. 1968) and the 10cm Atom Probe in the 

1970s (Panitz, 1973) and eventually moving to genuinely three dimensional analysis in the late 

1980s (Cerezo et al. 1988); (Blavette et al. 1989). Whilst these developments allowed the 

atomic-scale structure of materials to be probed in three-dimensions, the analysis volumes 

incorporated by the measurements were limited. The development of the local electrode atom 

probe (LEAP) in the late 1990s (Kelly et al. 1996); (Kelly et al. 2000) represented a significant 

improvement in the rate at which the specimen could be sampled. Later the use of silicon 

microtip coupons, in combination with new specimen preparation methods using focused ion 

beam (FIB) (Lawrence et al. 2007) and laser-pulsing capability (Bunton et al. 2007), opened up 

APT to many new materials and areas of study. 

 

Currently, the Cameca LEAP series is by far the most widely used atom probe instrument, with 

over 85 installed worldwide by early 2016. These instruments are used by many research 

institutions to study applications including identifying the chemistry of small phase changes in 

metals (Steiner et al. 2016), characterising the boundaries of corrosion surfaces (Pedrazzini et 

al. 2016) and even individual cracks (Meisnar et al. 2015), whole semiconductor transistors 

(Inoue et al. 2009), catalysis (Li et al. 2012), and more recently moving outside of traditional 

materials science applications and into fields such as geoscience (Valley et al. 2014) and 

biological materials (Gordon et al. 2012). 



 

The first widely commercially available instrument in this series was the LEAP 3000. Available in 

a reflectron-equipped configuration with a detection efficiency around 37% and a straight flight 

path configuration with a detection efficiency of ~57% (Moody et al. 2011), the LEAP 3000 

could be fitted with a green 532nm laser and used up to frequencies of 250kHz (Larson et al. 

2013). In 2011 the LEAP 4000 was released, with essentially the same three-chamber set up and 

detector configuration as the LEAP 3000, but changes in laser design and the addition of a 

stability-improving air table to the frame. This allowed a change in laser wavelength to a UV 

355nm laser with a smaller spot size, which has been shown to reduce thermal tails in the mass 

spectrum and improve yield in many brittle or non-conductive materials (Larson et al. 2013). 

 

In 2015, the latest generation of atom probe instrument, the LEAP 5000, was announced. This 

instrument incorporates both the UV laser configuration of the LEAP 4000 as well as a 

completely new has a new microchannel plate (MCP) geometry where the opening of each 

channel is widened into a conical shape  to reduce the deadspace between channels. 

Deadspace here refers to regions of the detector where impacting ions do not create a signal. 

Consequently, this increases the detection efficiency of the instrument to a reported ~52% for 

the reflectron equipped model and ~81% for the straight flight path instrument (Prosa et al. 

2014).  The second improvement is a change to the hit detection algorithm, where all three 

delay lines are used to determine the position of the hit, allowing a smaller dead region on the 

detector after a hit compared to the old algorithm where the third delay line was only used for 



error checking. This change in hit detection algorithm should be able to better identify multiple 

hit events. 

 

In early 2016, the University of Oxford acquired a new LEAP 5000XR, to complement the LEAP 

3000X HR used at the university since 2007. The presence of both machines in the same 

research lab offers the opportunity to make comparisons between the two instruments on a 

wide variety of material systems. There have been a number of studies comparing the effect of 

the laser wavelength on atom probe measurements (Amouyal & Seidman, 2012); (Santanagolan 

et al. 2015) , and so this study will not explore the effect of laser energy other than to attempt 

to use equivalent laser powers when comparing results in laser mode between the two 

instruments. Instead, this study will use a variety of materials with small-scale chemical 

segregation to explore the effect of the change in detector geometry and hit detection on the 

size and chemistry of small clusters and surface segregation.   

 

There has been work in the literature to quantify the effect of dead time on the efficiency of 

microchannel plate and delay line detectors, and Jagutzki et al. showed that the use of a third 

delay line results in better readout of multihit events, both by reducing ambiguity for 

simultaneous events, but also by reducing the size of the dead region on the detector after a 

hit, increasing the chance that a subsequent hit will be detected (Jagutzki et al. 2002). Similarly, 

the work of Meisenkothen et al. explored the effects of detector dead-time on boron, one of 

the elements most prone to field evaporating preferentially in multiples. They showed that the 

dead-time surrounding the first hit in a pulse contributes most to the under-reporting of boron 



(Meisenkothen et al. 2015). In this study, however, the focus was on the practical effects of the 

change in detector on specimens for materials science projects rather than model systems, to 

aid users of LEAP instruments be aware of the effects switching between the instruments might 

have on their data. 

 

The materials chosen for this project present a variety of different microstructures and 

chemistries in order to identify the influence of the change in detector design between the two 

instruments. Firstly, to characterise the impact of detector efficiency on cluster detection and 

analysis, two steels containing nanometre-scale clustering were analysed. The first steel was an 

SG Steel with small-scale clustering containing only metallic species. The second was an oxide-

dispersed strengthened (ODS) steel, where the clusters contained large quantities of oxygen, to 

determine whether the presence of oxide species behave differently than metallic clusters with 

a change in detection efficiency.  

 

The third steel contained carbide precipitates, as the composition observed from materials such 

as carbon prone to evaporation in multiple ions is known to be affected by changes in detection 

efficiency (Thuvander, et al. 2013, Rolander and Andren, 1989, Kinno et al. 2012, Cerezo, Smith 

and Waugh, 1984). Lastly, a silicon sample containing small quantities of implanted phosphorus 

was studied, to compare the effects of the change in detector on the observation of low levels 

of non-clustered impurities.  

 

2. Materials and Methods 



Four materials with microstructural heterogeneities on a scale appropriate to be sampled by 

APT analysis were used in this study: three steels, incorporating metallic, oxide and carbide 

precipitates, respectively, and a phosphorus-implanted silicon material with low concentrations 

of the implanted dopants close to the surface.  

 

The first steel sample was a Rolls Royce SG model alloy steel used in nuclear reactor pressure 

vessels, with a composition of 1.52% Mn, 0.81% Si, 0.43% Cu, 0.29% Ni, 0.28% Mo and 0.24% C 

(all wt.%). Prior to ageing, all specimen blocks underwent a standard post weld heat treatment 

of annealing at 920±20 °C for 6 hrs followed by a water quench, then tempering at 600±15 °C 

and stress relief at 650±15 °C for 42 hrs and 6 hrs respectively followed by slow cooling (≤ 50 °C 

hr−1) after each treatment stage. Samples were aged in sealed quartz tubes under Ar 

atmosphere or vacuum to limit the effects of oxidation and were water quenched upon 

removal from the furnace. 

 

The second material was an oxide-dispersion-strengthened (ODS) steel with nominal 

composition Fe-0.3wt%Y2O3, as well as trace amounts of W, Cr and Ti. The material was 

produced by mechanical alloying followed by hot-isostatic pressing, as described by Robertson 

et al. (Robertson et al.2012) 

 

The third material and final alloy sample was an M50 bearing steel prepared at the Cambridge 

SKF University Technology Centre, containing 4.38% Cr, 3.84% C, 2.40% Mo, 1.05% V and lower 

levels of Mn, Si and Al (all at.%). A vacuum induction melting/vacuum arc remelting casting 



process was followed by hot-rolling and soft-annealing for two hours at 880oC. The ingot was 

then cooled to 600oC over 11 hours. A five-minute austenisation in a vacuum furnace at 1105oC 

was followed by quenching to room temperature. Three tempering cycles were performed at 

545oC for two hours each with two hour cryogenic treatments between the tempering cycles. 

 

For each of the three steels, the bulk material was cut into 25x0.5x0.5 mm matchsticks using a 

Buehler Isomet 5000 diamond wafering saw and needle specimens of each steel were produced 

using a two-stage electropolishing process, using standard preparation methods (Gault et al. 

2012). Each matchstick was first electropolished using 25% perchloric acid (60%) in acetic acid, 

using voltages between 5-16V DC to control etching speed, until the matchstick split into two 

needle-shaped specimens. These specimens were then more finely polished under a 

microscope using 2% perchloric acid (60%) in 2-butoxy-ethanol and voltages of 8-15V DC, to 

produce needles with an end radius of ~100nm.  

 

The LEAP 5000 samples of the SG steel were prepared using standard FIB lift-out procedures 

(Lawrence et al. 2007) due to quantity of heat-treated material available being insufficient for 

electropolishing. Tungsten was deposited onto the region selected for lift-out via electron beam 

using a Gas Injection System for two minutes. This was followed by a further two minutes of 

tungsten deposition using the ion beam at 30kV, to provide additional protection from Ga 

damage during milling. 

 



The phosphorus implanted silicon samples used the standard reactive ion etched silicon flat top 

micro post coupons used for LEAP analysis. The coupons were HF dipped and the micro posts 

were implanted directly with 14keV phosphorus ions, with the fluence calculated to give 0.2 

at.% peak concentration at a depth of ~22nm. Following implantation the sample was HF 

dipped again prior to capping with Ni (LEAP 3000 sample) or directly coated in Co without an HF 

dip (LEAP 5000 sample), in both cases using a thermal evaporator with 99.99% pure metal 

sources in an initial vacuum of ~10-6 Torr, before tungsten protection in the FIB instrument as 

for the RPV specimens.  Micro posts were then polished into a sharp tip using a Zeiss NVision 

Focused Ion Beam instrument.  These capped micro posts were annular milled at 30kV until the 

capping layer/silicon interface was approximately 200nm from the top of the specimen, and 

then polished using a 2kV ion beam to remove all the tungsten cap and all but ~15nm of the Ni 

or Co cap, finishing with a final tip radius below 100nm. 

 

All four materials were analysed in both the LEAP 3000 and LEAP 5000. Although some of the 

older LEAP 3000 instruments have a two anode delay line detector, the Oxford instrument has 

the later three anode delay line detector, making comparisons between the 3000 and 5000 

more straightforward. Settings were kept as similar as possible for ease of comparison, bearing 

in mind that due to the smaller laser spot size on the LEAP 5000, the laser energy of the UV 

laser on the LEAP 5000 is approximately one order of magnitude smaller to produce 

evaporation conditions that are comparable to that of the green laser on the LEAP 3000. Table 

1 summarises the specimen temperature, pulse energy/fraction and frequency used for each 

material on both instruments. For the ODS steel, the pulse energy was varied between 0.2-



0.6nJ on the LEAP 3000 and from 0.01 -0.16nJ on the LEAP 5000 to observe the effect of laser 

energy on cluster composition.  

 

The reported results are the average from multiple specimen tips, so that the data is not unduly 

affected by compositional heterogeneity. In the case of the RPV steel SG, 4 datasets were 

obtained using the LEAP 3000 and 5 datasets were obtained using the LEAP 5000. The carbide 

and ODS steel cluster data was also obtained over several datasets. Whilst the data presented 

for the phosphorus implanted silicon was only from one dataset, it was compared to other 

repeated data and the same results were observed – only one profile from each machine is 

shown, as aligning the exact position of the start of the implantation profile results in averaging 

that smooths out the signal. It should be noted that due to sample yield the number of atoms 

collected for each instrument varied, and as such the total number of clusters detected is not 

directly comparable for each material, but as the statistics of all clusters are being studied, this 

should not affect the results of this study. 

 

Datasets were analysed using the commercial software IVAS, version 3.6.12. Clusters in the SG 

and ODS steels were identified in the data using the method of maximum separation distance 

of “solute” atoms (Hyde et al. 2011). Ions within a maximum separation (Dmax) of each other are 

considered clustered. The Dmax parameter was kept the same between datasets from both 

instruments, but the Nmin parameter (the minimum number of ions in a cluster) was varied to 

suit the number of clusters observed. In the bearing steel and the silicon sample, 



isoconcentration surfaces were used to identify the carbide precipitates and capping layer 

respectively. 

 

Where appropriate, the cumulative distribution of clusters F(t) was compared between the two 

instruments using the empirical distribution function: 

𝐹̂𝑛(𝑡) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑡

𝑛
=  

1

𝑛
∑ 1𝑥𝑖≤𝑡

𝑛
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Where 1z is the indicator of event z. Comparing the two datasets in this manner allows small 

changes in size distribution to be more easily distinguished. Assuming a LEAP 3000 efficiency of 

37% and a LEAP 5000 efficiency of 52%, we should expect that multiplying the LEAP 3000 

cumulative distribution by the ratio between the two efficiencies (~1.405) should give the same 

distribution as observed in the LEAP 5000 data, providing sufficient statistics are obtained for 

both.  

 

3. Results 

Figure 1 shows example atom maps for the four types of materials used in this study. Three 

were steels with different types of cluster – metallic, oxide and carbide, whilst the final material 

is an implanted semiconductor with low levels of impurity at a small region near the surface. In 

each case, small features were chosen to see if the change in detector efficiency resulted in the 

expected increase in atom count in the features, as well as comparing the effect on other 

aspects of the data such as cluster composition.  Cluster size was defined as the number of 

solute ions in the cluster, except in cases where the cluster radius was used, as defined in nm.  



 

3.1 Copper clusters in an SG  steel (voltage mode) 

The simplest comparison is between two metals with small-scale clustering in voltage mode, 

where the effects of laser wavelength cannot affect the measurements. In the reactor pressure 

vessels of nuclear reactors, even small cluster formation during operation can be detrimental to 

the lifetime of the reactor, particularly if the clusters are of an element with a larger atomic 

radius than the matrix such as Cu (Styman et al. 2012). This study selected one such material, 

where nanometre-scale Cu precipitates were known to occur after long-term ageing. These 

clusters can often be very small, and identifying them from the matrix at the early stages of 

formation can be challenging; it is hoped that the higher efficiency detector will potentially aid 

in the observation of early-stage clustering. 

 

Figure 2(a) shows the size distribution of the Cu clusters across four datasets obtained on the 

LEAP 3000 (in black) to five datasets obtained on the LEAP 5000 (in blue), whilst Figure 2(b) 

shows the empirical distribution function for the same data. The latter more obviously shows 

the difference between the two distributions. There are a similar number of large-scale clusters 

(above ~5000 atoms), but more clusters are observed at low atom counts in the LEAP 5000, 

particularly for clusters less than 1000 atoms. The median count of solute atoms was 218 atoms 

in the LEAP 3000, but only 129 atoms in the LEAP 5000, despite the median cluster radius 

remaining essentially unchanged, at 1.17nm for the LEAP 3000 data and 1.13nm for the LEAP 

5000 data. A possible interpretation of this result is that the higher efficiency of the LEAP 5000 

is enabling more of the smaller clusters present in the material to be observed, as expected. 



Since some of the clusters were not being detected previously in the LEAP 3000 datasets, it is 

hard to estimate the detector efficiency increase based on comparing the two distributions.  

Figure 3 compares the chemistry of all 119 clusters in the LEAP 3000 data and 85 clusters in the 

LEAP 5000 data. Over four LEAP 3000 datasets, 45 million atoms of data was obtained, 

compared to five LEAP 5000 datasets totalling just over 30 million atoms, so although the total 

number of clusters should not be compared directly, sufficient data was obtained to compare 

the statistics between the two instruments. Whilst  the scatter in the composition plots in 

Figure 3(a) and (b) is high, there is a trend for the average Fe content to be higher in the LEAP 

3000 data than in the LEAP 5000 data, by approximately 3 at.%, with a corresponding drop in 

Cu and Mn solute. When the Fe content is normalised to the cluster radius, as in Figure 3(c), 

this trend, although slight, remains. The measured Fe concentration in the clusters is likely 

incorporating a significant contribution from the surrounding matrix as a result of magnification 

effects due to the difference in evaporation field between the Cu and Fe (Larson et al. 2013); 

(Gault et al. 2012). One possible explanation is that the difference highlighted in Fig. 3 results 

from the change in hit detection algorithm with respect to multiple hit events. Fe-Fe pairs 

account for 99% of the multiple ions detected, therefore any improvement in the recognition of 

multiple hits will predominantly increase the detection of Fe.  Therefore if the algorithm 

improves the discrimination of individual ions within multiple hit events, it could explain the 

increased Fe content measured in these clusters.  

 

3.2 Yttrium Oxide particles in an oxide-dispersed steel (laser mode) 



Oxide particles are another form of clustering in steels that can be important at the scale where 

detection efficiency changes could be important to the analysis. For the purpose of this study, it 

is also a material in which the size of particles in an ODS steel is more uniform than the SG steel, 

as the particles are dispersed mechanically rather than grown during ageing. 

 

Figure 4 compares the distribution of cluster size in datasets obtained on the two LEAP 

instruments. The LEAP 3000 dataset contained 791 clusters, whilst the LEAP 5000 dataset 

contained 495 clusters, with a median solute (Y and YO) count of 101 and 127 atoms per 

cluster, respectively. The difference in absolute numbers of clusters is primarily because 70 

million atoms of data were obtained on the LEAP 3000 compared to 48 million atoms on the 

LEAP 5000, but this should not affect the comparison between individual cluster behaviour on 

the two instruments. In the size distribution plot in Figure 4(a), we observe that the curve is 

shifted lower for the LEAP 3000, with a higher number of smaller clusters between 0 and 300 

atoms, and a slightly decreased tail between 300 and 600 atoms, when compared to the LEAP 

5000 distribution. The empirical distribution function in Figure 4(b) makes this easier to 

observe, showing a clear shift in the distributions for clusters with between ~100-500 solute 

atoms. Comparing the actual values of the two curves, however, the clusters in the LEAP 5000 

contain only about 1.2 times the number of atoms as the LEAP 3000 data, rather than the 1.4 

times expected by the change in detector efficiency, and implying an effective LEAP 5000 

detector efficiency of 44%. This discrepancy is likely due to the fact that in the LEAP 3000 data, 

the maximum separation method has difficulty in fully distinguishing between the smallest 

clusters, as the lower density of cluster atoms in the lower efficiency instrument can result in 



‘bridging’ between clusters even at optimised values of the algorithm parameters. Visual 

inspection of the datasets shows that in a number of cases clusters are identified by the 

algorithm that appear to be two or more clusters joined together. This will artificially increase 

the measured size of the LEAP 3000 clusters, resulting in a smaller difference compared to the 

LEAP 5000 data, where more individual clusters are identified accurately without merging.  

 

Figure 5 explores the chemistry of the ODS particles in the two machines, this time by 

considering data from a variety of laser energies. The composition of the particles, considering 

only the solute atoms, is compared between the two instruments in Figure 5(a) for the LEAP 

3000 and Figure 5(b) for the LEAP 5000. The quantity of lighter elements such as O and N 

decreases with increasing laser energy in both instruments, which suggests off-pulse 

evaporation of these elements occurs at high laser energies. It can also be seen that roughly 

comparable compositions are obtained on the LEAP 5000 using a UV laser energy 

approximately ten times smaller than that used for the 532nm green laser in the LEAP 3000, 

justifying the choice of laser parameters used in the other aspects of this work.  

 

Figure 5(c) compares the Fe content observed within these particles normalised to cluster 

radius. It can be observed that the distribution is shifted between the two instruments, and 

that more Fe is observed for an equivalent particle in the LEAP 5000 data. As with the Cu 

clusters in the SG steel, the included Fe is at least in part an aberration of magnification effects 

due to the change of evaporation field between the YO particles and the matrix, but there could 

also be a contribution from the need for a different erosion step during the cluster analysis. The 



change in multiple hit algorithm between the two instruments could also contribute to the 

additional Fe content, as due to Fe being the majority ion in the dataset, it can be expected to 

have a higher likelihood of evaporating as a multiple. 

 

3.3  Carbides in a bearing steel (laser mode) 

Another form of small-scale precipitate found in many steels are the various forms of carbides. 

For this study a high-carbon bearing steel was chosen due to the large number of carbides 

present in a single atom probe dataset. A selection of comparable M2C carbide particles were 

selected from datasets from both the LEAP 3000 and LEAP 5000. These carbides were analysed 

using an isoconcentration surface of 13 at.% C.  The larger VC and cementite carbide particles 

were excluded based on their chemistry, as were any particles not fully enclosed in the dataset, 

and those below 6nm3 in size, which could be attributed to random fluctuations in the analysis. 

The selection criteria resulted in 8 similar sized carbides in each dataset. 

 

Table 2 compares the ion count and composition of the selected carbides. The eight carbides in 

each of the two datasets averaged the same volume, but the LEAP 5000 data contained more 

ions, as would be expected. Based on the 170 average ions in the LEAP 3000 and a LEAP 3000 

detector efficiency of 37%, this implies a LEAP 5000 efficiency of 53%, very close to the 

expected value. 

 

As with the other steel materials analysed in this study, the average chemistry of the carbides 

changes between the two instruments, again using a UV laser energy approximately 10 times 



smaller than on the green laser to account for the difference in energy density between the two 

instruments. The average carbon concentration inside the selected carbides decreased from 

35.2% in the LEAP 3000 to 26.1 at.% in the LEAP 5000, with a corresponding increase in iron 

content from 20.0% in the LEAP 3000 to 27.2% in the LEAP 5000. Unlike the other particles in 

this study, this Fe is expected to be part of the actual carbide composition. Other elements did 

not change significantly. It is also seen that the percentage of carbon atoms being labelled as 

multiple hit events increases from 74.3% of carbide C atoms in the LEAP 3000 to 85.9% in the 

LEAP 5000 data, despite the overall multiple count of all the atoms in the datasets remaining at 

6% in both instruments.  

 

 Thuvander et al. introduced a grid behind the electrode, artificially reducing the efficiency, and 

detected more carbon in a tungsten carbide specimen (Thuvander, 2013). This implies that as 

the detector efficiency increases, the efficiency of detecting multiple-hit events such as C ions 

increases less than for single ion events. The changes in the multiple hit detection algorithm do 

not prevent C ions impacting the detector at a similar position, within the dead time of the 

delay line detector, which will still reduce the percentage of C detected.  This effect can be 

reduced by altering the analysis parameters (Marceau, 2013), but the multiple hit performance 

of microchannel plates will remain a challenge for accurate compositions of materials 

containing elements with a tendency to evaporate in multiples (Kinno et al. 2013). 

 

3.4 Implanted phosphorus at the surface of silicon (laser mode) 



It is not only metals where small-scale features can be affected by the change in detector 

configuration. Phosphorus centres in silicon are a promising possible qubit for use in quantum 

computing (Kane, 1998), but there are extreme spatial constraints in the placement of 

individual atoms. Phosphorus atom placement using scanning tunnelling microscopy allows 

precise control of the locale of single atoms and has been used in extremely promising initial 

studies (Fueschsle, 2012), but it is slow, expensive and unlikely to be easily scaled up to the 

industrial levels required for commercial quantum computing arrays. Ion implantation is a well 

understood industrial process commonly used in fabrication of integrated semiconductor 

electronics and the implantation and detection of single phosphorus ions within designated 

nanoscale volumes has already been demonstrated (Donkelaar, 2015). 

 

APT investigations of silicon implanted with 14 keV phosphorus ions with peak concentration of 

0.2 at.% have been carried out using the LEAP 3000 (Douglas, 2016) and  LEAP 5000.  An 

increase in detector efficiency could improve the ultimate detection limit of phosphorus in 

silicon for this application and allow more accurate characterisation of low concentration 

diffusion and implantation profiles in general.    

 

Comparing the behaviour of 0.2 at.% phosphorus implantation in silicon between the two LEAP 

instruments is complicated by the increase in the number of P-containing complex ions in the 

mass spectrum of the LEAP 5000 (likely due to on the change in laser wavelength), as well as 

overlaps with the Ni/Co metal used to cap the silicon.  

 



To minimise the effect of any surface migration, both datasets were cropped into 30x30x100nm 

regions of interest from the centre of the dataset, as shown in Figure 6 (a) and (c). Figure 6 (b) 

and (d) show the phosphorus profile from the end of the capping layer signal into the silicon in 

these two regions, with the large increase on the right hand side at ~0nm indicating the start of 

the capping layer. In both LEAP instruments, the concentration profile in at.% shown in Figure 

6(b) match well, with a peak of approximately 0.2 at.% around 15nm below the surface, a little 

shallower than the 22nm predicted by simulation (Donkelaar, 2015)Error! Bookmark not defined.. If 

instead of the concentration the absolute number of phosphorus atoms is plotted, as shown in 

Figure 6(d), the difference between the two instruments becomes clearer – with a high peak 

value of phosphorus in the LEAP 5000.  

 

Although the quantity of phosphorus atoms observed is close to that expected for the LEAP 

5000 efficiency, it comes with some caveats. Due to the very low numbers of atoms involved in 

this implanted layer, even very small changes in the number of phosphorus atoms included in 

the calculation can make a big difference in the calculated efficiency. Varying the binning size of 

the concentration profile from 0.5nm to 2nm or the value of the isoconcentration surface used 

to define the end of the capping layer from 3% Ni or Co to 5% has a large impact on the number 

of reported phosphorus ions. Based on the number of P ions detected using the extremes of 

these two parameters, the calculated efficiency of the LEAP 5000 can range anywhere from 

41.7% to 67.6%.  

 



The principle reason for such uncertainty is that the bins closest to the capping layer interface 

contribute both from P ions and also from overlaps in the Ni2+/P+(at 31 Da) or Co/SiP (at 59 and 

29.5 Da). If the P ion count is summed across a 40nm depth profile region starting directly 

below the interface, the efficiency in the LEAP 5000 is overestimated due to additional counts 

from overlapped Co ions. Conversely, for profiles starting more than 7.5nm below the interface, 

the LEAP 5000 efficiency is underestimated, as we start to lose actual P ions in the datasets. 

Profiles beginning 6.5 -5.5 nm below the interface, give an efficiency of 51.5-51.8 %, close to 

the expected value. In this way, if the efficiencies of both detectors are accurate, they allow the 

use of the ratio between the two measurements to calibrate the accuracy of measured data. 

 

4. Discussion 

4.1 Comparing cluster and carbide size with increased detection efficiency 

The implications of this study suggest that the efficiency gain due to the change in 

microchannel plate design in the LEAP 5000 generation is close to that expected by an increase 

from 37% to 52%, subject to caveats regarding parameter choice. Since the smaller Cu clusters 

in the SG steel were not detected in the LEAP 3000, due to its reduced detection efficiency, the 

decrease in cluster size in the LEAP 5000 data is due to the increased sensitivity to these small 

features, making the comparison of the cluster size between the two detectors in Figure 2 

difficult. Similarly, the propensity of the maximum separation method to merge small clusters 

together in the LEAP 3000 analysis of the ODS steel results in a lower than expected increase in 

cluster size in the LEAP 5000 – it is possible that improvements in cluster-finding algorithms 

may make such comparisons more accurate. 



 

In the case of the carbide-containing steel and phosphorus-implanted silicon, the increase in 

atoms in the features increased roughly in line with the expected efficiency gain, although in 

both cases the choices of analysis parameters, especially the isoconcentration surface value 

used to define the edge of the carbide and the capping layer respectively, make a big difference 

to this calculation, so it is difficult to ascribe too much confidence to this calculation – analysis 

parameter choice remains vital to accuracy.  

 

The third case, where dramatically more carbon was observed in M2C carbides of the same size 

in the LEAP 3000, is slightly different. The increase in detector efficiency does appear to be 

resulting in a reduction in carbon content as a result of increased loss of data from carbon 

multiple hit events, despite the change in hit finding algorithm on the LEAP 5000. It will remain 

the case that for increased detector efficiency, there will be decreased ability to distinguish 

multiple ion events (Thuvander, 2013), and as a result the actual concentration of C may be 

underestimated further on higher efficiency instruments. 

 

The phosphorus-implanted silicon material, perhaps even more so than the other materials, 

shows the importance of parameter selection during analysis of atom probe data. Varying the 

parameters of the isoconcentration profile used to define the start of the analysed region can 

dramatically impact the number of phosphorus ions observed, resulting in an effective 

efficiency of the LEAP 5000 anywhere from 41% to 67%.  

 



 4.2 Changes in stoichiometry between LEAP instruments 

 

Whilst the change in detected atoms within these features either corresponds well to the 

detector change or can be explained, chemistry variations in the three steel samples are harder 

to account for. In all three cases, the composition was observed to differ between the LEAP 

3000 and LEAP 5000. In the Cu clusters of the SG steel, more Fe was included from the matrix in 

the LEAP 3000, whilst in the ODS steel, the reverse was observed, with more Fe content in the 

LEAP 5000 clusters.  

 

There are several possible reasons for this effect – it may be that the hit finding algorithm is 

also playing a role. The steel samples are mostly Fe, so if the rate of detected multiple ions 

increases, the Fe concentration would be more affected by a general increase in multiple ions. 

It could also be that the increased number of atoms detected in the LEAP 5000 requires a 

change in cluster finding parameters – as the Dmax and erosion parameters were kept the same 

for both instruments, it is possible that this has affected the behaviour of Fe included at the 

edge of the clusters.  

 

The reason behind the reversed direction of the increased Fe content between the two 

materials is intriguing. There are two types of matrix aberration that can occur when the field 

required to evaporate the particle and matrix differ. A high field precipitate such as the ODS 

particles evaporate less easily than the matrix, resulting in a spreading of the higher field 

precipitate across the matrix, and any Fe inclusion occurs due to this broadening effect. A low 



field precipitate however, will mainly include matrix Fe as a magnification effect, where the 

preferential evaporation of the low-field precipitate such as Cu in Fe results in the trajectory of 

the surrounding matrix ions towards the precipitate (Oberdorfer and Schmitz, 2011; Marquis 

and Hyde, 2010). In the case of the high field precipitate, we hypothesise that the higher 

efficiency and better multiple hit detection of the 5000 results in more Fe atoms being detected 

in the overlap region, whereas for the Cu clusters in the SG steel the effect of the increased 

efficiency in the high density, low field precipitate may result in an increase in the Cu solute 

being the more prevalent effect. 

 

Whilst the improvements in detector efficiency and hit-finding algorithms are to be welcomed 

in the LEAP 5000 instrument, it will remain the case that careful data analysis is often the most 

important factor in the accurate use of APT.  It is important that the differences between 

measurements taken on both instruments is understood so that experiments using different 

generations of APT instruments can be compared. 

 

5. Conclusion 

Atom probe tomography datasets from four materials were compared using a LEAP 3000X HR 

with a 37% detection efficiency and a 532nm green laser, and a LEAP 5000XR with 52% 

detection efficiency and a 355nm UV laser. Small segregations of clusters or impurity elements 

were compared to determine the effect of the change in instrument on the size and chemistry 

of these small scale features. When comparing the ion count of the segregated elements in an 

carbide-containing steel and phosphorus-implanted silicon, the LEAP 5000 showed an increase 



in counts roughly equal to the expected change in detector efficiency, although it was also 

shown that the choice of isoconcentration surface used to perform this analysis can 

dramatically impact this calculation. The size distribution of Cu clusters in an SG steel was 

harder to directly compare, due to the detection of additional small particles using the LEAP 

5000 that were previously undetectable in the LEAP 3000, whilst in the case of YO particles in 

an ODS steel, the difference was smaller than expected, likely due to merging of small particles 

during the cluster analysis. 

 

The detector change appeared to give the expected increase in detected atoms, but the effect 

of the change in instrument on composition was less clear-cut. In the case of the three steel 

samples, the composition of Fe and/or C in the particles varied between the two instruments. 

In the carbides of the bearing steel, significantly lower carbon content is present in the LEAP 

5000 data, which we ascribe to the reduced ability of the detector to distinguish multiple hit 

events at the higher efficiency, despite the change in hit detection algorithm in the newer 

instrument. In the SG and ODS steel, the level of iron included from the matrix into the particle 

composition varied between the two instruments, although the direction of this effect differed 

between the two materials, with more Fe in the Cu clusters in the LEAP 3000, but more Fe in 

the ODS particles in the LEAP 5000 data. This effect is more challenging to explain, but the hit 

finding algorithm could also play a role, as could variations in the evaporation field between 

cluster and matrix, or the parameters chosen for the cluster search. In general the reliability of 

results between the two instruments is consistent, but the study highlights that choice of 



analysis parameters when making isoconcentration surfaces or cluster searches can often be 

more significant to the size of the observed feature than the change in detector geometry. 

  



 

Figure Captions 

 

 

Figure 1: Atom maps for the materials used during this study. (a) Cu clusters in a thermally aged 

Reactor Pressure Vessel (RPV) steel, (b) Yttrium Oxide clusters in an Oxide Dispersion 

Strengthened (ODS) steel, (c) carbides in a bearing steel and (d) phosphorus at the surface of 

implanted silicon. All atom maps shown were analysed using the LEAP 3000. 

 

Figure 2: (a) Comparison of the size distribution of Cu clusters in an RPV steel analysed on the 

LEAP 3000 (black) and LEAP 5000, (blue). (b) Empirical cumulative distribution function 

comparing the two distributions. 

 

Figure 3: Compositions of the Cu clusters in (a) four LEAP 3000 datasets and (b) five LEAP 5000 

datasets, against cluster size, as defined by the number of ranged ions. The Fe content 

averaged 53 at.% in the LEAP 3000 and 50 at.% in the LEAP 5000. (c) shows the Fe content as a 

function of cluster radius for the two instruments. 

  



  

Figure 4: (a) Size distribution of YO particles in an ODS steel analysed using the LEAP 3000 

(black) and LEAP 5000 (blue). (b) shows the empirical cumulative distribution function  for the 

same data. 

 

Figure 5: (a) Change in YO particle chemistry with increasing laser energy on the LEAP 3000 (b) 

change in YO particle chemistry with laser energy on the LEAP 5000, (c) the relationship 

between cluster size and Fe content included from the matrix in the oxide particles, with black 

representing data from the LEAP 3000 and blue representing data from the LEAP 5000. 

 

Figure 6: (a) 30x30x100nm region of interest of a phosphorus-implanted silicon sample with 

nickel cap analysed using the LEAP 3000. (b) Comparison of the phosphorus concentration 

profile at the surface of both ion-implanted silicon materials. (c) 30x30x100nm region of 

interest of a phosphorus-implanted silicon sample with cobalt cap analysed using the LEAP 

5000. (d) Ion counts of phosphorus across the same region shown in (b). 

  



Table Captions 

 

Table 1: Summary of APT analysis conditions used for each of the four materials used in this 

study, for both the LEAP 3000 and LEAP 5000 instruments.  

Table 2:  Comparison of the size, number density and composition of selected M2C carbides 

analysed from a bearing steel in the LEAP 3000 and LEAP 5000 instruments. 
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