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Energy Proportional Streaming Spiking Neural Network in a 

Reconfigurable System 

FELIPE GALINDO SANCHEZ, University of Bristol 

JOSE NUNEZ-YANEZ, University of Bristol 
 

This paper presents a high-performance architecture for spiking neural networks that optimizes data 

precision and streaming of configuration data stored in main memory. The neural network is based on the 

Izhikevich model and mapped to a CPU-FPGA hybrid device using a high-level synthesis flow.  The active 

area of the network is configurable and this feature is used to create an energy proportional system. Voltage 

and frequency scaling are applied to the processing hardware and memory system to deliver enough 

processing and memory bandwidth to maintain real-time performance at minimum power and energy levels.  

The experiments show that the application of voltage and frequency scaling to DDR memory and 

programmable logic can reduce its energy requirements by up to 77% and 76% respectively. The performance 

evaluation show that the solution is superior to competing high-performance hardware, while voltage and 

frequency scaling reduces overall energy requirements to less than 2% of a software-only implementation at 

the same level of performance. 

Index terms: Hardware →  Integrated circuits →  Reconfigurable logic and FPGAs →  Hardware accelerators, 

Hardware →  Integrated circuits →  Reconfigurable logic and FPGAs →  Reconfigurable logic applications  

 INTRODUCTION 

The ability to understand parts of the human brain and being able to perform large-

scale simulations has allowed biologically inspired techniques in applications such as 

speech recognition, computer vision, natural language processing, drug discovery and 

pattern recognition, among others. The high computational costs of this processing has 

resulted in the development of high-performance solutions describing biologically 

realistic neuron models in hardware accelerated solutions using Field Programmable 

Gate Array (FPGAs) and Graphical Processing Units (GPUs). 

In this paper we propose a fully connected feed-forward network using the Izhikevich’s 

neuron model combined with a synapse model in which the post-synaptic current is 

modelled as a function of the synaptic conductance and the differential of the 

membrane potential and the reversal potential. Both models are described in C++ and 

then targeted to a Zynq MPSoC using high-level synthesis and implementation tools.  

The hardware uses an optimized synaptic weight representation and transmission 

using the AXI4-Stream as the primary data protocol. The current solution shows 

excellent scalable properties with configurations up to 250K neurons and 125M 

synapses possible in a single Zynq 7100 device. The performance evaluated on a Zynq 

7020 device with the simulation of 28,900 neurons and 5M synapses results in 

speedups of 5 to 7 times in contrast with alternative computing solutions while using 

less than 2% of the energy of an Intel solution based on OpenCL.  
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The research contributions of this work can be summarized as follows: 

 We create the first high-performance configurable system for spiking neural 

networks (SNN) targeting the Zynq MPSoC devices based on a C++ high level 

synthesis flow. The hardware allows multiple configuration options including 

data precision, network size and host connectivity. The solution uses an 

optimized streaming strategy to reduce the pressured on internal BlockRAM 

resources and it does not require any RTL coding. 

 To the best of our knowledge we apply for the first time energy proportional 

concepts based on dynamic voltage and frequency scaling (DVFS) to both 

programmable logic and memory system in the SNN demonstrating its 

effectiveness in a practical scenario and under real-time performance 

constraints. 

 We release the streaming spiking neural network named S2NN as an open-

source downloadable package in synthesizable C++ and also an equivalent 

OpenCL description used as a benchmark to motivate further research in the 

area and to create reproducible research. To the best of our knowledge this has 

not been available before. 

 

 BACKGROUND AND RELATED WORK  

 Background 

The selected Izhikevich neuronal model combines the biologically plausibility of the 

Hodgkin-Huxley’s model and the computational flexibility of the integrate and fire 

model [Izhikevich 2004]. This model is able to represent different spiking and bursting 

neuron behaviors with only two equations involving four independent model 

parameters: a,b c and d, one recovery variable u(t) and one non-linear term v(𝑡)2 as 

shown in Equation (1).  

 
 

                   v(𝑡)′ = 0.04v(𝑡)2 + 5v(𝑡) + 140 − u(𝑡) + Isyn(𝑡)               (1) 

u(𝑡)′ = a ∙ [b ∙ v(𝑡) − u(𝑡)] 

if v(𝑡) ≥ 30mV →  {
 v(𝑡 + 1) = c             

  u(𝑡 + 1) = u(𝑡) + d
 

 

 

As previously mentioned, this neuron model is then combined with a synapse model in 

which the post-synaptic current 𝐼𝑠𝑦𝑛(𝑡)  is modelled as a function of the synaptic 

conductance 𝑔𝑠𝑦𝑛(𝑡)  and the differential of the membrane potential 𝑣(𝑡)  and the 

reversal potential 𝐸𝑠𝑦𝑛 as shown in Equation (2).  For excitatory synapses the typical 

reversal potential is 𝐸𝑠𝑦𝑛 =  −75𝑚𝑉  whereas for inhibitory synapses it is 𝐸𝑠𝑦𝑛 =  0 ; 

hence the behavior of increasing or decreasing the membrane potential of the neuron 

for excitatory and inhibitory synapses respectively can be inferred by the sign of the 

differential of both potentials 𝑣(𝑡) − 𝐸𝑠𝑦𝑛.  

 

                              𝐼𝑠𝑦𝑛(𝑡) = 𝑔𝑠𝑦𝑛(𝑡) ∙ (𝑣(𝑡) − 𝐸𝑠𝑦𝑛)                                   (2) 
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The synaptic current 𝐼𝑠𝑦𝑛(𝑡) value for a 𝑁 number of synapses connected to a neuron, 

is described in the following Equation (3) as the sum of the multiple synapses with 

synapses weights w and reversal potentials. The values of the synapses weights reflect 

the strengths of the connection and define the behavior of the network after training.  

 

𝑔𝑠𝑦𝑛(𝑡) =  𝑤 ∙ 𝑠(𝑡) 

 

                                        𝐼𝑠𝑦𝑛(𝑡) = ∑ 𝑤𝑗𝑘 ∙ 𝑠𝑘(𝑡)𝑗 ∙ (𝑣𝑘(𝑡) − 𝐸𝑗)                       (3) 

 

The synapse 𝑠(𝑡) value is modelled as an alpha function where the rising part refers 

to the binding of the neurotransmitter of the pre-synaptic neuron to the different 

gating channels; while the falling part refers to the unbinding from the cleft at a 

certain rate modeled by the synaptic time constant 𝜏𝑠 as in Equation 4. 

 

                                                                   𝑠(𝑡) = 𝑡𝑒−𝑡 𝜏𝑠⁄                                       (4) 

 

Because of the high-cost implementation of exponential functions in a computational 

system, the falling part of the synaptic conductance 𝑠(𝑡) is described as a proportional 

decay with a synaptic time constant expressed in Equation 5, and the rising part can 

be modelled as an increase whenever a spike arrives to the neuron. 

 

               𝜏𝑠
𝑑𝑠

𝑑𝑡
=  −𝑠(𝑡)  with 𝑠(𝑡) →  𝑠(𝑡) + 1 whenever there is a spike            (5) 

 

These equations are well known and have been used in related research activities as 

discussed in Section 2.2.  The topology deployed in this research is a feed-forward 

topology consisting of multiple layers of neurons, where neurons in a certain layer are 

connected to the neurons of the incoming layer, and hence, the information flows in 

one direction, from the input layer to the output layer. Although this topology is classic, 

the novelty of this research is the effectiveness and performance of the implementation 

using a high-level synthesis flow based on C++ code without recurring to low-level RTL 

design and the exploitation for the first time of energy proportional principles at the 

reconfigurable and memory levels in order to adjust the level of energy and power 

required to the size of the network.  The idea of energy proportional computing refers 

to being able to develop machines that consume energy in proportion to the amount of 

work performed [Barroso et al. 2007] and it is particularly applicable to systems that 

always need to maintain a certain level of activity that prevents them from entering 

full shutdown modes for significant periods of time.  This will be the application 

scenario if this network is used to perform cognitive tasks in an energy constrained 

environment such as autonomous vehicle navigation or automatic speech recognition 

in robots.  

 

Previous efforts in this area have succesfully applied techniques such as clock gating, 

power gating and dynamic voltage frequency scaling to the processors, and more 

recently to FPGAs [Hosseinabady et al. 2015]. In this work we focus on the FPGA and 

main memory that are the main components involved in spiking neural network 

processing, while the CPU enters into a sleep mode waiting for the interrupt that 

indicates that the processing of the time-step has completed. We extend this scaling to 

the main memory system that, as we will see, is the highest contributor to overall 
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power comsumption. The experimental evaluation with real hardware of voltage and 

frequency scaling applied to the main memory system complements and confirms the 

simulation-based study done in [David et al. 2011].  This previous research showed the 

possible benefits of DVFS applied to memory via an analytical model of memory power, 

while our research measures memory power at different experimental levels of 

performance defined by voltage-frequency pairs.     

 

 
 Related work 

The area of neuromorphic computing has been receiving a lot of attention with major 

projects led by both industry and academia. For example, an industrial program led by 

IBM has recently deployed the TrueNorth brain-inspired neuro processor. TrueNorth 

is a massively parallel device with 4096 cores per chip capable of simulating complex 

recurrent neural networks. The next objective of the TrueNorth team is the integration 

of 4,096 chips in a single rack with 4 billion neurons and 1 trillion synapses while 

consuming ~4kW of power [Akopyan et al 2015]. At the academic level, the human 

brain project (HBP, www.humanbrainproject.eu) deserves also a special mention. HBP 

is funded by the EU's ICT program with a projected cost of one billion euros and 

includes several themes with the objective of understanding how the human brain 

operates. The neuromorphic theme develops innovative hardware architectures such 

as the Spinnaker chip [Furber et al.] that consists of a Globally Asynchronous Locally 

Synchronous (GALS) system with 18 ARM968 processor nodes. In addition to these 

large projects aim of full brain modelling, neural networks in embedded systems such 

as the Zynq family can play a role in lower cost applications such as automotive and 

robotics which is the objective of this work. Neural networks in this field are created 

with model complexity that ranges from the simple Integrate and Fire to highly 

complex descriptions such as Hodgkin–Huxley’s. An intermediate complexity model 

such as Izhikevich’s is considered to be a good trade-off with a low cost implementation 

point while maintaining a good number of biological features; consequently, this model 

is the first choice in a significant number of research efforts working with different 

design languages with significant examples described below. 

 

[K. Cheung et al. 2009] and [M. Ambroise et al. 2013] choose to design their networks 

using a register transfer level (RTL) language such as VHDL. Although this has the 

benefit of fine control over the implementations details, it significantly reduces the 

overall design productivity compared with a higher-level abstraction flow. The 

proposed networks are small with 800 and 117 neurons respectively. [K. Rice et al. 

2009] and [M. Bhuiyan et al. 2010] proposes a shallow two-layer network for a 

character recognition application resulting in a configuration with a limited number of 

synapses. The system is prototype in the SRC 7 H MAP which is a large scale system 

combining Xeon processors and several Altera Stratix FPGAs with access to a large 

pool of memory resources. The problem of how to scale the interconnect to be able to 

build large neuronal networks has been address in  [Vainbrand et al. 2011]. The paper 

shows that multicast mesh NoC provides the highest performance/cost ratio and 

consequently it is a suitable interconnect architecture for configurable neural network 

implementation.  

 

 

In addition to the neural model selected, the implementation data precision is also 

critical; [K. Rice et al. 2009] chooses a fixed-point implementation to reduce the logic 

resource footprint over a floating-point and a lowest representation of 12-bits ensuring 

that results do not produce incorrect character recognition. [M. Bhuiyan et al. 2010] 
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implements also a character recognition using Izhikevich’s model but it also uses the 

more complex Hodgkin-Huxley’s with six different implementation techniques of 

which only four fit in the FPGA due to the 265 FLOPs that each neuron requires to 

compute an update. Complex implementations using variants of Hodgkin-Huxley’s 

model are presented also in [G. Smaragdos et al. 2014] and [Moctezuma et al. 2015] 

and due to the complex arithmetic that involves large quantities of exponentials and 

floating point operations the networks do not go above hundreds of neurons. In 

contrast, [F. Naveros et al. 2015] chooses a simpler model targetting a GPU/CPU 

architecture based on a leaky variant of the Integrate and Fire model, and thanks to 

its simpler implementation, larger networks are able to be simulated.  The proposed 

time-driven GPU technique and event-driven CPU technique is able to simulate up to 

50 000 neurons and 4.13 million synapses in real time using Nvidia GTX 470 and Intel 

Core I7 CPUs.  In contrast our embeded system is much more compact and suitable for 

battery-powered applications. Storage and memory resource optimization are essential 

considerations and often the aim is to maximize their utilization. That is the case in 

[K. Cheung et al. 2009] that uses 18-bit and 9-bit two’s complement precision to fully 

utilise the 18-bit two’s complement multipliers of the DSP blocks available in the 

FPGA device. Another example is driven by memory availability; in this case [D. 

Thomas et al. 2009] stores four synaptic weights of 9 bits in one 36-bit register in 

internal BRAM to maximize BRAM utilization using C as the high-level design 

language. Final benchmarks comparing such implementations using high-end 

processors, FPGAs and GPUs show that the FPGA implementation results in 100 

times faster than real-time for a fully-connected network with 1024 neurons. Real-time 

in this case refers to the value of 1 ms for simulation time steps so that enough accuracy 

is maintained for the representation of the spikes [Izhikevich, 2004]. If the hardware 

can compute one time step in less than 1ms then it is said to be real-time.  [K. Cheung 

et al. 2012] uses a Maxeler high performance computing platform and Java as its 

design language and distributes synaptic data through a weight distribution controller 

that manages the information of synapses in 32-bits including synaptic weight, index 

of neuron and an axonal delay. [S. Moore et al. 2012] applies also the Izhikevich’s 

equations with a 16-bit fixed-point precision. This system uses a “communication-

centric” approach through a custom-made PCIe-to-SATA adapter that allows to 

interconnect up to 16 Altera DE4 FPGA boards with simulations up to 64K neurons 

and 64M synapses. The language of choice is Bluespec, a high-level functional 

hardware description programming language based on SystemVerilog, An example of 

a modular spiking network based on a network-on-chip interconnect is shown in 

[Pande et al.  2013]. The modular architecture is based on a LIF neuron which occupies 

12 slices per neuron with a basic module of 16x16 or 256 neurons. The device is 

targetted to  a Virtex-6 FPGA and can be scaled to multiple devices thanks the to NoC 

infrastructure. 

   

A summary of this related work is shown in Table II while Table I clarifies the 

acronyms used in Table II. Some of the related work also utilize a high-level design 

language but in contrast our work does not use a high-performance computing 

platform but focuses on a combined optimization of data precision and data streaming 

to be able to fit the whole network in a small embedded FPGA-CPU device with a large 

utilization factor of all the resources. The presented research in this paper also shows 

how the system can be made energy proportional by selectively activating network 

areas and deploying voltage and frequency scaling at the computing and memory levels. 

These means that in contrast to large scale implementations that make use of PCIe 

boards controlled by desktop processors such as the SRC 7 H MAP [M. Bhuiyan et al. 

2010] and the Maxeler boards used in [K. Cheung et al. 2012] our compact solution 
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could be used in energy constraint scenarios such as battery-powered embedded 

systems and robotics.  

 

 
Table I. Related work acronyms 

Neuron Models: 

IZH - Izhikevich, HH - Hodgkin-Huxley, LIF - Leaky Integrated and Fire, 2PR - Two-

compartment P–R 

Data Precision: 

FLO - Floating Point, FIX - Fixed Point 

Network Type: 

FFW - Feed Forward, FCN - Fully connected, 2LA - Two layers, 3LA - Three layers 

Framework/Language: 

C - C HLS, JAV - Java HLS, VHD - VHDL, BSV - Bluespec SystemVerilog, 

OMP - OpenMP, VIV - Vivado HLS tools, CUD - CUDA (Compatible with C, C++, Fortran), 

HWN - Hardware description architecture (language no specified), 

CAR - Carte programming environment (Compatible with C and Fortran), 

EDL - EDLUT application for neural networks simulations (CUDA compatible) 

 

 
Table II. Related work summary 

 

Ref. 
Neuron 

Models 

Data 

Precision 

Network  

Type 

Network  

Size 

FPGA 

Family 

FPGA 

Freq. 

LUTs 

Used 

GPU 

Family 

Framework

/Language 

K. Cheung et 

al. 2009 
IZH FIX FCN 800 Virtex 5 110 MHz 35 K - VHD 

M. Ambroise 

et al. 2013 
IZH FLO FCN 117 Virtex 4 85 MHz 1 K - HWN 

K. Rice et al. 

2009 
IZH FIX 2LA 1K Virtex 4 198 MHz N/A - C 

M. Bhuiyan 

et al. 2010 

IZH, 

HH 
FLO 2LA 2 M Altera II 150 MHz N/A - CAR 

F. Naveros et 

al. 2015 
LIF FLO 3LA 100 K - - - NVIDIA 

OMP, 

EDL 

D. Thomas et 

al. 2009 
IZH FLO FCN 1K Virtex 5 133 MHz 27 K - C, CUD 

K. Cheung et 

al. 2012 
IZH FIX N/A 64K Virtex 6 100 MHz 205 K - JAV 

S. Moore et 

al. 2012 
IZH FIX N/A 64K Altera II 200 MHz N/A - BSV 

G. Smaragdos 

et al. 2014 
ION/HH FLO FCN 96 Virtex 7 100 MHz 251 K - C, VIV 

Y. Zhang et 

al. 2009 
2PR FLO FCN 105 Virtex 6 100 MHz 108K - VHD 

Pande et al.  

2013 
LIF FIX FCN 256 Virtex 6 200 MHz 4816   VHD 
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 SYSTEM DESCRIPTION 

The network topology shown in Fig. 1 is defined as a 𝐿 x 𝑛𝑙𝑎𝑦𝑒𝑟  network configuration, 

where every layer can have a maximum number of 𝑛𝑙𝑎𝑦𝑒𝑟 neurons, and every neuron 

at most 𝑠𝑛𝑒𝑢𝑟𝑜𝑛 synapses. In the considered fully connected configuration each neurons 

connects to all the neurons in the previous layer so 𝑛𝑙𝑎𝑦𝑒𝑟 =  𝑠𝑛𝑒𝑢𝑟𝑜𝑛  . The three main 

processing blocks that need to be executed every simulation step of 1 𝑚𝑠 are described 

in Fig. 2.  

 

 
                                          Fig. 1. SNN Network topology 

 

 

 
 

 
Fig. 2. Processing blocks, variables and loops 

 

Table III shows the result of profiling the network based on a C implementation and 

an Intel x86 architecture. The table shows that the bottleneck resides in the second 

processing block where the number of iterations is 𝑛𝑙𝑎𝑦𝑒𝑟  followed by the neuron 

equations itself. The accumulated current 𝐼𝑠𝑦𝑛 value is the input into the neuron model 

and therefore both blocks are tightly integrated and can be mapped to hardware as a 

single unit.  The description of the neural network in C++ was synthesized to RTL 

using Vivado HLS. One of the key resources that must be optimized is Block RAM 

memory utilization. The size of all arrays involved in the proposed algorithm is 

proportional to the number of neurons 𝑛𝑡𝑜𝑡𝑎𝑙 with the exception of the synapse weights 
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proportional to 𝑛𝑡𝑜𝑡𝑎𝑙 x 𝑛𝑙𝑎𝑦𝑒𝑟.  In the proposed architecture there are two parameters 

that are required per neuron in a NxN network: 

 

• Neuron type (1 bit): N3 values = N3 bits 

• Synaptic Weights (e.g. 8/12/16/32 bits): N3 values = From N3 x weight size bits 

 

For example, in a 150 x 150 network with a 32 bits precision, the size required is 1503 

x 32 = 102.9 Mb. Fig. 3 illustrates the memory required to allocate the synapses 

weights of the proposed algorithm with different data sizes assuming configurations 

that contain the same number of layers and neurons per layer.  

 
Table III. Spiking neural network profiling 

Processing  

block 

Execution  

time 

Number of 

iterations 

Multiplications 

per neuron 

Add/sub  

per neuron 

Update synapses per 

neuron 
2.15% 𝑛𝑡𝑜𝑡𝑎𝑙 1 1 

Get total synaptic 

current (𝐼𝑠𝑦𝑛) 
90.20% 

𝑛𝑡𝑜𝑡𝑎𝑙 𝑥 

 𝑛𝑙𝑎𝑦𝑒𝑟  
𝑛𝑙𝑎𝑦𝑒𝑟   1 

Izhikevich’s 

equations per neuron 
7.65% 𝑛𝑡𝑜𝑡𝑎𝑙 14 17 

Total 100% 
𝑛𝑡𝑜𝑡𝑎𝑙  𝑥 

(2 + 𝑛𝑙𝑎𝑦𝑒𝑟) 
𝑛𝑙𝑎𝑦𝑒𝑟 + 15 19 
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Fig. 3. Synapse weights memory required estimates 

 

In the Zynq family the Zynq 7020 device has 4.9Mbits of BlockRAM which is also 

needed to support the DMA transfers and buffer data among other logic that must be 

implemented in the device. The point in Fig.3 corresponding to the 80x80 network and 

8 bit precision needs 3.9 Mbits of memory and, realistically, will be the largest possible 

network with a total of 6,400 neurons.  A larger Zynq 7100 with 26.5 Mbits of memory 

will be limited to approximately 150x150 or 22,500 neurons. This requirement creates 

a significant limitation and to overcome this problem alternative solutions are explored 

based on synaptic weight streaming in the following section. 

 DATA STREAMING AND PRECISION OPTIMIZATION 

In the proposed solution synaptic weights are not stored in internal BlockRAMs but 

they are streamed from external memory when they are required. They are packed 

into 32 or 64-bit data streams, hence, the optimal data precisions that avoids 

additional decoding logic or wasted bits during packaging are 32-bit floating point or 

fixed-point of 32, 16 and 8-bits. Fig. 4 analyzes the impact of the different synaptic 

weight precision in the firing rates and the cross correlation of the fixed-point 

implementations against the floating point (as target).  The graph plots the average, 

maximum and minimum firing rate of the neurons in the output layer of a 30x30 fully 

connected feed-forward network of excitatory neurons with random weights with 

values between 2.5 𝑥 10−2  and 5 𝑥 10−4  along with the firing rate cross correlation 

against the implementation with the highest precision (floating point 32-bit). 

 

 

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250

500x500 450x450 400x400 350x350 300x300 250x250 200x200 150x150 100x100 50x50

M
em

o
ry

 s
iz

e 
(M

b
it

s)

Network size

Synapse weights memory 

32-bit 16-bit 12-bit 8-bit



Energy Proportional Streaming Spiking Neural Network in a Reconfigurable System                                     
39:10  
                                                                                                                                         

 
Fig. 4. Firing rate statistics over floating and fixed point precision weight’s data types  

 

 

The black lines and red dots indicates the minimum, maximum and average of the 

firing rates using the same network configuration with the four different 

implementations and those are given in Hertz. The blue columns (right axis) show the 

computed cross correlation percentages based on the firing rates using the same 

random weights of the implementations described previously and using the sample 

cross correlation implemented by MATLAB. It can be observed that in the fixed-point 

implementations of 32 and 16-bit the firing rate correlation error is almost null (less 

than 0.004%), whilst the error in the 8-bit implementation is larger at 0.04%, although 

accuracy is still higher than 99.9%. The precision of the rest of the variables that 

maintain the membrane potentials and synaptic currents are maintained at 32-bit 

since our experimentation has shown that the network is much more sensitive to these 

parameters.  To achieve the transmission of the synapse weights on-demand without 

storing them in the FPGA memory the HLS processing block can receive up to four 

FIFO streams in parallel from external memory, matching the four high performance 

AXI ports available in the Zynq family. Each port is configured with a 64-bit width 

hence 256 bits of synaptic weights are available to be processed in parallel per cycle.  

An illustrative example of the streaming approach with a 100x100 network and 8-bit 

synapse weights is shown in Fig. 5. 
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Fig. 5.  Synapses weight streaming approach 

 

Obtaining the total synaptic current and computing the Izhikevich model represent 

the most critical sections accordingly to Table III with around 90.20% and 7.65% of 

total complexity respectively. The combined computation involves at least 𝑛𝑙𝑎𝑦𝑒𝑟 + 14 

multiplications and 18 additions per each processed neuron as can be obtained adding 

up the corresponding values in Table III. The main bottleneck lies in the reading 

throughput of the synaptic weights needed in order to get the conductance; therefore, 

as the maximum read throughput achieved by using the four high performance AXI 

ports available in the Zynq device is 256 bits per cycle the block latency for this block 

can be expressed as in eq. (6). 

 

                                   𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝 (
𝑛𝑙𝑎𝑦𝑒𝑟 ∙𝑤𝑏𝑖𝑡𝑠

256
)                         (6) 

 

                 𝐵𝑙𝑜𝑐𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑛𝑡𝑜𝑡𝑎𝑙 ∙  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 +  𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦       (7)     
 

The iteration latency is the latency required to process the accumulated conductance 

and the Izhikevich’s equations for each pipelined neuron. It measures how many clock 

cycles the circuit needs to produce the first output. The Vivado HLS tool achieves an 

iteration latency after synthesis in the range of tens and the number of neurons 𝑛𝑡𝑜𝑡𝑎𝑙  is 

in the range of thousands. For that reason the iteration latency may be omitted from 

eq. (7) and the block latency can be approximated as follows in eq. (8): 

 

                                    𝐵𝑙𝑜𝑐𝑘 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≈ 𝑛𝑡𝑜𝑡𝑎𝑙 ∙  𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛                       (8) 

 
Then replacing the pipeline interval per neuron with eq. (6) we get eq. (9) 

 

                                  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ≈ 𝑛𝑡𝑜𝑡𝑎𝑙 ∙  (𝑟𝑜𝑢𝑛𝑑𝑢𝑝 (
𝑛𝑙𝑎𝑦𝑒𝑟 ∙𝑤𝑏𝑖𝑡𝑠

256
))                            (9) 

For example, in a 100x100 network with 8-bit synaptic weights, the latency of the block 

is approximately 40,000 clock cycles or 0.4 𝑚𝑠. Fig 6 applies this equation for different 

number of AXI ports, weight precisions and network sizes and compares it with the 



Energy Proportional Streaming Spiking Neural Network in a Reconfigurable System                                     
39:12  
                                                                                                                                         

performance that will be obtained if all the synaptic data could be stored in internal 

BRAMs. The BRAM performance estimation is based on the performance estimates 

obtained from Vivado HLS directly. Fig 6 shows that the performance of the 8-bit 

streaming approach with 4 ports shown in green and BRAM version shown in red are 

comparable up to network sizes of 300x300 and after that the streaming approach still 

offers competitive performance although it is not as good as storing all the data in the 

device BRAMs. 

 
 

Fig. 6.  Performance estimates for streaming and local synaptic weights 

 COMPLEXITY AND PERFORMANCE  

The system is implemented in the Zynq family using the 8-bit precision configuration 

for synaptic weights and the PS and PL blocks are interfaced as shown in Fig 7 with 

an additional AXI DMA IP. Fig. 7 shows that the 4 available HP (high-performance) 

ports are used to stream data in and out of the device plus one GP (general purpose) 

point for controlling purposes. The results in terms of device utilization are depicted 

in Fig. 8 that mean that the 500x500 (i.e. 250K neurons) network will be suitable for 

the largest Zynq 7100 using 81% of internal BRAM resources.  
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Fig. 7.  System block diagram 

 
A smaller device such as the Zynq 7020 available in the zc702 board limits the network 

complexity to approximately 170x170. For this configuration size the limiting factor 

are the DSP blocks since 213 out of 220 available are used.  

 

 
Fig. 8.  Complexity analysis for resource utilization 
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Fig. 9.  Performance results 

 

To measure and compare performance we use the zc702 board which is available for 

this research and consider sizes ranging from 50x50 to the maximun possible of 

170x170 network. Fig. 9 compares the performance of the S2NN network on the Zynq 

device at 150 MHz with 8-bit and floating point precissions against equivalent OpenCL 

version mapped to the Core i7-4510U CPU @ 2.00GHz and the embedded Intel GPU 

HD4400. A serial version mapped to the ARM Cortex A9 device present in the Zynq 

device is also presented as a reference. The figure confirms that the 8-bit fixed point 

version offers higher throughput and can maintain real-time performance up to a 

network size of 150x150 neurons with a 150 MHz clock.  

 ENERGY EFFICIENCY AND PROPORTIONALITY 

In the proposed system the active area in the S2NN network is configurable at run-

time so that the number of layers and neurons per layer can be varied, and the neurons 

that are not part of the active area do not get computed. In a practical application this 

could mean that depending on the application the size of the network could change and 

adapt the number of active neurons to the complexity of the task. Assuming that the 

objective is to maintain real-time performance so that emulation time and real time 

are equivalent, a 150x150 network will need to run at 150 MHz as shown in Fig. 9 but 

the same network with an active area of 50x50 will only need to run at a fraction of 

that frequency to maintain real-time performance. In this section we consider three 

networks with 50x50, 100x100 and 150x150 neurons and investigate how voltage and 

frequency can be adapted to maintain real-time performance with minimum energy. 

Adaptation of voltage and frequencies is achieved using the voltage regulators and 

mixed mode frequency generation using a power adaptive architecture presented in 

Fig.10. This architecture is part of our previous work [Nunez-Yanez et al. 2016] and 

the interested reader is refer to that paper for more information.  It consist of a DVS 

(Dynamic Voltage Scaling) unit that uses the PMBUS present in the device to adjust 

voltage levels and measure current and a DFS (Dynamic Frequency Scaler) that uses 

the MMCM (Mixed Mode Clock Managers) to synthesis new frequencies on the fly. The 
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user design is the S2NN in this paper and the AXI-PCAP port can be used to load 

different network configurations on the fly without altering the DFS and DVS logic 

and status. As shown in our previous work on DVFS [Nunez-Yanez et al. 2016] this 

DVFS-enable architecture has a logic overhead of around 5% which has a very small 

impact in power at the same voltage and frequency because in the FPGA device most 

of the power is not due to the additional configured logic cells but due to leakage and 

clock networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 10 Power adaptive system architecture 

 

Power is measured in active (e.g. network running) and idle (e.g. network idling) states 

in Fig. 11 and Fig. 12 respectively. The power measurements include both static and 

dynamic power. The points in the X axis indicate the FPGA voltage, the FPGA 

frequency, the DDR3 memory voltage and the DDR memory frequency. For example 

the 150x150 configuration point 1.0_150_1.5_533 indicates that the FPGA is at 

nominal voltage of 1.0 volts and frequency of 150 MHz while the DDR3 memory is at 

nominal voltage of 1.5 volts and 533 MHz. For the 100x100 network there are three 

sets of bars with three bars each. The left set of three bars show the power usage at 

nominal voltage, the middle bars shows the power usage when frequency has been 

scaled down to 60 MHz that is the mininum frequency required to maintain real-time 

performance for this network size. Then the right set of bars show the effect of scaling 

DDR3 frequency to 0.9 volts and 200 MHz which provides enough memory bandwith 

to maintain the real-time performance of the network at 60 MHz. The reduction of 

active power with voltage and frequency scaling is 64% and 84% for the FPGA and 

DDR devices respectively for the 100x100 SNN. The same approach can be applied to 

the 50x50 network, although in this case only a 9 MHz clock is needed in the FPGA to 

support real-time performance. The reduction of power in this case is 88% and 84% for 

the FPGA and DDR devices respectively. The figures show that the most power 

intensive component is the DDR memory which is significantly higher than the FPGA 

active power and this is the case for all configurations. The streaming approach used 

by S2NN means that a signicant amount of bandwith is required since the four 

available high-performance ports are used constantly to move synaptic weights to the 

accelerator. As the frequency of the accelerator reduces in the voltage-scaled 
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configurations, the bandwith requested to the memory controller also reduces and this 

means that it is possible to reduce its own clock frequency without affecting overall 

performance.  

 

To calculate the energy results shown in Fig. 13 we consider that the smaller 

configurations when running at the maximum frequency of 150 MHz will complete its 

computation early and they will need to wait for the next simulation step in idle state. 

The total energy is obtained as the addition of the active energy and the idle energy. 

For example, the 150x150 network does not have idle time and the only component is 

active energy. Similarly the voltage and frequency scaled configurations removed the 

idle energy since they remain active during the whole simulation step.  

 

 

 
Fig. 11. S2NN FPGA and DDR active power 

 

 

 
Fig. 12. S2NN FPGA and DDR idle power 
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Fig. 13. S2NN FPGA and DDR energy 

 
The results of Fig. 13 measure the energy required to perform one second of network 

activity and confirm the benefits of voltage scaling to reduce the energy requirements 

of the FPGA and memory devices. The 50x50 network benefits from an energy 

reduction of 76% and 69% for the FPGA and DDR3 memory respectively. The energy 

reduction for the 100x100 network is 48% and 77% for the FPGA and DDR3 memory 

respectively. For both cases the DDR3 switches between two fixed working points with 

frequency dropping to 200 MHz at 0.9 Volts. Even lower values of frequency in DDR3 

memory will be enough to maintain performance for the smaller network 

configurations, but 200 MHz is the lower value accepted by the memory controller and 

0.9 the lowest stable voltage. On the other hand, the FPGA has a wider range of 

working points and drops to 9 MHz and 60 MHz in each of the cases and this explains 

why the energy reductions are different in the FPGA device for each configuration.  

The FPGA frequency is generated by the internal mixed mode clock managers 

(MMCM) available in the FPGA device and the range of possible frequencies is much 

higher than that possible during the memory controller configuration.  

 

Overall the measured results indicate that to perform 1 second of network activity 

costs 2,300 𝑚𝐽 , 413 𝑚𝐽  and 263 𝑚𝐽  for the 150x150, 100x100 and 50x50 S2NN 

configurations. As a reference point the same approach has been followed measuring 

the power in an Intel architecture considering active and idle values. An Intel Core I7 

4770K at 3.5 GHz active and 0.8 GHz idle uses 119,600 𝑚𝐽 (only active since takes 

longer than one second), 37,000 𝑚𝐽  (36,000 𝑚𝐽  active + 1,000 𝑚𝐽  idle) and 14,100 𝑚𝐽 
(5,600 𝑚𝐽 active + 8,500 𝑚𝐽 idle) for each of the network sizes with an average active 

power consumption of 40 Watts and idle power of 10 Watts.  To obtain this energy 

value, the power in the CPU has been estimated using Intel software that allows access 

to the processor energy counters and only the processor package energy is considered 

for the Intel case (not main memory as done in the Zynq device). The intel i7 approach 

is the solution with the algorithm executed only by the CPU (traditional approach), it 

doesn’t include GPU execution thus it doesn’t include GPU consumption. The times 

measured for one second of a real time execution in the Intel platform are 2.99 s, 0.9 s 

and 0.15 s. In other words, only the two smaller network configurations can achieve a 

real time simulation. The estimation shows that the Zynq implementation uses 

approximately less than 2% of the Intel CPU energy.  
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 CONCLUSIONS 

This paper has presented a high-performance streaming spiking neural network called 

S2NN designed using C++ and mapped to the FPGA device with the Vivado high-level 

synthesis and implementation tools. The feature of being able to activate different 

sections of the network is exploited to obtain an energy proportional system in which 

the voltage and frequency of the processing and memory components are scaled to the 

levels required to maintain real-time performance. The measurements confirm that 

the DDR memory is more power and energy intensive than the CPU and 

programmable logic resources and that the standard memory controller and DDR3 

devices present in the ZC702 board are able to perform memory power management 

with voltage scaling. Currently the CPU present in the Zynq device is used only to 

move network configuration data, activate and collect results from the FPGA side but 

our current work focuses on using the CPU side to deploy different learning algorithms 

that modify the synaptic weights and neuron configuration to perform useful functions.   

This embedded solution could be suitable to portable applications working in energy 

constrained scenarios such as automotive and robotics; and so, complements the 

currently available large scale brain emulators. Scaling the network to more than one 

device will be possible as long as each device has access to the weights of the part of 

the network it implements so streaming of weight information is local to the device 

and the output spikes written by one device in each time step are read by the next 

device. We have made the S2NN IP including source code and integration blocks 

available open-source at http://seis.bris.ac.uk/~eejlny/downloads/s2nn_package.zip to 

encourage reproducible results and further work in this field. 
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